1
|
El-Sayed SAM, Fouad GI, Rizk MZ, Beherei HH, Mabrouk M. Comparative Neuroprotective Potential of Nanoformulated and Free Resveratrol Against Cuprizone-Induced Demyelination in Rats. Mol Neurobiol 2025; 62:2710-2725. [PMID: 39152208 PMCID: PMC11790707 DOI: 10.1007/s12035-024-04415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Demyelination is a frequent yet crippling neurological disease associated with multiple sclerosis (MS). The cuprizone (CZ) model, which causes demyelination through oxidative stress and neuroinflammation, is a popular tool used by researchers to examine this process. The polyphenol resveratrol (RESV) has become a promising neuroprotective agent in seeking for efficient therapies. In a rat model given CZ, we created and examined iron oxide nanoparticles (IONPs) loaded with RESV (IONP-RESV) to see how effective they were as a therapeutic agent against free RESV. According to molecular mechanisms, exposure to CZ resulted in a marked downregulation of myelin proteolipid protein (PLP) expression and an overexpression of the inflammatory markers tumor necrosis factor-α (TNF-α) and S100β, which are indicators of demyelination and neuroinflammation. It is remarkable that these CZ-induced alterations could be reversed by therapy with either RESV or IONP-RESV. Interestingly, IONP-RESV showed even stronger anti-inflammatory activity, as shown by a more noticeable downregulation of TNF-α and S100β expression. These results were confirmed by histopathological examination of the cerebral cortices. Our findings support the better neuroprotective benefits of RESV-loaded IONPs over free RESV in reducing demyelination and neuroinflammation brought on by CZ. Owing to their pro-remyelinating, anti-inflammatory, and antioxidant properties, RESV-loaded IONPs show promise as a neurotherapeutic intervention in the future for neurological diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.
| | - Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
2
|
Wigger N, Krüger J, Vankriekelsvenne E, Kipp M. Titration of cuprizone induces reliable demyelination. Brain Res 2025; 1850:149410. [PMID: 39716594 DOI: 10.1016/j.brainres.2024.149410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Cuprizone-induced demyelination, wherein mice are fed a diet containing the copper chelator cuprizone, is a well-established model that replicates key features of demyelination and remyelination. However, the dose-response relationship of cuprizone is complex; high concentrations can induce toxicity, whereas low doses may fail to produce reliable demyelination across subjects. This study aimed to investigate whether titration of the cuprizone concentration results in reliable acute demyelination and weight stabilization. To this end, experimental animals were intoxicated with cuprizone over a period of 5 weeks to induce acute demyelination. In one group, during the first 10 days, the initial cuprizone dose was gradually reduced until the experimental animals showed stable weights. Another group was subjected to a continuous cuprizone intoxication protocol without adaptions. Histological analyses were performed to quantify the extent of demyelination and glia activation. Animals of both groups experienced significant weight loss. Histological analyses revealed, despite adopting the cuprizone concentration, substantial demyelination of various brain regions, including the corpus callosum. This pattern was consistent across multiple staining methods, including anti-proteolipid protein (PLP), anti-myelin basic protein (MBP), and luxol-fast-blue (LFB) stains. Additionally, grey matter regions, specifically the neocortex, demonstrated significant demyelination. Accompanying these changes, there was notable activation and accumulation of microglia and astrocytes in white and grey matter regions. These histopathological changes were comparably pronounced in both cuprizone-treated groups. In summary, we demonstrate that titration of cuprizone is a reliable approach to induce acute demyelination in the mouse forebrain. This work represents a significant step toward refining animal models of MS, contributing to the broader effort of understanding and treating this complex disease.
Collapse
Affiliation(s)
- Nicole Wigger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Johann Krüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Elise Vankriekelsvenne
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany.
| |
Collapse
|
3
|
Krüger J, Behrangi N, Schliep D, Heinig L, Vankriekelsvenne E, Wigger N, Kipp M. Siponimod supports remyelination in the non-supportive environment. Sci Rep 2025; 15:4216. [PMID: 39905182 PMCID: PMC11794462 DOI: 10.1038/s41598-025-87825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Inflammatory demyelination, a hallmark of multiple sclerosis (MS) lesions, leads to functional impairments and progressive axonal loss over time. Although remyelination is thought to protect axons, endogenous regenerative processes are often incomplete or fail entirely in many MS patients. While the precise reasons for remyelination failure remain unclear, repeated demyelination in previously affected white matter regions is a recognized contributing factor. In a previous study, we demonstrated that the sphingosine-1-phosphate modulator Siponimod ameliorates metabolic oligodendrocyte injury in an MS animal model. In this study, we explored the potential of Siponimod to enhance remyelination in a non-supportive environment. To this end, male mice were subjected to Cuprizone intoxication for seven weeks. From the onset of the fifth week, when oligodendrocyte progenitor cells begin to differentiate, mice were administered either a vehicle or Siponimod solution. Post-treatment, brain specimens were processed for (immune-) histochemical analyses. After four weeks of Cuprizone intoxication, staining intensities for various myelination markers, were significantly reduced. At the end of week seven, loss of myelin staining intensities was still pronounced, but anti-myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) expression was significantly higher in Siponimod- versus vehicle-treated mice. Consistent with this finding, densities of OLIG2+ oligodendrocytes significantly recovered in Siponimod-treated but not in vehicle-treated mice. This enhanced recovery was paralleled by the trend of lower densities of Ki67+ proliferating oligodendrocyte progenitor cells. Our findings suggest that Siponimod has modest pro-regenerative capacities, partly explaining the amelioration of disease progression in secondary progressive MS patients.
Collapse
Affiliation(s)
- Johann Krüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Newshan Behrangi
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - David Schliep
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Leo Heinig
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Elise Vankriekelsvenne
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Nicole Wigger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany.
| |
Collapse
|
4
|
Jansen MI, Mahmood Y, Lee J, Broome ST, Waschek JA, Castorina A. Targeting the PAC1 receptor mitigates degradation of myelin and synaptic markers and diminishes locomotor deficits in the cuprizone demyelination model. J Neurochem 2024; 168:3250-3267. [PMID: 39115025 DOI: 10.1111/jnc.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12-24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.
Collapse
Affiliation(s)
- Margo I Jansen
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yasir Mahmood
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jordan Lee
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Sarah Thomas Broome
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Vélez-Uriza F, Ordaz RP, Garay E, Cisneros-Mejorado AJ, Arellano RO. N-butyl-β-carboline-3-carboxylate (β-CCB) systemic administration promotes remyelination in the cuprizone demyelinating model in mice. Sci Rep 2024; 14:13988. [PMID: 38886527 PMCID: PMC11183054 DOI: 10.1038/s41598-024-64501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Demyelination is generated in several nervous system illnesses. Developing strategies for effective clinical treatments requires the discovery of promyelinating drugs. Increased GABAergic signaling through γ-aminobutyric acid type A receptor (GABAAR) activation in oligodendrocytes has been proposed as a promyelinating condition. GABAAR expressed in oligodendroglia is strongly potentiated by n-butyl-β-carboline-3-carboxylate (β-CCB) compared to that in neurons. Here, mice were subjected to 0.3% cuprizone (CPZ) added in the food to induce central nervous system demyelination, a well-known model for multiple sclerosis. Then β-CCB (1 mg/Kg) was systemically administered to analyze the remyelination status in white and gray matter areas. Myelin content was evaluated using Black-Gold II (BGII) staining, immunofluorescence (IF), and magnetic resonance imaging (MRI). Evidence indicates that β-CCB treatment of CPZ-demyelinated animals promoted remyelination in several white matter structures, such as the fimbria, corpus callosum, internal capsule, and cerebellar peduncles. Moreover, using IF, it was observed that CPZ intake induced an increase in NG2+ and a decrease in CC1+ cell populations, alterations that were importantly retrieved by β-CCB treatment. Thus, the promyelinating character of β-CCB was confirmed in a generalized demyelination model, strengthening the idea that it has clinical potential as a therapeutic drug.
Collapse
Affiliation(s)
- Fidel Vélez-Uriza
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Rainald Pablo Ordaz
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Edith Garay
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Abraham J Cisneros-Mejorado
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México.
| | - Rogelio O Arellano
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México.
| |
Collapse
|
6
|
Beecken M, Baumann L, Vankriekelsvenne E, Manzhula K, Greiner T, Heinig L, Schauerte S, Kipp M, Joost S. The Cuprizone Mouse Model: A Comparative Study of Cuprizone Formulations from Different Manufacturers. Int J Mol Sci 2023; 24:10564. [PMID: 37445742 DOI: 10.3390/ijms241310564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The Cuprizone mouse model is widely used in studies on de- and remyelination. In the hands of different experimenters, the Cuprizone concentrations that lead to comparable levels of demyelination differ considerably. The reasons for this variability are unknown. In this study, we tested whether different Cuprizone formulations from different vendors and manufacturers influenced Cuprizone-induced histopathological hallmarks. We intoxicated male C57BL/6 mice with six Cuprizone powders that differed in their manufacturer, vendor, and purity. After five weeks, we analyzed the body weight changes over the course of the experiment, as well as the demyelination, astrogliosis, microgliosis and axonal damage by histological LFB-PAS staining and immunohistochemical labelling of PLP, IBA1, GFAP and APP. All Cuprizone formulations induced demyelination, astrogliosis, microgliosis, axonal damage and a moderate drop in body weight at the beginning of the intoxication period. In a cumulative evaluation of all analyses, two Cuprizone formulations performed weaker than the other formulations. In conclusion, all tested formulations did work, but the choice of Cuprizone formulation may have been responsible for the considerable variability in the experimental outcomes.
Collapse
Affiliation(s)
- Malena Beecken
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Louise Baumann
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | | | - Katerina Manzhula
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Theresa Greiner
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Leo Heinig
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steffen Schauerte
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
7
|
Martinović K, Bauer J, Kunze M, Berger J, Forss-Petter S. Abcd1 deficiency accelerates cuprizone-induced oligodendrocyte loss and axonopathy in a demyelinating mouse model of X-linked adrenoleukodystrophy. Acta Neuropathol Commun 2023; 11:98. [PMID: 37331971 PMCID: PMC10276915 DOI: 10.1186/s40478-023-01595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most frequent, inherited peroxisomal disease, is caused by mutations in the ABCD1 gene encoding a peroxisomal lipid transporter importing very long-chain fatty acids (VLCFAs) from the cytosol into peroxisomes for degradation via β-oxidation. ABCD1 deficiency results in accumulation of VLCFAs in tissues and body fluids of X-ALD patients with a wide range of phenotypic manifestations. The most severe variant, cerebral X-ALD (CALD) is characterized by progressive inflammation, loss of the myelin-producing oligodendrocytes and demyelination of the cerebral white matter. Whether the oligodendrocyte loss and demyelination in CALD are caused by a primary cell autonomous defect or injury to oligodendrocytes or by a secondary effect of the inflammatory reaction remains unresolved. To address the role of X-ALD oligodendrocytes in demyelinating pathophysiology, we combined the Abcd1 deficient X-ALD mouse model, in which VLCFAs accumulate without spontaneous demyelination, with the cuprizone model of toxic demyelination. In mice, the copper chelator cuprizone induces reproducible demyelination in the corpus callosum, followed by remyelination upon cuprizone removal. By immunohistochemical analyses of oligodendrocytes, myelin, axonal damage and microglia activation during de-and remyelination, we found that the mature oligodendrocytes of Abcd1 KO mice are more susceptible to cuprizone-induced cell death compared to WT mice in the early demyelinating phase. Furthermore, this effect was mirrored by a greater extent of acute axonal damage during demyelination in the KO mice. Abcd1 deficiency did not affect the function of microglia in either phase of the treatment. Also, the proliferation and differentiation of oligodendrocyte precursor cells and remyelination progressed at similar rates in both genotypes. Taken together, our findings point to an effect of Abcd1 deficiency on mature oligodendrocytes and the oligodendrocyte-axon unit, leading to increased vulnerability in the context of a demyelinating insult.
Collapse
Affiliation(s)
- Ksenija Martinović
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
8
|
Clawson ED, Radecki DZ, Samanta J. Immunofluorescence assay for demyelination, remyelination, and proliferation in an acute cuprizone mouse model. STAR Protoc 2023; 4:102072. [PMID: 36853716 PMCID: PMC9918794 DOI: 10.1016/j.xpro.2023.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Here, we present a protocol to assess demyelination in the corpus callosum of an acute cuprizone mouse model, which is routinely used to induce demyelination for studying myelin regeneration in the rodent brain. We describe the tracing of neural stem cells via intraperitoneal injection of tamoxifen into adult Gli1CreERT2;Ai9 mice and the induction of demyelination with cuprizone diet. We also detail EdU administration, cryosectioning of the mouse brain, EdU labeling, and immunofluorescence staining to examine proliferation and myelination. For complete details on the use and execution of this protocol, please refer to Radecki et al. (2020).1.
Collapse
Affiliation(s)
- Elizabeth D Clawson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Daniel Z Radecki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayshree Samanta
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Al-Otaibi KM, Alghamdi BS, Al-Ghamdi MA, Mansouri RA, Ashraf GM, Omar UM. Therapeutic effect of combination vitamin D3 and siponimod on remyelination and modulate microglia activation in cuprizone mouse model of multiple sclerosis. Front Behav Neurosci 2023; 16:1068736. [PMID: 36688131 PMCID: PMC9849768 DOI: 10.3389/fnbeh.2022.1068736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
Stimulation of remyelination is critical for the treatment of multiple sclerosis (MS) to alleviate symptoms and protect the myelin sheath from further damage. The current study aimed to investigate the possible therapeutic effects of combining vitamin D3 (Vit D3) and siponimod (Sipo) on enhancing remyelination and modulating microglia phenotypes in the cuprizone (CPZ) demyelination mouse model. The study was divided into two stages; demyelination (first 5 weeks) and remyelination (last 4 weeks). In the first 5 weeks, 85 mice were randomly divided into two groups, control (n = 20, standard rodent chow) and CPZ (n = 65, 0.3% CPZ mixed with chow for 6 weeks, followed by 3 weeks of standard rodent chow). At week 5, the CPZ group was re-divided into four groups (n = 14) for remyelination stages; untreated CPZ (0.2 ml of CMC orally), CPZ+Vit D3 (800 IU/kg Vit D3 orally), CPZ+Sipo (1.5 mg/kg Sipo orally), and CPZ+Vit D3 (800 IU/kg Vit D3) + Sipo (1.5 mg/kg Sipo orally). Various behavioral tasks were performed to evaluate motor performance. Luxol Fast Blue (LFB) staining, the expression level of myelin basic protein (MBP), and M1/M2 microglia phenotype genes were assessed in the corpus callosum (CC). The results showed that the combination of Vit D3 and Sipo improved behavioral deficits, significantly promoted remyelination, and modulated expression levels of microglia phenotype genes in the CC at early and late remyelination stages. These results demonstrate for the first time that a combination of Vit D3 and Sipo can improve the remyelination process in the cuprizone (CPZ) mouse model by attenuating the M1 microglia phenotype. This may help to improve the treatment of MS patients.
Collapse
Affiliation(s)
- Kholoud M. Al-Otaibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Maryam A. Al-Ghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Sex Differences in the Behavioural Aspects of the Cuprizone-Induced Demyelination Model in Mice. Brain Sci 2022; 12:brainsci12121687. [PMID: 36552147 PMCID: PMC9775311 DOI: 10.3390/brainsci12121687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease characterised by demyelination in the central nervous system. The cuprizone-induced demyelination model is often used in mice to test novel treatments for multiple sclerosis. However, despite significant demyelination, behavioural deficits may be subtle or have mixed results depending on the paradigm used. Furthermore, the sex differences within the model are not well understood. In the current study, we have sought to understand the behavioural deficits associated with the cuprizone-induced demyelination model in both male and female C57BL/6J mice. Using Black gold II stain, we found that cuprizone administration over 6 weeks caused significant demyelination in the corpus callosum that was consistent across both sexes. Cuprizone administration caused increased mechanical sensitivity when measured using an electronic von Frey aesthesiometer, with no sex differences observed. However, cuprizone administration decreased motor coordination, with more severe deficits seen in males in the horizontal bar and passive wire hang tests. In contrast, female mice showed more severe deficits in the motor skill sequence test. Cuprizone administration caused more anxiety-like behaviours in males compared to females in the elevated zero maze. Therefore, this study provides a better understanding of the sex differences involved in the behavioural aspects of cuprizone-induced demyelination, which could allow for a better translation of results from the laboratory to the clinic.
Collapse
|
11
|
Gharagozloo M, Mace JW, Calabresi PA. Animal models to investigate the effects of inflammation on remyelination in multiple sclerosis. Front Mol Neurosci 2022; 15:995477. [PMID: 36407761 PMCID: PMC9669474 DOI: 10.3389/fnmol.2022.995477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). In people with MS, impaired remyelination and axonal loss lead to debilitating long-term neurologic deficits. Current MS disease-modifying drugs mainly target peripheral immune cells and have demonstrated little efficacy for neuroprotection or promoting repair. To elucidate the pathological mechanisms and test therapeutic interventions, multiple animal models have been developed to recapitulate specific aspects of MS pathology, particularly the acute inflammatory stage. However, there are few animal models that facilitate the study of remyelination in the presence of inflammation, and none fully replicate the biology of chronic demyelination in MS. In this review, we describe the animal models that have provided insight into the mechanisms underlying demyelination, myelin repair, and potential therapeutic targets for remyelination. We highlight the limitations of studying remyelination in toxin-based demyelination models and discuss the combinatorial models that recapitulate the inflammatory microenvironment, which is now recognized to be a major inhibitor of remyelination mechanisms. These models may be useful in identifying novel therapeutics that promote CNS remyelination in inflammatory diseases such as MS.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jackson W. Mace
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Fallier-Becker P, Bonzheim I, Pfeiffer F. Cuprizone feeding induces swollen astrocyte endfeet. Pflugers Arch 2022; 474:1275-1283. [PMID: 36241864 DOI: 10.1007/s00424-022-02759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
The cuprizone model is a widely used model to study the pathogenesis of multiple sclerosis (MS). Due to the selective loss of mature oligodendrocytes and myelin, it is mainly being used to study demyelination and the mechanisms of remyelination, as well as the efficiency of compounds or therapeutics aiming at remyelination. Although early investigations using high dosages of cuprizone reported the occurrence of hydrocephalus, it has long been assumed that cuprizone feeding at lower dosages does not induce changes at the blood-brain barrier (BBB). Here, by analyzing BBB ultrastructure with high-resolution electron microscopy, we report changes at astrocytic endfeet surrounding vessels in the brain parenchyma. Particularly, edema formation around blood vessels and swollen astrocytic endfeet already occurred after feeding low dosages of cuprizone. These findings indicate changes in BBB function that will have an impact on the milieu of the central nervous system (CNS) in the cuprizone model and need to be considered when studying the mechanisms of de- and remyelination.
Collapse
Affiliation(s)
- Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Friederike Pfeiffer
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Zha Z, Liu S, Liu Y, Li C, Wang L. Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants (Basel) 2022; 11:antiox11081495. [PMID: 36009214 PMCID: PMC9404913 DOI: 10.3390/antiox11081495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated degenerative disease of the central nervous system (CNS) characterized by immune cell infiltration, demyelination and axonal injury. Oxidative stress-induced inflammatory response, especially the destructive effect of immune cell-derived free radicals on neurons and oligodendrocytes, is crucial in the onset and progression of MS. Therefore, targeting oxidative stress-related processes may be a promising preventive and therapeutic strategy for MS. Animal models, especially rodent models, can be used to explore the in vivo molecular mechanisms of MS considering their similarity to the pathological processes and clinical signs of MS in humans and the significant oxidative damage observed within their CNS. Consequently, these models have been used widely in pre-clinical studies of oxidative stress in MS. To date, many natural products have been shown to exert antioxidant effects to attenuate the CNS damage in animal models of MS. This review summarized several common rodent models of MS and their association with oxidative stress. In addition, this review provides a comprehensive and concise overview of previously reported natural antioxidant products in inhibiting the progression of MS.
Collapse
|
14
|
Wittekindt M, Kaddatz H, Joost S, Staffeld A, Bitar Y, Kipp M, Frintrop L. Different Methods for Evaluating Microglial Activation Using Anti-Ionized Calcium-Binding Adaptor Protein-1 Immunohistochemistry in the Cuprizone Model. Cells 2022; 11:cells11111723. [PMID: 35681418 PMCID: PMC9179561 DOI: 10.3390/cells11111723] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Microglia play an important role in the pathology of various central nervous system disorders, including multiple sclerosis (MS). While different methods exist to evaluate the extent of microglia activation, comparative studies investigating the sensitivity of these methods are missing for most models. In this study, we systematically evaluated which of the three commonly used histological methods (id est, quantification of microglia density, densitometrically evaluated staining intensity, or cellular morphology based on the determination of a ramification index, all measured in anti-ionized calcium-binding adaptor protein-1 (IBA1) immunohistochemical stains) is the most sensitive method to detect subtle changes in the microglia activation status in the context of MS. To this end, we used the toxin-induced cuprizone model which allows the experimental induction of a highly reproducible demyelination in several central nervous system regions, paralleled by early microglia activation. In this study, we showed that after 3 weeks of cuprizone intoxication, all methods reveal a significant microglia activation in the white matter corpus callosum. In contrast, in the affected neocortical grey matter, the evaluation of anti-IBA1 cell morphologies was the most sensitive method to detect subtle changes of microglial activation. The results of this study provide a useful guide for future immunohistochemical evaluations in the cuprizone and other neurodegenerative models.
Collapse
|
15
|
Biochanin A Improves Memory Decline and Brain Pathology in Cuprizone-Induced Mouse Model of Multiple Sclerosis. Behav Sci (Basel) 2022; 12:bs12030070. [PMID: 35323389 PMCID: PMC8945046 DOI: 10.3390/bs12030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system characterized by the demyelination of nerves, neural degeneration, and axonal loss. Cognitive impairment, including memory decline, is a significant feature in MS affecting up to 70% of patients. Thereby, it substantially impacts patients’ quality of life. Biochanin A (BCA) is an o-methylated isoflavone with a wide variety of pharmacological activities, including antioxidant, anti-inflammatory, and neuroprotective activities. Thus, this study aimed to investigate the possible protective effects of BCA on memory decline in the cuprizone (CPZ) model of MS. Thirty Swiss albino male mice (SWR/J) were randomly divided into three groups (n = 10): control (normal chow + i.p. 1:9 mixture of DMSO and PBS), CPZ (0.2% w/w of CPZ mixed into chow + i.p. 1:9 mixture of DMSO and PBS), and CPZ + BCA (0.2% w/w of CPZ mixed into chow + i.p. 40 mg/kg of BCA). At the last week of the study (week 5), a series of behavioral tasks were performed. A grip strength test was performed to assess muscle weakness while Y-maze, novel object recognition task (NORT), and novel arm discrimination task (NADT) were performed to assess memory. Additionally, histological examination of the hippocampus and the prefrontal cortex (PFC) were conducted. BCA administration caused a significant increase in the grip strength compared with the CPZ group. Additionally, BCA significantly improved the mice’s spatial memory in the Y-maze and recognition memory in the NORT and the NADT compared with the CPZ group. Moreover, BCA mitigated neuronal damage in the PFC and the hippocampus after five weeks of administration. In conclusion, our data demonstrates the possible protective effect of BCA against memory deterioration in mice fed with CPZ for five weeks.
Collapse
|
16
|
Vankriekelsvenne E, Chrzanowski U, Manzhula K, Greiner T, Wree A, Hawlitschka A, Llovera G, Zhan J, Joost S, Schmitz C, Ponsaerts P, Amor S, Nutma E, Kipp M, Kaddatz H. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia 2022; 70:1170-1190. [PMID: 35246882 DOI: 10.1002/glia.24164] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Microglia are the resident innate immune cells of the central nervous system (CNS) parenchyma. To determine the impact of microglia on disease development and progression in neurodegenerative and neuroinflammatory diseases, it is essential to distinguish microglia from peripheral macrophages/monocytes, which are eventually equally recruited. It has been suggested that transmembrane protein 119 (TMEM119) serves as a reliable microglia marker that discriminates resident microglia from blood-derived macrophages in the human and murine brain. Here, we investigated the validity of TMEM119 as a microglia marker in four in vivo models (cuprizone intoxication, experimental autoimmune encephalomyelitis (EAE), permanent filament middle cerebral artery occlusion (fMCAo), and intracerebral 6-hydroxydopamine (6-OHDA) injections) as well as post mortem multiple sclerosis (MS) brain tissues. In all applied animal models and post mortem MS tissues, we found increased densities of ionized calcium-binding adapter molecule 1+ (IBA1+ ) cells, paralleled by a significant decrease in TMEM119 expression. In addition, other cell types in peripheral tissues (i.e., follicular dendritic cells and brown adipose tissue) were also found to express TMEM119. In summary, this study demonstrates that TMEM119 is not exclusively expressed by microglia nor does it label all microglia, especially under cellular stress conditions. Since novel transgenic lines have been developed to label microglia using the TMEM119 promotor, downregulation of TMEM119 expression might interfere with the results and should, thus, be considered when working with these transgenic mouse models.
Collapse
Affiliation(s)
| | - Uta Chrzanowski
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany.,Faculty of Medicine, LMU Munich, Institute of Anatomy II, Munich, Germany
| | - Katerina Manzhula
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Theresa Greiner
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Andreas Wree
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | | | - Gemma Llovera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jiangshan Zhan
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Sarah Joost
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Christoph Schmitz
- Faculty of Medicine, LMU Munich, Institute of Anatomy II, Munich, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUMC Site, Amsterdam, The Netherlands.,Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC, VUMC Site, Amsterdam, The Netherlands
| | - Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Hannes Kaddatz
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| |
Collapse
|
17
|
Joost S, Schweiger F, Pfeiffer F, Ertl C, Keiler J, Frank M, Kipp M. Cuprizone Intoxication Results in Myelin Vacuole Formation. Front Cell Neurosci 2022; 16:709596. [PMID: 35250482 PMCID: PMC8895267 DOI: 10.3389/fncel.2022.709596] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Myelin damage is a histopathological hallmark of multiple sclerosis lesions. Results of post mortem studies suggest that impaired myelin-axon interaction characterized by focal myelin detachments is an early event during lesion genesis. In this study, we investigated the ultrastructural changes of the axon-myelin interface in the cuprizone model using serial block face scanning electron microscopy and immunohistochemistry. We show that non-inflammatory injury of oligodendrocytes by cuprizone intoxication results in myelin vacuole formation and axonal swellings, paralleled by early alterations of the node of Ranvier cytoarchitecture. This remarkable resemblance of ultrastructural myelin characteristics in multiple sclerosis and the cuprizone animal model suggests that the cuprizone model is a valuable tool to study early pathologies during lesion formation.
Collapse
Affiliation(s)
- Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Felix Schweiger
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Friederike Pfeiffer
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Carolin Ertl
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Jonas Keiler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, Rostock University Medical Center, Rostock, Germany
- *Correspondence: Markus Kipp,
| |
Collapse
|
18
|
Toomey LM, Papini M, Lins B, Wright AJ, Warnock A, McGonigle T, Hellewell SC, Bartlett CA, Anyaegbu C, Fitzgerald M. Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Rep 2021; 11:22594. [PMID: 34799634 PMCID: PMC8604913 DOI: 10.1038/s41598-021-01963-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Cuprizone is a copper-chelating agent that induces pathology similar to that within some multiple sclerosis (MS) lesions. The reliability and reproducibility of cuprizone for inducing demyelinating disease pathology depends on the animals ingesting consistent doses of cuprizone. Cuprizone-containing pelleted feed is a convenient way of delivering cuprizone, but the efficacy of these pellets at inducing demyelination has been questioned. This study compared the degree of demyelinating disease pathology between mice fed cuprizone delivered in pellets to mice fed a powdered cuprizone formulation at an early 3 week demyelinating timepoint. Within rostral corpus callosum, cuprizone pellets were more effective than cuprizone powder at increasing astrogliosis, microglial activation, DNA damage, and decreasing the density of mature oligodendrocytes. However, cuprizone powder demonstrated greater protein nitration relative to controls. Furthermore, mice fed control powder had significantly fewer mature oligodendrocytes than those fed control pellets. In caudal corpus callosum, cuprizone pellets performed better than cuprizone powder relative to controls at increasing astrogliosis, microglial activation, protein nitration, DNA damage, tissue swelling, and reducing the density of mature oligodendrocytes. Importantly, only cuprizone pellets induced detectable demyelination compared to controls. The two feeds had similar effects on oligodendrocyte precursor cell (OPC) dynamics. Taken together, these data suggest that demyelinating disease pathology is modelled more effectively with cuprizone pellets than powder at 3 weeks. Combined with the added convenience, cuprizone pellets are a suitable choice for inducing early demyelinating disease pathology.
Collapse
Affiliation(s)
- Lillian M Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Alexander J Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Carole A Bartlett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
19
|
Kaddatz H, Joost S, Nedelcu J, Chrzanowski U, Schmitz C, Gingele S, Gudi V, Stangel M, Zhan J, Santrau E, Greiner T, Frenz J, Müller-Hilke B, Müller M, Amor S, van der Valk P, Kipp M. Cuprizone-induced demyelination triggers a CD8-pronounced T cell recruitment. Glia 2020; 69:925-942. [PMID: 33245604 DOI: 10.1002/glia.23937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
The loss of myelinating oligodendrocytes is a key characteristic of many neurological diseases, including Multiple Sclerosis (MS). In progressive MS, where effective treatment options are limited, peripheral immune cells can be found at the site of demyelination and are suggested to play a functional role during disease progression. In this study, we hypothesize that metabolic oligodendrocyte injury, caused by feeding the copper chelator cuprizone, is a potent trigger for peripheral immune cell recruitment into the central nervous system (CNS). We used immunohistochemistry and flow cytometry to evaluate the composition, density, and activation status of infiltrating T lymphocytes in cuprizone-intoxicated mice and post-mortem progressive MS tissues. Our results demonstrate a predominance of CD8+ T cells along with high proliferation rates and cytotoxic granule expression, indicating an antigenic and pro-inflammatory milieu in the CNS of cuprizone-intoxicated mice. Numbers of recruited T cells and the composition of lymphocytic infiltrates in cuprizone-intoxicated mice were found to be comparable to those found in progressive MS lesions. Finally, amelioration of the cuprizone-induced pathology by treating mice with laquinimod significantly reduces the number of recruited T cells. Overall, this study provides strong evidence that toxic demyelination is a sufficient trigger for T cells to infiltrate the demyelinated CNS. Further investigation of the mode of action and functional consequence of T cell recruitment might offer promising new therapeutic approaches for progressive MS.
Collapse
Affiliation(s)
- Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Nedelcu
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Uta Chrzanowski
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph Schmitz
- Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Emily Santrau
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Theresa Greiner
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
20
|
Aquaporin-4 Expression during Toxic and Autoimmune Demyelination. Cells 2020; 9:cells9102187. [PMID: 32998402 PMCID: PMC7601078 DOI: 10.3390/cells9102187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
The water channel protein aquaporin-4 (AQP4) is required for a normal rate of water exchange across the blood–brain interface. Following the discovery that AQP4 is a possible autoantigen in neuromyelitis optica, the function of AQP4 in health and disease has become a research focus. While several studies have addressed the expression and function of AQP4 during inflammatory demyelination, relatively little is known about its expression during non-autoimmune-mediated myelin damage. In this study, we used the toxin-induced demyelination model cuprizone as well as a combination of metabolic and autoimmune myelin injury (i.e., Cup/EAE) to investigate AQP4 pathology. We show that during toxin-induced demyelination, diffuse AQP4 expression increases, while polarized AQP4 expression at the astrocyte endfeet decreases. The diffuse increased expression of AQP4 was verified in chronic-active multiple sclerosis lesions. Around inflammatory brain lesions, AQP4 expression dramatically decreased, especially at sites where peripheral immune cells penetrate the brain parenchyma. Humoral immune responses appear not to be involved in this process since no anti-AQP4 antibodies were detected in the serum of the experimental mice. We provide strong evidence that the diffuse increase in anti-AQP4 staining intensity is due to a metabolic injury to the brain, whereas the focal, perivascular loss of anti-AQP4 immunoreactivity is mediated by peripheral immune cells.
Collapse
|
21
|
Sullivan GM, Knutsen AK, Peruzzotti-Jametti L, Korotcov A, Bosomtwi A, Dardzinski BJ, Bernstock JD, Rizzi S, Edenhofer F, Pluchino S, Armstrong RC. Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits. Acta Neuropathol Commun 2020; 8:84. [PMID: 32517808 PMCID: PMC7285785 DOI: 10.1186/s40478-020-00960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies.
Collapse
|
22
|
Shelestak J, Singhal N, Frankle L, Tomor R, Sternbach S, McDonough J, Freeman E, Clements R. Increased blood-brain barrier hyperpermeability coincides with mast cell activation early under cuprizone administration. PLoS One 2020; 15:e0234001. [PMID: 32511268 PMCID: PMC7279587 DOI: 10.1371/journal.pone.0234001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The cuprizone induced animal model of demyelination is characterized by demyelination in many regions of the brain with high levels of demyelination in the corpus callosum as well as changes in neuronal function by 4–6 weeks of exposure. The model is used as a tool to study demyelination and subsequent degeneration as well as therapeutic interventions on these effects. Historically, the cuprizone model has been shown to contain no alterations to blood-brain barrier integrity, a key feature in many diseases that affect the central nervous system. Cuprizone is generally administered for 4–6 weeks to obtain maximal demyelination and degeneration. However, emerging evidence has shown that the effects of cuprizone on the brain may occur earlier than measurable gross demyelination. This study sought to investigate changes to blood-brain barrier permeability early in cuprizone administration. Results showed an increase in blood-brain barrier permeability and changes in tight junction protein expression as early as 3 days after beginning cuprizone treatment. These changes preceded glial morphological activation and demyelination known to occur during cuprizone administration. Increases in mast cell presence and activity were measured alongside the increased permeability implicating mast cells as a potential source for the blood-brain barrier disruption. These results provide further evidence of blood-brain barrier alterations in the cuprizone model and a target of therapeutic intervention in the prevention of cuprizone-induced pathology. Understanding how mast cells become activated under cuprizone and if they contribute to blood-brain barrier alterations may give further insight into how and when the blood-brain barrier is affected in CNS diseases. In summary, cuprizone administration causes an increase in blood-brain barrier permeability and this permeability coincides with mast cell activation.
Collapse
Affiliation(s)
- John Shelestak
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail:
| | - Naveen Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Lana Frankle
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Riely Tomor
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Sarah Sternbach
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Jennifer McDonough
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Ernest Freeman
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Robert Clements
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
23
|
Reinbach C, Stadler MS, Pröbstl N, Chrzanowski U, Schmitz C, Kipp M, Hochstrasser T. CD44 expression in the cuprizone model. Brain Res 2020; 1745:146950. [PMID: 32524994 DOI: 10.1016/j.brainres.2020.146950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 02/03/2023]
Abstract
Numerous studies report that changes in extracellular matrix components and receptors, such as CD44, contribute to immune cell recruitment and thus lesion formation in multiple sclerosis (MS). In the present study, we used the cuprizone model to elucidate the expression pattern of CD44 in a toxin-induced MS model. Therefore, tissues of cuprizone-intoxicated mice were analyzed by real-time qRT-PCR and immunohistochemical staining against CD44. Co-localization analyses of CD44-positive cells with glial cell markers were performed by immunofluorescence labeling and in-situ hybridization. To investigate the functional importance of CD44 expression for myelination and glial cell activation, Cd44-deficient mice were used. In this study we demonstrate that CD44 expression is induced in a time-dependent manner in an autoimmune-independent model of MS. Up-regulation of CD44 expression was primarily associated to the superficial and perivascular glia limitans and demyelinated white matter structures, particularly the corpus callosum. In the demyelinated corpus callosum, CD44 was localized on GFAP+ astrocytes and IBA1+ microglial cells. Despite a robust expression induction, Cd44-deficiency did not ameliorate cuprizone-induced pathology. Although further studies will be needed to examine the functional relevance of CD44 in the cuprizone model, the spatial and temporal expression pattern of CD44 will pave the way to evaluate its precise role in different (immune and non-immune) pathological conditions.
Collapse
Affiliation(s)
- Christin Reinbach
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Maria-Sophia Stadler
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Nicolas Pröbstl
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Uta Chrzanowski
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Tanja Hochstrasser
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany.
| |
Collapse
|
24
|
The Cuprizone Model: Dos and Do Nots. Cells 2020; 9:cells9040843. [PMID: 32244377 PMCID: PMC7226799 DOI: 10.3390/cells9040843] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Various pre-clinical models with different specific features of the disease are available to study MS pathogenesis and to develop new therapeutic options. During the last decade, the model of toxic demyelination induced by cuprizone has become more and more popular, and it has contributed substantially to our understanding of distinct yet important aspects of the MS pathology. Here, we aim to provide a practical guide on how to use the cuprizone model and which pitfalls should be avoided.
Collapse
|
25
|
Nellessen A, Nyamoya S, Zendedel A, Slowik A, Wruck C, Beyer C, Fragoulis A, Clarner T. Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model. Metab Brain Dis 2020; 35:353-362. [PMID: 31529356 DOI: 10.1007/s11011-019-00488-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a pathophysiological hallmark of many CNS diseases, among multiple sclerosis (MS). Accordingly, boosting the astrocytic transcription factor nuclear factor E2-related factor 2 (Nrf2) system in an MS mouse model efficiently ameliorates oligodendrocyte loss, neuroinflammation and axonal damage. Moreover, Dimethylfumarate, an efficient activator of Nrf2, has recently been approved as therapeutic option in MS treatment. Here, we use the cuprizone mouse model of MS to induce oxidative stress, selective oligodendrocyte loss, microglia and astrocyte activation as well as axonal damage in both wild type and Nrf2-deficient mice. We found increased oligodendrocyte apoptosis and loss, pronounced neuroinflammation and higher levels of axonal damage in cuprizone-fed Nrf2-deficient animals when compared to wild type controls. In addition, Nrf2-deficient animals showed a higher susceptibility towards cuprizone within the commissura anterior white matter tract, a structure that is relatively insensitive to cuprizone in wild type animals. Our data highlight the cuprizone model as a suitable tool to study the complex interplay of oxidative stress, neuroinflammation and axonal damage. Further studies will have to show whether distinct expression patterns of Nrf2 are involved in the variable susceptibility towards cuprizone in the mouse.
Collapse
Affiliation(s)
- Anna Nellessen
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Stella Nyamoya
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
- Faculty of Medicine, LMU Munich, Department of Anatomy, Neuroanatomy, Pettenkoferstr. 11, 80336, Munich, Germany
- Rostock University Medical Center, Rostock, Institut für Anatomie, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Christoph Wruck
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
26
|
Mohammadi-Rad M, Ghasemi N, Aliomrani M. Evaluation of apamin effects on myelination process in C57BL/6 mice model of multiple sclerosis. Res Pharm Sci 2019; 14:424-431. [PMID: 31798659 PMCID: PMC6827192 DOI: 10.4103/1735-5362.268203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease that causes chronic inflammation in the central nervous system. The aim of this study was to investigate the effects of apamin administration on myelination process. MS was induced by feeding cuprizone pellets (0.2%) for 6 weeks (demyelination phase) followed by normal feeding for additional 2 weeks (remyelination phase). Briefly, C57BL/6 male mice were randomly divided into six groups. Group 1, received the regular food pellets. Group 2 contained two subgroups of 6 animals each (n = 2 × 6). First group received cuprizone for 6 weeks and the sacrificed while the second group after 6 weeks of cuprizone, received no treatment for additional 2 weeks. Group 3 (co-treatment group) was composed of two subgroups of 6 animals each (n = 2 × 6). Both subgroups received apamin (100 μg/kg) intraperitoneally twice a week for 6 weeks. First subgroup terminated at this time and the second subgroup was fed normal diet for two additional weeks. Group 4 (post-treatment, n = 6) received apamin (100 μg/kg) intraperitoneally twice a week for 2 weeks after cuprizone secession. Groups 5 and 6 (vehicle, n = 6 in each group) received phosphate buffered saline as the vehicle of apamin during demyelination and remyelination phase. At the end of each phase, mice were deeply anesthetized and perfused. Groups 5 and 6 (vehicle) received PBS as the vehicle during both phases. Mice were anesthetized, perfused with PBS through their heart, and their brains were removed. Brain sections stained with luxol fast blue and the images were analyzed. Apamin co-treatment significantly increased the myelin content as compared to the cuprizone group. Also, mild elevation in the myelinated areas was observed with apamin post-treatment in comparison with remyelination phase. Our results revealed that apamin prevents myelin destruction more significantly as compared to remyelination process. This observation explains the possible role of apamin in inhibiting the activation of the microglia cells than stimulation of the oligodendrocytic precursor cells.
Collapse
Affiliation(s)
- Maedeh Mohammadi-Rad
- Department of Toxicology and Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nazem Ghasemi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
27
|
Stereological Investigation of Regional Brain Volumes after Acute and Chronic Cuprizone-Induced Demyelination. Cells 2019; 8:cells8091024. [PMID: 31484353 PMCID: PMC6770802 DOI: 10.3390/cells8091024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 02/03/2023] Open
Abstract
Brain volume measurement is one of the most frequently used biomarkers to establish neuroprotective effects during pre-clinical multiple sclerosis (MS) studies. Furthermore, whole-brain atrophy estimates in MS correlate more robustly with clinical disability than traditional, lesion-based metrics. However, the underlying mechanisms leading to brain atrophy are poorly understood, partly due to the lack of appropriate animal models to study this aspect of the disease. The purpose of this study was to assess brain volumes and neuro-axonal degeneration after acute and chronic cuprizone-induced demyelination. C57BL/6 male mice were intoxicated with cuprizone for up to 12 weeks. Brain volume, as well as total numbers and densities of neurons, were determined using design-based stereology. After five weeks of cuprizone intoxication, despite severe demyelination, brain volumes were not altered at this time point. After 12 weeks of cuprizone intoxication, a significant volume reduction was found in the corpus callosum and diverse subcortical areas, particularly the internal capsule and the thalamus. Thalamic volume loss was accompanied by glucose hypermetabolism, analyzed by [18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography. This study demonstrates region-specific brain atrophy of different subcortical brain regions after chronic cuprizone-induced demyelination. The chronic cuprizone demyelination model in male mice is, thus, a useful tool to study the underlying mechanisms of subcortical brain atrophy and to investigate the effectiveness of therapeutic interventions.
Collapse
|
28
|
Pfeiffer F, Frommer-Kaestle G, Fallier-Becker P. Structural adaption of axons during de- and remyelination in the Cuprizone mouse model. Brain Pathol 2019; 29:675-692. [PMID: 31106489 DOI: 10.1111/bpa.12748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023] Open
Abstract
Multiple Sclerosis is an autoimmune disorder causing neurodegeneration mostly in young adults. Thereby, myelin is lost in the inflammatory lesions leaving unmyelinated axons at a high risk to degenerate. Oligodendrocyte precursor cells maintain their regenerative capacity into adulthood and are able to remyelinate axons if they are properly activated and differentiate. Neuronal activity influences the success of myelination indicating a close interplay between neurons and oligodendroglia. The myelination profile determines the distribution of voltage-gated ion channels along the axon. Here, we analyze the distribution of the sodium channel subunit Nav1.6 and the ultrastructure of axons after cuprizone-induced demyelination in transgenic mice expressing GFP in oligodendroglial cells. Using this mouse model, we found an increased number of GFP-expressing oligodendroglial cells compared to untreated mice. Analyzing the axons, we found an increase in the number of nodes of Ranvier in mice that had received cuprizone. Furthermore, we found an enhanced portion of unmyelinated axons showing vesicles in the cytoplasm. These vesicles were labeled with VGlut1, indicating that they are involved in axonal signaling. Our results highlight the flexibility of axons towards changes in the glial compartment and depict the structural changes they undergo upon myelin removal. These findings might be considered if searching for new neuroprotective therapies that aim at blocking neuronal activity in order to avoid interfering with the process of remyelination.
Collapse
Affiliation(s)
- Friederike Pfeiffer
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | | | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Yakimov V, Schweiger F, Zhan J, Behrangi N, Horn A, Schmitz C, Hochstrasser T, Kipp M. Continuous cuprizone intoxication allows active experimental autoimmune encephalomyelitis induction in C57BL/6 mice. Histochem Cell Biol 2019; 152:119-131. [DOI: 10.1007/s00418-019-01786-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2019] [Indexed: 12/13/2022]
|
30
|
Animal Weight Is an Important Variable for Reliable Cuprizone-Induced Demyelination. J Mol Neurosci 2019; 68:522-528. [PMID: 30937629 DOI: 10.1007/s12031-019-01312-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
An elegant model to study mechanisms operant during oligodendrocyte degeneration and subsequent demyelination is the cuprizone model. In that model, mice are intoxicated with the copper chelation agent cuprizone which results in early oligodendrocyte stress, oligodendrocyte apoptosis, and, finally, demyelination. Here, we systematically investigated to what extent the animals' weight at the beginning of the cuprizone intoxication period is critical for the reproducibility of the cuprizone-induced pathology. We can demonstrate that a negative correlation exists between the two variables "extent of cuprizone-induced demyelination" and "starting weight." Demyelination and microglia activation were more severe in low weight compared to heavy weight mice. These findings are highly relevant for the experimental design using the cuprizone model.
Collapse
|
31
|
Chrzanowski U, Schmitz C, Horn-Bochtler A, Nack A, Kipp M. Evaluation strategy to determine reliable demyelination in the cuprizone model. Metab Brain Dis 2019; 34:681-685. [PMID: 30607821 DOI: 10.1007/s11011-018-0375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
In multiple sclerosis patients, chronic clinical deficits are known to result from axonal degeneration which is triggered by inadequate remyelination. The underlying molecular mechanisms of remyelination and its failure remain currently unclear. In vivo models, among the cuprizone model, are valuable tools to study underlying mechanisms of remyelination and its failure. Since complete and reproducible demyelination of the analyzed brain region is an indispensable prerequisite for efficient remyelination experiments, in this study we systematically addressed which part of the corpus callosum is reliably and consistently demyelinated after acute cuprizone-induced demyelination. Following a novel evaluation strategy, we can show that at the level of the rostral hippocampus, the most medial sectors of the corpus callosum (spanning 500 μm in the horizontal plane) are consistently demyelinated, whereas more lateral sectors show inconsistent and incomplete demyelination. These results precisely define a part of the corpus callosum which should be used as a region of interest during remyelination experiments.
Collapse
Affiliation(s)
- Uta Chrzanowski
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Anja Horn-Bochtler
- Department of Anatomy I, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Anne Nack
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany.
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18056, Rostock, Germany.
| |
Collapse
|
32
|
Fischbach F, Nedelcu J, Leopold P, Zhan J, Clarner T, Nellessen L, Beißel C, van Heuvel Y, Goswami A, Weis J, Denecke B, Schmitz C, Hochstrasser T, Nyamoya S, Victor M, Beyer C, Kipp M. Cuprizone-induced graded oligodendrocyte vulnerability is regulated by the transcription factor DNA damage-inducible transcript 3. Glia 2018; 67:263-276. [PMID: 30511355 DOI: 10.1002/glia.23538] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Oligodendrocytes are integral to efficient neuronal signaling. Loss of myelinating oligodendrocytes is a central feature of many neurological diseases, including multiple sclerosis (MS). The results of neuropathological studies suggest that oligodendrocytes react with differing sensitivity to toxic insults, with some cells dying early during lesion development and some cells being resistant for weeks. This proposed graded vulnerability has never been demonstrated but provides an attractive window for therapeutic interventions. Furthermore, the biochemical pathways associated with graded oligodendrocyte vulnerability have not been well explored. We used immunohistochemistry and serial block-face scanning electron microscopy (3D-SEM) to show that cuprizone-induced metabolic stress results in an "out of phase" degeneration of oligodendrocytes. Although expression induction of stress response transcription factors in oligodendrocytes occurs within days, subsequent oligodendrocyte apoptosis continues for weeks. In line with the idea of an out of phase degeneration of oligodendrocytes, detailed ultrastructural reconstructions of the axon-myelin unit demonstrate demyelination of single internodes. In parallel, genome wide array analyses revealed an active unfolded protein response early after initiation of the cuprizone intoxication. In addition to the cytoprotective pathways, the pro-apoptotic transcription factor DNA damage-inducible transcript 3 (DDIT3) was induced early in oligodendrocytes. In advanced lesions, DDIT3 was as well expressed by activated astrocytes. Toxin-induced oligodendrocyte apoptosis, demyelination, microgliosis, astrocytosis, and acute axonal damage were less intense in the Ddit3-null mutants. This study identifies DDIT3 as an important regulator of graded oligodendrocyte vulnerability in a MS animal model. Interference with this stress cascade might offer a promising therapeutic approach for demyelinating disorders.
Collapse
Affiliation(s)
- Felix Fischbach
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Julia Nedelcu
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Patrizia Leopold
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Jiangshan Zhan
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Tim Clarner
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Lara Nellessen
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Christian Beißel
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Yasemin van Heuvel
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany
| | - Christoph Schmitz
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Tanja Hochstrasser
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Stella Nyamoya
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany.,Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Marion Victor
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Markus Kipp
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
33
|
Visualization of the Breakdown of the Axonal Transport Machinery: a Comparative Ultrastructural and Immunohistochemical Approach. Mol Neurobiol 2018; 56:3984-3998. [PMID: 30238390 DOI: 10.1007/s12035-018-1353-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022]
Abstract
Axonal damage is a major factor contributing to disease progression in multiple sclerosis (MS) patients. On the histological level, acute axonal injury is most frequently analyzed by anti-amyloid precursor protein immunohistochemistry. To what extent this method truly detects axonal injury, and whether other proteins and organelles are as well subjected to axonal transport deficits in demyelinated tissues is not known. The aim of this study was to correlate ultrastructural morphology with the immunohistochemical appearance of acute axonal injury in a model of toxin-induced oligodendrocyte degeneration. C57BL/6J mice were intoxicated with 0.25% cuprizone to induce demyelination. The corpus callosum was investigated by serial block-face scanning electron microscopy (i.e., 3D EM), immunohistochemistry, and immunofluorescence microscopy. Brain tissues of progressive MS patients were included to test the relevance of our findings in mice for MS. Volumes of axonal swellings, determined by 3D EM, were comparable to volumes of axonal spheroids, determined by anti-APP immunofluorescence stains. Axonal swellings were present at myelinated and non-myelinated axonal internodes. Densities of amyloid precursor protein (APP)+ spheroids were highest during active demyelination. Besides APP, vesicular glutamate transporter 1 and mitochondrial proteins accumulated at sites of axonal spheroids. Such accumulations were found as well in lesions of progressive MS patients. In this correlative ultrastructural-immunohistochemical study, we provide strong evidence that breakdown of the axonal transport machinery results in focal accumulations of mitochondria and different synaptic proteins. We provide new marker proteins to visualize acute axonal injury, which helps to further understand the complex nature of axonal damage in progressive MS.
Collapse
|
34
|
Toll-Like Receptor 2-Mediated Glial Cell Activation in a Mouse Model of Cuprizone-Induced Demyelination. Mol Neurobiol 2017; 55:6237-6249. [PMID: 29288338 DOI: 10.1007/s12035-017-0838-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. The factors triggering gliosis and demyelination are currently not well characterized. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. Especially during progressive disease, aberrant glia activation rather than the invasion of peripheral immune cells is accountable for progressive neuronal injury. The innate immune response can be induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the Toll-like receptors (TLRs). In this study, we used the cuprizone model in mice to investigate the expression of TLR2 during the course of cuprizone-induced demyelination. In addition, we used TLR2-deficient mice to analyze the functional role of TLR2 activation during cuprizone-induced demyelination and reactive gliosis. We show a significantly increased expression of TLR2 in the corpus callosum and hippocampus of cuprizone-intoxicated mice. The absence of receptor signaling in TLR2-deficient mice resulted in less severe reactive astrogliosis in the corpus callosum and cortex. In addition, microglia activation was ameliorated in the corpus callosum of TLR2-deficient mice, but augmented in the cortex compared to wild-type littermates. Extent of demyelination and loss of mature oligodendrocytes was comparable in both genotypes. These results suggest that the TLR2 orchestrates glia activation during gray and white matter demyelination in the presence of an intact blood-brain barrier. Future studies now have to address the underlying mechanisms of the region-specific TLR2-mediated glia activation.
Collapse
|
35
|
Effect of Intrastriatal 6-OHDA Lesions on Extrastriatal Brain Structures in the Mouse. Mol Neurobiol 2017; 55:4240-4252. [PMID: 28616718 DOI: 10.1007/s12035-017-0637-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of midbrain dopaminergic neurons, resulting in motor and non-motor symptoms. The underlying pathology of non-motor symptoms is poorly understood. Discussed are pathological changes of extrastriatal brain structures. In this study, we characterized histopathological alterations of extrastriatal brain structures in the 6-hydroxydopamine (6-OHDA) PD animal model. Lesions were induced by unilateral stereotactic injections of 6-OHDA into the striatum or medial forebrain bundle of adult male mice. Loss of tyrosine hydroxylase positive (TH+) fibers as well as glia activation was quantified following stereological principles. Loss of dopaminergic innervation was further investigated by western-blotting. As expected, 6-OHDA injection into the nigrostriatal route induced retrograde degeneration of dopaminergic neurons within the substantia nigra pars compacta (SNpc), less so within the ventral tegmental area. Furthermore, we observed a region-specific drop of TH+ projection fiber density in distinct cortical regions. This pathology was most pronounced in the cingulate- and motor cortex, whereas the piriform cortex was just modestly affected. Loss of cortical TH+ fibers was not paralleled by microglia or astrocyte activation. Our results demonstrate that the loss of dopaminergic neurons within the substantia nigra pars compacta is paralleled by a cortical dopaminergic denervation in the 6-OHDA model. This model serves as a valuable tool to investigate mechanisms operant during cortical pathology in PD patients. Further studies are needed to understand why cortical dopaminergic innervation is lost in this model, and what functional consequence is associated with the observed denervation.
Collapse
|
36
|
Bihler K, Kress E, Esser S, Nyamoya S, Tauber SC, Clarner T, Stope MB, Pufe T, Brandenburg LO. Formyl Peptide Receptor 1-Mediated Glial Cell Activation in a Mouse Model of Cuprizone-Induced Demyelination. J Mol Neurosci 2017; 62:232-243. [PMID: 28466255 DOI: 10.1007/s12031-017-0924-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. Unclear are the factors triggering gliosis and demyelination. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. The innate immune response is induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the G-protein coupled with formyl peptide receptors (FPRs). Glial cells, the immune cells of the central nervous system, also express the PRRs. In this study, we used the cuprizone mice model to investigate the expression of the FPR1 in the course of cuprizone-induced demyelination In addition, we used FPR1-deficient mice to analyze glial cell activation through immunohistochemistry and real-time RT-PCR in cuprizone model. Our results revealed a significantly increased expression of FPR1 in the cortex of cuprizone-treated mice. FPR1-deficient mice showed a slight but significant decrease of demyelination in the corpus callosum compared to the wild-type mice. Furthermore, FPR1 deficiency resulted in reduced glial cell activation and mRNA expression of microglia/macrophages markers, as well as pro- and anti-inflammatory cytokines in the cortex, compared to wild-type mice after cuprizone-induced demyelination. Combined together, these results suggest that the FPR1 is an important part of the innate immune response in the course of cuprizone-induced demyelination.
Collapse
Affiliation(s)
- Kai Bihler
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Eugenia Kress
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefan Esser
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stella Nyamoya
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
37
|
Nyamoya S, Schweiger F, Kipp M, Hochstrasser T. Cuprizone as a model of myelin and axonal damage. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.ddmod.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|