1
|
Cheung EC, Escobar JB, Alber BR, Ribeiro C, Abdullah I, Kowalik G, Rodriguez J, Harral G, Melkie M, Gill A, Ketzenberger JT, Bethea J, Polotsky VY, Jain V, Schunke K, Kay MW, Mendelowitz D. Chronic intermittent hypoxia-mediated cognitive dysfunction in ovariectomized rats. Exp Physiol 2025. [PMID: 40388406 DOI: 10.1113/ep092018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/21/2025] [Indexed: 05/21/2025]
Abstract
Obstructive sleep apnoea (OSA) is a prevalent cardiorespiratory disorder associated with significant neurocognitive consequences. Despite the higher prevalence of OSA in men, there is a strong association between OSA and Alzheimer's disease (AD), which disproportionately affects women. This study aimed to investigate the impact of chronic intermittent hypoxia (CIH), a hallmark of OSA, on cognitive function and AD markers in ovariectomized, female rats. At 8 weeks of age, 16 Sprague-Dawley rats underwent ovariectomy and were exposed to CIH for 26 weeks. Cognitive function was assessed using the Morris water maze, revealing significant deficits in spatial learning (P < 0.0001) and memory (P = 0.008) in CIH-exposed rats, compared to controls. Analysis of hippocampal tissue showed increased total tau protein (P = 0.0078), indicative of AD pathology. Additionally, CIH-exposed rats exhibited respiratory dysfunction characterized by increased frequency of apnoeas (P = 0.0328). These findings provide preclinical evidence of the association between OSA, cognitive decline and AD pathology in females, emphasizing the importance of sex-specific research in understanding and addressing these pathophysiological interconnections.
Collapse
Affiliation(s)
- Emily C Cheung
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia, USA
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - Joan B Escobar
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia, USA
| | - Bridget R Alber
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia, USA
| | - Ishan Abdullah
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - Jeannette Rodriguez
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - Grey Harral
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - Makeda Melkie
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - Aman Gill
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - John T Ketzenberger
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - John Bethea
- Department of Anatomy and Cell Biology, George Washington University, Washington, District of Columbia, USA
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, District of Columbia, USA
| | - Vivek Jain
- Department of Medicine, George Washington University, Washington, District of Columbia, USA
| | - Kathryn Schunke
- Department of Cell & Molecular Biology, University of Hawaii, Honolulu, Hawai'i, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
3
|
Park MK, Ahn J, Lim JM, Han M, Lee JW, Lee JC, Hwang SJ, Kim KC. A Transcriptomics-Based Machine Learning Model Discriminating Mild Cognitive Impairment and the Prediction of Conversion to Alzheimer's Disease. Cells 2024; 13:1920. [PMID: 39594668 PMCID: PMC11593234 DOI: 10.3390/cells13221920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The clinical spectrum of Alzheimer's disease (AD) ranges dynamically from asymptomatic and mild cognitive impairment (MCI) to mild, moderate, or severe AD. Although a few disease-modifying treatments, such as lecanemab and donanemab, have been developed, current therapies can only delay disease progression rather than halt it entirely. Therefore, the early detection of MCI and the identification of MCI patients at high risk of progression to AD remain urgent unmet needs in the super-aged era. This study utilized transcriptomics data from cognitively unimpaired (CU) individuals, MCI, and AD patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort and leveraged machine learning models to identify biomarkers that differentiate MCI from CU and also distinguish AD from MCI individuals. Furthermore, Cox proportional hazards analysis was conducted to identify biomarkers predictive of the progression from MCI to AD. Our machine learning models identified a unique set of gene expression profiles capable of achieving an area under the curve (AUC) of 0.98 in distinguishing those with MCI from CU individuals. A subset of these biomarkers was also found to be significantly associated with the risk of progression from MCI to AD. A linear mixed model demonstrated that plasma tau phosphorylated at threonine 181 (pTau181) and neurofilament light chain (NFL) exhibit the prognostic value in predicting cognitive decline longitudinally. These findings underscore the potential of integrating machine learning (ML) with transcriptomic profiling in the early detection and prognostication of AD. This integrated approach could facilitate the development of novel diagnostic tools and therapeutic strategies aimed at delaying or preventing the onset of AD in at-risk individuals. Future studies should focus on validating these biomarkers in larger, independent cohorts and further investigating their roles in AD pathogenesis.
Collapse
Affiliation(s)
- Min-Koo Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Hugenebio Institute, Bio-Innovation Park, Erom, Inc., Chuncheon 24427, Republic of Korea; (J.-W.L.); (J.-C.L.)
| | - Jinhyun Ahn
- Department of Management Information Systems, College of Economics & Commerce, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jin-Muk Lim
- Precision Medicine Research Institute, Innowl, Co., Ltd., Seoul 08350, Republic of Korea
| | - Minsoo Han
- AI Institute, Alopax-Algo, Co., Ltd., Seoul 06978, Republic of Korea;
| | - Ji-Won Lee
- Hugenebio Institute, Bio-Innovation Park, Erom, Inc., Chuncheon 24427, Republic of Korea; (J.-W.L.); (J.-C.L.)
| | - Jeong-Chan Lee
- Hugenebio Institute, Bio-Innovation Park, Erom, Inc., Chuncheon 24427, Republic of Korea; (J.-W.L.); (J.-C.L.)
| | - Sung-Joo Hwang
- Integrated Medicine Institute, Loving Care Hospital, Seongnam 463400, Republic of Korea;
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
4
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
5
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
6
|
Pena E, San Martin-Salamanca R, El Alam S, Flores K, Arriaza K. Tau Protein Alterations Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2024; 25:889. [PMID: 38255962 PMCID: PMC10815386 DOI: 10.3390/ijms25020889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Tauopathies are a group of neurodegenerative diseases whose central feature is dysfunction of the microtubule-associated protein tau (MAPT). Although the exact etiology of tauopathies is still unknown, it has been hypothesized that their onset may occur up to twenty years before the clear emergence of symptoms, which has led to questions about whether the prognosis of these diseases can be improved by, for instance, targeting the factors that influence tauopathy development. One such factor is hypoxia, which is strongly linked to Alzheimer's disease because of its association with obstructive sleep apnea and has been reported to affect molecular pathways related to the dysfunction and aggregation of tau proteins and other biomarkers of neurological damage. In particular, hypobaric hypoxia exposure increases the activation of several kinases related to the hyperphosphorylation of tau in neuronal cells, such as ERK, GSK3β, and CDK5. In addition, hypoxia also increases the levels of inflammatory molecules (IL-β1, IL-6, and TNF-α), which are also associated with neurodegeneration. This review discusses the many remaining questions regarding the influence of hypoxia on tauopathies and the contribution of high-altitude exposure to the development of these diseases.
Collapse
Affiliation(s)
| | | | - Samia El Alam
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (E.P.); (R.S.M.-S.); (K.F.); (K.A.)
| | | | | |
Collapse
|
7
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
8
|
Yuan M, Feng Y, Zhao M, Xu T, Li L, Guo K, Hou D. Identification and verification of genes associated with hypoxia microenvironment in Alzheimer's disease. Sci Rep 2023; 13:16252. [PMID: 37759083 PMCID: PMC10533856 DOI: 10.1038/s41598-023-43595-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
As the incidence of Alzheimer's disease (AD) increases year by year, more people begin to study this disease. In recent years, many studies on reactive oxygen species (ROS), neuroinflammation, autophagy, and other fields have confirmed that hypoxia is closely related to AD. However, no researchers have used bioinformatics methods to study the relationship between AD and hypoxia. Therefore, our study aimed to screen the role of hypoxia-related genes in AD and clarify their diagnostic significance. A total of 7681 differentially expressed genes (DEGs) were identified in GSE33000 by differential expression analysis and cluster analysis. Weighted gene co-expression network analysis (WGCNA) was used to detect 9 modules and 205 hub genes with high correlation coefficients. Next, machine learning algorithms were applied to 205 hub genes and four key genes were selected. Through the verification of external dataset and quantitative real-time PCR (qRT-PCR), the AD diagnostic model was established by ANTXR2, BDNF and NFKBIA. The bioinformatics analysis results suggest that hypoxia-related genes may increase the risk of AD. However, more in-depth studies are still needed to investigate their association, this article would guide the insights and directions for further research.
Collapse
Affiliation(s)
- Mingyang Yuan
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Yanjin Feng
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Mingri Zhao
- School of Life Sciences, Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410000, China
| | - Ting Xu
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Liuhong Li
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Ke Guo
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Deren Hou
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China.
| |
Collapse
|
9
|
Le WD, Yang C, Yang Q, Xiang Y, Zeng XR, Xiao J. The neuroprotective effects of oxygen therapy in Alzheimer’s disease: a narrative review. Neural Regen Res 2023. [PMID: 35799509 PMCID: PMC9241400 DOI: 10.4103/1673-5374.343897] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative neurological disease that primarily affects the elderly. Drug therapy is the main strategy for AD treatment, but current treatments suffer from poor efficacy and a number of side effects. Non-drug therapy is attracting more attention and may be a better strategy for treatment of AD. Hypoxia is one of the important factors that contribute to the pathogenesis of AD. Multiple cellular processes synergistically promote hypoxia, including aging, hypertension, diabetes, hypoxia/obstructive sleep apnea, obesity, and traumatic brain injury. Increasing evidence has shown that hypoxia may affect multiple pathological aspects of AD, such as amyloid-beta metabolism, tau phosphorylation, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum stress, and mitochondrial and synaptic dysfunction. Treatments targeting hypoxia may delay or mitigate the progression of AD. Numerous studies have shown that oxygen therapy could improve the risk factors and clinical symptoms of AD. Increasing evidence also suggests that oxygen therapy may improve many pathological aspects of AD including amyloid-beta metabolism, tau phosphorylation, neuroinflammation, neuronal apoptosis, oxidative stress, neurotrophic factors, mitochondrial function, cerebral blood volume, and protein synthesis. In this review, we summarized the effects of oxygen therapy on AD pathogenesis and the mechanisms underlying these alterations. We expect that this review can benefit future clinical applications and therapy strategies on oxygen therapy for AD.
Collapse
|
10
|
HIF-1α Causes LCMT1/PP2A Deficiency and Mediates Tau Hyperphosphorylation and Cognitive Dysfunction during Chronic Hypoxia. Int J Mol Sci 2022; 23:ijms232416140. [PMID: 36555780 PMCID: PMC9783654 DOI: 10.3390/ijms232416140] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic hypoxia is a risk factor for Alzheimer's disease (AD), and the neurofibrillary tangle (NFT) formed by hyperphosphorylated tau is one of the two major pathological changes in AD. However, the effect of chronic hypoxia on tau phosphorylation and its mechanism remains unclear. In this study, we investigated the role of HIF-1α (the functional subunit of hypoxia-inducible factor 1) in tau pathology. It was found that in Sprague-Dawley (SD) rats, global hypoxia (10% O2, 6 h per day) for one month induced cognitive impairments. Meanwhile it induced HIF-1α increase, tau hyperphosphorylation, and protein phosphatase 2A (PP2A) deficiency with leucine carboxyl methyltransferase 1(LCMT1, increasing PP2A activity) decrease in the rats' hippocampus. The results were replicated by hypoxic treatment in primary hippocampal neurons and C6/tau cells (rat C6 glioma cells stably expressing human full-length tau441). Conversely, HIF-1α silencing impeded the changes induced by hypoxia, both in primary neurons and SD rats. The result of dual luciferase assay proved that HIF-1α acted as a transcription factor of LCMT1. Unexpectedly, HIF-1α decreased the protein level of LCMT1. Further study uncovered that both overexpression of HIF-1α and hypoxia treatment resulted in a sizable degradation of LCMT1 via the autophagy--lysosomal pathway. Together, our data strongly indicated that chronic hypoxia upregulates HIF-1α, which obviously accelerated LCMT1 degradation, thus counteracting its transcriptional expression. The increase in HIF-1α decreases PP2A activity, finally resulting in tau hyperphosphorylation and cognitive dysfunction. Lowering HIF-1α in chronic hypoxia conditions may be useful in AD prevention.
Collapse
|
11
|
Thiamine insufficiency induces Hypoxia Inducible Factor-1α as an upstream mediator for neurotoxicity and AD-like pathology. Mol Cell Neurosci 2022; 123:103785. [PMID: 36241022 DOI: 10.1016/j.mcn.2022.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Insufficiencies of the micronutrient thiamine (Vitamin B1) have been associated with inducing Alzheimer's disease (AD)-like neuropathology. The hypometabolic state associated with chronic thiamine insufficiency (TI) has been demonstrated to be a contributor towards the development of amyloid plaque deposition and neurotoxicity. However, the molecular mechanism underlying TI induced AD pathology is still unresolved. Previously, we have established that TI stabilizes the metabolic stress transcriptional factor, Hypoxia Inducible Factor-1α (HIF1α). Utilizing neuronal hippocampal cells (HT22), TI-induced HIF1α activation triggered the amyloidogenic cascade through transcriptional expression and increased activity of β-secretase (BACE1). Knockdown and pharmacological inhibition of HIF1α during TI significantly reduced BACE1 and C-terminal Fragment of 99 amino acids (C99) formation. TI also increased the expression of the HIF1α regulated pro-apoptotic protein, BCL2/adenovirus E1B 19 kDa protein-interacting protein (BNIP3). Correspondingly, cell toxicity during TI conditions was significantly reduced with HIF1α and BNIP3 knockdown. The role of BNIP3 in TI-mediated toxicity was further highlighted by localization of dimeric BNIP3 into the mitochondria and nuclear accumulation of Endonuclease G. Subsequently, TI decreased mitochondrial membrane potential and enhanced chromatin fragmentation. However, cell toxicity via the HIF1α/BNIP3 cascade required TI induced oxidative stress. HIF1α, BACE1 and BNIP3 expression was induced in 3xTg-AD mice after TI and administration with the HIF1α inhibitor YC1 significantly attenuated HIF1α and target genes levels in vivo. Overall, these findings demonstrate a critical stress response during TI involving the induction of HIF1α transcriptional activity that directly promotes neurotoxicity and AD-like pathology.
Collapse
|
12
|
Wu J, Lu Y, Cai X, Chen Y, Shen Z, Lyv Q. Gut microbiota dysbiosis in 4- to 6-year-old children with obstructive sleep apnea-hypopnea syndrome. Pediatr Pulmonol 2022; 57:2012-2022. [PMID: 35580999 DOI: 10.1002/ppul.25967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Several experiments on animals have reported the relationship between obstructive sleep apnea-hypopnea syndrome (OSAHS) and gut microbiota. We investigated the gut microbiota composition of children aged 4-6 years with OSAHS to complement the pathogenesis and clinical screening methods of OSAHS. METHODS We collected feces from 43 children with OSAHS and 45 controls aged 4-6 years. We extracted total bacterial DNA from feces and analyzed the composition of gut microbiota through 16S ribosomal RNA sequencing. RESULTS There were significant differences in bacteria producing short-chain fatty acids (SCFAs) between OSAHS children and controls, including Faecalibacterium, Roseburia, and a member of Ruminococcaceae. A gut microbiota model for pediatric OSAHS screening showed that the receiver operating characteristic-area under the curve (ROC-AUC) was 0.794 with 79.1% and 80.0% sensitivity and specificity, respectively. Functional analysis of the gut microbiota revealed several alterations in metabolism. CONCLUSION The composition of gut microbiota in OSAHS children is partially changed. The altered intestinal flora may provide a new screening method for the diagnosis of children with OSAHS. The prediction of gut microbiota function suggests that intestinal metabolic function may be altered in OSAHS children.
Collapse
Affiliation(s)
- Junhua Wu
- Medical School of Ningbo University, Ningbo, Zhejiang, China.,Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Yanbo Lu
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaohong Cai
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Yuanyuan Chen
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin Lyv
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Kim DK, Lee IH, Lee BC, Lee CY. Effect of Sleep Disturbance on Cognitive Function in Elderly Individuals: A Prospective Cohort Study. J Pers Med 2022; 12:jpm12071036. [PMID: 35887533 PMCID: PMC9319469 DOI: 10.3390/jpm12071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Many epidemiologic and clinical studies have shown significant links between the degree of sleep disturbance and severity of impairment of selective cognitive functions, including the risk of neurodegenerative diseases. However, the sleep parameters that affect cognitive function in old age are unclear. Therefore, we investigated the association between sleep parameters and cognitive function in older patients. Patients aged above 65 years who complained of sleep-disordered breathing were enrolled consecutively. The Mini-Mental-State Examination tool was used to evaluate cognitive function. Eighty patients (normal cognitive function, n = 32 and cognitive impairment, n = 42) were included in this study. Multiple linear regression and binary logistic regression analyses were performed to explain the relationship between sleep parameters and cognitive function. We found that the body mass index (BMI) was significantly lower in the cognitive impairment group than in the normal cognitive function group. Additionally, the cognitive impairment group showed significantly decreased sleep efficiency and an increased apnea index compared with normal subjects. Moreover, lower BMI, reduced sleep efficiency, and high frequency of apnea events during sleep were associated with an increased risk of cognitive impairment.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (D.-K.K.); (I.H.L.); (B.C.L.)
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Il Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (D.-K.K.); (I.H.L.); (B.C.L.)
| | - Byeong Chan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (D.-K.K.); (I.H.L.); (B.C.L.)
| | - Chang Youl Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-5482; Fax: +82-33-255-4291
| |
Collapse
|
14
|
Kang J, Tian Z, Wei J, Mu Z, Liang J, Li M. Association between obstructive sleep apnea and Alzheimer's disease-related blood and cerebrospinal fluid biomarkers: A meta-analysis. J Clin Neurosci 2022; 102:87-94. [PMID: 35753156 DOI: 10.1016/j.jocn.2022.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Recent studies indicate that Alzheimer's disease- (AD) related biomarkers, including amyloid β (Aβ40 and Aβ42) and tau proteins (P-tau and T-tau), in blood and cerebrospinal fluid (CSF) are associated with obstructive sleep apnea (OSA). However, the results have been inconsistent. Therefore, the primary purpose of this meta-analysis was to determine the relationship between blood and CSF AD-related biomarkers and OSA. METHODS We searched the Embase, PubMed, Scopus, and Cochrane Library databases for relevant articles till February 2022. RESULTS Eight articles were finally included after the literature screening, including 446 patients with OSA and 286 controls. Pooled analysis showed that CSF Aβ42 (SMD = -0.220, P = 0.136), T-tau (SMD = 0.012, P = 0.89), and P-tau (SMD = 0.099, P = 0.274) levels were not different between patients with OSA and controls. In patients with moderate to severe OSA, CSF Aβ42 (SMD = -0.482, P = 0.031) were significantly lower than in controls. Blood T-tau (SMD = 0.560, P = 0.026), P-tau (SMD = 0.621, P < 0.001), and Aβ40 (SMD = 0.656, P < 0.001) levels were significantly higher in patients with OSA than in controls. Blood Aβ42 (SMD = 0.241, P = 0.232) were not different between patients with OSA and controls. CONCLUSION OSA is associated with changes in AD-related markers. Higher OSA severity may be associated with the development of AD. AD-related biomarkers, especially in the blood, are clinically efficient, less invasively assessed and monitored, and may be useful for detecting OSA and related cognitive impairments. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Jing Kang
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Jilin Medical University, Jilin, Jilin 132013, China
| | - Zongsheng Tian
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jun Wei
- Jilin Medical University, Jilin, Jilin 132013, China
| | - Zhuangzhuang Mu
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Mingxian Li
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
15
|
Gong X, Cheng J, Zhang K, Wang Y, Li S, Luo Y. Transcriptome sequencing reveals Gastrodia elata Blume could increase the cell viability of eNPCs under hypoxic condition by improving DNA damage repair ability. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114646. [PMID: 34530095 DOI: 10.1016/j.jep.2021.114646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume (GEB), known as Tianma in China, is a traditional medicinal herb that has been reported to have various pharmacological effects and neuroprotection, has long been used for treating dizziness, epilepsy, stroke. However, explanation of its underlying mechanisms remains a great challenge. AIM OF THE STUDY The neuroprotective mechanism of GEB on hypoxia-induced neuronal injury in cultured mouse embryonic neural progenitor cells (eNPCs) was investigated, with emphasis on the eNPCs proliferation and DNA damage repair. MATERIALS AND METHODS In this study, hypoxia was focused, which may be caused by stroke or acute cerebral ischemia and is considered as one of the important factors contributing to the Central Nervous System diseases. CoCl2 was adopted to construct a hypoxic/ischemic condition in eNPCs. eNPCs proliferation analysis validated GEB neuroprotective effect under hypoxic/ischemic condition. Transcriptome and weighted gene co-expression network analysis (WGCNA) screened the special gene-network module correlated with what appeared to have significant positive correlation with GEB. Then, Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to explore the biological functions of selected genes in the modules that had high correlation with GEB. RESULTS GEB has neuroprotective effect and could rescue eNPCs proliferation under hypoxic/ischemic condition induced by CoCl2. Transcriptome and WGCNA unveil the neuroprotective mechanism of GEB on improving DNA damage repair ability by increasing the expression of genes associated with DNA repair and replication. Western blotting and qPCR showed that GEB could improve DNA damage repair ability by increasing the expression of Mcm2, Mcm6, Pold2, Pole, Pole2, Rfc1, Pole4, Dna2 and Rpa2, which were associated with DNA damage and replication. CONCLUSION Through transcriptome and WGCNA, this study unveiled Gastrodia elata Blume could increase the cell viability of eNPCs under hypoxic condition by improving DNA damage repair ability.
Collapse
Affiliation(s)
- Xi Gong
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 999 Xuefu Rd., Honggutan New District, Nanchang, Jiangxi, 330031, China
| | - Jing Cheng
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 999 Xuefu Rd., Honggutan New District, Nanchang, Jiangxi, 330031, China
| | - Kunshan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yanlu Wang
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 999 Xuefu Rd., Honggutan New District, Nanchang, Jiangxi, 330031, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yuping Luo
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 999 Xuefu Rd., Honggutan New District, Nanchang, Jiangxi, 330031, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
16
|
Correia SC, Moreira PI. Oxygen Sensing and Signaling in Alzheimer's Disease: A Breathtaking Story! Cell Mol Neurobiol 2022; 42:3-21. [PMID: 34510330 PMCID: PMC11441261 DOI: 10.1007/s10571-021-01148-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Oxygen sensing and homeostasis is indispensable for the maintenance of brain structural and functional integrity. Under low-oxygen tension, the non-diseased brain has the ability to cope with hypoxia by triggering a homeostatic response governed by the highly conserved hypoxia-inducible family (HIF) of transcription factors. With the advent of advanced neuroimaging tools, it is now recognized that cerebral hypoperfusion, and consequently hypoxia, is a consistent feature along the Alzheimer's disease (AD) continuum. Of note, the reduction in cerebral blood flow and tissue oxygenation detected during the prodromal phases of AD, drastically aggravates as disease progresses. Within this scenario a fundamental question arises: How HIF-driven homeostatic brain response to hypoxia "behaves" during the AD continuum? In this sense, the present review is aimed to critically discuss and summarize the current knowledge regarding the involvement of hypoxia and HIF signaling in the onset and progression of AD pathology. Importantly, the promises and challenges of non-pharmacological and pharmacological strategies aimed to target hypoxia will be discussed as a new "hope" to prevent and/or postpone the neurodegenerative events that occur in the AD brain.
Collapse
Affiliation(s)
- Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
17
|
Singer KE, Wallen TE, Morris MC, McGlone E, Stevens-Topie S, Earnest R, Goodman MD. Postinjury treatments to make early tactical aeromedical evacuation practical for the brain after TBI. J Trauma Acute Care Surg 2021; 91:S89-S98. [PMID: 33938511 DOI: 10.1097/ta.0000000000003259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is common in civilians and military personnel. No potential therapeutics have been evaluated to prevent secondary injury induced by the hypobaric hypoxia (HH) environment integral to postinjury aeromedical evacuation (AE). We examined the role of allopurinol, propranolol, adenosine/lidocaine/magnesium (ALM), or amitriptyline administration prior to simulated flight following murine TBI. METHODS Mice underwent TBI and were given allopurinol, propranolol, amitriptyline, or ALM prior to simulated AE or normobaric normoxia (NN) control. Heart rate (HR), respiratory rate, and oxygen saturation (Spo2) were recorded throughout simulated AE. Mice were sacrificed at 24 hours, 7 days, or 30 days. Serum and cerebral cytokines were assessed by enzyme-linked immunosorbent assay. Motor function testing was performed with Rotarod ambulation. Immunohistochemistry was conducted to examine phosphorylated tau (p-tau) accumulation in the hippocampus at 30 days. RESULTS While all treatments improved oxygen saturation, propranolol, amitriptyline, and allopurinol improved AE-induced tachycardia. At 24 hours, both propranolol and amitriptyline reduced tumor necrosis factor alpha levels while allopurinol and ALM reduced tumor necrosis factor alpha levels only in NN mice. Propranolol, amitriptyline, and ALM demonstrated lower serum monocyte chemoattractant protein-1 7 days after AE. Both amitriptyline and allopurinol improved Rotarod times for AE mice while only allopurinol improved Rotarod times for NN mice. Propranolol was able to reduce p-tau accumulation under both HH and NN conditions while ALM only reduced p-tau in hypobaric hypoxic conditions. CONCLUSION Propranolol lowered post-TBI HR with reduced proinflammatory effects, including p-tau reduction. Amitriptyline-induced lower post-TBI HR and improved functional outcomes without affecting inflammatory response. Allopurinol did not affect vital signs but improved late post-TBI systemic inflammation and functional outcomes. Adenosine/lidocaine/magnesium provided no short-term improvements but reduced p-tau accumulation at 30 days in the HH cohort. Allopurinol may be the best of the four treatments to help prevent short-term functional deficits while propranolol may address long-term effects. LEVEL OF EVIDENCE Basic science article.
Collapse
Affiliation(s)
- Kathleen E Singer
- From the Department of General Surgery, University of Cincinnati, Cincinnati Ohio
| | | | | | | | | | | | | |
Collapse
|
18
|
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68:101343. [PMID: 33862277 DOI: 10.1016/j.arr.2021.101343] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
19
|
Díaz-Román M, Pulopulos MM, Baquero M, Salvador A, Cuevas A, Ferrer I, Ciopat O, Gómez E. Obstructive sleep apnea and Alzheimer's disease-related cerebrospinal fluid biomarkers in mild cognitive impairment. Sleep 2021; 44:5868470. [PMID: 32728730 DOI: 10.1093/sleep/zsaa133] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that sleep-breathing disorders, and especially obstructive sleep apnea (OSA), can be observed in patients with a higher risk of progression to Alzheimer's disease (AD). Recent evidence indicates that cerebrospinal fluid (CSF) AD-biomarkers are associated with OSA. In this study, we investigated these associations in a sample of patients with mild cognitive impairment (MCI), a condition that is considered the first clinical phase of AD, when patients showed biomarkers consistent with AD pathology. A total of 57 patients (mean age = 66.19; SD = 7.13) with MCI were included in the study. An overnight polysomnography recording was used to assess objective sleep parameters (i.e. apnea/hypopnea index [AHI], total sleep time, sleep efficiency, sleep latency, arousal index, awakening, stage 1, 2, and slow-wave sleep and rapid eye movement sleep, periodic limb movement index, O2 saturation during sleep, and percentage of time O2 saturation <90%). Phosphorylated-tau (P-tau), total-tau (T-tau), and amyloid-beta 42 (Aβ42) were measured in CSF. Unadjusted correlation analyses showed that a higher AHI (reflecting higher OSA severity) was related to higher P-tau and T-tau (both results remained significant after Bonferroni correction, p = 0.001). Importantly, these associations were observed even after adjusting for potential confounders (i.e. age, sex, body mass index, sleep medication, smoking, hypertension, and heart disease). Although more research is needed to establish a causal link, our findings provide evidence that OSA could be related to the pathophysiological mechanisms involved in neurodegeneration in MCI patients.
Collapse
Affiliation(s)
- Mónica Díaz-Román
- Sleep Medicine Unit, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Clinical Neurophysiology, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Clinical Neurophysiology, Lluís Alcanyís Hospital, Xàtiva, Spain
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Gent, Belgium.,Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, University of Valencia, IDOCAL, Valencia, Spain
| | - Miguel Baquero
- Cognitive Disorders Unit, Department of Neurology La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, University of Valencia, IDOCAL, Valencia, Spain
| | - Ana Cuevas
- Cognitive Disorders Unit, Department of Neurology La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Inés Ferrer
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, University of Valencia, IDOCAL, Valencia, Spain.,Cognitive Disorders Unit, Department of Neurology La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Oana Ciopat
- Sleep Medicine Unit, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Clinical Neurophysiology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Enriqueta Gómez
- Sleep Medicine Unit, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Clinical Neurophysiology, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
20
|
Ferini-Strambi L, Hensley M, Salsone M. Decoding Causal Links Between Sleep Apnea and Alzheimer’s Disease. J Alzheimers Dis 2021; 80:29-40. [DOI: 10.3233/jad-201066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Obstructive sleep apnea (OSA) and Alzheimer’s disease (AD) are two common chronic diseases with a well-documented association. Whether the association is causal has been highlighted by recent evidence reporting a neurobiological link between these disorders. This narrative review discusses the brain regions and networks involved in OSA as potential vulnerable areas for the development of AD neuropathology with a particular focus on gender-related implications. Using a neuroimaging perspective supported by neuropathological investigations, we provide a new model of neurodegeneration common to OSA and AD, that we have called OSA-AD neurodegeneration in order to decode the causal links between these two chronic conditions.
Collapse
Affiliation(s)
| | - Michael Hensley
- John Hunter Hospital and The University of Newcastle, Newcastle, Australia
| | - Maria Salsone
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| |
Collapse
|
21
|
Scheffer S, Hermkens DMA, van der Weerd L, de Vries HE, Daemen MJAP. Vascular Hypothesis of Alzheimer Disease: Topical Review of Mouse Models. Arterioscler Thromb Vasc Biol 2021; 41:1265-1283. [PMID: 33626911 DOI: 10.1161/atvbaha.120.311911] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Dorien M A Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Louise van der Weerd
- Departments of Radiology & Human Genetics, Leiden University Medical Center, the Netherlands (L.v.d.W.)
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije University of Amsterdam, the Netherlands (H.E.d.V.)
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| |
Collapse
|
22
|
Song B, Zhu J. A Novel Application of Ketamine for Improving Perioperative Sleep Disturbances. Nat Sci Sleep 2021; 13:2251-2266. [PMID: 34992482 PMCID: PMC8715868 DOI: 10.2147/nss.s341161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Perioperative sleep disturbances are commonly observed before, during, and after surgery and can be caused by several factors, such as preoperative negative moods, general anesthetics, surgery trauma, and pain. Over the past decade, the fast-acting antidepressant effects of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine represent one of the most attractive discoveries in the field of psychiatry, such as antidepressant and anxiolytic effects. It is also widely used as a short-acting anesthetic and analgesic. Recent research has revealed new possible applications for ketamine, such as for perioperative sleep disorders and circadian rhythm disorders. Here, we summarize the risk factors for perioperative sleep disturbances, outcomes of perioperative sleep disturbances, and mechanism of action of ketamine in improving perioperative sleep quality.
Collapse
Affiliation(s)
- Bijia Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
23
|
Transcriptomic Analysis of Human Astrocytes In Vitro Reveals Hypoxia-Induced Mitochondrial Dysfunction, Modulation of Metabolism, and Dysregulation of the Immune Response. Int J Mol Sci 2020; 21:ijms21218028. [PMID: 33126586 PMCID: PMC7672558 DOI: 10.3390/ijms21218028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a feature of neurodegenerative diseases, and can both directly and indirectly impact on neuronal function through modulation of glial function. Astrocytes play a key role in regulating homeostasis within the central nervous system, and mediate hypoxia-induced changes in response to reduced oxygen availability. The current study performed a detailed characterization of hypoxia-induced changes in the transcriptomic profile of astrocytes in vitro. Human astrocytes were cultured under normoxic (5% CO2, 95% air) or hypoxic conditions (1% O2, 5% CO2, 94% N2) for 24 h, and the gene expression profile assessed by microarray analysis. In response to hypoxia 4904 genes were significantly differentially expressed (1306 upregulated and 3598 downregulated, FC ≥ 2 and p ≤ 0.05). Analysis of the significant differentially expressed transcripts identified an increase in immune response pathways, and dysregulation of signalling pathways, including HIF-1 (p = 0.002), and metabolism, including glycolysis (p = 0.006). To assess whether the hypoxia-induced metabolic gene changes observed affected metabolism at a functional level, both the glycolytic and mitochondrial flux were measured using an XF bioanalyser. In support of the transcriptomic data, under physiological conditions hypoxia significantly reduced mitochondrial respiratory flux (p = 0.0001) but increased basal glycolytic flux (p = 0.0313). However, when metabolically stressed, hypoxia reduced mitochondrial spare respiratory capacity (p = 0.0485) and both glycolytic capacity (p = 0.0001) and glycolytic reserve (p < 0.0001). In summary, the current findings detail hypoxia-induced changes in the astrocyte transcriptome in vitro, identifying potential targets for modifying the astrocyte response to reduced oxygen availability in pathological conditions associated with ischaemia/hypoxia, including manipulation of mitochondrial function, metabolism, and the immune response.
Collapse
|
24
|
Simões-Pires EN, Ferreira ST, Linden R. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. J Neurochem 2020; 156:539-552. [PMID: 32683713 DOI: 10.1111/jnc.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
Systemic multimorbidity is highly prevalent in the elderly and, remarkably, coexisting neuropathological markers of Alzheimer's (AD) and cerebrovascular (CVD) diseases are found at autopsy in most brains of patients clinically diagnosed as AD. Little is known on neurodegeneration peculiar to comorbidities, especially at early stages when pathogenesis may propagate at subclinical levels. We developed a novel in vitro model of comorbid CVD/AD in organotypic hippocampal cultures, by combining oxygen-glucose deprivation (OGD) and exposure to amyloid-Aβ oligomers (AβOs), both applied at levels subtoxic to neurons when used in isolation. We focused on synaptic proteins and the roles of glutamate receptors, which have been implicated in many basic and clinical approaches to either CVD or AD. Subtoxic insults by OGD and AβOs synergized to reduce levels of synaptophysin (SYP) and PSD-95 without cell death, while effects of antagonists of either metabotropic or ionotropic glutamate receptors were distinct from reports in models of isolated CVD or AD. In particular, modulation of glutamate receptors differentially impacted SYP and PSD-95, and antagonists of a single receptor subtype had distinct effects when either isolated or combined. Our findings highlight the complexity of CVD/AD comorbidity, help understand variable responses to glutamate receptor antagonists in patients diagnosed with AD and may contribute to future development of therapeutics based on investigation of the pattern of progressive comorbidity.
Collapse
Affiliation(s)
| | - Sergio T Ferreira
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, UFRJ, Rio de Janeiro, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Jiang H, Pederson SM, Newman M, Dong Y, Barthelson K, Lardelli M. Transcriptome analysis indicates dominant effects on ribosome and mitochondrial function of a premature termination codon mutation in the zebrafish gene psen2. PLoS One 2020; 15:e0232559. [PMID: 32658922 PMCID: PMC7357760 DOI: 10.1371/journal.pone.0232559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023] Open
Abstract
PRESENILIN 2 (PSEN2) is one of the genes mutated in early onset familial Alzheimer’s disease (EOfAD). PSEN2 shares significant amino acid sequence identity with another EOfAD-related gene PRESENILIN 1 (PSEN1), and partial functional redundancy is seen between these two genes. However, the complete range of functions of PSEN1 and PSEN2 is not yet understood. In this study, we performed targeted mutagenesis of the zebrafish psen2 gene to generate a premature termination codon close downstream of the translation start with the intention of creating a null mutation. Homozygotes for this mutation, psen2S4Ter, are viable and fertile, and adults do not show any gross psen2-dependent pigmentation defects, arguing against significant loss of γ-secretase activity. Also, assessment of the numbers of Dorsal Longitudinal Ascending (DoLA) interneurons that are responsive to psen2 but not psen1 activity during embryogenesis did not reveal decreased psen2 function. Transcripts containing the S4Ter mutation show no evidence of destabilization by nonsense-mediated decay. Forced expression in zebrafish embryos of fusions of psen2S4Ter 5’ mRNA sequences with sequence encoding enhanced green fluorescent protein (EGFP) indicated that the psen2S4Ter mutation permits utilization of cryptic, novel downstream translation start codons. These likely initiate translation of N-terminally truncated Psen2 proteins lacking late endosomal/lysosomal localization sequences and that obey the “reading frame preservation rule” of PRESENILIN EOfAD mutations. Transcriptome analysis of entire brains from a 6-month-old family of wild type, heterozygous and homozygous psen2S4Ter female siblings revealed profoundly dominant effects on gene expression likely indicating changes in ribosomal, mitochondrial, and anion transport functions.
Collapse
Affiliation(s)
- Haowei Jiang
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Martin Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yang Dong
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Karissa Barthelson
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- * E-mail:
| |
Collapse
|
26
|
Krokidis MG, D’Errico M, Pascucci B, Parlanti E, Masi A, Ferreri C, Chatgilialoglu C. Oxygen-Dependent Accumulation of Purine DNA Lesions in Cockayne Syndrome Cells. Cells 2020; 9:cells9071671. [PMID: 32664519 PMCID: PMC7407219 DOI: 10.3390/cells9071671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5′,8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3–6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, 15310 Agia Paraskevi Attikis, Athens, Greece
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
| | - Barbara Pascucci
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
- Correspondence: ; Tel.: +39-051-639-8309
| |
Collapse
|
27
|
Chen J, Zhang F, Zhao L, Cheng C, Zhong R, Dong C, Le W. Hyperbaric oxygen ameliorates cognitive impairment in patients with Alzheimer's disease and amnestic mild cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12030. [PMID: 32548235 PMCID: PMC7293997 DOI: 10.1002/trc2.12030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION It has been reported that environmental factors such as hypoxia could contribute to the pathogenesis of Alzheimer's disease (AD). Therapeutics like hyperbaric oxygen treatment, which improves tissue oxygen supply and ameliorates hypoxic conditions in the brain, may be an alternative therapy for AD and amnestic mild cognitive impairment (aMCI). The present work aims to investigate the potential therapeutic effect of hyperbaric oxygen treatment for AD and aMCI. METHODS We recruited 42 AD, 11 aMCI, and 30 control AD patients in this study. AD and aMCI patients were treated with 40 minutes of hyperbaric oxygen once a day for 20 days and assessed by neuropsychiatric assessments including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Activities of Daily Living (ADL) scale before and at 1-, 3-, and 6-month follow-up after treatment. Control AD patients who were not given hyperbaric oxygen treatment had similar clinical profile as hyperbaric oxygen treated AD. We examined 10 of the AD/aMCI patients with fluorodeoxyglucose positron emission tomography. RESULTS In self-comparison study, one course of hyperbaric oxygen treatment significantly improved the cognitive function assessed by MMSE and MoCA in AD patients after 1-month follow-up; such treatment also significantly improved MMSE score at 3-month follow-up and MoCA score at 1- and 3-month follow-up in aMCI patients. The ADL scale was significantly improved in AD patients after 1- and 3-month follow-up. Compared to the control AD patients, the MMSE and MoCA in hyperbaric oxygen treated AD patients were significantly improved after 1-month follow-up. Hyperbaric oxygen treatment also ameliorated the reduced brain glucose metabolism in some of the AD and aMCI patients. CONCLUSION Based on previous studies and our recent findings, we propose that hyperbaric oxygen treatment may be a promising alternative therapy for AD and aMCI.
Collapse
Affiliation(s)
- Jianwen Chen
- Department of Neurologythe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Feng Zhang
- Center for Clinical Research on Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Li Zhao
- Department of Neurologythe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Rujia Zhong
- Center for Clinical Research on Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Chunbo Dong
- Department of Neurologythe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Weidong Le
- Center for Clinical Research on Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
28
|
Carroll CM, Macauley SL. The Interaction Between Sleep and Metabolism in Alzheimer's Disease: Cause or Consequence of Disease? Front Aging Neurosci 2019; 11:258. [PMID: 31616284 PMCID: PMC6764218 DOI: 10.3389/fnagi.2019.00258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and affects over 45 million people worldwide. Both type-2-diabetes (T2D), a metabolic condition associated with aging, and disrupted sleep are implicated in the pathogenesis of AD, but how sleep and metabolism interact to affect AD progression remains unclear. In the healthy brain, sleep/wake cycles are a well-coordinated interaction between metabolic and neuronal activity, but when disrupted, are associated with a myriad of health-related issues, including metabolic syndrome, cardiovascular disease, T2D, and AD. Therefore, this review will explore our current understanding of the relationship between metabolism, sleep, and AD-related pathology to identify the causes and consequences of disease progression in AD. Moreover, sleep disturbances and metabolic dysfunction could serve as potential therapeutic targets to mitigate the increased risk of AD in individuals with T2D or offer a novel approach for treating AD.
Collapse
Affiliation(s)
| | - Shannon L. Macauley
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
29
|
Andrade AG, Bubu OM, Varga AW, Osorio RS. The Relationship between Obstructive Sleep Apnea and Alzheimer's Disease. J Alzheimers Dis 2019; 64:S255-S270. [PMID: 29782319 DOI: 10.3233/jad-179936] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Obstructive sleep apnea (OSA) and Alzheimer's disease (AD) are highly prevalent conditions with growing impact on our aging society. While the causes of OSA are now better characterized, the mechanisms underlying AD are still largely unknown, challenging the development of effective treatments. Cognitive impairment, especially affecting attention and executive functions, is a recognized clinical consequence of OSA. A deeper contribution of OSA to AD pathogenesis is now gaining support from several lines of research. OSA is intrinsically associated with disruptions of sleep architecture, intermittent hypoxia and oxidative stress, intrathoracic and hemodynamic changes as well as cardiovascular comorbidities. All of these could increase the risk for AD, rendering OSA as a potential modifiable target for AD prevention. Evidence supporting the relevance of each of these mechanisms for AD risk, as well as a possible effect of AD in OSA expression, will be explored in this review.
Collapse
Affiliation(s)
- Andreia G Andrade
- Department of Neurology, Alzheimer's Disease Center, NYU Langone Medical Center, New York, NY, USA.,Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, NY, USA
| | - Omonigho M Bubu
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Andrew W Varga
- Division of Pulmonary, Critical Care and Sleep Medicine at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo S Osorio
- Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, NY, USA.,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, NY, USA
| |
Collapse
|
30
|
Mahaman YAR, Huang F, Wu M, Wang Y, Wei Z, Bao J, Salissou MTM, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Chen D, Wang X. Moringa Oleifera Alleviates Homocysteine-Induced Alzheimer's Disease-Like Pathology and Cognitive Impairments. J Alzheimers Dis 2019; 63:1141-1159. [PMID: 29710724 PMCID: PMC6004908 DOI: 10.3233/jad-180091] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is multifactorial with unclear etiopathology. Due to the complexity of AD, many attempted single therapy treatments, like Aβ immunization, have generally failed. Therefore, there is a need for drugs with multiple benefits. Naturally occurring phytochemicals with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties could be a possible way out. In this study, the effect of Moringa oleifera (MO), a naturally occurring plant with high antioxidative, anti-inflammatory, and neuroprotective effects, was evaluated on hyperhomocysteinemia (HHcy) induced AD-like pathology in rats. Homocysteine (Hcy) injection for 14 days was used to induce AD-like pathology. Simultaneous MO extract gavage followed the injection as a preventive treatment or, after injection completion, MO gavage was performed for another 14 days as a curative treatment. MO was found to not only prevent but also rescue the oxidative stress and cognitive impairments induced by Hcy treatment. Moreover, MO recovered the decreased synaptic proteins PSD93, PSD95, Synapsin 1 and Synaptophysin, and improved neurodegeneration. Interestingly, MO decreased the Hyc-induced tau hyperphosphorylation at different sites including S-199, T-231, S-396, and S-404, and at the same time decreased Aβ production through downregulation of BACE1. These effects in HHcy rats were accompanied by a decrease in calpain activity under MO treatment, supporting that calpain activation might be involved in AD pathogenesis in HHcy rats. Taken together, our data, for the first time, provided evidence that MO alleviates tau hyperphosphorylation and Aβ pathology in a HHcy AD rat model. This and previous other studies support MO as a good candidate for, and could provide new insights into, the treatment of AD and other tauopathies.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjuan Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuman Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
31
|
Randolph C. Chronic traumatic encephalopathy is not a real disease. Arch Clin Neuropsychol 2019; 33:644-648. [PMID: 30169776 DOI: 10.1093/arclin/acy063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
There was a long-lasting debate during the first half of the 1900s about whether boxers suffered from a condition called "dementia pugilistica". This included arguments as to whether there was such a distinct clinical condition, whether it was static or progressive, and whether boxers were actually at any increased risk of any neurological issues at all. The debate was never resolved, but was resuscitated in 2005 with the speculation that a similar condition, dubbed "chronic traumatic encephalopathy (CTE)" existed in retired National Football League (NFL) players. A specific pattern of p-tau deposition has been identified in the brains of NFL retirees, and also identifiable in the brains of at least a percentage of individuals exposed to contact sports in general. Advocates of CTE as a disease describe it as presenting with behavioral disturbance, increased suicidality and neurodegeneration leading to dementia. The evidence to date, however, does not rise to the level of a verifiable disease, and remains at the level of case report. To assume that CTE pathology represents a neurodegenerative disease flies in the face of a number of facts, including that traumatic brain injury does not cause neurodegeneration, protein deposits in the brain are a poor predictor of behavioral symptoms, p-tau is not necessarily toxic or self-propagating, and retired NFL players are actually much physically and mentally healthier than men of their demographic background. They have an all-cause mortality rate that is 50% of that expected, and a suicide rate that is 40% of that expected. The most parsimonious explanation of the evidence to date is that repetitive head trauma may result in p-tau deposition, but that this isoform of p-tau is inert and has no toxic or self-propagating effects.
Collapse
|
32
|
Kaushal A, Wani WY, Bal A, Gill KD, Kaur J. Okadaic Acid and Hypoxia Induced Dementia Model of Alzheimer's Type in Rats. Neurotox Res 2019; 35:621-634. [PMID: 30729451 DOI: 10.1007/s12640-019-0005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of progressive decline of memory function in aged humans. To study about a disease mechanism and progression, animal models for the specific disease are needed. For AD, although highly valid animal models exist, none of the existing models recapitulates all aspects of human AD. The pathogenic mechanisms involved in AD are diverse and thus it is difficult to recapitulate human AD in model organisms. Intracerebroventricular (ICV) injection of okadaic acid (OKA), a protein phosphatase 2A (PP2A) inhibitor, in rats causes neurotoxicity associated with neurofibrillary degeneration. However, this model lacks amyloid pathology as observed in AD. We aimed at combining two different treatments and hence producing a better animal model of AD which may mimic most of the neuropathological, neurobehavioral, and neurochemical changes observed in AD. For this, OKA (200 ng) was microinjected bilaterally into the hippocampus of male Wistar rats followed by exposure of same rats to hypoxic conditions (10%) for 3 days. The result of which, the combination model exhibited tau hyperphosphorylation along with Aβ upregulation as evident by western blotting and immunohistochemistry. The observed changes were accompanied with dysfunction of neurotransmitter system, i.e., decreased acetylcholine activity and expression. This combinatorial model also exhibited cognitive deficiency which was assessed by Morris water maze and avoidance tests along with enhanced oxidative stress which is thought to be a major player in AD pathogenesis. Taken together, we established an easily reproducible and reliable rat model for sporadic dementia of Alzheimer's type in rats which allows effective testing of new therapeutic strategies.
Collapse
Affiliation(s)
- Alka Kaushal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Willayat Yousuf Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kiran Dip Gill
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
33
|
Griñán-Ferré C, Vasilopoulou F, Abás S, Rodríguez-Arévalo S, Bagán A, Sureda FX, Pérez B, Callado LF, García-Sevilla JA, García-Fuster MJ, Escolano C, Pallàs M. Behavioral and Cognitive Improvement Induced by Novel Imidazoline I 2 Receptor Ligands in Female SAMP8 Mice. Neurotherapeutics 2019; 16:416-431. [PMID: 30460457 PMCID: PMC6554384 DOI: 10.1007/s13311-018-00681-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As populations increase their life expectancy, age-related neurodegenerative disorders such as Alzheimer's disease have become more common. I2-Imidazoline receptors (I2-IR) are widely distributed in the central nervous system, and dysregulation of I2-IR in patients with neurodegenerative diseases has been reported, suggesting their implication in cognitive impairment. This evidence indicates that high-affinity selective I2-IR ligands potentially contribute to the delay of neurodegeneration. In vivo studies in the female senescence accelerated mouse-prone 8 mice have shown that treatment with I2-IR ligands, MCR5 and MCR9, produce beneficial effects in behavior and cognition. Changes in molecular pathways implicated in oxidative stress, inflammation, synaptic plasticity, and apoptotic cell death were also studied. Furthermore, treatments with these I2-IR ligands diminished the amyloid precursor protein processing pathway and increased Aβ degrading enzymes in the hippocampus of SAMP8 mice. These results collectively demonstrate the neuroprotective role of these new I2-IR ligands in a mouse model of brain aging through specific pathways and suggest their potential as therapeutic agents in brain disorders and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Foteini Vasilopoulou
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Sònia Abás
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Sergio Rodríguez-Arévalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Andrea Bagán
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Francesc X Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, University of Rovira and Virgili, C./St. Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Belén Pérez
- Departament of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940, Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Leioa, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS and IdISBa, University of the Balearic Islands (UIB), Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - M Julia García-Fuster
- Laboratory of Neuropharmacology, IUNICS and IdISBa, University of the Balearic Islands (UIB), Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
34
|
Zhang F, Niu L, Li S, Le W. Pathological Impacts of Chronic Hypoxia on Alzheimer's Disease. ACS Chem Neurosci 2019; 10:902-909. [PMID: 30412668 DOI: 10.1021/acschemneuro.8b00442] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hypoxia is considered as one of the important environmental factors contributing to the pathogenesis of Alzheimer's disease (AD). Many chronic hypoxia-causing comorbidities, such as obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD), have been reported to be closely associated with AD. Increasing evidence has documented that chronic hypoxia may affect many pathological aspects of AD including amyloid β (Aβ) metabolism, tau phosphorylation, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial and synaptic dysfunction, which may collectively result in neurodegeneration in the brain. In this Review, we briefly summarize the effects of chronic hypoxia on AD pathogenesis and discuss the underlying mechanisms. Since chronic hypoxia is common in the elderly and may contribute to the pathogenesis of AD, prospective prevention and treatment targeting hypoxia may be helpful to delay or alleviate AD.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| |
Collapse
|
35
|
Macheda T, Roberts K, Lyons DN, Higgins E, Ritter KJ, Lin AL, Alilain WJ, Bachstetter AD. Chronic Intermittent Hypoxia Induces Robust Astrogliosis in an Alzheimer's Disease-Relevant Mouse Model. Neuroscience 2018; 398:55-63. [PMID: 30529693 DOI: 10.1016/j.neuroscience.2018.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Sleep disturbances are a common early symptom of neurodegenerative diseases, including Alzheimer's disease (AD) and other age-related dementias, and emerging evidence suggests that poor sleep may be an important contributor to development of amyloid pathology. Of the causes of sleep disturbances, it is estimated that 10-20% of adults in the United States have sleep-disordered breathing (SDB) disorder, with obstructive sleep apnea accounting for the majority of the SBD cases. The clinical and epidemiological data clearly support a link between sleep apnea and AD; yet, almost no experimental research is available exploring the mechanisms associated with this correlative link. Therefore, we exposed an AD-relevant mouse model (APP/PS1 KI) to chronic intermittent hypoxia (IH) (an experimental model of sleep apnea) to begin to describe one of the potential mechanisms by which SDB could increase the risk of dementia. Previous studies have found that astrogliosis is a contributor to neuropathology in models of chronic IH and AD; therefore, we hypothesized that a reactive astrocyte response might be a contributing mechanism in the neuroinflammation associated with sleep apnea. To test this hypothesis, 10-11-month-old wild-type (WT) and APP/PS1 KI mice were exposed to 10 hours of IH, daily for four weeks. At the end of four weeks brains were analyzed from amyloid burden and astrogliosis. No effect was found for chronic IH exposure on amyloid-beta levels or plaque load in the APP/PS1 KI mice. A significant increase in GFAP staining was found in the APP/PS1 KI mice following chronic IH exposure, but not in the WT mice. Profiling of genes associated with different phenotypes of astrocyte activation identified GFAP, CXCL10, and Ggta1 as significant responses activated in the APP/PS1 KI mice exposed to chronic IH.
Collapse
Affiliation(s)
- Teresa Macheda
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kelly Roberts
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Danielle N Lyons
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Emma Higgins
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kyle J Ritter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ai-Ling Lin
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States; Department of Nutrition and Pharmacology, University of Kentucky, Lexington, KY, United States
| | - Warren J Alilain
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
36
|
Baril AA, Carrier J, Lafrenière A, Warby S, Poirier J, Osorio RS, Ayas N, Dubé MP, Petit D, Gosselin N. Biomarkers of dementia in obstructive sleep apnea. Sleep Med Rev 2018; 42:139-148. [PMID: 30241998 PMCID: PMC8803351 DOI: 10.1016/j.smrv.2018.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/08/2023]
Abstract
Epidemiologic and mechanistic evidence is increasingly supporting the notion that obstructive sleep apnea is a risk factor for dementia. Hence, the identification of patients at risk of cognitive decline due to obstructive sleep apnea may significantly improve preventive strategies and treatment decision-making. Cerebrospinal fluid and blood biomarkers obtained through genomic, proteomic and metabolomic approaches are improving the ability to predict incident dementia. Therefore, fluid biomarkers have the potential to predict vulnerability to neurodegeneration in individuals with obstructive sleep apnea, as well as deepen our understanding of pathophysiological processes linking obstructive sleep apnea and dementia. Many fluid biomarkers linked to Alzheimer's disease and vascular dementia show abnormal levels in individuals with obstructive sleep apnea, suggesting that these conditions share common underlying mechanisms, including amyloid and tau protein neuropathology, inflammation, oxidative stress, and metabolic disturbances. Markers of these processes include amyloid-β, tau proteins, inflammatory cytokines, acute-phase proteins, antioxydants and oxidized products, homocysteine and clusterin (apolipoprotein J). Thus, these biomarkers may have the ability to identify adults with obstructive sleep apnea at high risk of dementia and provide an opportunity for therapeutic intervention. Large cohort studies are necessary to establish a specific fluid biomarker panel linking obstructive sleep apnea to dementia risk.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychology, Université de Montréal, Montreal, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychology, Université de Montréal, Montreal, Canada
| | - Simon Warby
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Judes Poirier
- Centre for Studies on Prevention of Alzheimer's disease, Douglas Institute, Montreal, Canada; Departments of Psychiatry and Medicine, McGill University, Montreal, Canada
| | - Ricardo S Osorio
- Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, USA
| | - Najib Ayas
- Division of Critical Care Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Center for Health Evaluation & Outcomes Sciences, St. Paul Hospital, Vancouver, Canada
| | - Marie-Pierre Dubé
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada; Beaulieu-Saucier Pharmacogenomics Center, Montreal Heart Institute, Montreal, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychology, Université de Montréal, Montreal, Canada.
| |
Collapse
|
37
|
Granger MW, Liu H, Fowler CF, Blanchard AP, Taylor MW, Sherman SPM, Xu H, Le W, Bennett SAL. Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models. J Neurochem 2018; 149:499-517. [PMID: 30040874 DOI: 10.1111/jnc.14560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal-parietal-entorhinal cortices of human amyloid beta precursor protein (ΑβPP) over-expressing mice. We identified a cortex-specific hypo-metabolic signature at symptomatic onset and a cortex-specific hyper-metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑβPPS we /PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso-phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso-platelet-activating factor (PAF), LPC(O-18:0/0:0), and the PAF, PC(O-22:6/2:0), declined as a result of reduced calcium-dependent cytosolic phospholipase A2 α (cPLA2 α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑβPPS we /PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age-independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2 α activity progressively increased; overall Lyso-phosphatidylcholines (LPC) and LPC(O) and PC(O-18:1/2:0) levels progressively rose. Enhanced cPLA2 α activity was only detected in transgenic mice; however, age-dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non-transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age-independent and age-dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre-existing Αβ pathology. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Matthew W Granger
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Hui Liu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caitlin F Fowler
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Alexandre P Blanchard
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew W Taylor
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Samantha P M Sherman
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Hongbin Xu
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Weidong Le
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Clinical Research on Neurological Diseases, the 1st Affiliated Hospital, Dailan Medical University, Dailan, China
| | - Steffany A L Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
Ahmad F, Das D, Kommaddi RP, Diwakar L, Gowaikar R, Rupanagudi KV, Bennett DA, Ravindranath V. Isoform-specific hyperactivation of calpain-2 occurs presymptomatically at the synapse in Alzheimer's disease mice and correlates with memory deficits in human subjects. Sci Rep 2018; 8:13119. [PMID: 30177812 PMCID: PMC6120938 DOI: 10.1038/s41598-018-31073-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Calpain hyperactivation is implicated in late-stages of neurodegenerative diseases including Alzheimer's disease (AD). However, calpains are also critical for synaptic function and plasticity, and hence memory formation and learning. Since synaptic deficits appear early in AD pathogenesis prior to appearance of overt disease symptoms, we examined if localized dysregulation of calpain-1 and/or 2 contributes to early synaptic dysfunction in AD. Increased activity of synaptosomal calpain-2, but not calpain-1 was observed in presymptomatic 1 month old APPswe/PS1ΔE9 mice (a mouse model of AD) which have no evident pathological or behavioural hallmarks of AD and persisted up to 10 months of age. However, total cellular levels of calpain-2 remained unaffected. Moreover, synaptosomal calpain-2 was hyperactivated in frontal neocortical tissue samples of post-mortem brains of AD-dementia subjects and correlated significantly with decline in tests for cognitive and memory functions, and increase in levels of β-amyloid deposits in brain. We conclude that isoform-specific hyperactivation of calpain-2, but not calpain-1 occurs at the synapse early in the pathogenesis of AD potentially contributing to the deregulation of synaptic signaling in AD. Our findings would be important in paving the way for potential therapeutic strategies for amelioration of cognitive deficits observed in ageing-related dementia disorders like AD.
Collapse
Affiliation(s)
- Faraz Ahmad
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Debajyoti Das
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Reddy Peera Kommaddi
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Latha Diwakar
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Ruturaj Gowaikar
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Khader Valli Rupanagudi
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - David A. Bennett
- 0000 0001 0705 3621grid.240684.cRush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India. .,Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
39
|
Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med Rev 2018; 40:4-16. [PMID: 28890168 DOI: 10.1016/j.smrv.2017.06.010] [Citation(s) in RCA: 592] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/29/2017] [Accepted: 06/28/2017] [Indexed: 11/23/2022]
|
40
|
Raz L, Bhaskar K, Weaver J, Marini S, Zhang Q, Thompson JF, Espinoza C, Iqbal S, Maphis NM, Weston L, Sillerud LO, Caprihan A, Pesko JC, Erhardt EB, Rosenberg GA. Hypoxia promotes tau hyperphosphorylation with associated neuropathology in vascular dysfunction. Neurobiol Dis 2018; 126:124-136. [PMID: 30010004 DOI: 10.1016/j.nbd.2018.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hypertension-induced microvascular brain injury is a major vascular contributor to cognitive impairment and dementia. We hypothesized that chronic hypoxia promotes the hyperphosphorylation of tau and cell death in an accelerated spontaneously hypertensive stroke prone rat model of vascular cognitive impairment. METHODS Hypertensive male rats (n = 13) were fed a high salt, low protein Japanese permissive diet and were compared to Wistar Kyoto control rats (n = 5). RESULTS Using electron paramagnetic resonance oximetry to measure in vivo tissue oxygen levels and magnetic resonance imaging to assess structural brain damage, we found compromised gray (dorsolateral cortex: p = .018) and white matter (corpus callosum: p = .016; external capsule: p = .049) structural integrity, reduced cerebral blood flow (dorsolateral cortex: p = .005; hippocampus: p < .001; corpus callosum: p = .001; external capsule: p < .001) and a significant drop in cortical oxygen levels (p < .05). Consistently, we found reduced oxygen carrying neuronal neuroglobin (p = .008), suggestive of chronic cerebral hypoperfusion in high salt-fed rats. We also observed a corresponding increase in free radicals (NADPH oxidase: p = .013), p-Tau (pThr231) in dorsolateral cortex (p = .011) and hippocampus (p = .003), active interleukin-1β (p < .001) and neurodegeneration (dorsolateral cortex: p = .043, hippocampus: p = .044). Human patients with subcortical ischemic vascular disease, a type of vascular dementia (n = 38; mean age = 68; male/female ratio = 23/15) showed reduced hippocampal volumes and cortical shrinking (p < .05) consistent with the neuronal cell death observed in our hypertensive rat model as compared to healthy controls (n = 47; mean age = 63; male/female ratio = 18/29). CONCLUSIONS Our data support an association between hypertension-induced vascular dysfunction and the sporadic occurrence of phosphorylated tau and cell death in the rat model, correlating with patient brain atrophy, which is relevant to vascular disease.
Collapse
Affiliation(s)
- Limor Raz
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Kiran Bhaskar
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; Department of Molecular Genetics and Microbiology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - John Weaver
- BRaIN Imaging Center, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Sandro Marini
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Department of Neurology, Augusta University, 1120 15th Street, Augusta, GA 30912, United States.
| | - Jeffery F Thompson
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Candice Espinoza
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Sulaiman Iqbal
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Nicole M Maphis
- Department of Molecular Genetics and Microbiology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Lea Weston
- Department of Molecular Genetics and Microbiology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Laurel O Sillerud
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; MIND Research Network, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Arvind Caprihan
- MIND Research Network, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - John C Pesko
- Department of Mathematics and Statistics, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Erik B Erhardt
- Department of Mathematics and Statistics, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| | - Gary A Rosenberg
- Department of Neurology, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
41
|
Frontiñán-Rubio J, Sancho-Bielsa FJ, Peinado JR, LaFerla FM, Giménez-Llort L, Durán-Prado M, Alcain FJ. Sex-dependent co-occurrence of hypoxia and β-amyloid plaques in hippocampus and entorhinal cortex is reversed by long-term treatment with ubiquinol and ascorbic acid in the 3 × Tg-AD mouse model of Alzheimer's disease. Mol Cell Neurosci 2018; 92:67-81. [PMID: 29953929 DOI: 10.1016/j.mcn.2018.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Structural and functional abnormalities in the cerebral microvasculature have been observed in Alzheimer's disease (AD) patients and animal models. One cause of hypoperfusion is the thickening of the cerebrovascular basement membrane (CVBM) due to increased collagen-IV deposition around capillaries. This study investigated whether these and other alterations in the cerebrovascular system associated with AD can be prevented by long-term dietary supplementation with the antioxidant ubiquinol (Ub) stabilized with Kaneka QH P30 powder containing ascorbic acid (ASC) in a mouse model of advanced AD (3 × Tg-AD mice, 12 months old). Animals were treated from prodromal stages of disease (3 months of age) with standard chow without or with Ub + ASC or ASC-containing vehicle and compared to wild-type (WT) mice. The number of β-amyloid (Aβ) plaques in the hippocampus and entorhinal cortex was higher in female than in male 3 × Tg-AD mice. Extensive regions of hypoxia were characterized by a higher plaque burden in females only. This was abolished by Ub + ASC and, to a lesser extent, by ASC treatment. Irrespective of Aβ burden, increased collagen-IV deposition in the CVBM was observed in both male and female 3 × Tg-AD mice relative to WT animals; this was also abrogated in Ub + ASC- and ASC-treated mice. The chronic inflammation in the hippocampus and oxidative stress in peripheral leukocytes of 3 × Tg-AD mice were likewise reversed by antioxidant treatment. These results provide strong evidence that long-term antioxidant treatment can mitigate plasma oxidative stress, amyloid burden, and hypoxia in the AD brain parenchyma.
Collapse
Affiliation(s)
- Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Francisco J Sancho-Bielsa
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Institut of Neuroscience, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain.
| | - Francisco J Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Spain.
| |
Collapse
|
42
|
Zhang F, Zhong R, Qi H, Li S, Cheng C, Liu X, Liu Y, Le W. Impacts of Acute Hypoxia on Alzheimer's Disease-Like Pathologies in APP swe/PS1 dE9 Mice and Their Wild Type Littermates. Front Neurosci 2018; 12:314. [PMID: 29867325 PMCID: PMC5954115 DOI: 10.3389/fnins.2018.00314] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and pathologically featured by β-amyloid (Aβ) plaque deposition and hyper-phosphorylated tau aggregation in the brain. Environmental factors are believed to contribute to the pathogenesis and progression of AD. In the present study, we investigated the impacts of acute hypoxia on Aβ and tau pathologies, neuroinflammation, mitochondrial function, and autophagy in APPswe/PS1dE9 AD mouse model. Male APPswe/PS1dE9 transgenic (Tg) mice and their age-matched wild type (Wt) littermates were exposed to one single acute hypoxic episode (oxygen 7%) for 24 h. We found that acute hypoxia exposure increased the expressions of amyloid precursor protein (APP), anterior pharynx-defective 1 (APH1) and cyclin-dependent kinase 5 (CDK5), and promoted tau phosphorylation at T181 and T231 residues in both Tg and Wt mice. In addition, acute hypoxia also induced autophagy through the mammalian target of rapamycin (mTOR) signaling, elicited abnormal mitochondrial function and neuroinflammation in both Tg and Wt mice. In summary, all these findings suggest that acute hypoxia could induce the AD-like pathological damages in the brain of APPswe/PS1dE9 mice and Wt mice to some extent.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Rujia Zhong
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongqian Qi
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xinyao Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufei Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Jha NK, Jha SK, Sharma R, Kumar D, Ambasta RK, Kumar P. Hypoxia-Induced Signaling Activation in Neurodegenerative Diseases: Targets for New Therapeutic Strategies. J Alzheimers Dis 2018; 62:15-38. [DOI: 10.3233/jad-170589] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
44
|
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia among aged people whose population is rapidly increasing. AD not only seriously affects the patient's physical health and quality of life, but also adds a heavy burden to the patient's family and society. It is urgent to understand AD pathogenesis and develop the means of prevention and treatment. AD is a chronic devastating neurodegenerative disease without effective treatment. Current approaches for management focus on helping patients relieve or delay the symptoms of cognitive dysfunction. The calcium ion (Ca2+) is an important second messenger in the function and structure of nerve cell circuits in the brain such as neuronal growth, exocytosis, as well as in synaptic and cognitive function. Increasing numbers of studies suggested that disruption of intracellular Ca2+ homeostasis, especially the abnormal and excessive Ca2+ release from the endoplasmic reticulum (ER) via the ryanodine receptor (RYR), plays important roles in orchestrating the dynamic of the neuropathology of AD and associated memory loss, cognitive dysfunction. Dantrolene, a known antagonist of the RYR and a clinically available drug to treat malignant hyperthermia, can ameliorate the abnormal Ca2+ release from the RYR in AD and the subsequent pathogenesis, such as increased β-secretase and γ-secretase activities, production of Amyloid-β 42 (Aβ 42) and its oligomer, impaired autophagy, synapse dysfunction, and memory loss. However, more studies are needed to confirm the efficacy and safety repurposing dantrolene as a therapeutic drug in AD.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Zhang F, Zhong R, Li S, Fu Z, Cheng C, Cai H, Le W. Acute Hypoxia Induced an Imbalanced M1/M2 Activation of Microglia through NF-κB Signaling in Alzheimer's Disease Mice and Wild-Type Littermates. Front Aging Neurosci 2017; 9:282. [PMID: 28890695 PMCID: PMC5574879 DOI: 10.3389/fnagi.2017.00282] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/14/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease mainly caused by abnormal tau phosphorylation, amyloid β (Aβ) deposition and neuroinflammation. As an important environmental factor, hypoxia has been reported to aggravate AD via exacerbating Aβ and tau pathologies. However, the link between hypoxia and neuroinflammation, especially the changes of pro-inflammatory M1 or anti-inflammation M2 microglia phenotypes in AD, is still far from being clearly investigated. Here, we evaluated the activation of microglia in the brains of APPswe/PS1dE9 transgenic (Tg) mice and their wild type (Wt) littermates, after a single episode of acute hypoxia (24 h) exposure. We found that acute hypoxia activated M1 microglia in both Tg and Wt mice as evidenced by the elevated M1 markers including cluster of differentiation 86 (CD86), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2) and CCL3. In addition, the markers of M2 microglia phenotype (arginase-1 (Arg-1), CD206, IL-4 and IL-10) were decreased after acute hypoxia exposure, suggesting an attenuated M2 phenotype of microglia. Moreover, the activation of microglia and the release of cytokines and chemokines were associated with Nuclear factor-κB (NF-κB) induction through toll-like receptor 4 (TLR4). In summary, our findings revealed that acute hypoxia modulated microglia M1/M2 subgroup profile, indicating the pathological role of hypoxia in the neuroinflammation of AD.
Collapse
Affiliation(s)
- Feng Zhang
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Rujia Zhong
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Zhenfa Fu
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Cheng Cheng
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesda, MD, United States
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
46
|
Macedo AC, Balouch S, Tabet N. Is Sleep Disruption a Risk Factor for Alzheimer’s Disease? J Alzheimers Dis 2017; 58:993-1002. [DOI: 10.3233/jad-161287] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Sara Balouch
- Centre for Dementia Studies, Brighton and Sussex Medical School, Brighton, England, UK
| | - Naji Tabet
- Centre for Dementia Studies, Brighton and Sussex Medical School, Brighton, England, UK
| |
Collapse
|
47
|
Serrano-Pozo A, Sánchez-García MA, Heras-Garvín A, March-Díaz R, Navarro V, Vizuete M, López-Barneo J, Vitorica J, Pascual A. Acute and Chronic Sustained Hypoxia Do Not Substantially Regulate Amyloid-β Peptide Generation In Vivo. PLoS One 2017; 12:e0170345. [PMID: 28099462 PMCID: PMC5242476 DOI: 10.1371/journal.pone.0170345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Recent epidemiological evidence has linked hypoxia with the development of Alzheimer disease (AD). A number of in vitro and in vivo studies have reported that hypoxia can induce amyloid-β peptide accumulation through various molecular mechanisms including the up-regulation of the amyloid-β precursor protein, the β-secretase Bace1, or the γγ-secretase complex components, as well as the down-regulation of Aβ-degrading enzymes. Objectives To investigate the effects of acute and chronic sustained hypoxia in Aβ generation in vivo. Methods 2–3 month-old C57/Bl6J wild-type mice were exposed to either normoxia (21% O2) or hypoxia (9% O2) for either 4 to 72 h (acute) or 21–30 days (chronic sustained) in a hermetic chamber. Brain mRNA levels of Aβ-related genes were measured by quantitative real-time PCR, whereas levels of Bace1 protein, full length AβPP, and its C-terminal fragments (C99/C88 ratio) were measured by Western blot. In addition, 8 and 14-month-old APP/PS1 transgenic mice were subjected to 9% O2 for 21 days and levels of Aβ40, Aβ42, full length AβPP, and soluble AβPPα (sAβPPα) were measured by ELISA or WB. Results Hypoxia (either acute or chronic sustained) did not impact the transcription of any of the Aβ-related genes in young wild-type mice. A significant reduction of Bace1 protein level was noted with acute hypoxia for 16 h but did not correlate with an increased level of full length AβPP or a decreased C99/C83 ratio. Chronic sustained hypoxia did not significantly alter the levels of Bace1, full length AβPP or the C99/C83 ratio. Last, chronic sustained hypoxia did not significantly change the levels of Aβ40, Aβ42, full length AβPP, or sAβPPα in either young or aged APP/PS1 mice. Discussion Our results argue against a hypoxia-induced shift of AβPP proteolysis from the non-amyloidogenic to the amyloidogenic pathways. We discuss the possible methodological caveats of previous in vivo studies.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, University of Iowa Hospitals & Clinics, Iowa city, Iowa, United States of America
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail: (AS-P); (AP)
| | - Manuel A. Sánchez-García
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Heras-Garvín
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rosana March-Díaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Victoria Navarro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Marisa Vizuete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail: (AS-P); (AP)
| |
Collapse
|
48
|
Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer's disease. J Neurochem 2017; 140:536-549. [DOI: 10.1111/jnc.13932] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Antero Salminen
- Department of Neurology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
| | - Anu Kauppinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
- Department of Ophthalmology; Kuopio University Hospital; Kuopio Finland
| |
Collapse
|
49
|
Can 'calpain-cathepsin hypothesis' explain Alzheimer neuronal death? Ageing Res Rev 2016; 32:169-179. [PMID: 27306474 DOI: 10.1016/j.arr.2016.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
Neurons are highly specialized post-mitotic cells, so their homeostasis and survival depend on the tightly-regulated, continuous protein degradation, synthesis, and turnover. In neurons, autophagy is indispensable to facilitate recycling of long-lived, damaged proteins and organelles in a lysosome-dependent manner. Since lysosomal proteolysis under basal conditions performs an essential housekeeping function, inhibition of the proteolysis exacerbates level of neurodegeneration. The latter is characterized by an accumulation of abnormal proteins or organelles within autophagic vacuoles which reveal as 'granulo-vacuolar degenerations' on microscopy. Heat-shock protein70.1 (Hsp70.1), as a means of molecular chaperone and lysosomal stabilizer, is a potent survival protein that confers neuroprotection against diverse stimuli, but its depletion induces neurodegeneration via autophagy failure. In response to hydroxynonenal generated from linoleic or arachidonic acids by the reactive oxygen species, a specific oxidative injury 'carbonylation' occurs at the key site Arg469 of Hsp70.1. Oxidative stress-induced carbonylation of Hsp70.1, in coordination with the calpain-mediated cleavage, leads to lysosomal destabilization/rupture and release of cathepsins with the resultant neuronal death. Hsp70.1 carbonylation which occurs anywhere in the brain is indispensable for neuronal death, but extent of calpain activation should be more crucial for determining the cell death fate. Importantly, not only acute ischemia during stroke but also chronic ischemia due to ageing may cause calpain activation. Here, role of Hsp70.1-mediated lysosomal rupture is discussed by comparing ischemic and Alzheimer neuronal death. A common neuronal death cascade may exist between cerebral ischemia and Alzheimer's disease.
Collapse
|
50
|
Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion. Exp Neurol 2016; 286:93-106. [PMID: 27720797 DOI: 10.1016/j.expneurol.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022]
Abstract
Episodes of cerebral hypoxia/ischemia increase the risk of dementia, which is associated with impaired learning and memory. Previous studies in rodent models of dementia indicated a favorable effect of the hypoxia-inducible factor (HIF) targets VEGF (vascular endothelial growth factor) and erythropoietin (Epo). In the present study we thus investigated whether activation of the entire adaptive HIF pathway in neurons by cell-specific deletion of the HIF suppressor prolyl-4-hydroxylase 2 (PHD2) improves cognitive abilities in young (3months) and old (18-28months) mice suffering from chronic brain hypoperfusion. Mice underwent permanent occlusion of the left common carotid artery, and cognitive function was assessed using the Morris water navigation task. Under conditions of both normal and decreased brain perfusion, neuronal PHD2 deficiency resulted in improved and faster spatial learning in young mice, which was preserved to some extent also in old animals. The loss of PHD2 in neurons resulted in enhanced hippocampal mRNA and protein levels of Epo and VEGF, but did not alter local microvascular density, dendritic spine morphology, or expression of synaptic plasticity-related genes in the hippocampus. Instead, better cognitive function in PHD2 deficient animals was accompanied by an increased number of neuronal precursor cells along the subgranular zone of the dentate gyrus. Overall, our current pre-clinical findings indicate an important role for the endogenous oxygen sensing machinery, encompassing PHDs, HIFs and HIF target genes, for proper cognitive function. Thus, pharmacological compounds affecting the PHD-HIF axis might well be suited to treat cognitive dysfunction and neurodegenerative processes.
Collapse
|