1
|
Xu Y, Du H, Chen Y, Ma C, Zhang Q, Li H, Xie Z, Hong Y. Targeting the gut microbiota to alleviate chemotherapy-induced toxicity in cancer. Crit Rev Microbiol 2024; 50:564-580. [PMID: 37439132 DOI: 10.1080/1040841x.2023.2233605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.
Collapse
Affiliation(s)
- Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Mego M, Kasperova B, Chovanec J, Danis R, Reckova M, Bystricky B, Konkolovsky P, Jurisova S, Porsok S, Vaclav V, Wagnerova M, Stresko M, Brezinova B, Sutekova D, Ciernikova S, Svetlovska D, Drgona L. The beneficial effect of probiotics in the prevention of irinotecan-induced diarrhea in colorectal cancer patients with colostomy: a pooled analysis of two probiotic trials (Probio-SK-003 and Probio-SK-005) led by Slovak Cooperative Oncology Group. Front Oncol 2024; 14:1438657. [PMID: 39104721 PMCID: PMC11298351 DOI: 10.3389/fonc.2024.1438657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Background Probiotics could decrease irinotecan-induced diarrhea due to the reduction of intestinal beta-d-glucuronidase activity. This study included a combined analysis of two clinical trials aimed to determine the effectiveness of the probiotics in the prophylaxis of irinotecan-induced diarrhea in metastatic colorectal cancer (CRC) patients. Methods This combined analysis included 46 patients with CRC enrolled in the Probio-SK-003 (NCT01410955) and 233 patients from Probio-SK-005 (NCT02819960) starting a new line of irinotecan-based therapy with identical eligibility criteria. Patients were randomized in a ratio 1:1 to probiotic formulas vs. placebo administered for 12 and 6 weeks, respectively. Due to the different durations of study treatments, only the first 6 weeks of therapy were used for analysis. Results In total, 279 patients were randomized, including 142 patients in the placebo and 137 participants in the probiotic arm. Administration of probiotics did not significantly reduce the incidence of grade 3/4 diarrhea compared to placebo (placebo 12.7% vs. probiotics 6.6%, p = 0.11). Neither the overall incidence of diarrhea (placebo 48.6% vs. probiotics 41.6%, p = 0.28) nor the incidence of enterocolitis (placebo 4.2% vs. probiotics 0.7%, p = 0.12) was different in the placebo vs. probiotic arm. However, subgroup analysis revealed that patients with a colostomy who received a placebo had a significantly higher incidence of any diarrhea (placebo 51.2% vs. probiotics 25.7%, p = 0.028) and grade 3/4 diarrhea (placebo 14.6% vs. probiotics 0.0%, p = 0.03) compared to the probiotic arm. Conclusions This combined analysis suggests that probiotics could be beneficial in the prevention of irinotecan-induced diarrhea in colorectal cancer patients with colostomy.
Collapse
Affiliation(s)
- Michal Mego
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Barbora Kasperova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Jozef Chovanec
- Department of Oncology, St. Jacob Hospital, Bardejov, Slovakia
| | - Radoslav Danis
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Maria Reckova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
- Department of Oncology, Regional Cancer Center, Poprad, Slovakia
| | | | | | - Silvia Jurisova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Stefan Porsok
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Vladimir Vaclav
- Department of Oncology, University Hospital Milosrdni Bratia, Bratislava, Slovakia
| | - Maria Wagnerova
- Department of Oncology, East Slovakia Comprehensive Cancer Center, Kosice, Slovakia
| | - Marian Stresko
- Department of Oncology, Faculty Hospital, Trnava, Slovakia
| | | | - Dagmar Sutekova
- Department of Oncology, University Hospital Martin, Martin, Slovakia
| | - Sona Ciernikova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Svetlovska
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Lubos Drgona
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
3
|
Youn HY, Kim HJ, Kim H, Seo KH. A comparative evaluation of the kefir yeast Kluyveromyces marxianus A4 and sulfasalazine in ulcerative colitis: anti-inflammatory impact and gut microbiota modulation. Food Funct 2024; 15:6717-6730. [PMID: 38833212 DOI: 10.1039/d4fo00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Although only Saccharomyces boulardii has been studied for ulcerative colitis (UC), probiotic yeasts have immense therapeutic potential. Herein, we evaluated the kefir yeast Kluyveromyces marxianus A4 (Km A4) and its anti-inflammatory effect with sulfasalazine in BALB/c mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration continued for 7 days after the mice were randomly divided into seven groups: control (CON, normal mice administered with saline), DSS-induced colitis mice administered saline (DSS), and DSS-induced colitis mice administered sulfasalazine only (S), Km A4 only (A4), Km A4 plus sulfasalazine (A4 + S), S. boulardii ATCC MYA-796 (Sb MYA-796) only (Sb), and Sb MYA-796 plus sulfasalazine (Sb + S). The β-glucan content of Km A4 was significantly higher than that of Sb MYA-796 (P < 0.05). Body weight gain (BWG) significantly correlated with colon length, cyclooxygenase-2 (Cox-2) levels, and Bacteroides abundance (P < 0.05). In colitis-induced mice, the A4 + S group had the lowest histological score (6.00) compared to the DSS group (12.67), indicating the anti-inflammatory effects of this combination. The A4 + S group showed significantly downregulated expression of interleukin (Il)-6, tumor necrosis factor-α (Tnf-α), and Cox-2 and upregulated expression of Il-10 and occludin (Ocln) compared to the DSS group. Mice treated with A4 + S had enhanced Bacteroides abundance in their gut microbiota compared with the DSS group (P < 0.05). Bacteroides were significantly correlated with all colitis biomarkers (BWG, colon length, Il-6, Tnf-α, Il-10, Cox-2, and Ocln; P < 0.05). The anti-inflammatory effects of Km A4 could be attributed to high β-glucan content and gut microbiota modulation. Thus, treatment with Km A4 and sulfasalazine could alleviate UC.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyeon-Jin Kim
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| |
Collapse
|
4
|
Zheng Z, Du T, Gao S, Yin T, Li L, Zhu L, Singh R, Sun R, Hu M. Optimized rat models better mimic patients with irinotecan-induced severe diarrhea. Toxicol Mech Methods 2024; 34:572-583. [PMID: 38390772 PMCID: PMC11095999 DOI: 10.1080/15376516.2024.2316003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Irinotecan-induced severe diarrhea (IISD) not only limits irinotecan's application but also significantly affects patients' quality of life. However, existing animal models often inadequately represent the dynamics of IISD development, progression, and resolution across multiple chemotherapy cycles, yielding non-reproducible and highly variable response with limited clinical translation. Our studies aim to establish a reproducible and validated IISD model that better mimics the pathophysiology progression observed in patients, enhancing translational potential. We investigated the impact of dosing regimens (including different dose, infusion time, and two cycles of irinotecan administration), sex, age, tumor-bearing conditions, and irinotecan formulation on the IISD incidence and severity in mice and rats. Lastly, we investigated above factors' impact on pharmacokinetics of irinotecan, intestinal injury, and carboxylesterase activities. In summary, we successfully established a standard model establishment procedure for an optimized IISD model with highly reproducible severe diarrhea incidence rate (100%) and a low mortality rate (11%) in F344 rats. Additionally, the rats tolerated at least two cycles of irinotecan chemotherapy treatment. In contrast, the mouse model exhibited suboptimal IISD incidence rates (60%) and an extremely high mortality rate (100%). Notably, dosing regimen, age and tumor-bearing conditions of animals emerged as critical factors in IISD model establishment. In conclusion, our rat IISD model proves superior in mimicking pathophysiology progression and characteristics of IISD in patients, which stands as an effective tool for mechanism and efficacy studies in future chemotherapy-induced gut toxicity research.
Collapse
Affiliation(s)
- Zicong Zheng
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ting Du
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Song Gao
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Lijun Zhu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
- Sanarentero LLC, Pearland, TX, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
- Sanarentero LLC, Pearland, TX, USA
| |
Collapse
|
5
|
Thet D, Areepium N, Siritientong T. Effects of Probiotics on Chemotherapy-induced Diarrhea. Nutr Cancer 2023; 75:1811-1821. [PMID: 37908158 DOI: 10.1080/01635581.2023.2267779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023]
Abstract
Chemotherapy-induced diarrhea (CID) is a common adverse event in cancer patients, which, unless treated, may lead to drug discontinuation and treatment failure. Some probiotics such as Lactobacillus, Bifidobacterium, and Saccharomyces species have been gaining clinical attention in alleviating chemotherapy-induced adverse events including diarrhea. This comprehensive review provides an overview and discusses preventive approaches of probiotics with respect to CID in several types of cancers. The potential mechanisms of probiotics may comprise regulation of intestinal microbiota, modulation of immune functions, or reduction of proinflammatory cytokines. The efficacy and safety precautions of probiotics in immunocompromised cancer patients are discussed. The non-pharmacological strategy using probiotics could reduce the use of anti-diarrheal or antibiotic agents. Some individuals experienced shorter length of hospital stay, better gastrointestinal function, and reduced incidence of chemotherapy dose reduction after probiotic administration. Nonetheless, some studies failed to report the benefits of probiotics in certain patients. This review also highlights preventive protocols and therapeutic implications by considering the potential influencing factors, particularly types of probiotic strains, dosages of probiotics, duration of their administration, patients' tolerability, and variations in probiotic effects over the cancer stages.
Collapse
Affiliation(s)
- Daylia Thet
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nutthada Areepium
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tippawan Siritientong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
López-Gómez L, Alcorta A, Abalo R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. J Pers Med 2023; 13:1487. [PMID: 37888098 PMCID: PMC10607965 DOI: 10.3390/jpm13101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer chemotherapy has allowed many patients to survive, but not without risks derived from its adverse effects. Drugs, such as 5-fluorouracil, irinotecan, oxaliplatin, methotrexate, and others, as well as different drug combinations trigger intestinal mucositis that may cause or contribute to anorexia, pain, diarrhea, weight loss, systemic infections, and even death. Dysbiosis is a hallmark of chemotherapy-induced intestinal mucositis and diarrhea, and, therefore, strategies aimed at modulating intestinal microbiota may be useful to counteract and prevent those dreadful effects. This narrative review offers an overview of the studies performed to test the efficacy of probiotics and probiotic-like agents against chemotherapy-induced intestinal mucositis and its consequences. Microbiota modulation through the oral administration of different probiotics (mainly strains of Lactobacillus and Bifidobacterium), probiotic mixtures, synbiotics, postbiotics, and paraprobiotics has been tested in different animal models and in some clinical trials. Regulation of dysbiosis, modulation of epithelial barrier permeability, anti-inflammatory effects, modulation of host immune response, reduction of oxidative stress, or prevention of apoptosis are the main mechanisms involved in their beneficial effects. However, the findings are limited by the great heterogeneity of the preclinical studies and the relative lack of studies in immunocompromised animals, as well as the scarce availability of results from clinical trials. Despite this, the results accumulated so far are promising. Hopefully, with the aid of these agents, intestinal mucositis will be less impactful to the cancer patient in the near future.
Collapse
Affiliation(s)
- Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Alexandra Alcorta
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
7
|
Mego M, Danis R, Chovanec J, Jurisova S, Bystricky B, Porsok S, Konkolovsky P, Vaclav V, Wagnerova M, Streško M, Brezinova B, Rečková M, Sutekova D, Pazderova N, Novisedlakova M, Zomborska E, Ciernikova S, Svetlovska D, Drgona L. Randomized double-blind, placebo-controlled multicenter phase III study of prevention of irinotecan-induced diarrhea by a probiotic mixture containing Bifidobacterium BB-12 ®Lactobacillus rhamnosus LGG ® in colorectal cancer patients. Front Oncol 2023; 13:1168654. [PMID: 37601667 PMCID: PMC10438450 DOI: 10.3389/fonc.2023.1168654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Background The incidence of irinotecan-induced diarrhea varies between 60-90%, by which the incidence of severe diarrhea is 20-40%. The objective of this phase III trial was to determine the effectiveness of the probiotic mixture containing Bifidobacterium, BB-12® and Lactobacillus rhamnosus, LGG® in the prophylaxis of irinotecan-induced diarrhea in metastatic colorectal cancer patients due to a reduction in the activity of intestinal beta-D-glucuronidase. Methods From March 2016 to May 2022, a total of 242 patients with colorectal cancer starting a new line of irinotecan-based therapy were registered to the study in 11 cancer centers in Slovakia. Patients were randomized in a ratio 1:1 to probiotic formula vs. placebo that was administered for 6 weeks. Each capsule of Probio-Tec® BG-Vcap-6.5 contained 2.7x109 colony-forming units (CFU) of 2 lyophilized probiotic strains Bifidobacterium, BB-12® (50%) and Lactobacillus rhamnosus GG, LGG® (50%). Results Administration of probiotics compared to placebo was not associated with a significant reduction of grade 3/4 diarrhea (placebo arm 11.8% vs. probiotic arm 7.9%, p=0.38). Neither the overall incidence of diarrhea (46.2% vs. 41.2%, p=0.51) nor the incidence of enterocolitis (3.4% vs. 0.9%, p=0.37) was different in the placebo vs. probiotic arm. Subgroup analysis revealed that patients with colostomy had higher incidence of any diarrhea and grade 3/4 diarrhea in the placebo arm compared to the probiotic arm (48.5% vs. 22.2%, p=0.06 and 15.2% vs. 0%, p=0.06, respectively). Moreover, patients on probiotic arm had significantly better diarrhea-free survival (HR = 0.41, 95%CI 0.18 - 0.95, p=0.05) and needed less loperamide (p=0.01) compared to patients on placebo arm. We did not observe any infection caused by probiotic strains used in this study. Conclusion This study failed to achieve its primary endpoint, and results suggest a lack of benefit of administered probiotic formula for the prevention of irinotecan-induced diarrhea. However, subgroup analysis suggests a possible benefit in patients with colostomy.
Collapse
Affiliation(s)
- Michal Mego
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Radoslav Danis
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jozef Chovanec
- Department of Oncology, St. Jacob Hospital, Bardejov, Slovakia
| | - Silvia Jurisova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | | | - Stefan Porsok
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | | | - Vladimir Vaclav
- Department of Oncology, University Hospital Milosrdni Bratia, Bratislava, Slovakia
| | - Maria Wagnerova
- Department of Oncology, East Slovakia Comprehensive Cancer Center, Kosice, Slovakia
| | - Marian Streško
- Department of Oncology, Faculty Hospital, Trnava, Trebisov, Slovakia
| | | | - Mária Rečková
- Department of Oncology, Regional Cancer Center, Poprad, Slovakia
| | - Dagmar Sutekova
- Department of Oncology, University Hospital Martin, Martin, Slovakia
| | - Natalia Pazderova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Mária Novisedlakova
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
- Department of Oncology, University Hospital Milosrdni Bratia, Bratislava, Slovakia
| | - Eva Zomborska
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Sona Ciernikova
- Biomedical Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Svetlovska
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Lubos Drgona
- Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
8
|
Cakcak İE, Aytın YE, Sayın S, Küçükarda A, Gökyer A, Gökmen İ, Özcan E, Korkmaz S, Taştekin E, Çiçin İ. An experimental study: the effect of S. boulardii on abemaciclibinduced diarrhea. Turk J Med Sci 2023; 53:51-57. [PMID: 36945921 PMCID: PMC10388128 DOI: 10.55730/1300-0144.5557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/24/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND In our study, we aimed to investigate the protective effects of Saccharomyces boulardii on abemaciclib-induced diarrhea model, which is a commonly used drug in breast cancer. METHODS Thirty rats were divided into 3 groups as control (Group 1), abemaciclib (Group 2), and abemaciclib + Saccharomyces boulardii (Group 3) groups. The clinical status, body weight, and defecation status were monitored daily. At the end of the 15-day experiment period, the rats were killed with high-dose anesthesia and the resected small intestine segments were evaluated histopathologically. Lesions were classified according to thickening of the villus, inflammation and edema of mucosa and intraepithelial leukocyte accumulation. Then, mean values of both crypt depths and villi thicknesses were calculated for each rat. Normal distribution assumption was controlled with the Shapiro-Wilk test. One-way analysis of variance for normally distributed variables in the comparisons of more than two independent groups and Kruskal-Wallis test for nonnormally distributed variables were used. The significance value was accepted as 0.05. RESULTS : There was one death in Group 3, but none in the others. There were no findings of mucositis in Group I. There was mild diarrhea and weight loss in only one rat in Group 1. For the comparison of the severity of diarrhea (72.5%/39%) and weight loss (72.5%/45%), a decrease was found in Group 3 according to Group 2 (p < 0.01). Histopathological findings such as edema, inflammation, and intraepithelial leukocyte accumulation also showed a decrease in Group 3 compared to Group 2 (p < 0.01). DISCUSSION Saccharomyces boulardii should be considered as a treatment option in abaemaciclib (chemotherapy)-induced diarrhea. Further comparative studies and in vivo human randomized controlled studies can be conducted in the future.
Collapse
Affiliation(s)
- İbrahim Ethem Cakcak
- Department of General Surgery, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Yusuf Emre Aytın
- Department of General Surgery, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sezin Sayın
- Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ahmet Küçükarda
- Department of Medical Oncology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ali Gökyer
- Department of Medical Oncology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - İvo Gökmen
- Department of Medical Oncology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Erkan Özcan
- Department of Medical Oncology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selçuk Korkmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ebru Taştekin
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - İrfan Çiçin
- Department of Medical Oncology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
9
|
Liu Y, Lau HCH, Cheng WY, Yu J. Gut Microbiome in Colorectal Cancer: Clinical Diagnosis and Treatment. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00086-9. [PMID: 35914737 PMCID: PMC10372906 DOI: 10.1016/j.gpb.2022.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers and the leading cause of cancer-associated deaths. Epidemiological studies have shown that both genetic and environmental risk factors contribute to the development of CRC. Several metagenomic studies of CRC have identified gut dysbiosis as a fundamental risk factor in the evolution of colorectal malignancy. Although enormous efforts and substantial progresses have been made in understanding the relationship between the human gut microbiome and CRC, the precise mechanisms involved remain elusive. Recent data have shown a direct causative role of the gut microbiome in DNA damage, inflammation, and drug resistance in CRC, suggesting that modulation of the gut microbiome can act as a powerful tool in CRC prevention and therapy. Here, we provide an overview of the relationship between the gut microbiome and CRC, and explore relevant mechanisms of colorectal tumorigenesis. We next highlight the potential of bacterial species as clinical biomarkers, as well as their roles in therapeutic response. Factors limiting the clinical translation of the gut microbiome and strategies for resolving the current challenges are further discussed.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Wing Yin Cheng
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China.
| |
Collapse
|
10
|
Miknevicius P, Zulpaite R, Leber B, Strupas K, Stiegler P, Schemmer P. The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. Int J Mol Sci 2021; 22:9347. [PMID: 34502251 PMCID: PMC8430988 DOI: 10.3390/ijms22179347] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in females (incidence 16.4/10,000) and the third in males (incidence 23.4/10,000) worldwide. Surgery, chemotherapy (CTx), radiation therapy (RTx), or a combined treatment of those are the current treatment modalities for primary CRC. Chemotherapeutic drug-induced gastrointestinal (GIT) toxicity mainly presents as mucositis and diarrhea. Preclinical studies revealed that probiotic supplementation helps prevent CTx-induced side effects by reducing oxidative stress and proinflammatory cytokine production and promoting crypt cell proliferation. Moreover, probiotics showed significant results in preventing the loss of body weight (BW) and reducing diarrhea. However, further clinical studies are needed to elucidate the exact doses and most promising combination of strains to reduce or prevent chemotherapy-induced side effects. The aim of this review is to overview currently available literature on the impact of probiotics on CTx-induced side effects in animal studies concerning CRC treatment and discuss the potential mechanisms based on experimental studies' outcomes.
Collapse
Affiliation(s)
- Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| |
Collapse
|
11
|
Roy Sarkar S, Mitra Mazumder P, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, Banerjee S. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav 2021; 236:113411. [PMID: 33811908 DOI: 10.1016/j.physbeh.2021.113411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022]
Abstract
Saccharomyces boulardii, a probiotic yeast is well prescribed for various gastrointestinal disorders accompanied by gut dysbiosis such as inflammatory bowel disease, bacterial diarrhea and antibiotic associated diarrhea. Gut dysbiosis has been associated with central nervous system via gut brain axis primarily implied in the modulation of psychiatric conditions. In the current study we use Saccharomyces boulardii as a therapeutic agent against gut dysbiosis associated cognitive decline. In mice, gut dysbiosis was induced by oral Ampicillin Na (250 mg/kg twice-daily) for 14 days. While in the treatment group S. boulardii (90 mg/kg once a day) was administered orally for 21 days along with 14 days of antibiotic treatment. Gene expression studies revealed antibiotic mediated decrease in the Lactobacillus, Bifidobacterium, Firmicutes and Clostridium which were restored by S. boulardii treatment. Cognitive behavioral studies showed a parallel reduction in fear conditioning, spatial as well as recognition memory which were reversed upon S. boulardii treatment in these animals. S. boulardii treatment reduced myeloperoxidase enzyme, an inflammatory marker, in colon as well as brain which was increased after antibiotic administration. Similarly, S. boulardii reduced the brain acetylcholine esterase, oxidative stress and inflammatory cytokines and chemokines which were altered due to antibiotic treatment. S. boulardii treatment also protected hippocampal neuronal damage and restored villus length and crypt depth thus normalizing gut permeability in antibiotic treated animals. Hence, we conclude that S. boulardii prevented antibiotic associated gut dysbiosis leading to reduced intestinal and brain inflammation and oxidative stress thus preventing hippocampal neuronal damage and eventually reversing gut dysbiosis associate cognitive decline in mice.
Collapse
Affiliation(s)
- Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Abhishek Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Maria Adhikary
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Qiweibaizhu Decoction Treats Diarrheal Juvenile Rats by Modulating the Gut Microbiota, Short-Chain Fatty Acids, and the Mucus Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8873294. [PMID: 33531924 PMCID: PMC7834800 DOI: 10.1155/2021/8873294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Background Qiweibaizhu decoction (QBD), a classic Chinese herbal formula, has been widely used for treating diarrhea in infants and children with spleen deficiency syndrome for centuries, but its mechanism of action remains unclear. The gut microbiota, short-chain fatty acids (SCFAs), and intestinal mucus are closely associated with diarrhea. Methods In this study, the composition of the gut microbiota in diarrheal rats was analyzed by 16S rDNA amplicon sequencing. The concentrations of colon SCFAs were determined using gas chromatography-mass spectrometry (GC-MS). The expression of mucin 2 (MUC2) in the colon was detected by immunofluorescence. Results Diarrhea significantly changed the diversity and structure of the gut microbiota and disrupted the mucus barrier in juvenile rats. QBD did not significantly change the diversity and structure of the intestinal flora, but it enhanced the increasing tendencies of Verrucomicrobia and Akkermansia and decreased the abundance of Turicibacter (P=0.037) and Flavonifractor (P=0.043). QBD tends to repair the mucus layer and promote MUC2 expression in juvenile rats with diarrhea. Moreover, S. boulardii significantly increased the abundance of Parasutterella (P=0.043). In addition, QBD treatment tends to increase the propionic acid concentration during diarrhea, but its levels of acetic acid, propionic acid, butyric acid, and total SCFAs were lower than those in the S. boulardii group. Conclusion S. boulardii significantly increased the abundance of Parasutterella, leading to increased production of acetic acid, propionic acid, and butyric acid, consequently leading to alleviation of diarrhea. In comparison, QBD affected diarrhea via regulation of the intestinal flora, especially by increasing the abundance of Verrucomicrobia and Akkermansia, resulting in mucus barrier repair, protection of the intestines, and treatment of diarrhea.
Collapse
|
13
|
Hattori T, Imaoka A, Akiyoshi T, Ohtani H. Irinotecan-induced gastrointestinal damage impairs the absorption of dabigatran etexilate. Biopharm Drug Dispos 2020; 40:315-324. [PMID: 31642538 DOI: 10.1002/bdd.2205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 01/29/2023]
Abstract
Irinotecan causes serious gastrointestinal damage. Dabigatran etexilate (DABE), an oral anticoagulant and substrate of P-glycoprotein (P-gp), is poorly absorbed and exhibits low bioavailability in humans. The aim of this study was to evaluate the effects of irinotecan-induced gastrointestinal damage on the pharmacokinetics/pharmacodynamics (PK/PD) of DABE. Irinotecan was administered intravenously to rats for 4 days to induce gastrointestinal damage. To investigate the PK profile of dabigatran (DAB), an active moiety of DABE, DABE was administered orally on day 5, and then DAB was administered intravenously on day 6. To evaluate the PD profile of DAB, the activated partial thromboplastin time (APTT) was measured. The protein expression level of intestinal P-gp was evaluated. In the irinotecan-treated rats, the area under the concentration-time curve of DAB after the oral administration of DABE and the bioavailability of DABE were decreased significantly. The APTT ratio also decreased, suggesting that the impaired efficacy of DABE was attributable to a reduction in its bioavailability. The expression of intestinal P-gp was higher in the irinotecan-treated rats. Taking into consideration the histological damage caused to the intestinal epithelium, both the increased P-gp expression and the reduced passive diffusion were considered to be responsible for the reduction in the bioavailability of DABE.
Collapse
Affiliation(s)
- Tomoki Hattori
- Division of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Keio University Faculty of Pharmacy Tokyo, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Keio University Faculty of Pharmacy Tokyo, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Keio University Faculty of Pharmacy Tokyo, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Hisakazu Ohtani
- Division of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Keio University Faculty of Pharmacy Tokyo, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
14
|
Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Curr Opin Support Palliat Care 2020; 13:119-133. [PMID: 30925531 DOI: 10.1097/spc.0000000000000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Mucositis remains a prevalent, yet poorly managed side effect of anticancer therapies. Mucositis affecting both the oral cavity and gastrointestinal tract predispose to infection and require extensive supportive management, contributing to the growing economic burden associated with cancer care. Animal models remain a critical aspect of mucositis research, providing novel insights into its pathogenesis and revealing therapeutic targets. The current review aims to provide a comprehensive overview of the current animal models used in mucositis research. RECENT FINDINGS A wide variety of animal models of mucositis exist highlighting the highly heterogenous landscape of supportive oncology and the unique cytotoxic mechanisms of different anticancer agents. Golden Syrian hamsters remain the gold-standard species for investigation of oral mucositis induced by single dose and fractionated radiation as well as chemoradiation. There is no universally accepted gold-standard model for the study of gastrointestinal mucositis, with rats, mice, pigs and dogs all offering unique perspectives on its pathobiology. SUMMARY Animal models are a critical aspect of mucositis research, providing unprecedent insight into the pathobiology of mucositis. Introduction of tumour-bearing models, cyclic dosing scheduled, concomitant agents and genetically modified animals have been integral in refining our understanding of mucositis.
Collapse
|
15
|
Justino PFC, Franco AX, Pontier-Bres R, Monteiro CES, Barbosa ALR, Souza MHLP, Czerucka D, Soares PMG. Modulation of 5-fluorouracil activation of toll-like/MyD88/NF-κB/MAPK pathway by Saccharomyces boulardii CNCM I-745 probiotic. Cytokine 2019; 125:154791. [PMID: 31401369 DOI: 10.1016/j.cyto.2019.154791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Chemotherapy drugs that act via Toll-like receptors (TLRs) can exacerbate mucosal injury through the production of cytokines. Intestinal mucositis can activate TLR2 and TLR4, resulting in the activation of NF-κB. Intestinal mucositis characterized by intense inflammation is the main side effect associated with 5-fluorouracil (5-FU) treatment. Saccharomyces boulardii CNCM I-745 (S.b) is a probiotic yeast used in the treatment of gastrointestinal disorders. The main objective of the study was to evaluate the effect of S.b treatment on the Toll-like/MyD88/NF-κB/MAPK pathway activated during intestinal mucositis and in Caco-2 cells treated with 5-FU. METHODS The mice were divided into three groups: saline (control), saline + 5-FU, and 5-FU + S.b (1.6 × 1010 colony forming units/kg). After 3 days of S.b administration by gavage, the mice were euthanized and the jejunum and ileum were removed. In vitro, Caco2 cells were treated with 5-FU (1 mM) alone or in the presence of lipopolysaccharide (1 ng/ml). When indicated, cells were exposed to S.b. The jejunum/ileum samples and Caco2 cells were examined for the expression or concentration of the inflammatory components. RESULTS Treatment with S.b modulated the expressions of TLR2, TLR4, MyD88, NF-κB, ERK1/2, phospho-p38, phospho-JNK, TNF-α, IL-1β, and CXCL-1 in the jejunum/ileum and Caco2 cells following treatment with 5-FU. CONCLUSION Toll-like/MyD88/NF-κB/MAPK pathway are activated during intestinal mucositis and their modulation by S.b suggests a novel and valuable therapeutic strategy for intestinal inflammation.
Collapse
Affiliation(s)
- Priscilla F C Justino
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alvaro X Franco
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Carlos E S Monteiro
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André L R Barbosa
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research, Federal University of Piauí, Parnaíba, Brazil
| | - Marcellus H L P Souza
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Dorota Czerucka
- Centre Scientifique de Monaco, 8 quai Antoine 1er, MC98000, Monaco
| | - Pedro M G Soares
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Morphology, Medical School, Federal University of Ceara, Rua Delmiro de Farias s/n, Rodolfo Teofilo, Fortaleza, Ceara, Brazil.
| |
Collapse
|
16
|
Treatment with selenium-enriched Saccharomyces cerevisiae UFMG A-905 partially ameliorates mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 2019; 84:117-126. [PMID: 31079219 DOI: 10.1007/s00280-019-03865-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Gastrointestinal mucositis is a major problem associated with cancer therapy. To minimize these deleterious effects, simultaneous administration of antioxidant components, such as selenium, can be considered. There is a growing interest in the use of yeasts because they are able to convert inorganic selenium into selenomethionine. In the present study, oral administration of Saccharomyces cerevisiae UFMG A-905 enriched with selenium was evaluated as an alternative in minimizing the side effects of 5FU-induced mucositis in mice. METHODS Mice body weight, food consumption, faeces consistency and the presence of blood in faeces were assessed daily during experimental mucositis induced by 5-fluorouracil (5FU). Blood was used for intestinal permeability determination, and small intestine for oxidative stress, immunological and histopathological examination. RESULTS The increased intestinal permeability observed with mucositis induction was partially reverted by S. cerevisiae and selenium-enriched yeast. Both treatments were able to reduce myeloperoxidase activity, but only selenium-enriched yeast reduced eosinophil peroxidase activity. CXCL1/KC levels, histopathological tissue damage and oxidative stress (lipid peroxidation and nitrite production) in the small intestine were reduced by both treatments; however, this reduction was always higher when treatment with selenium-enriched yeast was evaluated. CONCLUSIONS Results of the present study showed that the oral administration of S. cerevisiae UFMG A-905 protected mice against mucositis induced by 5-FU, and that this effect was potentiated when the yeast was enriched with selenium.
Collapse
|
17
|
High-Fiber Diets in Gastrointestinal Tract Diseases. DIETARY INTERVENTIONS IN GASTROINTESTINAL DISEASES 2019. [DOI: 10.1016/b978-0-12-814468-8.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Natarajan K, Abraham P, Kota R, Isaac B. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol 2018; 118:766-783. [DOI: 10.1016/j.fct.2018.06.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
|
19
|
Intestinal toxicity evaluation of long-circulating and pH-sensitive liposomes loaded with cisplatin. Eur J Pharm Sci 2017; 106:142-151. [DOI: 10.1016/j.ejps.2017.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 12/20/2022]
|
20
|
Natarajan K, Abraham P, Kota R, Selvakumar D. Aminoguanidine pretreatment prevents methotrexate-induced small intestinal injury in the rat by attenuating nitrosative stress and restoring the activities of vital mitochondrial enzymes. J Basic Clin Physiol Pharmacol 2017; 28:239-247. [PMID: 28099126 DOI: 10.1515/jbcpp-2016-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND One of the major toxic side effects of methotrexate (MTX) is enterocolitis, for which there is no efficient standard treatment. Nitric oxide overproduction has been reported to play an important role in MTX-induced mucositis. This study was designed to investigate whether pretreatment with aminoguanidine (AG) - a selective iNOS inhibitor - prevents MTX-induced mucositis in rats. METHODS Rats were pretreated with AG (30 and 50 mg/kg body weight) i.p. daily 1 h before MTX (7 mg/kg body weight) administration for 3 consecutive days. After the final dose of MTX, the rats were killed, and the small intestines were used for analysis. RESULTS The small intestines of MTX-treated rats showed moderate to severe injury. Pretreatment with AG had a dose-dependent protective effect on MTX-induced mucositis. AG pretreatment reduced iNOS protein levels, mucosal nitric oxide levels, and protein tyrosine nitration. AG pretreatment also restored the activities of electron transport chain (ETC) complexes, vital tricarboxylic acid (TCA cycle) enzymes, and mitochondrial antioxidant enzymes. CONCLUSIONS These findings suggest that AG is beneficial in ameliorating MTX-induced enteritis in rats.
Collapse
Affiliation(s)
- Kasthuri Natarajan
- Department of Biochemistry, Christian Medical College, Bagayam, Vellore, Tamil Nadu
| | - Premila Abraham
- Department of Biochemistry, Christian Medical College, Bagayam, Vellore 632002, Tamil Nadu
| | - Rekha Kota
- Department of Pathology, Madha Medical College, Thandalam, Kovur, Chennai, Tamil Nadu
| | - Dhayakani Selvakumar
- Department of Biochemistry, Christian Medical College, Bagayam, Vellore, Tamil Nadu
| |
Collapse
|
21
|
Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol 2016; 78:881-893. [PMID: 27590709 DOI: 10.1007/s00280-016-3139-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Intestinal mucositis and diarrhea are common manifestations of anticancer regimens that include irinotecan, 5-fluorouracil (5-FU), and other cytotoxic drugs. These side effects negatively impact therapeutic outcomes and delay subsequent cycles of chemotherapy, resulting in dose reductions and treatment discontinuation. Here, we aimed to review the experimental evidence regarding possible new targets for the management of irinotecan- and 5-FU-related intestinal mucositis. METHODS A literature search was performed using the PubMed and MEDLINE databases. No publication time limit was set for article inclusion. RESULTS Here, we found that clinical management of intestinal mucositis and diarrhea is somewhat ineffective at reducing symptoms, possibly due to a lack of specific targets for modulation. We observed that IL-1β contributes to the apoptosis of enterocytes in mucositis induced by 5-FU. However, 5-FU-related mucositis is far less thoroughly investigated with regard to specific molecular targets when compared to irinotecan-related disease. Several studies have proposed that a correlation exists between the intestinal microbiota, the enterohepatic recirculation of active metabolites of irinotecan, and the establishment of mucositis. However, as reviewed here, this association seems to be controversial. In addition, the pathogenesis of irinotecan-induced mucositis appears to be orchestrated by interleukin-1/Toll-like receptor family members, leading to epithelial cell apoptosis. CONCLUSIONS IL-1β, IL-18, and IL-33 and the receptors IL-1R, IL-18R, ST2, and TLR-2 are potential therapeutic targets that can be modulated to minimize anticancer agent-associated toxicity, optimize cancer treatment dosing, and improve clinical outcomes. In this context, the pathogenesis of mucositis caused by other anticancer agents should be further investigated.
Collapse
|
22
|
Bastos RW, Pedroso SHSP, Vieira AT, Moreira LMC, França CS, Cartelle CT, Arantes RME, Generoso SV, Cardoso VN, Neves MJ, Nicoli JR, Martins FS. Saccharomyces cerevisiae UFMG A-905 treatment reduces intestinal damage in a murine model of irinotecan-induced mucositis. Benef Microbes 2016; 7:549-57. [PMID: 27133563 DOI: 10.3920/bm2015.0190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Indigenous microbiota plays a crucial role in the development of several intestinal diseases, including mucositis. Gastrointestinal mucositis is a major and serious side effect of cancer therapy, and there is no effective therapy for this clinical condition. However, some probiotics have been shown to attenuate such conditions. To evaluate the effects of Saccharomyces cerevisiae UFMG A-905 (Sc-905), a potential probiotic yeast, we investigated whether pre- or post-treatment with viable or inactivated Sc-905 could prevent weight loss and intestinal lesions, and maintain integrity of the mucosal barrier in a mucositis model induced by irinotecan in mice. Only post-treatment with viable Sc-905 was able to protect mice against the damage caused by chemotherapy, reducing the weight loss, increase of intestinal permeability and jejunal lesions (villous shortening). Besides, this treatment reduced oxidative stress, prevented the decrease of goblet cells and stimulated the replication of cells in the intestinal crypts of mice with experimental mucositis. In conclusion, Sc-905 protects animals against irinotecan-induced mucositis when administered as a post-treatment with viable cells, and this effect seems to be related with the reduction of oxidative stress and preservation of intestinal mucosa.
Collapse
Affiliation(s)
- R W Bastos
- 1 Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S H S P Pedroso
- 1 Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A T Vieira
- 1 Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - L M C Moreira
- 1 Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C S França
- 1 Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C T Cartelle
- 2 Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - R M E Arantes
- 2 Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S V Generoso
- 3 Department of Basic Nursing, School of Nursing, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - V N Cardoso
- 4 Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M J Neves
- 5 Center of Nuclear Technology Development/Brazilian Nuclear Energy Commission (CDTN/CNEN), Belo Horizonte, MG, Brazil
| | - J R Nicoli
- 1 Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - F S Martins
- 1 Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
23
|
Natarajan K, Abraham P. Methotrexate administration induces differential and selective protein tyrosine nitration and cysteine nitrosylation in the subcellular organelles of the small intestinal mucosa of rats. Chem Biol Interact 2016; 251:45-59. [PMID: 27038877 DOI: 10.1016/j.cbi.2016.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 12/26/2022]
|
24
|
Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 2015; 75:559-67. [PMID: 25572363 DOI: 10.1007/s00280-014-2663-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/22/2014] [Indexed: 01/25/2023]
Abstract
PURPOSE Lactobacillus acidophilus is widely used for gastrointestinal disorders, but its role in inflammatory conditions like in chemotherapy-induced mucositis is unclear. Here, we report the effect of L. acidophilus on 5-fluorouracil-induced (5-FU) intestinal mucositis in mice. METHODS Mice weighing 25-30 g (n = 8) were separated into three groups, saline, 5-FU, and 5-FU + L. acidophilus (5-FU-La) (16 × 10(9) CFU/kg). In the 5-FU-La group, L. acidophilus was administered concomitantly with 5-FU on the first day and alone for two additional days. Three days after the last administration of L. acidophilus, the animals were euthanized and the jejunum and ileum were removed for histopathological assessment and for evaluation of levels of myeloperoxidase activity, sulfhydryl groups, nitrite, and cytokines (TNF-α, IL-1β, CXCL-1, and IL-10). In addition, we investigated gastric emptying using spectrophotometry after feeding a 1.5-ml test meal by gavage and euthanasia. Data were submitted to ANOVA and Bonferroni's test, with the level of significance at p < 0.05. RESULTS Intestinal mucositis induced by 5-FU significantly (p < 0.05) reduced the villus height-crypt depth ratio and GSH concentration and increased myeloperoxidase activity and the nitrite concentrations compared with the control group. Furthermore, 5-FU significantly (p < 0.05) increased cytokine (TNF-α, IL-1β, and CXCL-1) concentrations and decreased IL-10 concentrations compared with the control group. 5-FU also significantly (p < 0.05) delayed gastric emptying and gastrointestinal transit compared with the control group. All of these changes were significantly (p < 0.05) reversed by treatment with L. acidophilus. CONCLUSIONS Lactobacillus acidophilus improves the inflammatory and functional aspects of intestinal mucositis induced by 5-FU.
Collapse
|
25
|
de Araújo AA, Borba PB, de Souza FHD, Nogueira AC, Saldanha TS, Araújo TEF, da Silva AI, de Araújo Júnior RF. In a Methotrexate-Induced Model of Intestinal Mucositis, Olmesartan Reduced Inflammation and Induced Enteropathy Characterized by Severe Diarrhea, Weight Loss, and Reduced Sucrose Activity. Biol Pharm Bull 2015; 38:746-52. [DOI: 10.1248/bpb.b14-00847] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Norte (UFRN), Post Graduation Program Public Health/Post Graduation Program in Pharmaceutical Science
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Maioli TU, de Melo Silva B, Dias MN, Paiva NC, Cardoso VN, Fernandes SO, Carneiro CM, Dos Santos Martins F, de Vasconcelos Generoso S. Pretreatment with Saccharomyces boulardii does not prevent the experimental mucositis in Swiss mice. J Negat Results Biomed 2014; 13:6. [PMID: 24721659 PMCID: PMC4004512 DOI: 10.1186/1477-5751-13-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/07/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The antimetabolite chemotherapy 5-Fluorouracil is one of the most commonly prescribed drugs in clinical cancer treatment. Although this drug is not specific for cancer cells and also acts on healthy cells, it can cause mucositis, a common collateral effect. Dysbiosis has also been described in 5-fluorouracil-induced mucositis and is likely to contribute to the overall development of mucositis. In light of this theory, the use of probiotics could be a helpful strategy to alleviate mucositis. So the aim of this study was evaluate the impact of the probiotic Saccharomyces boulardii in a model of mucositis. RESULTS After induced of mucositis, mice from the Mucositis groups showed a decrease in food consumption (p < 0.05) and therefore had a greater weight loss (p < 0.05). The treatment with Saccharomyces boulardii did not reverse this effect (p > 0.05). Mucositis induced an increase in intestinal permeability and intestinal inflammation (p < 0.05). There were no differences in mucosal lesions, intestinal permeability and sIgA secretion (p > 0.05) in mice pretreated with S. boulardii. CONCLUSIONS S. boulardii was not able to prevent the effects of experimental mucositis induced by 5- Fluorouracil.
Collapse
|
27
|
Treatment withSaccharomyces boulardiireduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr 2014; 111:1611-21. [DOI: 10.1017/s0007114513004248] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal mucositis is an important toxic side effect of 5-fluorouracil (5-FU) treatment.Saccharomyces boulardiiis known to protect from intestinal injury via an effect on the gastrointestinal microbiota. The objective of the present study was to evaluate the effect ofS. boulardiion intestinal mucositis induced by 5-FU in a murine model. Mice were divided into saline, saline (control)+5-FU or 5-FU+S. boulardii(16 × 109colony-forming units/kg) treatment groups, and the jejunum and ileum were removed after killing of mice for the evaluation of histopathology, myeloperoxidase (MPO) activity, and non-protein sulfhydryl group (mainly reduced glutathione; GSH), nitrite and cytokine concentrations. To determine gastric emptying, phenol red was administered orally, mice were killed 20 min after administration, and the absorbance of samples collected from the mice was measured by spectrophotometry. Intestinal permeability was measured by the urinary excretion rate of lactulose and mannitol following oral administration.S. boulardiisignificantly reversed the histopathological changes in intestinal mucositis induced by 5-FU and reduced the inflammatory parameters: neutrophil infiltration (control 1·73 (sem0·37) ultrastructural MPO (UMPO)/mg, 5-FU 7·37 (sem1·77) UMPO/mg and 5-FU+S. boulardii4·15 (sem0·73) UMPO/mg); nitrite concentration (control 37·00 (sem2·39) μm, 5-FU 59·04 (sem11·41) μmand 5-FU+S. boulardii37·90 (sem5·78) μm); GSH concentration (control 477·60 (sem25·25) μg/mg, 5-FU 270·90 (sem38·50) μg/mg and 5-FU+S. boulardii514·00 (sem38·64) μg/mg). Treatment with S.Boulardiisignificantly reduced the concentrations of TNF-α and IL-1β by 48·92 and 32·21 % in the jejunum and 38·92 and 61·79 % in the ileum. In addition,S. boulardiidecreased the concentrations of chemokine (C–X–C motif) ligand 1 by 5-fold in the jejunum and 3-fold in the ileum. Interestingly,S. boulardiireduced the delay in gastric emptying (control 25·21 (sem2·55) %, 5-FU 54·91 (sem3·43) % and 5-FU+S. boulardii31·38 (sem2·80) %) and induced the recovery of intestinal permeability (lactulose:mannitol ratio: control 0·52 (sem0·03), 5-FU 1·38 (sem0·24) and 5-FU+S. boulardii0·62 (sem0·03)). In conclusion,S. boulardiireduces the inflammation and dysfunction of the gastrointestinal tract in intestinal mucositis induced by 5-FU.
Collapse
|
28
|
Swami U, Goel S, Mani S. Therapeutic targeting of CPT-11 induced diarrhea: a case for prophylaxis. Curr Drug Targets 2013; 14:777-97. [PMID: 23597015 DOI: 10.2174/1389450111314070007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
CPT-11 (irinotecan), a DNA topoisomerase I inhibitor is one of the main treatments for colorectal cancer. The main dose limiting toxicities are neutropenia and late onset diarrhea. Though neutropenia is manageable, CPT-11 induced diarrhea is frequently severe, resulting in hospitalizations, dose reductions or omissions leading to ineffective treatment administration. Many potential agents have been tested in preclinical and clinical studies to prevent or ameliorate CPT-11 induced late onset diarrhea. It is predicted that prophylaxis of CPT-11 induced diarrhea will reduce sub-therapeutic dosing as well as hospitalizations and will eventually lead to dose escalations resulting in better response rates. This article reviews various experimental agents and strategies employed to prevent this debilitating toxicity. Covered topics include schedule/dose modification, intestinal alkalization, structural/chemical modification, genetic testing, anti-diarrheal therapies, transporter (ABCB1, ABCC2, BCRP2) inhibitors, enzyme (β-glucuronidase, UGT1A1, CYP3A4, carboxylesterase, COX-2) inducers and inhibitors, probiotics, antibiotics, adsorbing agents, cytokine and growth factor activators and inhibitors and other miscellaneous agents.
Collapse
Affiliation(s)
- Umang Swami
- Internal Medicine, St. Barnabas Hospital, Bronx, NY 10457, USA
| | | | | |
Collapse
|
29
|
Duman DG, Kumral ZNÖ, Ercan F, Deniz M, Can G, Cağlayan Yeğen B. Saccharomyces boulardii ameliorates clarithromycin- and methotrexate-induced intestinal and hepatic injury in rats. Br J Nutr 2013; 110:493-499. [PMID: 23279717 DOI: 10.1017/s000711451200517x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Saccharomyces boulardii is a probiotic used for the prevention of antibiotic-associated diarrhoea. We aimed to investigate whether S. boulardii could alter the effects of clarithromycin (CLA) and methotrexate (MTX) on oro-caecal intestinal transit and oxidative damage in rats. Rats were divided into two groups receiving a single dose of MTX (20 mg/kg) or CLA (20 mg/kg per d) for 1 week. Groups were treated with either saline or S. boulardii (500 mg/kg) twice per d throughout the experiment. The control group was administered only saline. Following decapitation, intestinal transit and inflammation markers of glutathione (GSH), malondialdehyde and myeloperoxidase were measured in intestinal and hepatic tissues. CLA and MTX increased intestinal transit, while S. boulardii treatment slowed down CLA-facilitated transit back to control level. Both MTX and CLA increased lipid peroxidation while depleting the antioxidant GSH content in the hepatic and ileal tissues. Conversely, lipid peroxidation was depressed and GSH levels were increased in the ileal and hepatic tissues of S. boulardii-treated rats. Increased ileal neutrophil infiltration due to MTX and CLA treatments was also reduced by S. boulardii treatment. Histological analysis supported that S. boulardii protected intestinal tissues against the inflammatory effects of both agents. These findings suggest that S. boulardii ameliorates intestinal injury and the accompanying hepatic inflammation by supporting the antioxidant state of the tissues and by inhibiting the recruitment of neutrophils. Moreover, a preventive effect on MTXinduced toxicity is a novel finding of S. boulardii, proposing it as an adjunct to chemotherapy regimens.
Collapse
Affiliation(s)
- Deniz Güney Duman
- Department of Gastroenterology, School of Medicine, Saglik Bakanligi Marmara Universitesi Pendik E.A.H., Mimar Sinan Caddesi 41, Üst Kaynarca Pendik, 34899 Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
30
|
Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 2012; 3:421. [PMID: 23267352 PMCID: PMC3525881 DOI: 10.3389/fmicb.2012.00421] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022] Open
Abstract
The yeasts constitute a large and heterogeneous group of microorganisms that are currently attracting increased attention from scientists and industry. Numerous and diverse biological activities make them promising candidates for a wide range of applications not limited to the food sector. In addition to their major contribution to flavor development in fermented foods, their antagonistic activities toward undesirable bacteria, and fungi are now widely known. These activities are associated with their competitiveness for nutrients, acidification of their growth medium, their tolerance of high concentrations of ethanol, and release of antimicrobial compounds such as antifungal killer toxins or "mycocins" and antibacterial compounds. While the design of foods containing probiotics (microorganisms that confer health benefits) has focused primarily on Lactobacillus and Bifidobacterium, the yeast Saccharomyces cerevisiae var. boulardii has long been known effective for treating gastroenteritis. In this review, the antimicrobial activities of yeasts are examined. Mechanisms underlying this antagonistic activity as well as recent applications of these biologically active yeasts in both the medical and veterinary sectors are described.
Collapse
Affiliation(s)
- Rima Hatoum
- Nutraceuticals and Functional Foods Institute, STELA Dairy Research Centre, Université LavalQuébec, QC, Canada
| | - Steve Labrie
- Nutraceuticals and Functional Foods Institute, STELA Dairy Research Centre, Université LavalQuébec, QC, Canada
| | - Ismail Fliss
- Nutraceuticals and Functional Foods Institute, STELA Dairy Research Centre, Université LavalQuébec, QC, Canada
| |
Collapse
|
31
|
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to Saccharomyces cerevisiae var. boulardii CNCM I‐1079 and defence against pathogenic gastro‐intestinal microorganisms (ID 913, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Kelesidis T, Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol 2012; 5:111-25. [PMID: 22423260 PMCID: PMC3296087 DOI: 10.1177/1756283x11428502] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several clinical trials and experimental studies strongly suggest a place for Saccharomyces boulardii as a biotherapeutic agent for the prevention and treatment of several gastrointestinal diseases. S. boulardii mediates responses resembling the protective effects of the normal healthy gut flora. The multiple mechanisms of action of S. boulardii and its properties may explain its efficacy and beneficial effects in acute and chronic gastrointestinal diseases that have been confirmed by clinical trials. Caution should be taken in patients with risk factors for adverse events. This review discusses the evidence for efficacy and safety of S. boulardii as a probiotic for the prevention and therapy of gastrointestinal disorders in humans.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Div. of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 2010; 16:2202-22. [PMID: 20458757 PMCID: PMC2868213 DOI: 10.3748/wjg.v16.i18.2202] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/13/2010] [Accepted: 02/20/2010] [Indexed: 02/06/2023] Open
Abstract
This article reviews the evidence for efficacy and safety of Saccharomyces boulardii (S. boulardii) for various disease indications in adults based on the peer-reviewed, randomized clinical trials and pre-clinical studies from the published medical literature (Medline, Clinical Trial websites and meeting abstracts) between 1976 and 2009. For meta-analysis, only randomized, blinded controlled trials unrestricted by language were included. Pre-clinical studies, volunteer studies and uncontrolled studies were excluded from the review of efficacy and meta-analysis, but included in the systematic review. Of 31 randomized, placebo-controlled treatment arms in 27 trials (encompassing 5029 study patients), S. boulardii was found to be significantly efficacious and safe in 84% of those treatment arms. A meta-analysis found a significant therapeutic efficacy for S. boulardii in the prevention of antibiotic-associated diarrhea (AAD) (RR = 0.47, 95% CI: 0.35-0.63, P < 0.001). In adults, S. boulardii can be strongly recommended for the prevention of AAD and the traveler's diarrhea. Randomized trials also support the use of this yeast probiotic for prevention of enteral nutrition-related diarrhea and reduction of Helicobacter pylori treatment-related symptoms. S. boulardii shows promise for the prevention of C. difficile disease recurrences; treatment of irritable bowel syndrome, acute adult diarrhea, Crohn's disease, giardiasis, human immunodeficiency virus-related diarrhea; but more supporting evidence is recommended for these indications. The use of S. boulardii as a therapeutic probiotic is evidence-based for both efficacy and safety for several types of diarrhea.
Collapse
|