1
|
Strutynska NA, Balatskyi VV, B Strutynskyi R, Goshovska YV, Mys LA, Luchkova AY, Denysova MV, Korkach YP, Strutynskyi VR, Piven OO, Dobrzyn P, Sagach VF. Pyridoxal-5-phosphate mitigates age-related metabolic imbalances in the rat heart through the H 2S/AKT/GSK3β signaling axis. Mitochondrion 2025; 81:102001. [PMID: 39755161 DOI: 10.1016/j.mito.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Pyridoxal-5-phosphate (PLP) enhances the synthesis of endogenous hydrogen sulfide, a potent regulator of cell metabolism. We used 24-month-old rats to investigate the PLP mitoprotective function in the aging heart. We demonstrated improvement of mitochondrial bioenergetic functions, inhibition of mPTP opening after PLP administration. Moreover, PLP treatment increased glucose consumption and utilization, decreased lipid transport into the cells, but increased fatty acid β-oxidation, providing sufficient energy. An ECG study showed a significant improvement in cardiac function in PLP-treated old rats. Our data suggest that PLP may exert its effect through the H2S/AKT/GSK3β axis with further targeting of the Sirt1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Nataliia A Strutynska
- The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine.
| | - Volodymyr V Balatskyi
- The Laboratory of Molecular Medical Biochemistry of Nencki Institute of Experimental Biology, Polish Academy of Sciences. Address: 3 Pasteur Str., Warsaw 02-093, Poland
| | - Ruslan B Strutynskyi
- The Department of General and Molecular Pathophysiology of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Yulia V Goshovska
- The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Lidiia A Mys
- The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Alina Yu Luchkova
- The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Maiia V Denysova
- The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Yuliia P Korkach
- The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Vladyslav R Strutynskyi
- The Department of Immunophysiology of Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Oksana O Piven
- The Laboratory of Molecular Medical Biochemistry of Nencki Institute of Experimental Biology, Polish Academy of Sciences. Address: 3 Pasteur Str., Warsaw 02-093, Poland; The Department of Human Genetics of Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine. Address: 150 Akad. Zabolotnogo Str., Kyiv 03680, Ukraine.
| | - Pawel Dobrzyn
- The Laboratory of Molecular Medical Biochemistry of Nencki Institute of Experimental Biology, Polish Academy of Sciences. Address: 3 Pasteur Str., Warsaw 02-093, Poland
| | - Vadym F Sagach
- The Department of Blood Circulation of Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine. Address: 4, Bogomoletz Str., Kyiv 01024, Ukraine
| |
Collapse
|
2
|
Deng G, Muqadas M, Adlat S, Zheng H, Li G, Zhu P, Nasser MI. Protective Effect of Hydrogen Sulfide on Cerebral Ischemia-Reperfusion Injury. Cell Mol Neurobiol 2023; 43:15-25. [PMID: 35066714 PMCID: PMC11415178 DOI: 10.1007/s10571-021-01166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023]
Abstract
The brain is the most sensitive organ to hypoxia in the human body. Hypoxia in the brain will lead to damage to local brain tissue. When the blood supply of ischemic brain tissue is restored, the damage will worsen, that is, cerebral ischemia-reperfusion injury. Hydrogen sulfide (H2S) is a gaseous signal molecule and a novel endogenous neuroregulator. Indeed, different concentrations of H2S have different effects on neurons. Low concentration of H2S can play an important protective role in cerebral ischemia-reperfusion injury by inducing anti-oxidative stress injury, inhibition of inflammatory response, inhibition of cell apoptosis, reduction of cerebrovascular endothelial cell injury, regulation of autophagy, and other ways, which provides a new idea for clinical diagnosis and treatment of related diseases. This review aims to report the recent research progress on the dual effect of H2S on brain tissue during cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Gang Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Masood Muqadas
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Salah Adlat
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Haiyun Zheng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Ge Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
3
|
Jiang Y, Luo Y, Chen X, Liu N, Hou J, Piao J, Song C, Si C, Hu W, Li X. Senkyunolide H protects PC12 cells from OGD/R-induced injury via cAMP-PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114659. [PMID: 34543683 DOI: 10.1016/j.jep.2021.114659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Senkyunolide H (SNH) is a bioactive phthalide isolated from Ligusticum chuanxiong Hort rhizome and was reported to have multiple pharmacological effects. AIM OF THE STUDY The study was performed to verify the potency of SNH protecting PC12 cells from oxygen glucose deprivation/reperfusion (OGD/R)-induced injury and to elucidate the underlying mechanisms. MATERIALS AND METHODS OGD/R model was established in PC12 cells and the cell viability was measured by MTT assay. The cell morphology was observed using scanning electron microscope (SEM). The potential targets of SNH and related targets of OGD/R were screened, and a merged protein-protein interaction (PPI) network of SNH and OGD/R was constructed based on the network pharmacology analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for pathway analysis. Intracellular cAMP level and the protein expression levels were measured to elucidate the underlying mechanisms. RESULTS SNH pretreatment protected PC12 cells against OGD/R-induced cell death. SNH also significantly protected the cell protrusion. A merged PPI network was constructed and the shared candidate targets significantly enriched in cAMP signaling pathway. The level of intracellular cAMP and the protein level of p-CREB, p-AKT, p-PDK1 and PKA protein were up-regulated after the treatment of SNH compared with OGD/R modeling. CONCLUSIONS The present study indicated that SNH protected PC12 cells from OGD/R-induced injury via cAMP-PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yunyao Jiang
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yanyan Luo
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Xinyi Chen
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Nan Liu
- Beijing Increasepharm Safety and Efficacy Co., Ltd, Beijing, 102206, China.
| | - Jincai Hou
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd., Beijing, 100083, China.
| | - Jingpei Piao
- College of Life Sciences, Jilin Normal University, Siping, 136000, China.
| | - Chao Song
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Weicheng Hu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Xueqin Li
- Department of General Practice, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
4
|
Li D, Liu H, Wang H, Jia S, Wang X, Ling S, Chen G, Liu X, Wang YF. Astrocytic Hydrogen Sulfide Regulates Supraoptic Cellular Activity in the Adaptive Response of Lactating Rats to Chronic Social Stress. ASN Neuro 2021; 13:17590914211043087. [PMID: 34579557 PMCID: PMC8642056 DOI: 10.1177/17590914211043087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Maternal social stress among breastfeeding women can be adapted in chronic process.
However, neuroendocrine mechanisms underlying such adaptation remain to be identified.
Here, we report the effects of 2 hr/day unfamiliar male rat invasion (UMI) stress on
maternal behaviors in lactating rats during postpartum day 8 (UMI8) to postpartum day 12
(UMI12). Rat dams at UMI8 presented signs of maternal anxiety, depression, and attacks
toward male intruder. These changes partially reversed at UMI12 except the sign of
anxiety. In the supraoptic nucleus (SON), UMI12 but not UMI8 significantly increased the
expression of c-Fos and phosphorylated extracellular signal-regulated protein kinase 1/2.
At UMI8 but not UMI12, length of glial fibrillary acidic protein (GFAP, astrocytic
cytoskeletal element) filaments around oxytocin (OT) neurons was significantly longer than
that of their controls; the amount of GFAP fragments at UMI12 was significantly less than
that at UMI8. Expression of cystathionine β-synthase (CBS, enzyme for H2S
synthesis) at UMI12 was significantly higher than that at UMI8. CBS expression did not
change significantly in the somatic zone of the SON but decreased significantly at the
ventral glia lamina at UMI8. In brain slices of the SON, aminooxyacetate (a CBS blocker)
significantly increased the expression of GFAP proteins that were molecularly associated
with CBS. Aminooxyacetate also reduced the firing rate of OT neurons whereas
Na2S, a donor of H2S, increased it. The adaptation during chronic
social stress is possibly attributable to the increased production of H2S by
astrocytes and the subsequent retraction of astrocytic processes around OT neurons.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, 12455Hainan Medical University, Haikou, China.,Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Hongyang Wang
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Shuo Ling
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Guichuan Chen
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, 34707Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Liu T, Song Y, Hu A. Neuroprotective mechanisms of mangiferin in neurodegenerative diseases. Drug Dev Res 2021; 82:494-502. [PMID: 33458836 DOI: 10.1002/ddr.21783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022]
Abstract
The central nervous system (CNS) regulates and coordinates an extensive array of complex processes requiring harmonious regulation of specific genes. CNS disorders represent a large burden on society and cause enormous disability and economic losses. Traditional Chinese medicine (TCM) has been used for many years in the treatment of neurological illnesses, such as Alzheimer's disease, Parkinson's disease, stroke, and depression, as the combination of TCM and Western medicine has superior therapeutic efficacy and minimal toxic side effects. Mangiferin (MGF) is an active compound of the traditional Chinese herb rhizome anemarrhenae, which has antioxidant, anti-inflammation, anti-lipid peroxidation, immunomodulatory, and anti-apoptotic functions in the CNS. MGF has been demonstrated to have therapeutic effects in CNS diseases through a multitude of mechanisms. This review outlines the latest research on the neuroprotective ability of MGF and the diverse molecular mechanisms involved.
Collapse
Affiliation(s)
- Tingjun Liu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, PR China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, PR China
| |
Collapse
|
6
|
Van Dusen RA, Lanz C, Robertson RM. Role of adenosine in functional recovery following anoxic coma in Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104057. [PMID: 32416084 DOI: 10.1016/j.jinsphys.2020.104057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
When exposed to prolonged anoxia insects enter a reversible coma during which neural and muscular systems temporarily shut down. Nervous system shut down is a result of spreading depolarization throughout neurons and glial cells. Upon return to normoxia, recovery occurs following the restoration of ion gradients. However, there is a delay in the functional recovery of synaptic transmission following membrane repolarization. In mammals, the build-up of extracellular adenosine following spreading depolarization contributes to this delay. Adenosine accumulation is a marker of metabolic stress and it has many downstream effects through the activation of adenosine receptors, including the inhibition of cAMP production. Here we demonstrate that adenosine lengthens the time to functional recovery following anoxic coma in locusts. Caffeine, used as an adenosine receptor antagonist, decreased the time to recovery in intact animals and lengthened the time to recovery in semi-intact animals. A cAMP inhibitor, NKH 477, delayed recovery time in male animals. Our results show that the rate of recovery in insect systems is affected by the presence of adenosine.
Collapse
|
7
|
Lv S, Wu N, Wang Q, Yang L. Endogenous hydrogen sulfide alleviates methotrexate‐induced cognitive impairment by attenuating endoplasmic reticulum stress‐induced apoptosis via CHOP and caspase‐12. Fundam Clin Pharmacol 2020; 34:559-570. [PMID: 32034805 DOI: 10.1111/fcp.12543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Siyuan Lv
- Department of Neurosurgery The National Key Clinic Specialty Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration The Engineering Technology Research Center of Education Ministry of China Zhujiang Hospital Southern Medical University Guangzhou China
| | - Ning Wu
- Department of Hematology Southern Hospital Southern Medical University Guang Zhou China
| | - Qiang Wang
- Department of Neurology Movement Disorders and Neuromodulation Unit Charité ‐ Universitätsmedizin Berlin Germany
| | - Li‐Hua Yang
- Pediatric Center of Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
8
|
Sunzini F, De Stefano S, Chimenti MS, Melino S. Hydrogen Sulfide as Potential Regulatory Gasotransmitter in Arthritic Diseases. Int J Mol Sci 2020; 21:ijms21041180. [PMID: 32053981 PMCID: PMC7072783 DOI: 10.3390/ijms21041180] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 01/12/2023] Open
Abstract
The social and economic impact of chronic inflammatory diseases, such as arthritis, explains the growing interest of the research in this field. The antioxidant and anti-inflammatory properties of the endogenous gasotransmitter hydrogen sulfide (H2S) were recently demonstrated in the context of different inflammatory diseases. In particular, H2S is able to suppress the production of pro-inflammatory mediations by lymphocytes and innate immunity cells. Considering these biological effects of H2S, a potential role in the treatment of inflammatory arthritis, such as rheumatoid arthritis (RA), can be postulated. However, despite the growing interest in H2S, more evidence is needed to understand the pathophysiology and the potential of H2S as a therapeutic agent. Within this review, we provide an overview on H2S biological effects, on its role in immune-mediated inflammatory diseases, on H2S releasing drugs, and on systems of tissue repair and regeneration that are currently under investigation for potential therapeutic applications in arthritic diseases.
Collapse
Affiliation(s)
- Flavia Sunzini
- Institute of Infection Immunity and Inflammation, University of Glasgow, 120 University, Glasgow G31 8TA, UK;
- Rheumatology, Allergology and clinical immunology, University of Rome Tor Vergata, via Montpelier, 00133 Rome, Italy;
| | - Susanna De Stefano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Maria Sole Chimenti
- Rheumatology, Allergology and clinical immunology, University of Rome Tor Vergata, via Montpelier, 00133 Rome, Italy;
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-0672594410
| |
Collapse
|
9
|
Lazarević M, Mazzon E, Momčilović M, Basile MS, Colletti G, Petralia MC, Bramanti P, Nicoletti F, Miljković Đ. The H₂S Donor GYY4137 Stimulates Reactive Oxygen Species Generation in BV2 Cells While Suppressing the Secretion of TNF and Nitric Oxide. Molecules 2018; 23:molecules23112966. [PMID: 30441775 PMCID: PMC6278327 DOI: 10.3390/molecules23112966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023] Open
Abstract
GYY4137 is a hydrogen sulfide (H2S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 μM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H2S donor, Na2S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted.
Collapse
Affiliation(s)
- Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy.
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Maria Sofia Basile
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Giuseppe Colletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Maria Cristina Petralia
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy.
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
10
|
Gao JX, Li Y, Wang SN, Chen XC, Lin LL, Zhang H. Overexpression of microRNA-183 promotes apoptosis of substantia nigra neurons via the inhibition of OSMR in a mouse model of Parkinson's disease. Int J Mol Med 2018; 43:209-220. [PMID: 30431059 PMCID: PMC6257840 DOI: 10.3892/ijmm.2018.3982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effect of microRNA-183 (miR-183) on substantia nigra neurons by targeting oncostatin M receptor (OSMR) in a mouse model of Parkinson’s disease (PD). The positive expression rates of OSMR and the apoptosis of substantia nigra neurons were detected by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling, respectively. Substantia nigra neurons in normal and PD mice were cultured in vitro. The association between miR-183 and OSMR was verified using a dual luciferase reporter gene assay. The expression of miR-183 and the phosphoinositide 3-kinase-Akt signaling pathway-associated genes were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell apoptosis was detected by flow cytometry. OSMR is the target gene of miR-183. The number of OSMR-positive cells and the apoptotic rate of substantia nigra neurons were increased in the PD group. Neurons transfected with miR-183 mimic exhibited elevated expression levels of miR-183, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-9 and increased apoptotic rate, and reduced expression levels of OSMR, Akt, phosphorylated (p-)Akt, glycogen synthase kinase-3 (GSK-3β), p-GSK-3β, Bcl-2, insulin-like growth factor 1 (IGF-1), mammalian target of rapamycin (mTOR) and p-mTOR. The miR-183 inhibitor decreased the expression levels of miR-183, Bax and caspase-9 and the apoptotic rate; however, increased the expression of OSMR, Akt, p-Akt, GSK-3β, p-GSK-3β, Bcl-2, IGF-1, mTOR and p-mTOR. The results of the present study provide evidence that the overexpression of miR-183 promotes the apoptosis of substantia nigra neurons by inhibiting the expression of OSMR.
Collapse
Affiliation(s)
- Jin-Xia Gao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yu Li
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Sai-Nan Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xing-Chi Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lu-Lu Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Hui Zhang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
11
|
Liu FF, Zhao S, Liu P, Huo SP. Influence of mTOR signaling pathway on ketamine-induced injuries in the hippocampal neurons of rats. Neurol Res 2018; 41:77-86. [PMID: 30373500 DOI: 10.1080/01616412.2018.1531203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To explore the influences of mammalian target of rapamycin (mTOR) signaling pathway on ketamine-induced apoptosis, oxidative stress and Ca2+ concentration in the hippocampal neurons of rats. METHODS The primary hippocampal neurons isolated from fetal Sprague Dawley rats were treated with ketamine (0, 50, 100 and 500 μM) for 4 days to observe its effect on mTOR signaling pathway and apoptosis of rat hippocampal neurons. Then, the hippocampal neurons were divided into C (Control), R (Rapamycin, an inhibitor of mTOR signaling pathway), K (Ketamine) and R + K (Rapamycin + Ketamine) groups to detect the apoptosis, reactive oxygen species (ROS) production, and Ca2+ concentration via the terminal transferase uridyl nick end labelling (TUNEL) assay, dichloro-dihydro-fluorescein diacetate (DCFH-DA) method and Fluo-3 acetoxymethyl ester (Fluo-3AM) staining, respectively. The expressions of mTOR signaling pathway and apoptosis-related proteins in hippocampal neurons were examined by qRT-PCR and Western blot. RESULTS Ketamine could dose-dependently promote the apoptosis of rat hippocampal neurons with upregulation of p-mTOR and its downstream regulators (p-4E-BP-1 and p-p70S6K). However, ketamine-induced apoptosis in hippocampal neurons was reversed significantly by the administration of rapamycin, as evident by the decrease in expressions of pro-apoptotic proteins (Bax and cleaved Caspase-3) and the increase in anti-apoptotic protein (Bcl-2). Meanwhile, the ROS generation and Ca2+ concentration was inhibited accompanied with reduced malonildialdehyde levels but elevated superoxide and glutathione peroxidase activities. CONCLUSION Inhibition of mTOR signaling pathway protected rat hippocampal neurons from ketamine-induced injuries via reducing apoptosis, oxidative stress, as well as Ca2+ concentration. ABBREVIATIONS mTOR: mammalian target of rapamycin; SD: Sprague-Dawley; SPF: Specific-pathogen free; ROS: reactive oxygen species; TUNEL: terminal transferase uridyl nick end labelling; DCFH-DA: Dichloro-dihydro-fluorescein diacetate; Fluo-3A: Fluo-3 acetoxymethyl ester; NMDAR: non-competitive N-methyl-D-aspartame glutamate receptor; 4E-BP1: 4E binding protein 1; p70S6K: p70 S6 Kinase; PCR: Polymerase chain reaction; MDA: malonildialdehyde; GSH-PX: glutathione peroxidase; ANOVA: One-way Analysis of Variance.
Collapse
Affiliation(s)
- Fei-Fei Liu
- a Department of Anesthesiology , Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Shuang Zhao
- a Department of Anesthesiology , Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Peng Liu
- a Department of Anesthesiology , Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Shu-Ping Huo
- a Department of Anesthesiology , Third Hospital of Hebei Medical University , Shijiazhuang , China
| |
Collapse
|
12
|
Zhong Y, Zhu Y, He T, Li W, Li Q, Miao Y. Brain-derived neurotrophic factor inhibits hyperglycemia-induced apoptosis and downregulation of synaptic plasticity-related proteins in hippocampal neurons via the PI3K/Akt pathway. Int J Mol Med 2018; 43:294-304. [PMID: 30365051 PMCID: PMC6257855 DOI: 10.3892/ijmm.2018.3933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022] Open
Abstract
It is not known whether brain-derived neurotrophic factor (BDNF) protects hippocampal neurons from high glucose-induced apoptosis and/or synaptic plasticity dysfunction. The present study aimed to assess whether BDNF exerted a neuroprotective effect in rat hippocampal neurons exposed to high glucose and examine the underlying mechanisms. The apoptosis of primary hippocampal neurons was assessed by Annexin V-fluorescein isothiocyanate/propidium iodide staining. The mRNA and protein expression levels were measured by reverse transcription- quantitative polymerase chain reaction and western blot experiments, respectively. Synaptic plasticity was evaluated by the immunolocalization of synaptophysin (Syn). Exposure of the hippocampal neurons to high glucose (75 mM for 72 h) resulted in cell apoptosis, decreased mRNA and protein expression levels of three synaptic plasticity-related proteins (Syn, Arc and cyclic AMP response element-binding protein), and changes in the cellular distribution of Syn, indicating loss of synaptic density. These effects of high glucose were partially or completely reversed by prior administration of BDNF (50 ng/ml for 24 h). Pre-treatment with wortmannin, a phosphatidylinositol-3-kinase (PI3K) inhibitor, suppressed the ability of BDNF to inhibit the effects of high glucose. In addition, BDNF significantly upregulated the tropomyosin-related kinase B, its cognate receptor, Akt and phosphorylated Akt at the protein levels under high glucose conditions. In conclusion, high glucose induced apoptosis and downregulated synaptic plasticity-related proteins in hippocampal neurons. These effects were reversed by BDNF via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yitong Zhu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ting He
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinjie Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ya Miao
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
13
|
Cao X, Wu Z, Xiong S, Cao L, Sethi G, Bian JS. The role of hydrogen sulfide in cyclic nucleotide signaling. Biochem Pharmacol 2017; 149:20-28. [PMID: 29158149 DOI: 10.1016/j.bcp.2017.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is recognized as an endogenous gaseous transmitter alongside nitric oxide (NO) and carbon monoxide (CO). By integrating into multiple signaling pathways, H2S elicits biological functions in various mammalian systems. Among these pathways, cyclic nucleotide signaling has gradually gained attention in the past decade. Based on current evidence, it seems that H2S may differentially affect the activity of resting adenylyl cyclases (ACs) and activated ACs, therefore playing a dual role in the regulation of cyclic adenosine monophosphate (cAMP) mediated signaling. However, how H2S achieves the differential regulation on ACs remains unknown at molecular level. In the context of cyclic guanosine monophosphate (cGMP) regulation, H2S augments its downstream signaling at least through three different mechanisms: (1) H2S potentiates the response of soluble guanylyl cyclases (sGCs) to NO; (2) H2S inhibits activity of phosphodiesterases (PDEs); and (3) H2S enhances the production of NO. By regulating cyclic nucleotide signaling, H2S possesses therapeutic potentials particularly for hypertension and cardiac injury which have also been discussed in the current review. Nevertheless, a detailed portrayal of H2S mediated interaction with target proteins is still required for a better understanding of the role of this important gaseous mediator in regulating cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Siping Xiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Song Bian
- Life Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Zhang H, Gao J, Wang M, Yu X, Lv X, Deng H, Fan X, Chen K. Effects of scalp electroacupuncture on the PI3K/Akt signalling pathway and apoptosis of hippocampal neurons in a rat model of cerebral palsy. Acupunct Med 2017; 36:96-102. [PMID: 29102966 DOI: 10.1136/acupmed-2016-011335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/14/2017] [Accepted: 08/13/2017] [Indexed: 11/03/2022]
Abstract
Background Substantial evidence from clinical reports has established that most cerebral palsy (CP) patients benefit from a comprehensive rehabilitation exercise training programme. Such advances are enhanced when scalp electroacupuncture (EA), applied at a location corresponding to the projection of the motor area, is combined with rehabilitation exercise training. However, little information exists regarding the mechanistic basis for these effects. Objective To examine whether EA stimulation within the scalp projection location of the motor area can inhibit apoptosis of hippocampal neurons by regulating the PI3k/Akt signalling pathway in a rat model of CP. Methods Fifty male Sprague-Dawley rats underwent surgical modelling of CP. Five were used to confirm successful establishment of the model and the remaining 45 rats were randomly divided into one of three groups that remained untreated (CP group, n=15) or received EA treatment alone (CP+EA group, n=15) or EA in combination with a PI3K/Akt inhibitor (CP+EA+LY294002 group, n=15)). An otherwise healthy negative control group of rats undergoing sham surgery was also included (Control group, n=15). In the CP+EA and CP+EA+LY294002 groups, EA was applied to the scalp surface at alocation corresponding to the projection of the motor area. Basso, Beattie and Bresnahan (BBB) locomotor scores, hippocampal protein expression of Akt and p-Akt (by Western blot analysis) and neuronal apoptosis in hippocampal tissue (by histopathology) were assessed at 7, 14 and 21 days post-CP induction. Results CP rats receiving scalp EA treatment demonstrated improved behavioural scores, less hippocampal neuronal apoptosis and higher expression levels of Akt and p-Akt (p<0.05) at all time points studied compared with untreated CP rats. There were no significant differences observed between CP+EA+LY294002 and untreated CP model groups. Conclusions The effects of scalp EA on the PI3K/ Akt signalling pathway may represent one of the mechanisms involved in the inhibition of hippocampal neuronal apoptosis and improvement of deficits associated with CP in a rat model.
Collapse
Affiliation(s)
- Hanhong Zhang
- The Fourth Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Gao
- Huai'an Maternity and Child Care Hospital, Huan'an, Jiangsu, China
| | - Mengmeng Wang
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuefeng Yu
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuhua Lv
- Life Science and Bioengineering of Beijing Agricultural University, Beijing, China
| | - Huan Deng
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiangwei Fan
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kaiyun Chen
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Hu X, Luan L, Guan W, Zhang S, Li B, Ji W, Fan H. Hydrogen sulfide attenuates isoflurane-induced neuroapoptosis and cognitive impairment in the developing rat brain. BMC Anesthesiol 2017; 17:123. [PMID: 28870150 PMCID: PMC5584335 DOI: 10.1186/s12871-017-0419-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/27/2017] [Indexed: 11/23/2022] Open
Abstract
Background Isoflurane-induced neuroapoptosis and cognitive impairment has been previously reported. Hydrogen sulfide (H2S) has been shown to be a neuromodulator that is thought to have anti-apoptotic, anti-inflammatory, and anti-oxidative benefits. However, it is not known if H2S is protective against anesthesia-induced apoptosis and cognitive defects. Methods In this study, postnatal day 7 (P7) Sprague-Dawley rats were randomly divided into four groups: control group (normal saline), H2S group (NaHS 28 μM/kg), isoflurane group (normal saline +0.75% isoflurane) and H2S preconditioning group (NaHS 28 μM/kg + 0.75% isoflurane). After exposure to isoflurane for 6 h, half the numbers of rats in each group were euthanized, and the hippocampus and cerebral cortex were dissected and examined for apoptosis by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique and western blot. After 6 weeks, the remaining rats were subjected to a Morris water maze (MWM) test for behavioral assessment. Results The TUNEL assay and western blot showed that when rats were preconditioned with NaHS, neuroapoptosis decreased significantly both in hippocampus and cerebral cortex compering with the isofulrane group. The MWM showed that P7 rats administration of NaHS improved cognitive impairments induced by isoflurane. Conclusions The current study demonstrates that H2S attenuates isoflurane-induced neuroapoptosis and improves cognitive impairments in the developing rat brain.
Collapse
Affiliation(s)
- Xueyuan Hu
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Li Luan
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Wei Guan
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Shuai Zhang
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Bei Li
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Wei Ji
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Honggang Fan
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600 of Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
16
|
The protective effect of hydrogen sulfide (H2S) on traumatic brain injury (TBI) induced memory deficits in rats. Brain Res Bull 2017; 134:177-182. [DOI: 10.1016/j.brainresbull.2017.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
|
17
|
Lechpammer M, Tran YP, Wintermark P, Martínez-Cerdeño V, Krishnan VV, Ahmed W, Berman RF, Jensen FE, Nudler E, Zagzag D. Upregulation of cystathionine β-synthase and p70S6K/S6 in neonatal hypoxic ischemic brain injury. Brain Pathol 2016; 27:449-458. [PMID: 27465493 DOI: 10.1111/bpa.12421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Encephalopathy of prematurity (EOP) is a complex form of cerebral injury that occurs in the setting of hypoxia-ischemia (HI) in premature infants. Using a rat model of EOP, we investigated whether neonatal HI of the brain may alter the expression of cystathionine β-synthase (CBS) and the components of the mammalian target of rapamycin (mTOR) signaling. We performed unilateral carotid ligation and induced HI (UCL/HI) in Long-Evans rats at P6 and found increased CBS expression in white matter (i.e. corpus callosum, cingulum bundle and external capsule) as early as 24 h (P7) postprocedure. CBS remained elevated through P21, and, to a lesser extent, at P40. The mTOR downstream target 70 kDa ribosomal protein S6 kinase (p70S6K and phospho-p70S6K) and 40S ribosomal protein S6 (S6 and phospho-S6) were also overexpressed at the same time points in the UCL/HI rats compared to healthy controls. Overexpression of mTOR components was not observed in rats treated with the mTOR inhibitor everolimus. Behavioral assays performed on young rats (postnatal day 35-37) following UCL/HI at P6 indicated impaired preference for social novelty, a behavior relevant to autism spectrum disorder, and hyperactivity. Everolimus restored behavioral patterns to those observed in healthy controls. A gait analysis has shown that motor deficits in the hind paws of UCL/HI rats were also significantly reduced by everolimus. Our results suggest that neonatal HI brain injury may inflict long-term damage by upregulation of CBS and mTOR signaling. We propose this cascade as a possible new molecular target for EOP-a still untreatable cause of autism, hyperactivity and cerebral palsy.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
| | - Yen P Tran
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montréal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Veronica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA.,MIND Institute, University of California Davis, Sacramento, CA.,Institute for Pediatric Regenerative Medicine and Shriners Hospital for Children of Northern California, Sacramento, CA
| | - Viswanathan V Krishnan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
| | - Waseem Ahmed
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA
| | - Robert F Berman
- MIND Institute, University of California Davis, Sacramento, CA.,Department of Neurological Surgery, University of California Davis, Sacramento, CA
| | - Frances E Jensen
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Evgeny Nudler
- Howard Hughes Medical Institute and Department of Biochemistry, New York University School of Medicine, New York, NY
| | - David Zagzag
- Departments of Pathology and Neurosurgery, Division of Neuropathology, Microvascular and Molecular Neuro-Oncology Laboratory, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| |
Collapse
|
18
|
Shen DF, Liu X, Yang XF, Fang L, Gao Y, Zhao S, Wu JC, Shi S, Li JJ, Zhao XX, Gou WF, Zheng HC. The roles of parafibromin expression in ovarian epithelial carcinomas: a marker for differentiation and prognosis and a target for gene therapy. Tumour Biol 2015; 37:2909-24. [PMID: 26409451 DOI: 10.1007/s13277-015-4103-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Parafibromin is a protein encoded by hyperparathyroidism 2 (HRPT2) and its downregulated expression is involved in the pathogenesis of parathyroid, breast, gastric, colorectal, lung, head and neck cancers. We aimed to investigate the roles of parafibromin expression in tumorigenesis, progression, or prognostic evaluation of ovarian cancers. HRPT2-expressing plasmid was transfected into ovarian cancer cells with the phenotypes and related molecules examined. The messenger RNA (mRNA) and protein expression of parafibromin were also examined in ovarian normal tissue, benign and borderline tumors and cancers by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, or immunohistochemistry respectively. It was found that parafibromin overexpression caused a lower growth, migration and invasion, higher sensitivity to cisplatin and apoptosis than the mock and control (P < 0.05). The transfectants showed the hypoexpression of phosphoinositide 3-kinase (PI3K), Akt, p70 ribosomal protein S6 kinase (p70s6k), Wnt5a, B cell lymphoma-extra large (Bcl-xL), survivin, vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9) than the mock and control at both mRNA and protein levels (P < 0.05). According to real-time PCR, parafibromin mRNA level was lower in ovarian benign tumors and cancers than normal ovary (P < 0.05), while parafibromin was strongly expressed in metastatic cancers in omentum than primary cancers by Western blot. Immunohistochemically, parafibromin expression was stronger in primary cancers than that in ovarian normal tissue (P < 0.05) but weaker than the metastatic cancers (P < 0.05) with a positive correlation with dedifferentiation, ki-67 expression and the lower cumulative survival rate (P < 0.05). These findings indicate that parafibromin downregulation might promote the pathogenesis, dedifferentiation and metastasis of ovarian cancers possibly by suppressing aggressive phenotypes, such as proliferation, cell cycle, apoptosis, migration and invasion.
Collapse
Affiliation(s)
- Dao-Fu Shen
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Xin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Xue-Feng Yang
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Lei Fang
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Yang Gao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Shuang Zhao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Ji-Cheng Wu
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Shuai Shi
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Jun-Jun Li
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Xiang-Xuan Zhao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Wen-Feng Gou
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Hua-Chuan Zheng
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China.
| |
Collapse
|
19
|
Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Rev Neurosci 2015; 26:129-42. [DOI: 10.1515/revneuro-2014-0051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/01/2014] [Indexed: 02/05/2023]
Abstract
AbstractHydrogen sulfide (H
Collapse
|
20
|
Yue YL, Song LX, Zheng NN, Zhang CF, Zhang N, Han YZ, Chen WG, Zheng Y. Exogenous hydrogen sulfide promotes proliferation and inhibits apoptosis of hepatocytes via PI3K/Akt pathway. Shijie Huaren Xiaohua Zazhi 2014; 22:5602-5608. [DOI: 10.11569/wcjd.v22.i36.5602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect of exogenous hydrogen sulfide on rat hepatocyte proliferation and apoptosis and the role of phosphoinositide-3-kinase (PI3K)/Akt pathway.
METHODS: Female SD rats were subcutaneously injected with carbon tetrachloride to induce hepatic fibrosis, and hepatocytes were isolated from the rats. Primary hepatocytes were divided into three groups: a normal control group, a hydrogen sulfide group, and an LY294002 plus hydrogen sulfide group. MTT method was used to determine cell proliferation. Apoptosis of liver cells was detected by Hoechst 33342 staining. The expression of PI3K and phosphorylated Bad protein was detected by Western blot.
RESULTS: Sodium hydrosulfide at 50 μmol/L promoted cell proliferation (P < 0.05, compared with the control group), while 50 μmol/L LY294002 inhibited cell proliferation (P < 0.05, compared with the control group). Compared with the control group and sodium hydrosulfide group, the LY294002 plus hydrogen sulfide group had a significantly higher rate of cell apoptosis (P < 0.05). The expression of PI3K and phosphorylated Bad protein in the sodium hydrosulfide group was significantly higher than that in the control group and LY294002 plus hydrogen sulfide group (P < 0.05). However, PI3K and phospho-Bad protein expression in the LY294002 plus hydrogen sulfide group was significantly less than in the control group (P < 0.05).
CONCLUSION: Hydrogen sulfide promotes primary hepatocyte proliferation and inhibits its apoptosis possibly through the PI3K/Akt pathway.
Collapse
|
21
|
Zhang Y, Brownstein AJ, Buonora M, Niikura K, Ho A, Correa da Rosa J, Kreek MJ, Ott J. Self administration of oxycodone alters synaptic plasticity gene expression in the hippocampus differentially in male adolescent and adult mice. Neuroscience 2014; 285:34-46. [PMID: 25446355 DOI: 10.1016/j.neuroscience.2014.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/19/2014] [Accepted: 11/04/2014] [Indexed: 11/16/2022]
Abstract
Abuse and addiction to prescription opioids such as oxycodone (a short-acting Mu opioid receptor (MOP-r) agonist) in adolescence is a pressing public health issue. We have previously shown differences in oxycodone self-administration behaviors between adolescent and adult C57BL/6J mice and expression of striatal neurotransmitter receptor genes, in areas involved in reward. In this study, we aimed to determine whether oxycodone self-administration differentially affects genes regulating synaptic plasticity in the hippocampus of adolescent compared to adult mice, since the hippocampus may be involved in learning aspects associated with chronic drug self administration. Hippocampus was isolated for mRNA analysis from mice that had self administered oxycodone (0.25 mg/kg/infusion) 2h/day for 14 consecutive days or from yoked saline controls. Gene expression was analyzed with real-time polymerase chain reaction (PCR) using a commercially available "synaptic plasticity" PCR array containing 84 genes. We found that adolescent and adult control mice significantly differed in the expression of several genes in the absence of oxycodone exposure, including those coding for mitogen-activated protein kinase, calcium/calmodulin-dependent protein kinase II gamma subunit, glutamate receptor, ionotropic AMPA2 and metabotropic 5. Chronic oxycodone self administration increased proviral integration site 1 (Pim1) and thymoma viral proto-oncogene 1 mRNA levels compared to controls in both age groups. Both Pim1 and cadherin 2 mRNAs showed a significant combined effect of Drug Condition and Age × Drug Condition. Furthermore, the mRNA levels of both cadherin 2 and cAMP response element modulators showed an experiment-wise significant difference between oxycodone and saline control in adult but not in adolescent mice. Overall, this study demonstrates for the first time that chronic oxycodone self-administration differentially alters synaptic plasticity gene expression in the hippocampus of adolescent and adult mice.
Collapse
Affiliation(s)
- Y Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | - A J Brownstein
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - M Buonora
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - K Niikura
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - A Ho
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - J Correa da Rosa
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY 10065, USA
| | - M J Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - J Ott
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; The Laboratory of Statistical Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
22
|
Shimada S, Fukai M, Wakayama K, Ishikawa T, Kobayashi N, Kimura T, Yamashita K, Kamiyama T, Shimamura T, Taketomi A, Todo S. Hydrogen sulfide augments survival signals in warm ischemia and reperfusion of the mouse liver. Surg Today 2014; 45:892-903. [PMID: 25362520 DOI: 10.1007/s00595-014-1064-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2S) ameliorates hepatic ischemia and reperfusion injury (IRI), but the precise mechanism remains elusive. We investigated whether sodium hydrogen sulfide (NaHS), a soluble derivative of H2S, would ameliorate hepatic IRI, and if so, via what mechanism. METHODS Mice were subjected to partial warm ischemia for 75 min followed by reperfusion. Either NaHS or saline was administered intravenously 10 min before reperfusion. The liver and serum were collected 3, 6, and 24 h after reperfusion. RESULTS In the NaHS(-) group, severe IRI was apparent by the ALT leakage, tissue injury score, apoptosis, lipid peroxidation, and inflammation (higher plasma TNF-α, IL-6, IL-1β, IFN-γ, IL-23, IL-17, and CD40L), whereas IRI was significantly ameliorated in the NaHS(+) group. These effects could be explained by the augmented nuclear translocation of Nrf2, and the resulting up-regulation of HO-1 and thioredoxin-1. Phosphorylation of the PDK-1/Akt/mTOR/p70S6k axis, which is known to mediate pro-survival and anti-apoptotic signals, was significantly augmented in the NaHS(+) group, with a higher rate of PCNA-positive cells thereafter. CONCLUSION NaHS ameliorated hepatic IRI by direct and indirect anti-oxidant activities by augmenting pro-survival, anti-apoptotic, and anti-inflammatory signals via mechanisms involving Nrf-2, and by accelerating hepatic regeneration via mechanisms involving Akt-p70S6k.
Collapse
Affiliation(s)
- Shingo Shimada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kamarudin MNA, Mohd Raflee NA, Syed Hussein SS, Lo JY, Supriady H, Abdul Kadir H. (R)-(+)-α-lipoic acid protected NG108-15 cells against H₂O₂-induced cell death through PI3K-Akt/GSK-3β pathway and suppression of NF-κβ-cytokines. Drug Des Devel Ther 2014; 8:1765-80. [PMID: 25336920 PMCID: PMC4199983 DOI: 10.2147/dddt.s67980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alpha-lipoic acid, a potent antioxidant with multifarious pharmacological benefits has been reported to be neuroprotective in several neuronal models and used to treat neurological disorders such as Alzheimer's disease. Nonetheless, conclusive mechanisms of alpha-lipoic acid for its protective effects particularly in NG108-15 cells have never been investigated. In this study, the intricate neuroprotective molecular mechanisms by (R)-(+)-alpha-lipoic acid (R-LA) against H2O2-induced cell death in an in vitro model of neurodegeneration were elucidated. Pretreatment with R-LA (2 hours) significantly increased NG108-15 cell viability as compared to H2O2-treated cells and mitigated the induction of apoptosis as evidenced by Hoechst 33342/propidium iodide staining. R-LA (12.5-50 μM) aggrandized the reduced glutathione over glutathione disulfide ratio followed by a reduction in the intracellular reactive oxygen species level and an increase in mitochondrial membrane potential following H2O2 exposure. Moreover, pretreatment with R-LA stimulated the activation of PI3K-Akt through mTORC1 and mTORC2 components (mTOR, rictor and raptor) and production of antiinflammatory cytokine, IL-10 which led to the inactivation of glycogen synthase kinase-3β (GSK-3β) and reduction of both Bax/Bcl2 and Bax/Bcl-xL ratios, accompanied by inhibition of the cleaved caspase-3. Additionally, this observation was preceded by the suppression of NF-κβ p65 translocation and production of proinflammatory cytokines (IL-6 and TNF-α). The current findings accentuate new mechanistic insight of R-LA against apoptogenic and brain inflammatory factors in a neuronal model. These results further advocate the therapeutic potential of R-LA for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Nur Afiqah Mohd Raflee
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Jia Ye Lo
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hadi Supriady
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Cui W, Chen H, Zhu K, Jin Q, Xie Y, Cui J, Xia Y, Zhang J, Shen W. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostases. PLoS One 2014; 9:e109669. [PMID: 25275379 PMCID: PMC4183592 DOI: 10.1371/journal.pone.0109669] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/31/2014] [Indexed: 12/28/2022] Open
Abstract
Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases.
Collapse
Affiliation(s)
- Weiti Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Huiping Chen
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Haikou, China
| | - Kaikai Zhu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Qijiang Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Yanjie Xie
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Jing Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Jiangsu Province, Nanjing, China
- * E-mail:
| |
Collapse
|
25
|
Branco LG, Soriano RN, Steiner AA. Gaseous Mediators in Temperature Regulation. Compr Physiol 2014; 4:1301-38. [DOI: 10.1002/cphy.c130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Bruintjes J, Henning R, Douwenga W, van der Zee E. Hippocampal cystathionine beta synthase in young and aged mice. Neurosci Lett 2014; 563:135-9. [DOI: 10.1016/j.neulet.2014.01.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
|
27
|
Guzman-Karlsson MC, Meadows JP, Gavin CF, Hablitz JJ, Sweatt JD. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology 2014; 80:3-17. [PMID: 24418102 DOI: 10.1016/j.neuropharm.2014.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 01/02/2023]
Abstract
The epigenome is uniquely positioned as a point of convergence, integrating multiple intracellular signaling cascades into a cohesive gene expression profile necessary for long-term behavioral change. The last decade of neuroepigenetic research has primarily focused on learning-induced changes in DNA methylation and chromatin modifications. Numerous studies have independently demonstrated the importance of epigenetic modifications in memory formation and retention as well as Hebbian plasticity. However, how these mechanisms operate in the context of other forms of plasticity is largely unknown. In this review, we examine evidence for epigenetic regulation of Hebbian plasticity. We then discuss how non-Hebbian forms of plasticity, such as intrinsic plasticity and synaptic scaling, may also be involved in producing the cellular adaptations necessary for learning-related behavioral change. Furthermore, we consider the likely roles for transcriptional and epigenetic mechanisms in the regulation of these plasticities. In doing so, we aim to expand upon the idea that epigenetic mechanisms are critical regulators of both Hebbian and non-Hebbian forms of plasticity that ultimately drive learning and memory.
Collapse
Affiliation(s)
| | - Jarrod P Meadows
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cristin F Gavin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Sodium/calcium exchanger is upregulated by sulfide signaling, forms complex with the β1 and β3 but not β2 adrenergic receptors, and induces apoptosis. Pflugers Arch 2013; 466:1329-42. [PMID: 24114174 DOI: 10.1007/s00424-013-1366-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/06/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Hydrogen sulfide (H2S) as a novel gasotransmitter regulates variety of processes, including calcium transport systems. Sodium calcium exchanger (NCX) is one of the key players in a regulation calcium homeostasis. Thus, the aims of our work were to determine effect of sulfide signaling on the NCX type 1 (NCX1) expression and function in HeLa cells, to investigate the relationship of β-adrenergic receptors with the NCX1 in the presence and/or absence of H2S, and to determine physiological importance of this potential communication. As a H2S donor, we used morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate-GYY4137. We observed increased levels of the NCX1 mRNA, protein, and activity after 24 h of GYY4137 treatment. This increase was accompanied by elevated cAMP due to the GYY4137 treatment, which was completely abolished, when NCX1 was silenced. Increased cAMP levels would point to upregulation of β-adrenergic receptors. Indeed, GYY4137 increased expression of β1 and β3 (but not β2) adrenergic receptors. These receptors co-precipitated, co-localized with the NCX1, and induced apoptosis in the presence of H2S. Our results suggest that sulfide signaling plays a role in regulation of the NCX1, β1 and β3 adrenergic receptors, their co-localization, and stimulation of apoptosis, which might be of a potential importance in cancer treatment.
Collapse
|
29
|
Rupprecht LE, Mietlicki-Baase EG, Zimmer DJ, McGrath LE, Olivos DR, Hayes MR. Hindbrain GLP-1 receptor-mediated suppression of food intake requires a PI3K-dependent decrease in phosphorylation of membrane-bound Akt. Am J Physiol Endocrinol Metab 2013; 305:E751-9. [PMID: 23900416 PMCID: PMC3761195 DOI: 10.1152/ajpendo.00367.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptors (GLP-1R) expressed in the nucleus tractus solitarius (NTS) are physiologically required for the control of feeding. Recently, NTS GLP-1R-mediated suppression of feeding was shown to occur via a rapid PKA-induced suppression of AMPK and activation of MAPK signaling. Unknown are the additional intracellular signaling pathways that account for the long-term hypophagic effects of GLP-1R activation. Because cAMP/PKA activity can promote PI3K/PIP3-dependent translocation of Akt to the plasma membrane, we hypothesize that hindbrain GLP-1R-mediated control of feeding involves a PI3K-Akt-dependent pathway. Importantly, the novel evidence presented here challenges the dogmatic view that PI3K phosphorylation results in an obligatory activation of Akt and instead supports a growing body of literature showing that activation of cAMP/PKA can inhibit Akt phosphorylation at the plasma membrane. Behavioral data show that inhibition of hindbrain PI3K activity by a fourth icv administration of LY-294002 (3.07 μg) attenuated the food intake- and body weight-suppressive effects of a fourth icv administration of the GLP-1R agonist exendin-4 (0.3 μg) in rats. Hindbrain administration of triciribine (10 μg), an inhibitor of PIP3-dependent translocation of Akt to the cell membrane, also attenuated the intake-suppressive effects of a fourth icv injection of exendin-4. Immunoblot analyses of ex vivo NTS tissue lysates and in vitro GLP-1R-expressing neurons (GT1-7) support the behavioral findings and show that GLP-1R activation decreases phosphorylation of Akt in a time-dependent fashion. Current data reveal the requirement of PI3K activation, PIP3-dependent translocation of Akt to the plasma membrane, and suppression in phosphorylation of membrane-bound Akt to mediate the food intake-suppressive effects of hindbrain GLP-1R activation.
Collapse
Affiliation(s)
- Laura E Rupprecht
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
30
|
Módis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol 2013; 86:1311-9. [PMID: 24012591 DOI: 10.1016/j.bcp.2013.08.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 01/11/2023]
Abstract
Although hydrogen sulfide (H₂S) is generally known as a mitochondrial poison, recent studies show that lower concentrations of H₂S play a physiological role in the stimulation of mitochondrial electron transport and cellular bioenergetics. This effect involves electron donation at Complex II. Other lines of recent studies demonstrated that one of the biological actions of H₂S involves inhibition of cAMP and cGMP phosphodiesterases (PDEs). Given the emerging functional role of the mitochondrial isoform of cAMP PDE (PDE2A) in the regulation of mitochondrial function the current study investigated whether cAMP-dependent mechanisms participate in the stimulatory effect of NaHS on mitochondrial function. In isolated rat liver mitochondria, partial digestion studies localized PDE2A into the mitochondrial matrix. NaHS exerted a concentration-dependent inhibitory effect on recombinant PDE2A enzyme in vitro. Moreover, NaHS induced an elevation of cAMP levels when added to isolated mitochondria and stimulated the mitochondrial electron transport. The latter effect was inhibited by Rp-cAMP, an inhibitor of the cAMP-dependent protein kinase (PKA). The current findings suggest that the direct electron donating effect of NaHS is amplified by an intramitochondrial cAMP system, which may involve the inhibition of PDE2A and subsequent, cAMP-mediated stimulation of PKA.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, and Shriners Burns Hospital for Children, 601 Harborside Drive, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
31
|
Hydrogen sulfide inhibits preoptic prostaglandin E2 production during endotoxemia. Exp Neurol 2013; 240:88-95. [DOI: 10.1016/j.expneurol.2012.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022]
|
32
|
Dynamic Change of Hydrogen Sulfide After Traumatic Brain Injury and its Effect in Mice. Neurochem Res 2013; 38:714-25. [DOI: 10.1007/s11064-013-0969-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/14/2012] [Accepted: 01/08/2013] [Indexed: 01/20/2023]
|
33
|
Qi F, Zhou Y, Xiao Y, Tao J, Gu J, Jiang X, Xu GY. Promoter demethylation of cystathionine-β-synthetase gene contributes to inflammatory pain in rats. Pain 2013; 154:34-45. [PMID: 23273102 DOI: 10.1016/j.pain.2012.07.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 12/28/2022]
Abstract
Hydrogen sulfide (H(2)S), an endogenous gas molecule synthesized by cystathionine-β-synthetase (CBS), is involved in inflammation and nociceptive signaling. However, the molecular and epigenetic mechanisms of CBS-H(2)S signaling in peripheral nociceptive processing remain unknown. We demonstrated that peripheral inflammation induced by intraplantar injection of complete Freund adjuvant significantly up-regulated expression of CBS at both protein and mRNA levels in rat dorsal root ganglia (DRG). The CBS inhibitors hydroxylamine and aminooxyacetic acid attenuated mechanical hyperalgesia in a dose-dependent manner and reversed hyperexcitability of DRG neurons in inflamed rats. Intraplantar administration of NaHS (its addition mimics CBS production of H(2)S) or l-cysteine in healthy rats elicited mechanical hyperalgesia. Application of NaHS in vitro enhanced excitability and tetrodotoxin (TTX)-resistant sodium current of DRG neurons from healthy rats, which was attenuated by pretreatment of protein kinase A inhibitor H89. Methylation-specific PCR and bisulfite sequencing demonstrated that promoter region of cbs gene was less methylated in DRG samples from inflamed rats than that from controls. Peripheral inflammation did not alter expression of DNA methyltransferase 3a and 3b, the 2 major enzymes for DNA methylation, but led to a significant up-regulation of methyl-binding domain protein 4 and growth arrest and DNA damage inducible protein 45α, the enzymes involved in active DNA demethylation. Our findings suggest that epigenetic regulation of CBS expression may contribute to inflammatory hyperalgesia. H(2)S seems to increase TTX-resistant sodium channel current, which may be mediated by protein kinase A pathway, thus identifying a potential therapeutic target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Feihu Qi
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, PR China Institute of Neuroscience, Department of Neurobiology and Psychology, Key Laboratory of Pain Research and Therapy, Soochow University, Suzhou 215123, PR China Department of Anesthesiology and the Graduate Program in Neuroscience, University of Cincinnati College of Medicine, P.O. Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267-0531, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
The early activation of PI3K strongly enhances the resistance of cortical neurons to hypoxic injury via the activation of downstream targets of the PI3K pathway and the normalization of the levels of PARP activity, ATP, and NAD⁺. Mol Neurobiol 2012; 47:757-69. [PMID: 23254998 DOI: 10.1007/s12035-012-8382-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/29/2012] [Indexed: 01/29/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) plays several important roles in neuronal survival. Activation of the pathway is essential for the neuroprotective mechanisms of materials that shield neuronal cells from many stressful conditions. However, there have been no reports to date about the effect of the direct activation of the pathway in hypoxic injury of neuronal cells. We investigated whether the direct activation of the PI3K pathway inhibits neuronal cell death induced by hypoxia. Primary cultured cortical neurons (PCCNs) were exposed to hypoxic conditions (less than 1 mol% O2) and/or treated with PI3K activator. Hypoxia reduced the viability of PCCNs in a time-dependent manner, but treatment with PI3K significantly restored viability in a concentration-dependent manner. Among the signaling proteins involved in the PI3K pathway, those associated with survival, including Akt and glycogen synthase kinase-3β, were decreased shortly after exposure to hypoxia and those associated with cell death, including BAX, apoptosis-induced factor, cytochrome c, caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP), were increased. However, treatment with PI3K activator normalized the expression levels of those signaling proteins. PARP activity and levels of ATP and NAD(+) altered by hypoxia were also normalized with direct PI3K activation. All these findings suggest that direct and early activation is important for protecting neuronal cells from hypoxic injury.
Collapse
|
35
|
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92:791-896. [PMID: 22535897 DOI: 10.1152/physrev.00017.2011] [Citation(s) in RCA: 1421] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H(2)S had only been known for its toxicity and environmental hazard. Physiological importance of H(2)S has been appreciated for about a decade. It started by the discovery of endogenous H(2)S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H(2)S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H(2)S. The physiological functions of H(2)S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H(2)S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes, cirrhosis, inflammation, sepsis, neurodegenerative disease, erectile dysfunction, and asthma, to name a few. Many new technologies have been developed to detect endogenous H(2)S production, and novel H(2)S-delivery compounds have been invented to aid therapeutic intervention of diseases related to abnormal H(2)S metabolism. While acknowledging the challenges ahead, research on H(2)S physiology and medicine is entering an exponential exploration era.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
36
|
Hydrogen sulfide and resolution of acute inflammation: A comparative study utilizing a novel fluorescent probe. Sci Rep 2012; 2:499. [PMID: 22787557 PMCID: PMC3391661 DOI: 10.1038/srep00499] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/25/2012] [Indexed: 01/28/2023] Open
Abstract
Hydrogen sulfide is an essential gasotransmitter associated with numerous pathologies. We assert that hydrogen sulfide plays an important role in regulating macrophage function in response to subsequent inflammatory stimuli, promoting clearance of leukocyte infiltrate and reducing TNF-α levels in vivo following zymosan-challenge. We describe two distinct methods of measuring leukocyte hydrogen sulfide synthesis; methylene blue formation following zinc acetate capture and a novel fluorescent sulfidefluor probe. Comparison of these methods, using pharmacological tools, revealed they were complimentary in vitro and in vivo. We demonstrate the application of sulfidefluor probe to spectrofluorimetry, flow cytometry and whole animal imaging, to monitor the regulation of hydrogen sulfide synthesis in vivo during dynamic inflammatory processes. Both methodologies revealed that granulocyte infiltration negatively affects hydrogen sulfide synthesis. Our report offers an insight into the profile of hydrogen sulfide synthesis during inflammation and highlight opportunities raised by the development of novel fluorescent hydrogen sulfide probes.
Collapse
|
37
|
Xie X, Sun A, Zhu W, Huang Z, Hu X, Jia J, Zou Y, Ge J. Transplantation of mesenchymal stem cells preconditioned with hydrogen sulfide enhances repair of myocardial infarction in rats. TOHOKU J EXP MED 2012; 226:29-36. [PMID: 22186034 DOI: 10.1620/tjem.226.29] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stem cell transplantation has become a promising therapeutic approach for the treatment of myocardial infarction (MI). However, the poor survival of the donor cells after transplantation has restricted its therapeutic efficacy. Hydrogen sulfide (H(2)S), one gaseous signaling molecule, has been applied to inhibit cell apoptosis and promote cell survival. In the present study, we therefore examined the effects of H(2)S on the survival of mesenchymal stem cells (MSCs). MSCs were isolated from the femur of male Sprague-Dawley rats (about 4 weeks old, 100 g). Preconditioning MSCs with 200 µmol/L NaHS (as the donor of H(2)S) for 30 min decreased the hypoxia-induced cell apoptosis in vitro. The mechanisms contributing to the beneficial effects of H(2)S on MSCs were associated with increased levels of phosphorylated Akt (pAkt), phosphorylated Erk1/2 (pErk1/2) and phosphorylated glycogen synthase kinase-3β (pGSK-3β) in MSCs. Subsequently, MSCs (1 × 10(6)), MSCs preconditioned with H(2)S (1 × 10(6)), or phosphate buffered saline (PBS) were injected into rat hearts immediately after MI (the ligation of the left anterior descending of coronary artery). Real-time PCR for the Sry gene, located on the Y chromosome, indicated that preconditioning with H(2)S improved the survival rate of the transplanted MSCs in infarcted myocardium 4 days after MI, compared with the untreated MSCs. Furthermore, transplantation of the H(2)S-pretreated MSCs reduced the infarct size and increased left ventricular (LV) function, as judged by transthoracic echocardiography. In conclusion, H(2)S preconditioning effectively promotes MSCs survival under ischemic injury and helps cardiac repair after MI, which has great clinical significance.
Collapse
Affiliation(s)
- Xinxing Xie
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Regulation of the glutamate transporter EAAT3 by mammalian target of rapamycin mTOR. Biochem Biophys Res Commun 2012; 421:159-63. [PMID: 22483750 DOI: 10.1016/j.bbrc.2012.03.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 01/11/2023]
Abstract
The serine/threonine kinase mammalian target of rapamycin (mTOR) is stimulated by insulin, growth factors and nutrients and confers survival of several cell types. The kinase has previously been shown to stimulate amino acid uptake. In neurons, the cellular uptake of glutamate by the excitatory amino-acid transporters (EAATs) decreases excitation and thus confers protection against excitotoxicity. In epithelia, EAAT3 accomplishes transepithelial glutamate and aspartate transport. The present study explored, whether mTOR regulates EAAT3 (SLC1A1). To this end, cRNA encoding EAAT3 was injected into Xenopus oocytes with or without cRNA encoding mTOR and the glutamate induced current (I(glu)), a measure of glutamate transport, determined by dual electrode voltage clamp. Moreover, EAAT3 protein abundance was determined utilizing chemiluminescence. As a result, I(glu) was observed in Xenopus oocytes expressing EAAT3 but not in water injected oocytes. Coexpression of mTOR significantly increased I(glu), an effect reversed by rapamycin (100 nM). mTOR coexpression increased EAAT3 protein abundance in the cell membrane. The decay of I(glu) following inhibition of carrier insertion with brefeldin A in oocytes coexpressing EAAT3 with mTOR was similar in the presence and absence of rapamycin (100 nM). In conclusion, mTOR is a novel powerful regulator of EAAT3 and may thus contribute to protection against neuroexcitotoxicity.
Collapse
|
39
|
Insel PA, Zhang L, Murray F, Yokouchi H, Zambon AC. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol (Oxf) 2012; 204:277-87. [PMID: 21385327 PMCID: PMC3125423 DOI: 10.1111/j.1748-1716.2011.02273.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The second messenger cyclic AMP (cAMP) can either stimulate or inhibit programmed cell death (apoptosis). Here, we review examples of cell types that show pro-apoptotic or anti-apoptotic responses to increases in cAMP. We also show that cells can have both such responses, although predominantly having one or the other. Protein kinase A (PKA)-promoted changes in phosphorylation and gene expression can mediate pro-apoptotic responses, such as in murine S49 lymphoma cells, based on evidence that mutants lacking PKA fail to undergo cAMP-promoted, mitochondria-dependent apoptosis. Mechanisms for the anti-apoptotic response to cAMP likely involve Epac (Exchange protein activated by cAMP), a cAMP-regulated effector that is a guanine nucleotide exchange factor (GEF) for the low molecular weight G-protein, Rap1. Therapeutic approaches that activate PKA-mediated pro-apoptosis or block Epac-mediated anti-apoptotisis may provide a means to enhance cell killing, such as in certain cancers. In contrast, efforts to block PKA or stimulate Epac have the potential to be useful in diseases settings (such as heart failure) associated with cAMP-promoted apoptosis.
Collapse
Affiliation(s)
- P A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, 92093-0636, USA.
| | | | | | | | | |
Collapse
|
40
|
Kwiatkoski M, Soriano RN, Francescato HDC, Batalhao ME, Coimbra TM, Carnio EC, Branco LGS. Hydrogen sulfide as a cryogenic mediator of hypoxia-induced anapyrexia. Neuroscience 2011; 201:146-56. [PMID: 22120434 DOI: 10.1016/j.neuroscience.2011.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 12/29/2022]
Abstract
Hypoxia causes a regulated decrease in body temperature (Tb), a response that has been aptly called anapyrexia, but the mechanisms involved are not completely understood. The roles played by nitric oxide (NO) and other neurotransmitters have been documented during hypoxia-induced anapyrexia, but no information exists with respect to hydrogen sulfide (H(2)S), a gaseous molecule endogenously produced by cystathionine β-synthase (CBS). We tested the hypothesis that H(2)S production is enhanced during hypoxia and that the gas acts in the anteroventral preoptic region (AVPO; the most important thermosensitive and thermointegrative region of the CNS) modulating hypoxia-induced anapyrexia. Thus, we assessed CBS and nitric oxide synthase (NOS) activities [by means of H(2)S and nitrite/nitrate (NO(x)) production, respectively] as well as cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) levels in the anteroventral third ventricle region (AV3V; where the AVPO is located) during normoxia and hypoxia. Furthermore, we evaluated the effects of pharmacological modifiers of the H(2)S pathway given i.c.v. or intra-AVPO. I.c.v. or intra-AVPO microinjection of CBS inhibitor caused no change in Tb under normoxia but significantly attenuated hypoxia-induced anapyrexia. During hypoxia there were concurrent increases in H(2)S production, which could be prevented by CBS inhibitor, indicating the endogenous source of the gas. cAMP concentration, but not cGMP and NO(x), correlated with CBS activity. CBS inhibition increased NOS activity, whereas H(2)S donor decreased NO(x) production. In conclusion, hypoxia activates H(2)S endogenous production through the CBS-H(2)S pathway in the AVPO, having a cryogenic effect. Moreover, the present data are consistent with the notion that the two gaseous molecules, H(2)S and NO, play a key role in mediating the drop in Tb caused by hypoxia and that a fine-balanced interplay between NOS-NO and CBS-H(2)S pathways takes place in the AVPO of rats exposed to hypoxia.
Collapse
Affiliation(s)
- M Kwiatkoski
- Medical School of Ribeirão Preto, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Budni J, Romero A, Molz S, Martín-de-Saavedra M, Egea J, Del Barrio L, Tasca C, Rodrigues A, López M. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid. Neuroscience 2011; 190:346-53. [DOI: 10.1016/j.neuroscience.2011.05.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/19/2011] [Accepted: 05/22/2011] [Indexed: 01/21/2023]
|
42
|
Tang XQ, Zhuang YY, Fan LL, Fang HR, Zhou CF, Zhang P, Hu B. Involvement of KATP/PI3K/AKT/Bcl-2 Pathway in Hydrogen Sulfide-induced Neuroprotection Against the Toxicity of 1-methy-4-phenylpyridinium Ion. J Mol Neurosci 2011; 46:442-9. [DOI: 10.1007/s12031-011-9608-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/20/2011] [Indexed: 12/21/2022]
|