1
|
Körner M, Müller P, Das H, Kraus F, Pfeuffer T, Spielhaupter S, Oeljeklaus S, Schülein-Völk C, Harper JW, Warscheid B, Buchberger A. p97/VCP is required for piecemeal autophagy of aggresomes. Nat Commun 2025; 16:4243. [PMID: 40335532 PMCID: PMC12059050 DOI: 10.1038/s41467-025-59556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Metazoan cells adapt to the exhaustion of protein quality control (PQC) systems by sequestering aggregation-prone proteins in large, pericentriolar structures termed aggresomes. Defects in both aggresome formation and clearance affect proteostasis and have been linked to neurodegenerative diseases, but aggresome clearance pathways are still underexplored. Here we show that aggresomes comprising endogenous proteins are cleared via selective autophagy requiring the cargo receptor TAX1BP1. TAX1BP1 proximitomes reveal the presence of various PQC systems at aggresomes, including Hsp70 chaperones, the 26S proteasome, and the ubiquitin-selective unfoldase p97/VCP. While Hsp70 and p97/VCP with its cofactors UFD1-NPL4 and FAF1 play key roles in aggresome disassembly, the 26S proteasome is dispensable. We identify aggresomal client proteins that are degraded via different routes, in part in a p97/VCP-dependent manner via aggrephagy. Upon acute inhibition of p97/VCP, aggresomes fail to disintegrate and cannot be incorporated into autophagosomes despite the presence of factors critical for aggrephagosome formation, including p62/SQSTM1, TAX1BP1, and WIPI2. We conclude that the p97/VCP-mediated removal of ubiquitylated aggresomal clients is essential for the disintegration and subsequent piecemeal autophagy of aggresomes.
Collapse
Affiliation(s)
- Maria Körner
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Paul Müller
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Hirak Das
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | - Felix Kraus
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Timo Pfeuffer
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Sven Spielhaupter
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Silke Oeljeklaus
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bettina Warscheid
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
2
|
Isfort M, Lacomis D. What is in the Myopathy Literature? J Clin Neuromuscul Dis 2024; 26:16-31. [PMID: 39163158 DOI: 10.1097/cnd.0000000000000484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
ABSTRACT This update begins with a section on inflammatory myopathies covering inclusion body myositis in younger patients, the possibility of a pathogenic role for anti-cN1A antibodies, and a negative trial of arimoclomol in inclusion body myositis. The potential study of Janus kinase inhibitors in dermatomyositis is discussed as well as the possible role of targeted therapy for immune checkpoint inhibitor neuromuscular complications. Next, studies of disease-modifying or potential disease-modifying therapies for inherited myopathies are addressed including the encouraging follow-up study of gene replacement therapy for Duchenne muscular dystrophy (DMD), a negative trial of tamoxifen in DMD, and the complex topic of gene therapy for X-linked myotubular myopathy. A newly identified condition of muscular dystrophy from 3-hydroxy-3-methylglutaryl-CoA reductase mutations is addressed along with possible therapy. Other papers regarding GNE myopathy and long-term outcome of enzyme replacement therapy in infantile onset Pompe disease round out that section. Updates on the expanding spectra of anoctamin-5 myopathies, caveolinopathies, and congenital and mylagic myopathies from CACNA1S mutations follow as well as extensive discussion of Valosin containing protein proteinopathies, comprehensive management of Becker muscular dystrophy, and gastrointestinal complications in adult DMD.
Collapse
Affiliation(s)
- Michael Isfort
- Departments of Neurology, Ohio State University Wexner Medical Center, Columbus, OH; and
| | - David Lacomis
- Departments of Neurology and Pathology (Neuropathology), University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
3
|
Koopman M, Güngördü L, Janssen L, Seinstra RI, Richmond JE, Okerlund N, Wardenaar R, Islam P, Hogewerf W, Brown AEX, Jorgensen EM, Nollen EAA. Rebalancing the motor circuit restores movement in a Caenorhabditis elegans model for TDP-43 toxicity. Cell Rep 2024; 43:114204. [PMID: 38748878 DOI: 10.1016/j.celrep.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Amyotrophic lateral sclerosis can be caused by abnormal accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm of neurons. Here, we use a C. elegans model for TDP-43-induced toxicity to identify the biological mechanisms that lead to disease-related phenotypes. By applying deep behavioral phenotyping and subsequent dissection of the neuromuscular circuit, we show that TDP-43 worms have profound defects in GABA neurons. Moreover, acetylcholine neurons appear functionally silenced. Enhancing functional output of repressed acetylcholine neurons at the level of, among others, G-protein-coupled receptors restores neurotransmission, but inefficiently rescues locomotion. Rebalancing the excitatory-to-inhibitory ratio in the neuromuscular system by simultaneous stimulation of the affected GABA- and acetylcholine neurons, however, not only synergizes the effects of boosting individual neurotransmitter systems, but instantaneously improves movement. Our results suggest that interventions accounting for the altered connectome may be more efficient in restoring motor function than those solely focusing on diseased neuron populations.
Collapse
Affiliation(s)
- Mandy Koopman
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lale Güngördü
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leen Janssen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Renée I Seinstra
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nathan Okerlund
- Howard Hughes Medical Institute and School of Biological Science, The University of Utah, Salt Lake City, UT, USA
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Priota Islam
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK
| | - Wytse Hogewerf
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andre E X Brown
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK
| | - Erik M Jorgensen
- Howard Hughes Medical Institute and School of Biological Science, The University of Utah, Salt Lake City, UT, USA
| | - Ellen A A Nollen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Mukherjee S, Mahesh KV, Bhadada SK, Chatterjee D, Kumar R. The Role of Genetic Analysis in Demystifying the Diagnosis in a Middle-Aged Male Presenting With Proximal Muscle Weakness and Sclerotic-Lytic Skeletal Lesions. Cureus 2023; 15:e50924. [PMID: 38249245 PMCID: PMC10800001 DOI: 10.7759/cureus.50924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Paget's disease of bone (PDB) usually presents with bone pain and deformities. Herein, we describe a case of PDB who presented with gradually progressive quadriparesis. A man in his forties presented with gradually progressive proximal muscle weakness involving all four limbs. The patient had an elevated serum alkaline phosphatase level and osteosclerosis at various skeletal sites in a radiological skeletal survey. 18F-fluorodeoxyglucose (FDG) PET-CT showed FDG-avid sclerotic-lytic lesions at multiple skeletal sites. Histopathology evaluation of bone and muscle biopsy specimens revealed PDB and inclusion body myopathy (IBM) with neurogenic atrophy, respectively. A diagnosis of IBM associated with PDB without frontotemporal dementia (IBMPFD) was suspected and confirmed by exome sequencing, which revealed a heterozygous mutation in the VCP gene. The bone disease responded to zoledronate administration. A high index of suspicion for IBMPFD should be kept in mind in any patient with PDB presenting with proximal muscle weakness.
Collapse
Affiliation(s)
- Soham Mukherjee
- Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Karthik V Mahesh
- Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Sanjay K Bhadada
- Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Debajyoti Chatterjee
- Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Rajender Kumar
- Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| |
Collapse
|
5
|
Jiang X, Gatt A, Lashley T. HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells 2023; 12:1633. [PMID: 37371103 DOI: 10.3390/cells12121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most common form of young-onset (<65 years) dementia. Clinically, it primarily manifests as a disorder of behavioural, executive, and/or language functions. Pathologically, frontotemporal lobar degeneration (FTLD) is the predominant cause of FTD. FTLD is a proteinopathy, and the main pathological proteins identified so far are tau, TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS). As TDP-43 and FUS are members of the heterogeneous ribonucleic acid protein (hnRNP) family, many studies in recent years have expanded the research on the relationship between other hnRNPs and FTLD pathology. Indeed, these studies provide evidence for an association between hnRNP abnormalities and FTLD. In particular, several studies have shown that multiple hnRNPs may exhibit nuclear depletion and cytoplasmic mislocalisation within neurons in FTLD cases. However, due to the diversity and complex association of hnRNPs, most studies are still at the stage of histological discovery of different hnRNP abnormalities in FTLD. We herein review the latest studies relating hnRNPs to FTLD. Together, these studies outline an important role of multiple hnRNPs in the pathogenesis of FTLD and suggest that future research into FTLD should include the whole spectrum of this protein family.
Collapse
Affiliation(s)
- Xinwa Jiang
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ariana Gatt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
6
|
Columbres RCA, Chin Y, Pratti S, Quinn C, Gonzalez-Cuyar LF, Weiss M, Quintero-Rivera F, Kimonis V. Novel Variants in the VCP Gene Causing Multisystem Proteinopathy 1. Genes (Basel) 2023; 14:genes14030676. [PMID: 36980948 PMCID: PMC10048343 DOI: 10.3390/genes14030676] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Valosin-containing protein (VCP) gene mutations have been associated with a rare autosomal dominant, adult-onset progressive disease known as multisystem proteinopathy 1 (MSP1), or inclusion body myopathy (IBM), Paget's disease of bone (PDB), frontotemporal dementia (FTD), (IBMPFD), and amyotrophic lateral sclerosis (ALS). We report the clinical and genetic analysis findings in five patients, three from the same family, with novel VCP gene variants: NM_007126.5 c.1106T>C (p.I369T), c.478G>A (p.A160T), and c.760A>T (p.I254F), associated with cardinal MSP1 manifestations including myopathy, PDB, and FTD. Our report adds to the spectrum of heterozygous pathogenic variants found in the VCP gene and the high degree of clinical heterogeneity. This case series prompts increased awareness and early consideration of MSP1 in the differential diagnosis of myopathies and/or PDB, dementia, or ALS to improve the diagnosis and early management of clinical symptoms.
Collapse
Affiliation(s)
- Rod Carlo Agram Columbres
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Yue Chin
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Sanjana Pratti
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Colin Quinn
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luis F Gonzalez-Cuyar
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104, USA
| | - Michael Weiss
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Fabiola Quintero-Rivera
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Neurology, University of California, Irvine, CA 92697, USA
- Department of Pathology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Chalmers MR, Kim J, Kim NC. Eip74EF is a dominant modifier for ALS-FTD-linked VCP R152H phenotypes in the Drosophila eye model. BMC Res Notes 2023; 16:30. [PMID: 36879317 PMCID: PMC9990252 DOI: 10.1186/s13104-023-06297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES In 2012, Liu et al. reported that miR-34 is an age-related miRNA regulating age-associated events and long-term brain integrity in Drosophila. They demonstrated that modulating miR-34 and its downstream target, Eip74EF, showed beneficial effects on an age-related disease using a Drosophila model of Spinocerebellar ataxia type 3 expressing SCA3trQ78. These results imply that miR-34 could be a general genetic modifier and therapeutic candidate for age-related diseases. Thus, the goal of this study was to examine the effect of miR-34 and Eip47EF on another age-related Drosophila disease model. RESULTS Using a Drosophila eye model expressing mutant Drosophila VCP (dVCP) that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), or multisystem proteinopathy (MSP), we demonstrated that abnormal eye phenotypes generated by dVCPR152H were rescued by Eip74EF siRNA expression. Contrary to our expectations, miR-34 overexpression alone in the eyes with GMR-GAL4 resulted in complete lethality due to the leaky expression of GMR-GAL4 in other tissues. Interestingly, when miR-34 was co-expressed with dVCPR152H, a few survivors were produced; however, their eye degeneration was greatly exacerbated. Our data indicate that, while confirming that the downregulation of Eip74EF is beneficial to the dVCPR152HDrosophila eye model, the high expression level of miR-34 is actually toxic to the developing flies and the role of miR-34 in dVCPR152H-mediated pathogenesis is inconclusive in the GMR-GAL4 eye model. Identifying the transcriptional targets of Eip74EF might provide valuable insights into diseases caused by mutations in VCP such as ALS, FTD, and MSP.
Collapse
Affiliation(s)
- Madeleine R Chalmers
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA
| | - JiHye Kim
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA
| | - Nam Chul Kim
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
8
|
Donadio V, Sturchio A, Rizzo G, Abu Rumeileh S, Liguori R, Espay AJ. Pathology vs pathogenesis: Rationale and pitfalls in the clinicopathology model of neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:35-55. [PMID: 36796947 DOI: 10.1016/b978-0-323-85538-9.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In neurodegenerative disorders, the term pathology is often implicitly referred to as pathogenesis. Pathology has been conceived as a window into the pathogenesis of neurodegenerative disorders. This clinicopathologic framework posits that what can be identified and quantified in postmortem brain tissue can explain both premortem clinical manifestations and the cause of death, a forensic approach to understanding neurodegeneration. As the century-old clinicopathology framework has yielded little correlation between pathology and clinical features or neuronal loss, the relationship between proteins and degeneration is ripe for revisitation. There are indeed two synchronous consequences of protein aggregation in neurodegeneration: the loss of the soluble/normal proteins on one; the accrual of the insoluble/abnormal fraction of these proteins on the other. The omission of the first part in the protein aggregation process is an artifact of the early autopsy studies: soluble, normal proteins have disappeared, with only the remaining insoluble fraction amenable to quantification. We here review the collective evidence from human data suggesting that protein aggregates, known collectively as pathology, are the consequence of many biological, toxic, and infectious exposures, but may not explain alone the cause or pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden; James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Samir Abu Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Oliveira Santos M, Gromicho M, Pronto-Laborinho A, de Carvalho M. Sporadic Spinal-Onset Amyotrophic Lateral Sclerosis Associated with Myopathy in Three Unrelated Portuguese Patients. Brain Sci 2023; 13:brainsci13020220. [PMID: 36831763 PMCID: PMC9953916 DOI: 10.3390/brainsci13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and myopathy have been already described as part of a common genetic syndrome called multisystem proteinopathy. They may occur together or not, and can be associated with other clinical features such as frontotemporal dementia and Paget's bone disease. In addition, primary skeletal muscle involvement has been also reported in inherited forms of lower motor neuron disease, in spinal-bulbar muscular atrophy and in spinal muscular atrophy. We aim to characterize three sporadic, spinal-onset ALS patients, one with a concurrent non-specific myopathy, and two with a previous diagnosis of myopathy before upper and lower motor neuron signs emerged. Perhaps our sporadic ALS cases associated with myopathy share a common, but still unknown, pathogenic background. These cases raise the paradigm of a possible interplay between skeletal muscle degeneration and motor neuron damage.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, 1649-028 Lisbon, Portugal
- Instituto de Fisiologia, Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, 1648-028 Lisbon, Portugal
| | - Marta Gromicho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, 1648-028 Lisbon, Portugal
| | - Ana Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, 1648-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, 1649-028 Lisbon, Portugal
- Instituto de Fisiologia, Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, 1648-028 Lisbon, Portugal
- Correspondence: ; Tel./Fax: +351-217-805-219
| |
Collapse
|
10
|
Shmara A, Gibbs L, Mahoney RP, Hurth K, Goodwill VS, Cuber A, Im R, Pizzo DP, Brown J, Laukaitis C, Mahajan S, Kimonis V. Prevalence of Frontotemporal Dementia in Females of 5 Hispanic Families With R159H VCP Multisystem Proteinopathy. Neurol Genet 2023; 9:e200037. [PMID: 36644447 PMCID: PMC9833818 DOI: 10.1212/nxg.0000000000200037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
Background and Objectives Missense variants of the valosin-containing protein (VCP) gene cause a progressive, autosomal dominant disease termed VCP multisystem proteinopathy (MSP1). The disease is a constellation of clinical features including inclusion body myopathy (IBM), Paget disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), typically reported at a frequency of 90%, 42%, 30%, and 9%, respectively. The Hispanic population is currently underrepresented in previous reports of VCP myopathy. We expand our genotype-phenotype studies in 5 Hispanic families with the c.476G>A, p.R159H VCP variant. Methods We report detailed clinical findings of 11 patients in 5 Hispanic families with the c.476G > A, p.R159H VCP variant. In addition, we report frequencies of the main manifestations in 28 additional affected members of the extended family members. We also compared our findings with an existing larger cohort of patients with VCP MSP1. Results FTD was the most prevalent feature reported, particularly frequent in females. PDB was only seen in 1 patient in contrast to the earlier reported cohorts. The overall frequency of the different manifestations: myopathy, PDB, FTD, and ALS in these 5 families was 39%, 3%, 72%, and 8%, respectively. The atypical phenotype and later onset of manifestations in these families resulted in a noticeable delay in the diagnosis of VCP disease. Discussion Studying each VCP variant in the context of ethnic backgrounds is pivotal in increasing awareness of the variability of VCP-related diseases across different ethnicities, enabling early diagnosis, and understanding the mechanism for these genotype-phenotype variations.
Collapse
Affiliation(s)
- Alyaa Shmara
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Liliane Gibbs
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Ryan Patrick Mahoney
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Kyle Hurth
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Vanessa S Goodwill
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Alicia Cuber
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Regina Im
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Donald P Pizzo
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Jerry Brown
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Christina Laukaitis
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Shalini Mahajan
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine (A.S., R.P.M., A.C., R.I., V.K.), Department of Pediatrics, University of California, Irvine; Pediatric Radiology (L.G.), Department of Radiology, University of California, Irvine; Department of Pathology (K.H.), LAC + USC and Keck School of Medicine, University of Southern California, Los Angeles; Department of Pathology (V.S.G., D.P.P.), University of California, San Diego; Cure VCP Disease (J.B.), previously at Diagnostic Radiology, Tripler Army Medical Center, Honolulu, HI; Department of Genetics (C.L.), Carle Clinic and Carle Illinois College of Medicine, Urbana; and Department of Neurology (S.M.), Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
11
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
12
|
Yang X, Sun X, Liu Q, Liu L, Li J, Cai Z, Zhang K, Liu S, He D, Shen D, Liu M, Cui L, Zhang X. Mutation spectrum of chinese amyotrophic lateral sclerosis patients with frontotemporal dementia. Orphanet J Rare Dis 2022; 17:404. [DOI: 10.1186/s13023-022-02531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Studies have reported that a noncoding hexanucleotide repeat in C9ORF72, is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) among Caucasian population, nevertheless it is rare in Chinese population. Therefore, we aimed to investigate the mutation spectrum of Chinese ALS patients with FTD (ALS-FTD).
Methods
ALS patients with and without cognitive impairments were enrolled. Clinical features were collected including age, sex, disease duration, ALSFRS-r, family history and cognitive evaluation. Thirty-six ALS genes were screened by whole exome sequencing (WES) and repeat-primed polymerase chain reaction (PCR) were used for detection of and abnormal repeat expansions of C9ORF72.
Results
A total of 1208 patients, including 66 familial ALS (FALS) and 1142 sporadic ALS (SALS) patients were included. Twenty-three patients with sporadic ALS and one familial ALS index had concomitant FTD, which accounts for 1.99% (24/1208) of patients with ALS. In sporadic ALS-FTD, one case harboring C9ORF72 expansion variant, two cases harboring ANXA11 variants and one individual carrying CCNF variant were identified. A recurrent UBQLN2 variant was detected in a familial ALS-FTD patient. All of the ALS-FTD patients carrying variants in known causative genes manifested motor symptom onset (two bulbar onset and three limb onset) and developed cognitive impairment thereafter. It is not easy to draw a conclusion of the genotype-phenotype association in ALS-FTD with certain variants, limited by the small number of patients.
Conclusion
Our findings provide an overview of spectrum of genetic variants in Chinese ALS-FTD patients. Variants of uncertain significance in UBQLN2, ANXA11 and CCNF were identified and further studies are required for causal relations of these variants with ALS-FTD.
Collapse
|
13
|
Myogenesis defects in a patient-derived iPSC model of hereditary GNE myopathy. NPJ Regen Med 2022; 7:48. [PMID: 36085325 PMCID: PMC9463157 DOI: 10.1038/s41536-022-00238-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hereditary muscle diseases are disabling disorders lacking effective treatments. UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) myopathy (GNEM) is an autosomal recessive distal myopathy with rimmed vacuoles typically manifesting in late adolescence/early adulthood. GNE encodes the rate-limiting enzyme in sialic acid biosynthesis, which is necessary for the proper function of numerous biological processes. Outside of the causative gene, very little is known about the mechanisms contributing to the development of GNE myopathy. In the present study, we aimed to address this knowledge gap by querying the underlying mechanisms of GNE myopathy using a patient-derived induced pluripotent stem-cell (iPSC) model. Control and patient-specific iPSCs were differentiated down a skeletal muscle lineage, whereby patient-derived GNEM iPSC clones were able to recapitulate key characteristics of the human pathology and further demonstrated defects in myogenic progression. Single-cell RNA sequencing time course studies revealed clear differences between control and GNEM iPSC-derived muscle precursor cells (iMPCs), while pathway studies implicated altered stress and autophagy signaling in GNEM iMPCs. Treatment of GNEM patient-derived iMPCs with an autophagy activator improved myogenic differentiation. In summary, we report an in vitro, iPSC-based model of GNE myopathy and implicate defective myogenesis as a contributing mechanism to the etiology of GNE myopathy.
Collapse
|
14
|
Schiava M, Ikenaga C, Villar-Quiles RN, Caballero-Ávila M, Topf A, Nishino I, Kimonis V, Udd B, Schoser B, Zanoteli E, Souza PVS, Tasca G, Lloyd T, Lopez-de Munain A, Paradas C, Pegoraro E, Nadaj-Pakleza A, De Bleecker J, Badrising U, Alonso-Jiménez A, Kostera-Pruszczyk A, Miralles F, Shin JH, Bevilacqua JA, Olivé M, Vorgerd M, Kley R, Brady S, Williams T, Domínguez-González C, Papadimas GK, Warman-Chardon J, Claeys KG, de Visser M, Muelas N, LaForet P, Malfatti E, Alfano LN, Nair SS, Manousakis G, Kushlaf HA, Harms MB, Nance C, Ramos-Fransi A, Rodolico C, Hewamadduma C, Cetin H, García-García J, Pál E, Farrugia ME, Lamont PJ, Quinn C, Nedkova-Hristova V, Peric S, Luo S, Oldfors A, Taylor K, Ralston S, Stojkovic T, Weihl C, Diaz-Manera J. Genotype-phenotype correlations in valosin-containing protein disease: a retrospective muticentre study. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328921. [PMID: 35896379 PMCID: PMC9880250 DOI: 10.1136/jnnp-2022-328921] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Valosin-containing protein (VCP) disease, caused by mutations in the VCP gene, results in myopathy, Paget's disease of bone (PBD) and frontotemporal dementia (FTD). Natural history and genotype-phenotype correlation data are limited. This study characterises patients with mutations in VCP gene and investigates genotype-phenotype correlations. METHODS Descriptive retrospective international study collecting clinical and genetic data of patients with mutations in the VCP gene. RESULTS Two hundred and fifty-five patients (70.0% males) were included in the study. Mean age was 56.8±9.6 years and mean age of onset 45.6±9.3 years. Mean diagnostic delay was 7.7±6 years. Symmetric lower limb weakness was reported in 50% at onset progressing to generalised muscle weakness. Other common symptoms were ventilatory insufficiency 40.3%, PDB 28.2%, dysautonomia 21.4% and FTD 14.3%. Fifty-seven genetic variants were identified, 18 of these no previously reported. c.464G>A (p.Arg155His) was the most frequent variant, identified in the 28%. Full time wheelchair users accounted for 19.1% with a median time from disease onset to been wheelchair user of 8.5 years. Variant c.463C>T (p.Arg155Cys) showed an earlier onset (37.8±7.6 year) and a higher frequency of axial and upper limb weakness, scapular winging and cognitive impairment. Forced vital capacity (FVC) below 50% was as risk factor for being full-time wheelchair user, while FVC <70% and being a full-time wheelchair user were associated with death. CONCLUSION This study expands the knowledge on the phenotypic presentation, natural history, genotype-phenotype correlations and risk factors for disease progression of VCP disease and is useful to improve the care provided to patient with this complex disease.
Collapse
Affiliation(s)
- Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Newcastle University, and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rocío Nur Villar-Quiles
- APHP, Centre de référence des maladies neuromusculaires, Institut de Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marta Caballero-Ávila
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Topf
- Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle University, Newcastle upon Tyne, UK
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Virginia Kimonis
- Department of Pediatrics Division of Genetics and Genomic Medicine, University of California-Irvine Medical Center Children’s Hospital of Orange County, Orange, California, USA
| | - Bjarne Udd
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute Ludwig Maximilian University Clinics, Munich, Germany
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Thomas Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adolfo Lopez-de Munain
- Biodonostia Neurosciences Area Group of Neuromuscular Diseases Biodonostia-Osakidetza Basque Health Service, San Sebastian, Spain
| | - Carmen Paradas
- Neurology Department, Neuromuscular Disorders Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Sevilla, Spain
- Center for Biomedical Network Research on Neurodegenerative Disorders (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Aleksandra Nadaj-Pakleza
- Department of Neurology, Centre de Reference des Maldies Neuromusculaires Nord-Est-Ile de France, University Hospital of Strasbourg, Strasbourg, France
| | - Jan De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Umesh Badrising
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alicia Alonso-Jiménez
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Universiteit Antwerpen, Instituut Born Bunge, Antwerpen, Belgium
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, European Reference Network ERN-NMD, Warsaw, Poland
| | - Francesc Miralles
- Department of Neurology, Unitat de Patologia Neuromuscular i Gabinet d’electrodiagnòstic, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Jin-Hong Shin
- Laboratory of Molecular Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jorge Alfredo Bevilacqua
- Unidad Neuromuscular, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
- Departamento de Neurología y Neurocirugía Clínica, Clínica Dávila, Santiago Chile, Chile
| | - Montse Olivé
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Deaprtment of Neurology, Neuromuscular Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Matthias Vorgerd
- Heimer Institut for Muscle Research, Klinikum Bergmannsheil, Ruhr University, Bochum, Germany
| | - Rudi Kley
- Department of Neurology and Clinical Neurophysiology, St Marien-Hospital Borken, Borken, Germany
| | - Stefen Brady
- Neurology Department, John Radcliffe Hospital, Oxford, UK
| | - Timothy Williams
- Newcastle Motor Neurone Disease Care Centre, Royal Victoria Infirmary, Newcastle, UK
| | - Cristina Domínguez-González
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - George K Papadimas
- First Department of Neurology, Medical School, Eginition Hospital and National and Kapodistrian University of Athens, Athens, Greece
| | - Jodi Warman-Chardon
- Department of Medicine, Ottawa Neuromuscular Centre, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- KU Leuven Laboratory for Muscle Diseases and Neuropathies, Leuven, Belgium
| | - Marianne de Visser
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Pascal LaForet
- Neurology department, Raymond-Poincaré hospital, APHP, UVSQ, Paris-Saclay University, Paris, France
| | - Edoardo Malfatti
- APHP, Neuromuscular Reference Center Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955, INSERM, Créteil, IMRB, Paris, France
| | - Lindsay N Alfano
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sruthi S Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Georgios Manousakis
- Department of Neurology, University of Minnesota Hospital, Minneapolis, Minnesota, USA
| | - Hani A Kushlaf
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew B Harms
- NewYork Presbyterian Columbia University Irving Medical Centre, New York, New York, USA
| | - Christopher Nance
- Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa, Iowa, USA
| | - Alba Ramos-Fransi
- Neuromuscular Unit, Neurology Department, Hospital Germas Trias i Pujol, Badalona, Spain
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Channa Hewamadduma
- Sheffield Institute for translational neurosciences (SITRAN), Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jorge García-García
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Endre Pál
- Department of Neurology, University of Pécs, Pécs, Hungary
| | - Maria Elena Farrugia
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Phillipa J Lamont
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Colin Quinn
- Neuromuscular Division, Neurology Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Stojan Peric
- Neurology Clinic, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Stuart Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Tanya Stojkovic
- APHP, Centre de référence des maladies neuromusculaires, Institut de Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Conrad Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University, and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | |
Collapse
|
15
|
Ferrari V, Cristofani R, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Piccolella M, Galbiati M, Rusmini P, Poletti A. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int J Mol Sci 2022; 23:1939. [PMID: 35216053 PMCID: PMC8878954 DOI: 10.3390/ijms23041939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Barbara Tedesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS—Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| |
Collapse
|
16
|
Korb M, Peck A, Alfano LN, Berger KI, James MK, Ghoshal N, Healzer E, Henchcliffe C, Khan S, Mammen PPA, Patel S, Pfeffer G, Ralston SH, Roy B, Seeley WW, Swenson A, Mozaffar T, Weihl C, Kimonis V, Fanganiello R, Lee G, Mahoney RP, Diaz-Manera J, Evangelista T, Freimer M, Lloyd TE, Keung B, Kushlaf H, Milone M, Needham M, Palmio J, Stojkovic T, Villar-Quiles RN, Wang LH, Wicklund MP, Singer FR, Jones M, Miller BL, Ahmad Sajjadi S, Obenaus A, Geschwind MD, Al-Chalabi A, Wymer J, Chen N, Kompoliti K, Wang SC, Boissoneault CA, Cruz-Coble B, Garand KL, Rinholen AJ, Tabor-Gray L, Rosenfeld J, Guo M, Peck N. Development of a standard of care for patients with valosin-containing protein associated multisystem proteinopathy. Orphanet J Rare Dis 2022; 17:23. [PMID: 35093159 PMCID: PMC8800193 DOI: 10.1186/s13023-022-02172-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/16/2022] [Indexed: 02/08/2023] Open
Abstract
Valosin-containing protein (VCP) associated multisystem proteinopathy (MSP) is a rare inherited disorder that may result in multisystem involvement of varying phenotypes including inclusion body myopathy, Paget’s disease of bone (PDB), frontotemporal dementia (FTD), parkinsonism, and amyotrophic lateral sclerosis (ALS), among others. An international multidisciplinary consortium of 40+ experts in neuromuscular disease, dementia, movement disorders, psychology, cardiology, pulmonology, physical therapy, occupational therapy, speech and language pathology, nutrition, genetics, integrative medicine, and endocrinology were convened by the patient advocacy organization, Cure VCP Disease, in December 2020 to develop a standard of care for this heterogeneous and under-diagnosed disease. To achieve this goal, working groups collaborated to generate expert consensus recommendations in 10 key areas: genetic diagnosis, myopathy, FTD, PDB, ALS, Charcot Marie Tooth disease (CMT), parkinsonism, cardiomyopathy, pulmonology, supportive therapies, nutrition and supplements, and mental health. In April 2021, facilitated discussion of each working group’s conclusions with consensus building techniques enabled final agreement on the proposed standard of care for VCP patients. Timely referral to a specialty neuromuscular center is recommended to aid in efficient diagnosis of VCP MSP via single-gene testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases. Additionally, regular and ongoing multidisciplinary team follow up is essential for proactive screening and management of secondary complications. The goal of our consortium is to raise awareness of VCP MSP, expedite the time to accurate diagnosis, define gaps and inequities in patient care, initiate appropriate pharmacotherapies and supportive therapies for optimal management, and elevate the recommended best practices guidelines for multidisciplinary care internationally.
Collapse
|
17
|
Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 15:783624. [PMID: 35002606 PMCID: PMC8733206 DOI: 10.3389/fnins.2021.783624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bridget C Benson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - J Robin Highley
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Sun X, Zhou N, Ma B, Wu W, Stoll S, Lai L, Qin G, Qiu H. Functional Inhibition of Valosin-Containing Protein Induces Cardiac Dilation and Dysfunction in a New Dominant-Negative Transgenic Mouse Model. Cells 2021; 10:2891. [PMID: 34831118 PMCID: PMC8616236 DOI: 10.3390/cells10112891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Valosin-containing protein (VCP) was found to play a vital protective role against cardiac stresses. Genetic mutations of VCP are associated with human dilated cardiomyopathy. However, the essential role of VCP in the heart during the physiological condition remains unknown since the VCP knockout in mice is embryonically lethal. We generated a cardiac-specific dominant-negative VCP transgenic (DN-VCP TG) mouse to determine the effects of impaired VCP activity on the heart. Using echocardiography, we showed that cardiac-specific overexpression of DN-VCP induced a remarkable cardiac dilation and progressively declined cardiac function during the aging transition. Mechanistically, DN-VCP did not affect the endogenous VCP (EN-VCP) expression but significantly reduced cardiac ATPase activity in the DN-VCP TG mouse hearts, indicating a functional inhibition. DN-VCP significantly impaired the aging-related cytoplasmic/nuclear shuffling of EN-VCP and its co-factors in the heart tissues and interrupted the balance of the VCP-cofactors interaction between the activating co-factors, ubiquitin fusion degradation protein 1 (UFD-1)/nuclear protein localization protein 4 (NPL-4) complex, and its inhibiting co-factor P47, leading to the binding preference with the inhibitory co-factor, resulting in functional repression of VCP. This DN-VCP TG mouse provides a unique functional-inactivation model for investigating VCP in the heart in physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| | - Ben Ma
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Wenqian Wu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| | - Lo Lai
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| |
Collapse
|
19
|
Harley J, Hagemann C, Serio A, Patani R. TDP-43 and FUS mislocalization in VCP mutant motor neurons is reversed by pharmacological inhibition of the VCP D2 ATPase domain. Brain Commun 2021; 3:fcab166. [PMID: 34396115 PMCID: PMC8361416 DOI: 10.1093/braincomms/fcab166] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
RNA binding proteins have been shown to play a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Mutations in valosin-containing protein (VCP/p97) cause ALS and exhibit the hallmark nuclear-to-cytoplasmic mislocalization of RNA binding proteins (RBPs). However, the mechanism by which mutations in VCP lead to this mislocalization of RBPs remains incompletely resolved. To address this, we used human-induced pluripotent stem cell-derived motor neurons carrying VCP mutations. We first demonstrate reduced nuclear-to-cytoplasmic ratios of transactive response DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS) and splicing factor proline and glutamine rich (SFPQ) in VCP mutant motor neurons. Upon closer analysis, we also find these RBPs are mislocalized to motor neuron neurites themselves. To address the hypothesis that altered function of the D2 ATPase domain of VCP causes RBP mislocalization, we used pharmacological inhibition of this domain in control motor neurons and found this does not recapitulate RBP mislocalization phenotypes. However, D2 domain inhibition in VCP mutant motor neurons was able to robustly reverse mislocalization of both TDP-43 and FUS, in addition to partially relocalizing SFPQ from the neurites. Together these results argue for a gain-of-function of D2 ATPase in VCP mutant human motor neurons driving the mislocalization of TDP-43 and FUS. Our data raise the intriguing possibility of harnessing VCP D2 ATPase inhibitors in the treatment of VCP-related ALS.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Cathleen Hagemann
- The Francis Crick Institute, London NW1 1AT, UK.,Centre for Craniofacial & Regenerative Biology, King's College London, London WC2R 2LS, UK
| | - Andrea Serio
- The Francis Crick Institute, London NW1 1AT, UK.,Centre for Craniofacial & Regenerative Biology, King's College London, London WC2R 2LS, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
20
|
Wall JM, Basu A, Zunica ERM, Dubuisson OS, Pergola K, Broussard JP, Kirwan JP, Axelrod CL, Johnson AE. CRISPR/Cas9-engineered Drosophila knock-in models to study VCP diseases. Dis Model Mech 2021; 14:dmm048603. [PMID: 34160014 PMCID: PMC8325010 DOI: 10.1242/dmm.048603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Mutations in Valosin Containing Protein (VCP) are associated with several degenerative diseases, including multisystem proteinopathy (MSP-1) and amyotrophic lateral sclerosis. However, patients with VCP mutations vary widely in their pathology and clinical penetrance, making it difficult to devise effective treatment strategies. A deeper understanding of how each mutation affects VCP function could enhance the prediction of clinical outcomes and design of personalized treatment options. The power of a genetically tractable model organism coupled with well-established in vivo assays and a relatively short life cycle make Drosophila an attractive system to study VCP disease pathogenesis. Using CRISPR/Cas9, we have generated individual Drosophila knock-in mutants that include nine hereditary VCP disease mutations. Our models display many hallmarks of VCP-mediated degeneration, including progressive decline in mobility, protein aggregate accumulation and defects in lysosomal and mitochondrial function. We also made some novel and unexpected findings, including nuclear morphology defects and sex-specific phenotypic differences in several mutants. Taken together, the Drosophila VCP disease models generated in this study will be useful for studying the etiology of individual VCP patient mutations and testing potential genetic and/or pharmacological therapies.
Collapse
Affiliation(s)
- Jordan M. Wall
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - Ankita Basu
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - Elizabeth R. M. Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Olga S. Dubuisson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - Kathryn Pergola
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Joshua P. Broussard
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - John P. Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Christopher L. Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Alyssa E. Johnson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| |
Collapse
|
21
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Johnson AE, Orr BO, Fetter RD, Moughamian AJ, Primeaux LA, Geier EG, Yokoyama JS, Miller BL, Davis GW. SVIP is a molecular determinant of lysosomal dynamic stability, neurodegeneration and lifespan. Nat Commun 2021; 12:513. [PMID: 33479240 PMCID: PMC7820495 DOI: 10.1038/s41467-020-20796-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Missense mutations in Valosin-Containing Protein (VCP) are linked to diverse degenerative diseases including IBMPFD, amyotrophic lateral sclerosis (ALS), muscular dystrophy and Parkinson's disease. Here, we characterize a VCP-binding co-factor (SVIP) that specifically recruits VCP to lysosomes. SVIP is essential for lysosomal dynamic stability and autophagosomal-lysosomal fusion. SVIP mutations cause muscle wasting and neuromuscular degeneration while muscle-specific SVIP over-expression increases lysosomal abundance and is sufficient to extend lifespan in a context, stress-dependent manner. We also establish multiple links between SVIP and VCP-dependent disease in our Drosophila model system. A biochemical screen identifies a disease-causing VCP mutation that prevents SVIP binding. Conversely, over-expression of an SVIP mutation that prevents VCP binding is deleterious. Finally, we identify a human SVIP mutation and confirm the pathogenicity of this mutation in our Drosophila model. We propose a model for VCP disease based on the differential, co-factor-dependent recruitment of VCP to intracellular organelles.
Collapse
Affiliation(s)
- Alyssa E Johnson
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Brian O Orr
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Armen J Moughamian
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Logan A Primeaux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ethan G Geier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
23
|
Ferrer I, Andrés-Benito P, Carmona M, Assialioui A, Povedano M. TDP-43 Vasculopathy in the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis (sALS) and Frontal Cortex in sALS/FTLD-TDP. J Neuropathol Exp Neurol 2021; 80:229-239. [PMID: 33421065 PMCID: PMC7899266 DOI: 10.1093/jnen/nlaa162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP are neurodegenerative diseases within the spectrum of TDP-43 proteinopathies. Since abnormal blood vessels and altered blood-brain barrier have been described in sALS, we wanted to know whether TDP-43 pathology also occurs in blood vessels in sALS/FTLD-TDP. TDP-43 deposits were identified in association with small blood vessels of the spinal cord in 7 of 14 cases of sALS and in small blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and sALS cases, one of them carrying a GRN mutation. This was achieved using single and double-labeling immunohistochemistry, and double-labeling immunofluorescence and confocal microscopy. In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elongated and parallel to the lumen, whereas others were granular, seldom forming clusters. In the frontal cortex, the inclusions were granular, or elongated and parallel to the lumen, or forming small globules within or in the external surface of the blood vessel wall. Other deposits were localized in the perivascular space. The present findings are in line with previous observations of TDP-43 vasculopathy in a subset of FTLD-TDP cases and identify this pathology in the spinal cord and frontal cortex in a subset of cases within the sALS/FTLD-TDP spectrum.
Collapse
Affiliation(s)
- Isidro Ferrer
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pol Andrés-Benito
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Margarita Carmona
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Abdelilah Assialioui
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Utrecht, The Netherlands
| |
Collapse
|
24
|
de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, van den Berg LH, Van Den Bosch L, van Damme P, Kiernan MC, van Es MA, Vucic S. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-322983. [PMID: 33177049 PMCID: PMC7803890 DOI: 10.1136/jnnp-2020-322983] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022]
Abstract
Inclusions of pathogenic deposits containing TAR DNA-binding protein 43 (TDP-43) are evident in the brain and spinal cord of patients that present across a spectrum of neurodegenerative diseases. For instance, the majority of patients with sporadic amyotrophic lateral sclerosis (up to 97%) and a substantial proportion of patients with frontotemporal lobar degeneration (~45%) exhibit TDP-43 positive neuronal inclusions, suggesting a role for this protein in disease pathogenesis. In addition, TDP-43 inclusions are evident in familial ALS phenotypes linked to multiple gene mutations including the TDP-43 gene coding (TARDBP) and unrelated genes (eg, C9orf72). While TDP-43 is an essential RNA/DNA binding protein critical for RNA-related metabolism, determining the pathophysiological mechanisms through which TDP-43 mediates neurodegeneration appears complex, and unravelling these molecular processes seems critical for the development of effective therapies. This review highlights the key physiological functions of the TDP-43 protein, while considering an expanding spectrum of neurodegenerative diseases associated with pathogenic TDP-43 deposition, and dissecting key molecular pathways through which TDP-43 may mediate neurodegeneration.
Collapse
Affiliation(s)
- Eva Maria Johanna de Boer
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Viyanti K Orie
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Timothy Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mark R Baker
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Hugo M De Oliveira
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Matthew Silsby
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Parvathi Menon
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mehdi van den Bos
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Philip van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Matthew C Kiernan
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael A van Es
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Cayli S, Sahin C, Sanci TO, Nakkas H. Inhibition of p97/VCP function leads to defective autophagosome maturation, cell cycle arrest and apoptosis in mouse Sertoli cells. Theriogenology 2020; 158:196-206. [PMID: 32966945 DOI: 10.1016/j.theriogenology.2020.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p97/valosin-containing protein (VCP) is expressed in many cells and plays critical functions in a broad range of diverse cellular processes. Because it is expressed in the mouse testes, predominantly in Sertoli cells, and is known to play a critical role in autophagy and apoptosis in different cell types, we set out to investigate its function in autophagosome maturation, apoptosis and cell cycle arrest in a mouse Sertoli cell line. To study the mechanism of p97/VCP action, p97/VCP siRNA and a specific p97/VCP inhibitor, N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), were used in the mouse 15P1 Sertoli cell line. Loss of p97/VCP activity due to DBeQ exposure and silencing of p97/VCP (siVCP) expression results in autophagosome (LC3 and p62) accumulation in the cytoplasm of Sertoli cells. The coexpression of autophagosomal and lysosomal markers (LAMP1 and LAMP2) was reduced in cells in which p97/VCP expression had been inactivated. To better understand in which step of autophagy p97/VCP functions, the interaction between autophagosomal and autolysosomal markers was studied by coimmunoprecipitation and colocalization experiments. The interaction between autophagosomal markers and lysosomal markers decreased in siVCP-expressing and DBeQ-exposed cells. Moreover, the expression of siVCP and DBeQ exposure caused cytoplasmic vacuolation, induced caspase 3-7-mediated cell death and decreased cell cycle progression in mouse Sertoli cells. Taken together, the results show that p97/VCP is essential for autophagosome maturation and cell survival in mouse Sertoli cells. When these functions are prevented, impaired autophagy and apoptosis may have a detrimental effect on germ cells and cause male infertility.
Collapse
Affiliation(s)
- Sevil Cayli
- Ankara Yıldırım Beyazıt University, Medical Faculty, Dept. of Histology and Embryology, Ankara, Turkey.
| | - Cansu Sahin
- Ankara Yıldırım Beyazıt University, Medical Faculty, Dept. of Histology and Embryology, Ankara, Turkey
| | - Tuba Ozdemir Sanci
- Ankara Yıldırım Beyazıt University, Medical Faculty, Dept. of Histology and Embryology, Ankara, Turkey
| | - Hilal Nakkas
- Ankara Yıldırım Beyazıt University, Medical Faculty, Dept. of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
26
|
Limanaqi F, Busceti CL, Biagioni F, Cantini F, Lenzi P, Fornai F. Cell-Clearing Systems Bridging Repeat Expansion Proteotoxicity and Neuromuscular Junction Alterations in ALS and SBMA. Int J Mol Sci 2020; 21:ijms21114021. [PMID: 32512809 PMCID: PMC7312203 DOI: 10.3390/ijms21114021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The coordinated activities of autophagy and the ubiquitin proteasome system (UPS) are key to preventing the aggregation and toxicity of misfold-prone proteins which manifest in a number of neurodegenerative disorders. These include proteins which are encoded by genes containing nucleotide repeat expansions. In the present review we focus on the overlapping role of autophagy and the UPS in repeat expansion proteotoxicity associated with chromosome 9 open reading frame 72 (C9ORF72) and androgen receptor (AR) genes, which are implicated in two motor neuron disorders, amyotrophic lateral sclerosis (ALS) and spinal-bulbar muscular atrophy (SBMA), respectively. At baseline, both C9ORF72 and AR regulate autophagy, while their aberrantly-expanded isoforms may lead to a failure in both autophagy and the UPS, further promoting protein aggregation and toxicity within motor neurons and skeletal muscles. Besides proteotoxicity, autophagy and UPS alterations are also implicated in neuromuscular junction (NMJ) alterations, which occur early in both ALS and SBMA. In fact, autophagy and the UPS intermingle with endocytic/secretory pathways to regulate axonal homeostasis and neurotransmission by interacting with key proteins which operate at the NMJ, such as agrin, acetylcholine receptors (AChRs), and adrenergic beta2 receptors (B2-ARs). Thus, alterations of autophagy and the UPS configure as a common hallmark in both ALS and SBMA disease progression. The findings here discussed may contribute to disclosing overlapping molecular mechanisms which are associated with a failure in cell-clearing systems in ALS and SBMA.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (F.C.); (P.L.)
| | | | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy; (C.L.B.); (F.B.)
| | - Federica Cantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (F.C.); (P.L.)
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (F.C.); (P.L.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (F.L.); (F.C.); (P.L.)
- I.R.C.C.S. Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy; (C.L.B.); (F.B.)
- Correspondence:
| |
Collapse
|
27
|
De Ridder W, Azmi A, Clemen CS, Eichinger L, Hofmann A, Schröder R, Johnson K, Töpf A, Straub V, De Jonghe P, Maudsley S, De Bleecker JL, Baets J. Multisystem proteinopathy due to a homozygous p.Arg159His VCP mutation: A tale of the unexpected. Neurology 2019; 94:e785-e796. [PMID: 31848255 DOI: 10.1212/wnl.0000000000008763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess the clinical, radiologic, myopathologic, and proteomic findings in a patient manifesting a multisystem proteinopathy due to a homozygous valosin-containing protein gene (VCP) mutation previously reported to be pathogenic in the heterozygous state. METHODS We studied a 36-year-old male index patient and his father, both presenting with progressive limb-girdle weakness. Muscle involvement was assessed by MRI and muscle biopsies. We performed whole-exome sequencing and Sanger sequencing for segregation analysis of the identified p.Arg159His VCP mutation. To dissect biological disease signatures, we applied state-of-the-art quantitative proteomics on muscle tissue of the index case, his father, 3 additional patients with VCP-related myopathy, and 3 control individuals. RESULTS The index patient, homozygous for the known p.Arg159His mutation in VCP, manifested a typical VCP-related myopathy phenotype, although with a markedly high creatine kinase value and a relatively early disease onset, and Paget disease of bone. The father exhibited a myopathy phenotype and discrete parkinsonism, and multiple deceased family members on the maternal side of the pedigree displayed a dementia, parkinsonism, or myopathy phenotype. Bioinformatic analysis of quantitative proteomic data revealed the degenerative nature of the disease, with evidence suggesting selective failure of muscle regeneration and stress granule dyshomeostasis. CONCLUSION We report a patient showing a multisystem proteinopathy due to a homozygous VCP mutation. The patient manifests a severe phenotype, yet fundamental disease characteristics are preserved. Proteomic findings provide further insights into VCP-related pathomechanisms.
Collapse
Affiliation(s)
- Willem De Ridder
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Abdelkrim Azmi
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Christoph S Clemen
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Ludwig Eichinger
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Andreas Hofmann
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Rolf Schröder
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Katherine Johnson
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Ana Töpf
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Volker Straub
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Peter De Jonghe
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Stuart Maudsley
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Jan L De Bleecker
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Jonathan Baets
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium.
| |
Collapse
|
28
|
Blythe EE, Gates SN, Deshaies RJ, Martin A. Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate Processing. Structure 2019; 27:1820-1829.e4. [PMID: 31623962 DOI: 10.1016/j.str.2019.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
Abstract
Valosin-containing protein (VCP)/p97 is an essential ATP-dependent protein unfoldase. Dominant mutations in p97 cause multisystem proteinopathy (MSP), a disease affecting the brain, muscle, and bone. Despite the identification of numerous pathways that are perturbed in MSP, the molecular-level defects of these p97 mutants are not completely understood. Here, we use biochemistry and cryoelectron microscopy to explore the effects of MSP mutations on the unfoldase activity of p97 in complex with its substrate adaptor NPLOC4⋅UFD1L (UN). We show that all seven analyzed MSP mutants unfold substrates faster. Mutant homo- and heterohexamers exhibit tighter UN binding and faster substrate processing. Our structural studies suggest that the increased UN affinity originates from a decoupling of p97's nucleotide state and the positioning of its N-terminal domains. Together, our data support a gain-of-function model for p97-UN-dependent processes in MSP and underscore the importance of N-terminal domain movements for adaptor recruitment and substrate processing by p97.
Collapse
Affiliation(s)
- Emily E Blythe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie N Gates
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Amgen Research, Thousand Oaks, CA 91320, USA
| | - Andreas Martin
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Becker LA, Gitler AD. A neurodegenerative-disease protein forms beneficial aggregates in healthy muscle. Nature 2019; 563:477-478. [PMID: 30459367 DOI: 10.1038/d41586-018-07141-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Rycenga HB, Wolfe KB, Yeh ES, Long DT. Uncoupling of p97 ATPase activity has a dominant negative effect on protein extraction. Sci Rep 2019; 9:10329. [PMID: 31316150 PMCID: PMC6637110 DOI: 10.1038/s41598-019-46949-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
p97 is a highly abundant, homohexameric AAA+ ATPase that performs a variety of essential cellular functions. Characterized as a ubiquitin-selective chaperone, p97 recognizes proteins conjugated to K48-linked polyubiquitin chains and promotes their removal from chromatin and other molecular complexes. Changes in p97 expression or activity are associated with the development of cancer and several related neurodegenerative disorders. Although pathogenic p97 mutations cluster in and around p97’s ATPase domains, mutant proteins display normal or elevated ATPase activity. Here, we show that one of the most common p97 mutations (R155C) retains ATPase activity, but is functionally defective. p97-R155C can be recruited to ubiquitinated substrates on chromatin, but is unable to promote substrate removal. As a result, p97-R155C acts as a dominant negative, blocking protein extraction by a similar mechanism to that observed when p97’s ATPase activity is inhibited or inactivated. However, unlike ATPase-deficient proteins, p97-R155C consumes excess ATP, which can hinder high-energy processes. Together, our results shed new insight into how pathogenic mutations in p97 alter its cellular function, with implications for understanding the etiology and treatment of p97-associated diseases.
Collapse
Affiliation(s)
- Halley B Rycenga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kelly B Wolfe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David T Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
31
|
Convery R, Mead S, Rohrer JD. Review: Clinical, genetic and neuroimaging features of frontotemporal dementia. Neuropathol Appl Neurobiol 2019; 45:6-18. [DOI: 10.1111/nan.12535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- R. Convery
- Dementia Research Centre; Department of Neurodegenerative Disease; UCL Queen Square Institute of Neurology; London UK
| | - S. Mead
- UCL Institute of Prion Diseases; MRC Prion Unit at UCL; London UK
| | - J. D. Rohrer
- Dementia Research Centre; Department of Neurodegenerative Disease; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
32
|
Guo X, Zhao Z, Shen H, Qi B, Li N, Hu J. VCP myopathy: A family with unusual clinical manifestations. Muscle Nerve 2019; 59:365-369. [PMID: 30488450 DOI: 10.1002/mus.26389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Xuan Guo
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Zhe Zhao
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Hongrui Shen
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Bing Qi
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Nan Li
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Jing Hu
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| |
Collapse
|
33
|
Wang KZQ, Steer E, Otero PA, Bateman NW, Cheng MH, Scott AL, Wu C, Bahar I, Shih YT, Hsueh YP, Chu CT. PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and Dendritic Arborization in Neurons. eNeuro 2018; 5:ENEURO.0466-18.2018. [PMID: 30783609 PMCID: PMC6377406 DOI: 10.1523/eneuro.0466-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
While PTEN-induced kinase 1 (PINK1) is well characterized for its role in mitochondrial homeostasis, much less is known concerning its ability to prevent synaptodendritic degeneration. Using unbiased proteomic methods, we identified valosin-containing protein (VCP) as a major PINK1-interacting protein. RNAi studies demonstrate that both VCP and its cofactor NSFL1C/p47 are necessary for the ability of PINK1 to increase dendritic complexity. Moreover, PINK1 regulates phosphorylation of p47, but not the VCP co-factor UFD1. Although neither VCP nor p47 interact directly with PKA, we found that PINK1 binds and phosphorylates the catalytic subunit of PKA at T197 [PKAcat(pT197)], a site known to activate the PKA holoenzyme. PKA in turn phosphorylates p47 at a novel site (S176) to regulate dendritic complexity. Given that PINK1 physically interacts with both the PKA holoenzyme and the VCP-p47 complex to promote dendritic arborization, we propose that PINK1 scaffolds a novel PINK1-VCP-PKA-p47 signaling pathway to orchestrate dendritogenesis in neurons. These findings highlight an important mechanism by which proteins genetically implicated in Parkinson's disease (PD; PINK1) and frontotemporal dementia (FTD; VCP) interact to support the health and maintenance of neuronal arbors.
Collapse
Affiliation(s)
- Kent Z. Q. Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Erin Steer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - P. Anthony Otero
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Nicholas W. Bateman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ana Ligia Scott
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Christine Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Yu-Tzu Shih
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan 11529
| | - Yi-Ping Hsueh
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan 11529
| | - Charleen T. Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases and Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
34
|
Plewa J, Surampalli A, Wencel M, Milad M, Donkervoort S, Caiozzo VJ, Goyal N, Mozaffar T, Kimonis V. A cross-sectional analysis of clinical evaluation in 35 individuals with mutations of the valosin-containing protein gene. Neuromuscul Disord 2018; 28:778-786. [PMID: 30097247 PMCID: PMC6490182 DOI: 10.1016/j.nmd.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Inclusion body myopathy (IBM) associated with Paget disease of the bone and frontotemporal dementia or IBMPFD is an autosomal dominant degenerative disorder caused by mutations in the valosin-containing protein (VCP) gene. We aim to establish a detailed clinical phenotype of VCP disease amongst 35 (28 affected individuals, 7 presymptomatic gene carriers) individuals versus 14 unaffected first-degree relatives in 14 families to establish useful biomarkers for IBMPFD and identify the most meaningful tests for monitoring disease progression in future clinical trials. Comprehensive studies included the Inclusion Body Myositis Functional Rating Scale (IBMFRS) and fatigue severity scale questionairres, strength measurements using the Manual Muscle Test with Medical Research Council (MRC) scales, hand-held dynamometry using the microFET and Biodex dynamometers, 6 minute walk test (6MWT), and pulmonary function studies. Strong correlation was observed between the IBMFRS and measurements of muscle strength with dynamometry and the other functional tests, indicating that it may be utilized in long-term follow-up assessments due to its relative simplicity. This cross-section study represents the most comprehensive evaluation of individuals with VCP disease to date and provides a useful guide for evaluating and possible monitoring of muscle weakness and pulmonary function progression in this unique cohort of individuals.
Collapse
Affiliation(s)
- Jake Plewa
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine Medical Center, 101 The City Drive South, ZC4482, Orange, CA 92868, United States
| | - Abhilasha Surampalli
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine Medical Center, 101 The City Drive South, ZC4482, Orange, CA 92868, United States
| | - Marie Wencel
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine Medical Center, 101 The City Drive South, ZC4482, Orange, CA 92868, United States
| | - Merit Milad
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine Medical Center, 101 The City Drive South, ZC4482, Orange, CA 92868, United States
| | - Sandra Donkervoort
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine Medical Center, 101 The City Drive South, ZC4482, Orange, CA 92868, United States; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Vincent J Caiozzo
- Department of Orthopedics and Physiology & Biophysics, University of California, Irvine, CA, United States
| | - Namita Goyal
- ALS and Neuromuscular Center, Department of Neurology, University of California, Irvine, CA, United States
| | - Tahseen Mozaffar
- ALS and Neuromuscular Center, Department of Neurology, University of California, Irvine, CA, United States
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine Medical Center, 101 The City Drive South, ZC4482, Orange, CA 92868, United States.
| |
Collapse
|
35
|
Al-Obeidi E, Al-Tahan S, Surampalli A, Goyal N, Wang AK, Hermann A, Omizo M, Smith C, Mozaffar T, Kimonis V. Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clin Genet 2018; 93:119-125. [PMID: 28692196 DOI: 10.1111/cge.13095] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Mutations in valosin-containing protein (VCP), an ATPase involved in protein degradation and autophagy, cause VCP disease, a progressive autosomal dominant adult onset multisystem proteinopathy. The goal of this study is to examine if phenotypic differences in this disorder could be explained by the specific gene mutations. We therefore studied 231 individuals (118 males and 113 females) from 36 families carrying 15 different VCP mutations. We analyzed the correlation between the different mutations and prevalence, age of onset and severity of myopathy, Paget's disease of bone (PDB), and frontotemporal dementia (FTD), and other comorbidities. Myopathy, PDB and FTD was present in 90%, 42% and 30% of the patients, respectively, beginning at an average age of 43, 41, and 56 years, respectively. Approximately 9% of patients with VCP mutations had an amyotrophic lateral sclerosis (ALS) phenotype, 4% had been diagnosed with Parkinson's disease (PD), and 2% had been diagnosed with Alzheimer's disease (AD). Large interfamilial and intrafamilial variation made establishing correlations difficult. We did not find a correlation between the mutation type and the incidence of any of the clinical features associated with VCP disease, except for the absence of PDB with the R159C mutation in our cohort and R159C having a later age of onset of myopathy compared with other molecular subtypes.
Collapse
Affiliation(s)
- E Al-Obeidi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, Orange, California
| | - S Al-Tahan
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, Orange, California
| | - A Surampalli
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, Orange, California
| | - N Goyal
- Neuromuscular Program, Department of Neurology, University of California, Irvine, Orange, California
| | - A K Wang
- Neuromuscular Program, Department of Neurology, University of California, Irvine, Orange, California
| | - A Hermann
- Department of Neurology, Technische Universität Dresden, and German Center for Neurodegenerative Diseases (DZNE), Research Side Dresden, 01307 Dresden, Germany
| | - M Omizo
- Deschutes Osteoporosis Center, Bend, Oregon
| | - C Smith
- Department of Neurology, University of Kentucky Medical School, Lexington, Kentucky
| | - T Mozaffar
- Neuromuscular Program, Department of Neurology, University of California, Irvine, Orange, California
| | - V Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, Orange, California
| |
Collapse
|
36
|
Lu Y, Da YW, Zhang YB, Li XG, Wang M, Di L, Pang M, Lei L. Identification of the CFTR c.1666A>G Mutation in Hereditary Inclusion Body Myopathy Using Next-Generation Sequencing Analysis. Front Neurosci 2018; 12:329. [PMID: 29872374 PMCID: PMC5972215 DOI: 10.3389/fnins.2018.00329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022] Open
Abstract
Hereditary Inclusion Body Myopathy (HIBM) is a rare autosomal dominant or recessive adult onset muscle disease which affects one to three individuals per million worldwide. This disease is autosomal dominant or recessive and occurs in adulthood. Our previous study reported a new subtype of HIBM linked to the susceptibility locus at 7q22.1-31.1. The present study is aimed to identify the candidate gene responsible for the phenotype in HIBM pedigree. After multipoint linkage analysis, we performed targeted capture sequencing on 16 members and whole-exome sequencing (WES) on 5 members. Bioinformatics filtering was performed to prioritize the candidate pathogenic gene variants, which were further genotyped by Sanger sequencing. Our results showed that the highest peak of LOD score (4.70) was on chromosome 7q22.1-31.1.We identified 2 and 22 candidates using targeted capture sequencing and WES respectively, only one of which as CFTRc.1666A>G mutation was well cosegregated with the HIBM phenotype. Using transcriptome analysis, we did not detect the differences of CFTR's mRNA expression in the proband compared with healthy members. Due to low incidence of HIBM and there is no other pedigree to assess, mutation was detected in three patients with duchenne muscular dystrophyn (DMD) and five patients with limb-girdle muscular dystrophy (LGMD). And we found that the frequency of mutation detected in DMD and LGMD patients was higher than that of being expected in normal population. We suggested that the CFTRc.1666A>G may be a candidate marker which has strong genetic linkage with the causative gene in the HIBM family.
Collapse
Affiliation(s)
- Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Yu-Wei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Yong-Biao Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University Beijing, China
| | - Xin-Gang Li
- Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China.,School of Medical and Health Sciences, Edith Cowan University Joondalup, WA, Australia
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Mi Pang
- Department of Neurology, Zhengzhou University People's Hospital Zhengzhou, China
| | - Lin Lei
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| |
Collapse
|
37
|
ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules. Mol Cell 2018; 70:906-919.e7. [PMID: 29804830 DOI: 10.1016/j.molcel.2018.04.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023]
Abstract
Stress granules (SGs) are cytoplasmic assemblies of mRNPs stalled in translation initiation. They are induced by various stress conditions, including exposure to the environmental toxin and carcinogen arsenic. While perturbed SG turnover is linked to the pathogenesis of neurodegenerative diseases, the molecular mechanisms underlying SG formation and turnover are still poorly understood. Here, we show that ZFAND1 is an evolutionarily conserved regulator of SG clearance. ZFAND1 interacts with two key factors of protein degradation, the 26S proteasome and the ubiquitin-selective segregase p97, and recruits them to arsenite-induced SGs. In the absence of ZFAND1, SGs lack the 26S proteasome and p97, accumulate defective ribosomal products, and persist after arsenite removal, indicating their transformation into aberrant, disease-linked SGs. Accordingly, ZFAND1 depletion is epistatic to the expression of pathogenic mutant p97 with respect to SG clearance, suggesting that ZFAND1 function is relevant to the multisystem degenerative disorder IBMPFD/ALS.
Collapse
|
38
|
Al-Tahan S, Al-Obeidi E, Yoshioka H, Lakatos A, Weiss L, Grafe M, Palmio J, Wicklund M, Harati Y, Omizo M, Udd B, Kimonis V. Novel valosin-containing protein mutations associated with multisystem proteinopathy. Neuromuscul Disord 2018; 28:491-501. [PMID: 29754758 DOI: 10.1016/j.nmd.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Over fifty missense mutations in the gene coding for valosin-containing protein (VCP) are associated with a unique autosomal dominant adult-onset progressive disease associated with combinations of proximo-distal inclusion body myopathy (IBM), Paget's disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). We report the clinical, histological, and molecular findings in four new patients/families carrying novel VCP mutations: c.474 G > A (p.M158I); c.478 G > C (p.A160P); c.383G > C (p.G128A); and c.382G > T (p.G128C). Clinical features included myopathy, PDB, ALS and Parkinson's disease though frontotemporal dementia was not an associated feature in these families. One of the patients was noted to have severe manifestations of PDB and was suspected of having neoplasia. There were wide inter- and intra-familial variations making genotype-phenotype correlations difficult between the novel mutations and frequency or age of onset of IBM, PDB, FTD, ALS and Parkinson's disease. Increasing awareness of the full spectrum of clinical presentations will improve diagnosis of VCP-related diseases and thus proactively manage or prevent associated clinical features such as PDB.
Collapse
Affiliation(s)
- Sejad Al-Tahan
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA
| | - Ebaa Al-Obeidi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA
| | - Hiroshi Yoshioka
- Department of Radiological Sciences, University of California, Irvine, CA
| | - Anita Lakatos
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA
| | - Lan Weiss
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA
| | - Marjorie Grafe
- Department of Pathology, Oregon Health and Science University, Portland, OR
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and University Hospital, Neurology, Tampere, Finland
| | - Matt Wicklund
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - Yadollah Harati
- Department of Neurology, Baylor College of Medicine, Houston, TX
| | | | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Neurology, Tampere, Finland; Folkhälsan Institute of Genetics and the Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland; Neurology Department, Vasa Central Hospital, Vasa, Finland
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA.
| |
Collapse
|
39
|
Tamaki Y, Shodai A, Morimura T, Hikiami R, Minamiyama S, Ayaki T, Tooyama I, Furukawa Y, Takahashi R, Urushitani M. Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals. Sci Rep 2018; 8:6030. [PMID: 29662239 PMCID: PMC5902603 DOI: 10.1038/s41598-018-24463-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is implicated in the pathogenesis of sporadic and certain familial forms of amyotrophic lateral sclerosis (ALS), suggesting elimination of TDP-43 aggregates as a possible therapeutic strategy. Here we generated and investigated a single-chain variable fragment (scFv) derived from the 3B12A monoclonal antibody (MAb) that recognises D247 of the TDP-43 nuclear export signal, an epitope masked in the physiological state. In transfected HEK293A cells, 3B12A scFv recapitulated the affinity of the full-length MAb to mislocalised TDP-43 with a defective nuclear localising signal and to a TDP-43 inclusion mimic with cysteine-to-serine substitution at RRM1. Moreover, 3B12A scFv accelerated proteasome-mediated degradation of aggregated TDP-43, likely due to an endogenous PEST-like proteolytic signal sequence in the VH domain CDR2 region. Addition of the chaperone-mediated autophagy (CMA)-related signal to 3B12A scFv induced HSP70 transcription, further enhancing TDP-43 aggregate clearance and cell viability. The 3B12A scFv also reduced TDP-43 aggregates in embryonic mouse brain following in utero electroporation while causing no overt postnatal brain pathology or developmental anomalies. These results suggest that a misfolding-specific intrabody prone to synergistic proteolysis by proteasomal and autophagic pathways is a promising strategy for mitigation of TDP-43 proteinopathy in ALS.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akemi Shodai
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Toshifumi Morimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ryota Hikiami
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sumio Minamiyama
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Ayaki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | | | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan. .,Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
40
|
Castets P, Frank S, Sinnreich M, Rüegg MA. "Get the Balance Right": Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:127-155. [PMID: 27854220 PMCID: PMC5271579 DOI: 10.3233/jnd-160153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has revealed that autophagy, a major catabolic process in cells, is dysregulated in several neuromuscular diseases and contributes to the muscle wasting caused by non-muscle disorders (e.g. cancer cachexia) or during aging (i.e. sarcopenia). From there, the idea arose to interfere with autophagy or manipulate its regulatory signalling to help restore muscle homeostasis and attenuate disease progression. The major difficulty for the development of therapeutic strategies is to restore a balanced autophagic flux, due to the dynamic nature of autophagy. Thus, it is essential to better understand the mechanisms and identify the signalling pathways at play in the control of autophagy in skeletal muscle. A comprehensive analysis of the autophagic flux and of the causes of its dysregulation is required to assess the pathogenic role of autophagy in diseased muscle. Furthermore, it is essential that experiments distinguish between primary dysregulation of autophagy (prior to disease onset) and impairments as a consequence of the pathology. Of note, in most muscle disorders, autophagy perturbation is not caused by genetic modification of an autophagy-related protein, but rather through indirect alteration of regulatory signalling or lysosomal function. In this review, we will present the mechanisms involved in autophagy, and those ensuring its tight regulation in skeletal muscle. We will then discuss as to how autophagy dysregulation contributes to the pathogenesis of neuromuscular disorders and possible ways to interfere with this process to limit disease progression.
Collapse
Affiliation(s)
| | - Stephan Frank
- Institute of Pathology, Division of Neuropathology Basel University Hospital, Basel, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Center, Departments of Neurology and Biomedicine, Pharmazentrum, Basel, Switzerland
| | | |
Collapse
|
41
|
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by progressive changes in behavior, personality, and language with involvement of the frontal and temporal regions of the brain. About 40% of FTD cases have a positive family history, and about 10% of these cases are inherited in an autosomal-dominant pattern. These gene defects present with distinct clinical phenotypes. As the diagnosis of FTD becomes more recognizable, it will become increasingly important to keep these gene mutations in mind. In this chapter, we review the genes with known associations to FTD. We discuss protein functions, mutation frequencies, clinical phenotypes, imaging characteristics, and pathology associated with these genes.
Collapse
Affiliation(s)
- Jessica Deleon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States.
| |
Collapse
|
42
|
Goutman SA, Chen KS, Paez-Colasante X, Feldman EL. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:603-623. [PMID: 29478603 DOI: 10.1016/b978-0-444-64076-5.00039-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
43
|
Paul Tuck S, Layfield R, Walker J, Mekkayil B, Francis R. Adult Paget's disease of bone: a review. Rheumatology (Oxford) 2017; 56:2050-2059. [PMID: 28339664 DOI: 10.1093/rheumatology/kew430] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 01/30/2023] Open
Abstract
Adult PD of bone is the second commonest metabolic bone condition after osteoporosis. The condition is characterized by increased bone cell activity, with bone-resorbing osteoclasts often larger and containing more nuclei than normal, and osteoblasts producing increased amounts of disorganized bone. This leads to expanded bone of poor quality possessing both sclerotic and lytic areas. PD of bone has a strong genetic element, with a family history being noted in 10-20% of cases. A number of genetic defects have been found to be associated with the condition. The most common disease-associated variants identified affect the SQSTM1 gene, providing insights into disease aetiology, with the clinical value of knowledge of SQSTM1 mutation status currently under active investigation. The diagnosis may be suggested by an isolated raised total ALP without other identifiable causes. This can be confirmed on plain X-rays and the extent determined by isotope bone scan. The mainstays of treatment are the bisphosphonates, especially i.v. zoledronate, which results in long-term suppression of bone turnover. ALP is the usual means of monitoring the condition, although more specific bone turnover markers can be helpful, especially in coincident liver disease. Patients should be followed up to monitor for biochemical relapse or development of complications, which may require medical or surgical intervention.
Collapse
Affiliation(s)
- Stephen Paul Tuck
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne.,Rheumatology, The James Cook University Hospital, Middlesbrough
| | - Robert Layfield
- Department of Biochemistry, School of Life Sciences, University of Nottingham Medical School, Nottingham
| | - Julie Walker
- Department of Histopathology, The James Cook University Hospital, Middlesbrough, UK
| | | | - Roger Francis
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne
| |
Collapse
|
44
|
Shinjo SK, Oba-Shinjo SM, Lerario AM, Marie SKN. A Brazilian family with inclusion body myopathy associated with Paget’s disease of bone and frontotemporal dementia linked to the VCP pGly97Glu mutation. Clin Rheumatol 2017; 37:1129-1136. [DOI: 10.1007/s10067-017-3913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
|
45
|
Pang SYY, Teo KC, Hsu JS, Chang RSK, Li M, Sham PC, Ho SL. The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: a review. Transl Neurodegener 2017; 6:27. [PMID: 29046784 PMCID: PMC5639582 DOI: 10.1186/s40035-017-0098-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
The clinical diagnosis of neurodegenerative disorders based on phenotype is difficult in heterogeneous conditions with overlapping symptoms. It does not take into account the disease etiology or the highly variable clinical course even amongst patients diagnosed with the same disorder. The advent of next generation sequencing (NGS) has allowed for a system-wide, unbiased approach to identify all gene variants in the genome simultaneously. With the plethora of new genes being identified, genetic rather than phenotype-based classification of Mendelian diseases such as spinocerebellar ataxia (SCA), hereditary spastic paraplegia (HSP) and Charcot-Marie-Tooth disease (CMT) has become widely accepted. It has also become clear that gene variants play a role in common and predominantly sporadic neurodegenerative diseases such as Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). The observation of pleiotropy has emerged, with mutations in the same gene giving rise to diverse phenotypes, which further increases the complexity of phenotype-genotype correlation. Possible mechanisms of pleiotropy include different downstream effects of different mutations in the same gene, presence of modifier genes, and oligogenic inheritance. Future directions include development of bioinformatics tools and establishment of more extensive public genotype/phenotype databases to better distinguish deleterious gene variants from benign polymorphisms, translation of genetic findings into pathogenic mechanisms through in-vitro and in-vivo studies, and ultimately finding disease-modifying therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Kay-Cheong Teo
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Jacob Shujui Hsu
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - Richard Shek-Kwan Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Miaoxin Li
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China.,Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, People's Republic of China
| | - Pak-Chung Sham
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
46
|
Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017; 4:39. [PMID: 28660197 PMCID: PMC5468458 DOI: 10.3389/fmolb.2017.00039] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to segregation of polypeptides from immobile cellular structures such as protein assemblies, membranes, ribosome, and chromatin. This often results in proteasomal degradation of extracted polypeptides. Given the diversity of p97 substrates, this "segregase" activity has profound influence on cellular physiology ranging from protein homeostasis to DNA lesion sensing, and mutations in p97 have been linked to several human diseases. Here we summarize our current understanding of the structure and function of this important cellular machinery and discuss the relevant clinical implications.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
47
|
Llewellyn KJ, Nalbandian A, Weiss LN, Chang I, Yu H, Khatib B, Tan B, Scarfone V, Kimonis VE. Myogenic differentiation of VCP disease-induced pluripotent stem cells: A novel platform for drug discovery. PLoS One 2017; 12:e0176919. [PMID: 28575052 PMCID: PMC5456028 DOI: 10.1371/journal.pone.0176919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
Valosin Containing Protein (VCP) disease is an autosomal dominant multisystem proteinopathy caused by mutations in the VCP gene, and is primarily associated with progressive muscle weakness, including atrophy of the pelvic and shoulder girdle muscles. Currently, no treatments are available and cardiac and respiratory failures can lead to mortality at an early age. VCP is an AAA ATPase multifunction complex protein and mutations in the VCP gene resulting in disrupted autophagic clearance. Due to the rarity of the disease, the myopathic nature of the disorder, ethical and practical considerations, VCP disease muscle biopsies are difficult to obtain. Thus, disease-specific human induced pluripotent stem cells (hiPSCs) now provide a valuable resource for the research owing to their renewable and pluripotent nature. In the present study, we report the differentiation and characterization of a VCP disease-specific hiPSCs into precursors expressing myogenic markers including desmin, myogenic factor 5 (MYF5), myosin and heavy chain 2 (MYH2). VCP disease phenotype is characterized by high expression of TAR DNA Binding Protein-43 (TDP-43), ubiquitin (Ub), Light Chain 3-I/II protein (LC3-I/II), and p62/SQSTM1 (p62) protein indicating disruption of the autophagy cascade. Treatment of hiPSC precursors with autophagy stimulators Rapamycin, Perifosine, or AT101 showed reduction in VCP pathology markers TDP-43, LC3-I/II and p62/SQSTM1. Conversely, autophagy inhibitors chloroquine had no beneficial effect, and Spautin-1 or MHY1485 had modest effects. Our results illustrate that hiPSC technology provide a useful platform for a rapid drug discovery and hence constitutes a bridge between clinical and bench research in VCP and related diseases.
Collapse
Affiliation(s)
- Katrina J. Llewellyn
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Angèle Nalbandian
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Lan N. Weiss
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Isabela Chang
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Howard Yu
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Bibo Khatib
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Baichang Tan
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Vanessa Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| | - Virginia E. Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California-Irvine School of Medicine, Irvine, California, United States of America
| |
Collapse
|
48
|
Couratier P, Corcia P, Lautrette G, Nicol M, Marin B. ALS and frontotemporal dementia belong to a common disease spectrum. Rev Neurol (Paris) 2017; 173:273-279. [DOI: 10.1016/j.neurol.2017.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022]
|
49
|
Ong ML, Tan PF, Holbrook JD. Predicting functional decline and survival in amyotrophic lateral sclerosis. PLoS One 2017; 12:e0174925. [PMID: 28406915 PMCID: PMC5390993 DOI: 10.1371/journal.pone.0174925] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/18/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Better predictors of amyotrophic lateral sclerosis disease course could enable smaller and more targeted clinical trials. Partially to address this aim, the Prize for Life foundation collected de-identified records from amyotrophic lateral sclerosis sufferers who participated in clinical trials of investigational drugs and made them available to researchers in the PRO-ACT database. METHODS In this study, time series data from PRO-ACT subjects were fitted to exponential models. Binary classes for decline in the total score of amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) (fast/slow progression) and survival (high/low death risk) were derived. Data was segregated into training and test sets via cross validation. Learning algorithms were applied to the demographic, clinical and laboratory parameters in the training set to predict ALSFRS-R decline and the derived fast/slow progression and high/low death risk categories. The performance of predictive models was assessed by cross-validation in the test set using Receiver Operator Curves and root mean squared errors. RESULTS A model created using a boosting algorithm containing the decline in four parameters (weight, alkaline phosphatase, albumin and creatine kinase) post baseline, was able to predict functional decline class (fast or slow) with fair accuracy (AUC = 0.82). However similar approaches to build a predictive model for decline class by baseline subject characteristics were not successful. In contrast, baseline values of total bilirubin, gamma glutamyltransferase, urine specific gravity and ALSFRS-R item score-climbing stairs were sufficient to predict survival class. CONCLUSIONS Using combinations of small numbers of variables it was possible to predict classes of functional decline and survival across the 1-2 year timeframe available in PRO-ACT. These findings may have utility for design of future ALS clinical trials.
Collapse
Affiliation(s)
- Mei-Lyn Ong
- Singapore Institute for Clinical Sciences (SICS), Agency of Science and Technology Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, Singapore
| | - Pei Fang Tan
- Singapore Institute for Clinical Sciences (SICS), Agency of Science and Technology Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, Singapore
| | - Joanna D. Holbrook
- Singapore Institute for Clinical Sciences (SICS), Agency of Science and Technology Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, Singapore
- NIHR Biomedical Research Centre, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, United Kingdom
| |
Collapse
|
50
|
RNA-binding proteins with prion-like domains in health and disease. Biochem J 2017; 474:1417-1438. [PMID: 28389532 DOI: 10.1042/bcj20160499] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Collapse
|