1
|
Zhuang Z, Huang S, Zhang X, Han X, Hua M, Liang Z, Lou N, Lv L, Zheng F, Zhang L, Liu X, Yu S, Chen S, Zhuang X. Lipin1 ameliorates cognitive ability of diabetic encephalopathy via regulating Ca 2+ transfer through mitochondria-associated endoplasmic reticulum membranes. Int Immunopharmacol 2025; 150:114266. [PMID: 39961213 DOI: 10.1016/j.intimp.2025.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
Diabetic encephalopathy (DE) is a common central nervous system complication resulting from diabetes mellitus (DM). While the exact pathogenesis remains unclear, a homeostatic imbalance of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) within neurons has been shown to be closely associated with the dysfunctional cognitive pathology of this condition. Our previous work has revealed that phosphatidate phosphatase Lipin1 plays a critical role in the cognitive processes of DE via regulating mitochondrial function. In this study, we reported that the integrity of neuronal MAMs was disrupted in DE mice, which was accompanied by a decrease in the expression of hippocampal Lipin1. With a knock-down of hippocampal Lipin1 in normal mice, ER stress was induced, MAMs structures were impaired and Ca2+ transfer was suppressed. Such effects resulted in mitochondrial dysfunction, synaptic plasticity impairments, and finally cognitive dysfunctions. In contrast, an up-regulation of hippocampal Lipin1 in the DE model partially alleviated these dysfunctions. These results suggest that Lipin1 may ameliorate the cognitive dysfunctions associated with DE via regulating Ca2+ transfers through MAMs. Therefore, targeting Lipin1 may serve as a therapeutic strategy for the clinical treatment of DE.
Collapse
Affiliation(s)
- Ziyun Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Department of Endocrinology and Metabolism, The First People's Hospital of Jinan, Jinan 250011, China
| | - Shan Huang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaochen Zhang
- Department of Clinical Medicine, Heze Medical College, Heze 274009, China
| | - Xiaolin Han
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Mengyu Hua
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Zhonghao Liang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nengjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China
| | - Li Lv
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China
| | - Fengjie Zheng
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China
| | - Liang Zhang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Shuyan Yu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Department of Physiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
2
|
Zhou RZ, Gaunitz S, Kirsebom BE, Lundin B, Hellström M, Jejcic A, Sköldunger A, Wimo A, Winblad B, Fladby T, Schedin-Weiss S, Tjernberg LO. Blood N-glycomics reveals individuals at risk for cognitive decline and Alzheimer's disease. EBioMedicine 2025; 113:105598. [PMID: 39983328 PMCID: PMC11893330 DOI: 10.1016/j.ebiom.2025.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Blood biomarkers with prognostic accuracy for Alzheimer's disease (AD) are crucial for selecting at-risk individuals for interventions. Altered protein N-glycosylation has been implicated in several pathogenic pathways in AD and could be an early AD biomarker. METHODS We developed a mass spectrometry-based method to simultaneously quantify 62 blood N-glycan structures in individuals with biological or clinical AD and matched controls. We analysed N-glycan levels in a Swedish discovery cohort (n = 40) and validated our results in a Norwegian cohort (n = 60). Individuals were grouped according to N-glycan levels using unsupervised hierarchical clustering. Difference in disease progression between groups were modelled using linear mixed-effects models. FINDINGS A subgroup of individuals exhibited low blood N-glycosylation (32.4% of Swedish cohort, 37.9% of Norwegian cohort). In the Swedish cohort, low N-glycosylation was associated with AD and cognitive decline. In the Norwegian cohort, low blood N-glycosylation showed no correlation with amyloid/tau, but importantly, strongly predicted future cognitive decline. In total, fourteen N-glycan structures were significantly less abundant in the low N-glycosylation group compared to the rest of the individuals in both cohorts. INTERPRETATION Reduced blood N-glycan levels predict cognitive decline independent of amyloid or tau status. Blood N-glycome profiling could be used to identify individuals at risk for AD dementia. FUNDING Stiftelsen för Gamla Tjänarinnor, Stockholm County Council-ALF, JPND, PMI-AD, Medical Diagnostics Karolinska, Helse-Nord, Gun och Bertil Stohnes stiftelse, Demensförbundet, Stiftelsen Dementia, Margaretha af Ugglas' foundation, Vinnova, the private initiative "Innovative ways to fight Alzheimer's disease-Leif Lundblad Family and others".
Collapse
Affiliation(s)
- Robin Ziyue Zhou
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Stefan Gaunitz
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway; Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Britt Lundin
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Hellström
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Alenka Jejcic
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Anders Sköldunger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Anders Wimo
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden.
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden; Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Bhattacharyya R, Jha BK. Computational Fuzzy Modelling Approach to Analyze Neuronal Calcium Dynamics With Intracellular Fluxes. Cell Biochem Biophys 2025; 83:1071-1086. [PMID: 39373904 DOI: 10.1007/s12013-024-01541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Mathematical neuroscience investigates how calcium distribution in nerve cells affects the neurological system. The interaction of numerous systems is necessary for the operation of several cellular processes in neuron cells, such as calcium, buffer, ER etc. The dynamics of interacting parameters give useful information on neural cell function. This work uses a mathematical model to analyze the dynamic interactions of buffer and ER inside neurons, considering their spatial properties. While buffers bind to calcium ions and lower their concentration, the endoplasmic reticulum (ER) serves as a reservoir, holding a significant number of free calcium ions. The uncertainty of initial values of calcium concentration poses challenges for researchers to develop calcium signaling models. In this article, we examined the exact solution and approximate solution of the mathematical model that was analyzed using the fuzzy undetermined coefficient approach. MATLAB is being used to perform the simulation. Endoplasmic reticulum and buffer have been found to have a substantial impact on calcium signaling. Fuzzy differential equation Provides a useful tool for evaluating complicated processes with imprecise values when ordinary differential equations perform not precisely. They allow for the examination of dynamic processes under fuzzy settings, which contributes to advances research.
Collapse
Affiliation(s)
- Rituparna Bhattacharyya
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382426, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
4
|
Kaur P, Khan H, Grewal AK, Dua K, Singh SK, Gupta G, Singh TG. Exploring Therapeutic Strategies: The Relationship between Metabolic Disorders and FOXO Signalling in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:196-207. [PMID: 39473249 DOI: 10.2174/0118715273321002240919102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease is an ailment that is linked with the degeneration of the brain cells, and this illness is the main cause of dementia. Metabolic stress affects the activity of the brain in AD via FOXO signaling. The occurrence of AD will significantly surge as the world's population ages, along with lifestyle changes perceived in current decades, indicating a main contributor to such augmented prevalence. Similarly, metabolic disorders of current adulthood, such as obesity, stroke, and diabetes mellitus, have been observed as the risk-causing factors of AD. Environmental influences induce genetic mutations that result in the development of several diseases. Metabolic disorders develop when individuals are exposed to an environment where food is easily accessible and requires minimal energy expenditure. Obesity and diabetes are among the most significant worldwide health concerns. Obesity arises because of an imbalance between the amount of energy consumed and the amount of energy expended, which is caused by both behavioral and physiological factors. Obesity, insulin resistance syndrome, hypertension, and inflammation are factors that contribute to the worldwide risk of developing diabetes mellitus and neurodegenerative diseases. FOXO transcription factors are preserved molecules that play an important part in assorted biological progressions, precisely in aging as well as metabolism. Apoptosis, cell division and differentiation, oxidative stress, metabolism, and lifespan are among the physiological processes that the FOXO proteins are adept at controlling. In this review, we explored the correlation between signaling pathways and the cellular functions of FOXO proteins. We have also summarized the intricate role of FOXO in AD, with a focus on metabolic stress, and discussed the prospect of FOXO as a molecular link between AD and metabolic disorders.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur Grewal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- Department of Pharmacology, School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| |
Collapse
|
5
|
Tang Y, Park HJ, Li S, Fitzgerald MC. Analysis of Brain Protein Stability Changes in a Mouse Model of Alzheimer's Disease. J Proteome Res 2024; 23:4443-4456. [PMID: 39292827 DOI: 10.1021/acs.jproteome.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The stability of proteins from rates of oxidation (SPROX), thermal proteome profiling (TPP), and limited proteolysis (LiP) techniques were used to profile the stability of ∼2500 proteins in hippocampus tissue cell lysates from 2- and 8-months-old wild-type (C57BL/6J; n = 7) and transgenic (5XFAD; n = 7) mice with five Alzheimer's disease (AD)-linked mutations. Approximately 200-500 protein hits with AD-related stability changes were detected by each technique at each age point. The hit overlap from technique to technique was low, and all of the techniques generated protein hits that were more numerous and largely different from those identified in protein expression level analyses, which were also performed here. The hit proteins identified by each technique were enriched in a number of the same pathways and biological processes, many with known connections to AD. The protein stability hits included 25 high-value conformation biomarkers with AD-related stability changes detected using at least 2 techniques at both age points. Also discovered were subunit- and age-specific AD-related stability changes in the proteasome, which had reduced function at both age points. The different folding stability profiles of the proteasome at the two age points are consistent with a different mechanism for proteasome dysfunction at the early and late stages of AD.
Collapse
Affiliation(s)
- Yun Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Hye-Jin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Shengyu Li
- Department of Computational Biology & Bioinformatics, Duke University, Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
6
|
Delvenne A, Vandendriessche C, Gobom J, Burgelman M, Dujardin P, De Nolf C, Tijms BM, Teunissen CE, Schindler SE, Verhey F, Ramakers I, Martinez-Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, De Roeck E, Popp J, Peyratout G, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vandenbroucke RE, Vos SJB. Involvement of the choroid plexus in Alzheimer's disease pathophysiology: findings from mouse and human proteomic studies. Fluids Barriers CNS 2024; 21:58. [PMID: 39020361 PMCID: PMC11256635 DOI: 10.1186/s12987-024-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, USA
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zürich, Zurich, Switzerland
| | | | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, UK
- Johnson and Johnson Medical Ltd., Wokingham, UK
| | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- H. Lundbeck A/S, Valby, Denmark
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
7
|
Iovino L, VanderZwaag J, Kaur G, Khakpour M, Giusti V, Donadon M, Chiavegato A, Tenorio-Lopes L, Greggio E, Tremblay ME, Civiero L. Investigation of microglial diversity in a LRRK2 G2019S mouse model of Parkinson's disease. Neurobiol Dis 2024; 195:106481. [PMID: 38527708 DOI: 10.1016/j.nbd.2024.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Microglia contribute to the outcomes of various pathological conditions including Parkinson's disease (PD). Microglia are heterogenous, with a variety of states recently identified in aging and neurodegenerative disease models. Here, we delved into the diversity of microglia in a preclinical PD model featuring the G2019S mutation in LRRK2, a known pathological mutation associated with PD. Specifically, we investigated the 'dark microglia' (DM) and the 'disease-associated microglia' (DAM) which present a selective enrichment of CLEC7A expression. In the dorsal striatum - a region affected by PD pathology - extensive ultrastructural features of cellular stress as well as reduced direct cellular contacts, were observed for microglia from old LRRK2 G2019S mice versus controls. In addition, DM were more prevalent while CLEC7A-positive microglia had extensive phagocytic ultrastructural characteristics in the LRRK2 G2019S mice. Furthermore, our findings revealed a higher proportion of DM in LRRK2 G2019S mice, and an increased number of CLEC7A-positive cells with age, exacerbated by the pathological mutation. These CLEC7A-positive cells exhibited a selective enrichment of ameboid morphology and tended to cluster in the affected animals. In summary, we provide novel insights into the occurrence and features of recently defined microglial states, CLEC7A-positive cells and DM, in the context of LRRK2 G2019S PD pathology.
Collapse
Affiliation(s)
- L Iovino
- National Research Council (CNR), Institute of Neuroscience, Pisa, Italy; Stella Maris Foundation, IRCCS, Calambrone, Pisa, Italy
| | - J VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - G Kaur
- University of Padua, Department of Biology, Padova, Italy
| | - M Khakpour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - V Giusti
- University of Padua, Department of Biology, Padova, Italy; San Camillo Hospital srl Società unipersonale, IRCCS, Venice, Italy
| | - M Donadon
- University of Padua, Department of Biology, Padova, Italy
| | - A Chiavegato
- National Research Council (CNR), Neuroscience Institute, Section of Padova, Padova, Italy; Università degli Studi di Padova, Department of Biomedical Sciences, Padova, Italy
| | - L Tenorio-Lopes
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - E Greggio
- University of Padua, Department of Biology, Padova, Italy; University of Padova, Study Center for Neurodegeneration (CESNE), Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Département de médecine moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - L Civiero
- University of Padua, Department of Biology, Padova, Italy; San Camillo Hospital srl Società unipersonale, IRCCS, Venice, Italy.
| |
Collapse
|
8
|
Ceylan B, Düz E, Çakir T. Personalized Protein-Protein Interaction Networks Towards Unraveling the Molecular Mechanisms of Alzheimer's Disease. Mol Neurobiol 2024; 61:2120-2135. [PMID: 37855983 DOI: 10.1007/s12035-023-03690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Alzheimer's disease (AD) is a highly heterogenous neurodegenerative disease, and several omic-based datasets were generated in the last decade from the patients with the disease. However, the vast majority of studies evaluate these datasets in bulk by considering all the patients as a single group, which obscures the molecular differences resulting from the heterogeneous nature of the disease. In this study, we adopted a personalized approach and analyzed the transcriptome data from 403 patients individually by mapping the data on a human protein-protein interaction network. Patient-specific subnetworks were discovered and analyzed in terms of the genes in the subnetworks, enriched functional terms, and known AD genes. We identified several affected pathways that could not be captured by the bulk comparison. We also showed that our personalized findings point to patterns of alterations consistent with the recently suggested AD subtypes.
Collapse
Affiliation(s)
- Betül Ceylan
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Elif Düz
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Tunahan Çakir
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
9
|
Golzari-Sorkheh M, Liyanage I, Reed MA, Weaver DF. Alzheimer's Disease and COVID-19 Pathogenic Overlap: Implications for Drug Repurposing. Can J Neurol Sci 2024; 51:161-172. [PMID: 36991574 DOI: 10.1017/cjn.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
As COVID-19 continues, a safe, cost-effective treatment strategy demands continued inquiry. Chronic neuroinflammatory disorders may appear to be of little relevance in this regard; often indolent and progressive disorders characterized by neuroinflammation (such as Alzheimer's disease (AD)) are fundamentally dissimilar in etiology and symptomology to COVID-19's rapid infectivity and pathology. However, the two disorders share extensive pathognomonic features, including at membrane, cytoplasmic, and extracellular levels, culminating in analogous immunogenic destruction of their respective organ parenchyma. We hypothesize that these mechanistic similarities may extent to therapeutic targets, namely that it is conceivable an agent against AD's immunopathy may have efficacy against COVID-19 and vice versa. It is notable that while extensively investigated, no agent has yet demonstrated significant therapeutic efficacy against AD's cognitive and memory declines. Yet this very failure has driven the development of numerous agents with strong mechanistic potential and clinical characteristics. Having already approved for clinical trials, these agents may be an expedient starting point in the urgent search for an effective COVID-19 therapy. Herein, we review the overlapping Alzheimer's/ COVID-19 targets and theorize several initial platforms.
Collapse
Affiliation(s)
| | - Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Rahane D, Dhingra T, Chalavady G, Datta A, Ghosh B, Rana N, Borah A, Saraf S, Bhattacharya P. Hypoxia and its effect on the cellular system. Cell Biochem Funct 2024; 42:e3940. [PMID: 38379257 DOI: 10.1002/cbf.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.
Collapse
Affiliation(s)
- Dipali Rahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Tannu Dhingra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Guruswami Chalavady
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
11
|
Toltin AC, Belkadi A, Gamba LM, Hossain MM. The Preventive Effects of Salubrinal against Pyrethroid-Induced Disruption of Adult Hippocampal Neurogenesis in Mice. Int J Mol Sci 2023; 24:15614. [PMID: 37958604 PMCID: PMC10648946 DOI: 10.3390/ijms242115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Environmental factors, including pesticide exposure, have been identified as substantial contributors to neurodegeneration and cognitive impairments. Previously, we demonstrated that repeated exposure to deltamethrin induces endoplasmic reticulum (ER) stress, reduces hippocampal neurogenesis, and impairs cognition in adult mice. Here, we investigated the potential relationship between ER stress and hippocampal neurogenesis following exposure to deltamethrin, utilizing both pharmacological and genetic approaches. To investigate whether ER stress is associated with inhibition of neurogenesis, mice were given two intraperitoneal injections of eIf2α inhibitor salubrinal (1 mg/kg) at 24 h and 30 min prior to the oral administration of deltamethrin (3 mg/kg). Salubrinal prevented hippocampal ER stress, as indicated by decreased levels of C/EBP-homologous protein (CHOP) and transcription factor 4 (ATF4) and attenuated deltamethrin-induced reductions in BrdU-, Ki-67-, and DCX-positive cells in the dentate gyrus (DG) of the hippocampus. To further explore the relationship between ER stress and adult neurogenesis, we used caspase-12 knockout (KO) mice. The caspase-12 KO mice exhibited significant protection against deltamethrin-induced reduction of BrdU-, Ki-67-, and DCX-positive cells in the hippocampus. In addition, deltamethrin exposure led to a notable upregulation of CHOP and caspase-12 expression in a significant portion of BrdU- and Ki-67-positive cells in WT mice. Conversely, both salubrinal-treated mice and caspase-12 KO mice exhibited a considerably lower number of CHOP-positive cells in the hippocampus. Together, these findings suggest that exposure to the insecticide deltamethrin triggers ER stress-mediated suppression of adult hippocampal neurogenesis, which may subsequently contribute to learning and memory deficits in mice.
Collapse
Affiliation(s)
| | | | | | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
Gugliandolo A, Blando S, Salamone S, Caprioglio D, Pollastro F, Mazzon E, Chiricosta L. Δ8-THC Protects against Amyloid Beta Toxicity Modulating ER Stress In Vitro: A Transcriptomic Analysis. Int J Mol Sci 2023; 24:ijms24076598. [PMID: 37047608 PMCID: PMC10095455 DOI: 10.3390/ijms24076598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Alzheimer’s disease (AD) represents the most common form of dementia, characterized by amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs). It is characterized by neuroinflammation, the accumulation of misfolded protein, ER stress and neuronal apoptosis. It is of main importance to find new therapeutic strategies because AD prevalence is increasing worldwide. Cannabinoids are arising as promising neuroprotective phytocompounds. In this study, we evaluated the neuroprotective potential of Δ8-THC pretreatment in an in vitro model of AD through transcriptomic analysis. We found that Δ8-THC pretreatment restored the loss of cell viability in retinoic acid-differentiated neuroblastoma SH-SY5Y cells treated with Aβ1-42. Moreover, the transcriptomic analysis provided evidence that the enriched biological processes of gene ontology were related to ER functions and proteostasis. In particular, Aβ1-42 upregulated genes involved in ER stress and unfolded protein response, leading to apoptosis as demonstrated by the increase in Bax and the decrease in Bcl-2 both at gene and protein expression levels. Moreover, genes involved in protein folding and degradation were also deregulated. On the contrary, Δ8-THC pretreatment reduced ER stress and, as a consequence, neuronal apoptosis. Then, the results demonstrated that Δ8-THC might represent a new neuroprotective agent in AD.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Santino Blando
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem Srls, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem Srls, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem Srls, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
13
|
Rickner HD, Jiang L, Hong R, O'Neill NK, Mojica CA, Snyder BJ, Zhang L, Shaw D, Medalla M, Wolozin B, Cheng CS. Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model. Nat Commun 2022; 13:6275. [PMID: 36271092 PMCID: PMC9587045 DOI: 10.1038/s41467-022-34005-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/10/2022] [Indexed: 12/25/2022] Open
Abstract
The use of iPSC derived brain organoid models to study neurodegenerative disease has been hampered by a lack of systems that accurately and expeditiously recapitulate pathogenesis in the context of neuron-glial interactions. Here we report development of a system, termed AstTau, which propagates toxic human tau oligomers in iPSC derived neuron-astrocyte assembloids. The AstTau system develops much of the neuronal and astrocytic pathology observed in tauopathies including misfolded, phosphorylated, oligomeric, and fibrillar tau, strong neurodegeneration, and reactive astrogliosis. Single cell transcriptomic profiling combined with immunochemistry characterizes a model system that can more closely recapitulate late-stage changes in adult neurodegeneration. The transcriptomic studies demonstrate striking changes in neuroinflammatory and heat shock protein (HSP) chaperone systems in the disease process. Treatment with the HSP90 inhibitor PU-H71 is used to address the putative dysfunctional HSP chaperone system and produces a strong reduction of pathology and neurodegeneration, highlighting the potential of AstTau as a rapid and reproducible tool for drug discovery.
Collapse
Affiliation(s)
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rui Hong
- Program in Bioinformatics, Boston University, Boston, MA, 02215, USA
| | | | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Benjamin J Snyder
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lushuang Zhang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Dipan Shaw
- Informatics Group, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA.
| | - Christine S Cheng
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Program in Bioinformatics, Boston University, Boston, MA, 02215, USA.
- Informatics Group, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Lai Y, Lin X, Lin C, Lin X, Chen Z, Zhang L. Identification of endoplasmic reticulum stress-associated genes and subtypes for prediction of Alzheimer’s disease based on interpretable machine learning. Front Pharmacol 2022; 13:975774. [PMID: 36059957 PMCID: PMC9438901 DOI: 10.3389/fphar.2022.975774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Alzheimer’s disease (AD) is a severe dementia with clinical and pathological heterogeneity. Our study was aim to explore the roles of endoplasmic reticulum (ER) stress-related genes in AD patients based on interpretable machine learning. Methods: Microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. We performed nine machine learning algorithms including AdaBoost, Logistic Regression, Light Gradient Boosting (LightGBM), Decision Tree (DT), eXtreme Gradient Boosting (XGBoost), Random Forest, K-nearest neighbors (KNN), Naïve Bayes, and support vector machines (SVM) to screen ER stress-related feature genes and estimate their efficiency of these genes for early diagnosis of AD. ROC curves were performed to evaluate model performance. Shapley additive explanation (SHAP) was applied for interpreting the results of these models. AD patients were classified using a consensus clustering algorithm. Immune infiltration and functional enrichment analysis were performed via CIBERSORT and GSVA, respectively. CMap analysis was utilized to identify subtype-specific small-molecule compounds. Results: Higher levels of immune infiltration were found in AD individuals and were markedly linked to deregulated ER stress-related genes. The SVM model exhibited the highest AUC (0.879), accuracy (0.808), recall (0.773), and precision (0.809). Six characteristic genes (RNF5, UBAC2, DNAJC10, RNF103, DDX3X, and NGLY1) were determined, which enable to precisely predict AD progression. The SHAP plots illustrated how a feature gene influence the output of the SVM prediction model. Patients with AD could obtain clinical benefits from the feature gene-based nomogram. Two ER stress-related subtypes were defined in AD, subtype2 exhibited elevated immune infiltration levels and immune score, as well as higher expression of immune checkpoint. We finally identified several subtype-specific small-molecule compounds. Conclusion: Our study provides new insights into the role of ER stress in AD heterogeneity and the development of novel targets for individualized treatment in patients with AD.
Collapse
Affiliation(s)
- Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Xueyan Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Chunjin Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Xing Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Zhihan Chen
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Li Zhang, ; Zhihan Chen,
| | - Li Zhang
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Li Zhang, ; Zhihan Chen,
| |
Collapse
|
15
|
Chanda K, Jana NR, Mukhopadhyay D. Long non-coding RNA MALAT1 protects against Aβ 1-42 induced toxicity by regulating the expression of receptor tyrosine kinase EPHA2 via quenching miR-200a/26a/26b in Alzheimer's disease. Life Sci 2022; 302:120652. [PMID: 35598655 DOI: 10.1016/j.lfs.2022.120652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Altered expressions of Receptor Tyrosine Kinases (RTK) and non-coding (nc) RNAs are known to regulate the pathophysiology of Alzheimer's disease (AD). However, specific understanding of the roles played, especially the mechanistic and functional roles, by long ncRNAs in AD is still elusive. Using mouse tissue qPCR assays we observe changes in the expression levels of 41 lncRNAs in AD mice of which only 7 genes happen to have both human orthologs and AD associations. Post validation of these 7 human lncRNA genes, MEG3 and MALAT1 shows consistent and significant decrease in AD cell, animal models and human AD brain tissues, but MALAT1 showed a more pronounced decrease. Using bioinformatics, qRT-PCR, RNA FISH and RIP techniques, we could establish MALAT1 as an interactor and regulator of miRs-200a, -26a and -26b, all of which are naturally elevated in AD. We could further show that these miRNAs target the RTK EPHA2 and several of its downstream effectors. Expectedly EPHA2 over expression protects against Aβ1-42 induced cytotoxicity. Transiently knocking down MALAT1 validates these unique regulatory facets of AD at the miRNA and protein levels. Although the idea of sponging of miRNAs by lncRNAs in other pathologies is gradually gaining credibility, this novel MALAT1- miR-200a/26a/26b - EPHA2 regulation mechanism in the context of AD pathophysiology promises to become a significant strategy in controlling the disease.
Collapse
Affiliation(s)
- Kaushik Chanda
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata 700 064, India; Department of Neuroscience, UF Scripps Biomedical Research, 120 Scripps Way, Jupiter, FL 33458, United States of America
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata 700 064, India.
| |
Collapse
|
16
|
The role of amyloid β in the pathological mechanism of GNE myopathy. Neurol Sci 2022; 43:6309-6321. [PMID: 35904705 PMCID: PMC9616754 DOI: 10.1007/s10072-022-06301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
GNE myopathy is a hereditary muscle disorder characterized by muscle atrophy and weakness initially involving the lower distal extremities. The treatment of GNE myopathy mainly focuses on a sialic acid deficiency caused by a mutation in the GNE gene, but it has not achieved the expected effect. The main pathological features of GNE myopathy are myofiber atrophy and rimmed vacuoles, including accumulation of amyloid β, which is mainly found in atrophic muscle fibers. Although the role of amyloid β and other misfolded proteins on the nervous system has been widely recognized, the cause and process of the formation of amyloid β in the pathological process of GNE myopathy are unclear. In addition, amyloid β has been reported to be linked to quality control mechanisms of proteins, such as molecular chaperones, the ubiquitin–proteasome system, and the autophagy-lysosome system. Herein, we summarize the possible reasons for amyloid β deposition and illustrate amyloid β-mediated events in the cells and their role in muscle atrophy in GNE myopathy. This review represents an overview of amyloid β and GNE myopathy that could help identify a potential mechanism and thereby a plausible therapeutic for the disease.
Collapse
|
17
|
Zhou HY, Sun YY, Chang P, Huang HC. Curcumin Inhibits Cell Damage and Apoptosis Caused by Thapsigargin-Induced Endoplasmic Reticulum Stress Involving the Recovery of Mitochondrial Function Mediated by Mitofusin-2. Neurotox Res 2022; 40:449-460. [PMID: 35192145 DOI: 10.1007/s12640-022-00481-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
Abstract
Endoplasmic reticulum stress (ERS) and mitochondrial dysfunction have been suggested to relate with the pathology of Alzheimer's disease (AD). However, their cross-talk is needed to investigate further. Mitofusin-2 (Mfn2) is a member of mitochondria-associated membrane (MAM), which connects endoplasmic reticulum (ER) and mitochondria. This study investigated the protective effect of curcumin on thapsigargin (TG)-induced ERS and cell apoptosis and the role of Mfn2 on mitochondrial dysfunction. The cell viability of SH-SY5Y cells was decreased and cell damage and apoptosis were increased in a concentration-dependent manner when cells were treated with TG. TG upregulated the protein levels of GRP78, pSer981-PERK, and pSer51-eIF2α. Curcumin attenuated TG-induced damage on cell viability and apoptosis and downregulated the protein levels of GRP78, pSer981-PERK, and pSer51-eIF2α. TG caused the increases in intracellular reactive oxygen species (ROS) and in the protein levels of pSer40-Nrf2 and hemoglobin oxygenase 1 (HO-1). Curcumin decreased the TG-induced intracellular ROS but did not alter the protein levels of pSer40-Nrf2 and HO-1. TG resulted in the upregulation on Mfn2 expression and mitochondrial spare respiratory capacity but the downregulation on mitochondrial basal respiration and ATP production. Curcumin attenuated the TG-induced Mfn2 expression and mitochondrial stress. When Mfn2 was silenced by shRNA interference, curcumin failed to recovery the TG-damaged mitochondrial function. In general, the TG-induced ERS trigged mitochondrial dysfunction and cell apoptosis. Curcumin attenuates TG-induced ERS and the cell damage and apoptosis. Mfn2 is required for curcumin's protection against the TG-induced damage on mitochondrial functions.
Collapse
Affiliation(s)
- He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Institute of Functional Factors and Brain Sciences, Beijing Union University, Beijing, 100023, China
| | - Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Institute of Functional Factors and Brain Sciences, Beijing Union University, Beijing, 100023, China
| | - Ping Chang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Institute of Functional Factors and Brain Sciences, Beijing Union University, Beijing, 100023, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China.
- Institute of Functional Factors and Brain Sciences, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
18
|
Ismael S, Wajidunnisa, Sakata K, McDonald MP, Liao FF, Ishrat T. ER stress associated TXNIP-NLRP3 inflammasome activation in hippocampus of human Alzheimer's disease. Neurochem Int 2021; 148:105104. [PMID: 34153352 PMCID: PMC9479581 DOI: 10.1016/j.neuint.2021.105104] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Although the exact etiology of Alzheimer's disease (AD) is poorly understood, experimental and clinical evidences suggest the contribution of neuroinflammation in the pathogenesis of AD. Pathologically, AD brain is characterized by an imbalance in redox status, elevated endoplasmic reticulum (ER) stress, synaptic dysfunction, inflammation, and progressive neurodegeneration. It has been noted that continuous accumulation of amyloid-beta (Aβ) and intracellular neurofibrillary tangles (NFTs) in AD brain trigger ER stress, which contributes to neurodegeneration. Similarly, experimental evidences supports the hypothesis that thioredoxin-interacting protein (TXNIP), an endogenous regulator of redox regulator thioredoxin (TRX), is activated by ER stress and contributes to activation of NLRP3 (NOD-like receptor protein 3) inflammatory cascade in hippocampus of the AD brain. Hippocampus of postmortem human AD and aged matched non-AD controls were analyzed for the expression ER stress markers and TXNIP-NLRP3 inflammasome at cellular and molecular levels. We found higher expression of TXNIP at protein and transcript levels in close association with pathological markers of AD such as Aβ and NFTs in AD hippocampus. In addition, our results demonstrated that TXNIP was co-localized in neurons and microglia. Moreover, expression of binding immunoglobulin protein (BiP), activated eukaryotic initiation factor-2α (eIf2α) and C/EBP homology protein (CHOP), proteins involved the development of ER stress, were elevated in AD hippocampus. Further, elevated expression of effector molecules of NLRP3 inflammasome activation such as apoptosis associated speck-like protein (ASC), cleaved caspase-1 and cleaved interleukin-1β were observed in the AD hippocampus. The study suggests that TXNIP could be a link that connect ER stress with neuroinflammation. Thus, TXNIP can be a possible therapeutic target to mitigate the progression of neuroinflammation in the pathogenesis of AD.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wajidunnisa
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kazuko Sakata
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michael P McDonald
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
19
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
20
|
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer's Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46:3103-3122. [PMID: 34386919 DOI: 10.1007/s11064-021-03418-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is an intrinsic biochemical, cellular process that regulates cell death and is crucial for cell survival, cellular homeostasis, and maintaining the optimum functional status. Apoptosis in a predetermined and programmed manner regulates several molecular events, including cell turnover, embryonic development, and immune system functions but may be the exclusive contributor to several disorders, including neurodegenerative manifestations, when it functions in an aberrant and disorganized manner. Alzheimer's disease (AD) is a fatal, chronic neurodegenerative disorder where apoptosis has a compelling and divergent role. The well-characterized pathological features of AD, including extracellular plaques of amyloid-beta, intracellular hyperphosphorylated tangles of tau protein (NFTs), inflammation, mitochondrial dysfunction, oxidative stress, and excitotoxic cell death, also instigate an abnormal apoptotic cascade in susceptible brain regions (cerebral cortex, hippocampus). The apoptotic players in these regions affect cellular organelles (mitochondria and endoplasmic reticulum), interact with trophic factors, and several pathways, including PI3K/AKT, JNK, MAPK, mTOR signalling. This dysregulated apoptotic cascade end with an abnormal neuronal loss which is a primary event that may precede the other events of AD progression and correlates well with the degree of dementia. The present review provides insight into the diverse and versatile apoptotic mechanisms that are indispensable for neuronal survival and constitute an integral part of the pathological progression of AD. Identification of potential targets (restoring apoptotic and antiapoptotic balance, caspases, TRADD, RIPK1, FADD, TNFα, etc.) may be valuable and advantageous to decide the fate of neurons and to develop potential therapeutics for treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.,Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | | | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
21
|
Wu Y, Chen Q, Wen B, Wu N, He B, Chen J. Berberine Reduces Aβ 42 Deposition and Tau Hyperphosphorylation via Ameliorating Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:640758. [PMID: 34349640 PMCID: PMC8327086 DOI: 10.3389/fphar.2021.640758] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is tightly related to endoplasmic reticulum stress (ER stress), which aggravates two dominant pathological manifestations of AD: senile plaques and neurofibrillary tangles. Berberine is widely applied in the clinical treatment of many diseases and is reported to have anti-AD effects. In the present study, berberine was shown to ameliorate ER stress and cognitive impairment in APP/PS1 mice. We found ER stress plays a role as a central hub for signal transduction, which was evidenced by the hyperactivation of glycogen synthase kinase 3β (GSK3β) to phosphorylate tau and the activation of PRKR-like endoplasmic reticulum kinase (PERK) subsequently to phosphorylate eukaryotic translation initiation factor-2 α (eIF2α). Also, eIF2α has regulated the expression of beta-site APP cleaving enzyme-1 (BACE1), which cleaves APP into pro-oligomerized amyloid beta 42 (Aβ42), the main component of senile plaques, proven by using siRNA targeting at eIF2α. Mechanically, berberine can reduce GSK3β activity, contributing to the downregulation of tau phosphorylation. Berberine also suppressed Aβ42 production via inhibiting the PERK/eIF2α/BACE1 signaling pathway. Taken together, these findings indicated that berberine had the potential to ameliorate two major pathological manifestations of AD mainly by suppressing ER stress. Our work provided knowledge on the pharmacological intervention of AD and the possible targets for future drug development.
Collapse
Affiliation(s)
- Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ninghua Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China.,Basic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Wang J, Ding Y, Zhuang L, Wang Z, Xiao W, Zhu J. Ginkgolide B‑induced AMPK pathway activation protects astrocytes by regulating endoplasmic reticulum stress, oxidative stress and energy metabolism induced by Aβ1‑42. Mol Med Rep 2021; 23:457. [PMID: 33880582 PMCID: PMC8072312 DOI: 10.3892/mmr.2021.12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Ginkgolide B (GB), the diterpenoid lactone compound isolated from the extracts of Ginkgo biloba leaves, significantly improves cognitive impairment, but its potential pharmacological effect on astrocytes induced by β-amyloid (Aβ)1-42 remains to be elucidated. The present study aimed to investigate the protective effect and mechanism of GB on astrocytes with Aβ1-42-induced apoptosis in Alzheimer's disease (AD). Astrocytes obtained from Sprague Dawley rats were randomly divided into control, Aβ, GB and GB + compound C groups. Cell viability and apoptosis were analyzed using Cell Counting Kit-8 and flow cytometry assays, respectively. Protein and mRNA expression levels were analyzed using western blotting and reverse transcription-quantitative PCR, respectively. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), reactive oxygen species (ROS) and ATP were determined using the corresponding commercial kits. The findings revealed that GB attenuated Aβ1-42-induced apoptosis and the 5′ adenosine monophosphate- activated protein kinase (AMPK) inhibitor compound C reversed the protective effects of GB. In addition, GB reversed Aβ1-42-induced oxidative damage and energy metabolism disorders, including decreases in the levels of SOD, GSH-Px and ATP and increased the levels of MDA and ROS in astrocytes, while compound C reversed the anti-oxidative effect and the involvement of GB in maintaining energy metabolism in astrocytes. Finally, GB decreased the expression levels of the endoplasmic reticulum stress (ERS) proteins and the apoptotic protein CHOP and increased both mRNA and protein expression of the components of the energy metabolism-related AMPK/peroxisome proliferator-activated receptor γ coactivator 1α/peroxisome proliferator-activated receptor α and anti-oxidation-related nuclear respiratory factor 2/heme oxygenase 1/NAD(P)H dehydrogenase (quinone 1) pathways and downregulated the expression of β-secretase 1. However, compound C could antagonize these effects. In conclusion, the findings demonstrated that GB protected against Aβ1-42-induced apoptosis by inhibiting ERS, oxidative stress, energy metabolism disorders and Aβ1-42 production probably by activating AMPK signaling pathways. The findings provided an innovative insight into the treatment using GB as a therapeutic in Aβ1-42-related AD.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Linwu Zhuang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| |
Collapse
|
23
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
24
|
Andhavarapu S, Katuri A, Bryant J, Patel V, Gupta U, Asemu G, Makar TK. Intersecting roles of ER stress, mitochondrial dysfunction, autophagy, and calcium homeostasis in HIV-associated neurocognitive disorder. J Neurovirol 2020; 26:664-675. [PMID: 32804309 DOI: 10.1007/s13365-020-00861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023]
Abstract
HIV-associated neurocognitive disorder (HAND) is a collective term describing the spectrum of neurocognitive deficits that arise from HIV infection. Although the introduction to highly active antiretroviral therapy (HAART) has prolonged the lifespan of HIV patients, neurocognitive impairments remain prevalent, as patients are left perpetually with HIV. Currently, physicians face a challenge in treating HAND patients, so a greater understanding of the mechanisms underlying HAND pathology has been a growing focus in HIV research. Recent research has revealed the role disrupted calcium homeostasis in HIV-mediated neurotoxicity. Calcium plays a well-established role in the crosstalk between the mitochondrion and ER as well as in regulating autophagy, and ER stress, mitochondrial dysfunction, and impaired autophagic activity are considered hallmarks in several neurodegenerative and neurocognitive disorders. Therefore, it is paramount that the intricate inter-organelle signaling in relation to calcium homeostasis during HIV infection and the development of HAND is elucidated. This review consolidates current knowledge regarding the neuropathology of neurocognitive disorders and HIV infection with a focus on the underlying role of calcium during ER stress, mitochondrial dysfunction, and autophagy associated with the progression of HAND. The details of this intricate crosstalk during HAND remain relatively unknown; further research in this field can potentially aid in the development of improved therapy for patients suffering from HAND.
Collapse
Affiliation(s)
- Sanketh Andhavarapu
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Akhil Katuri
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Vivek Patel
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Girma Asemu
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Tapas K Makar
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA. .,VA Medical Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
25
|
Liu B, Huang B, Liu J, Shi JS. Dendrobium nobile Lindl alkaloid and metformin ameliorate cognitive dysfunction in senescence-accelerated mice via suppression of endoplasmic reticulum stress. Brain Res 2020; 1741:146871. [PMID: 32380088 DOI: 10.1016/j.brainres.2020.146871] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) mice have many pathological features of Alzheimer's disease (AD) with aging. We previously reported that Dendrobium nobile Lindl alkaloid (DNLA) effectively improved cognitive deficits in multiple Alzheimer's disease (AD) models. This study further used SAMP8 mice to study the anti-aging effects of DNLA, focusing on endoplasmic reticulum (ER) stress. DNLA and metformin were orally administered to SAMP8 mice starting at 4-month of age for 6 months. Behavioral tests were performed in 10-month-old SAMP8 mice and age-matched SAMR1 control mice. At the end of experiment, neuron damage was evaluated by histology and transmission electron microscopy. ER stress-related proteins were analyzed with Western-blot. DNLA improved learning and memory impairments, reduced the loss of neurons and Nissl bodies in the hippocampus and cortex. DNLA ameliorated ER dilation and swelling in the hippocampal neurons. DNLA down-regulated the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway, decreased calpain 1, GSK-3β and Cdk5 activities and the Tau hyper-phosphorylation. The effects of DNLA were comparable to metformin. In summary, DNLA was effective in improving cognitive deficits in aged SAMP8 mice, possibly via suppression of ER stress-related PERK signaling pathway, sequential inhibition of calpain 1, GSK-3β and Cdk5 activities, and eventually reducing the hyper-phosphorylation of Tau.
Collapse
Affiliation(s)
- Bo Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China.
| |
Collapse
|
26
|
Du Y, Liu X, Zhu X, Liu Y, Wang X, Wu X. Activating transcription factor 6 reduces Aβ1-42 and restores memory in Alzheimer's disease model mice. Int J Neurosci 2020; 130:1015-1023. [PMID: 31928492 DOI: 10.1080/00207454.2020.1715977] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Amyloid plaques are the most important pathological hallmarks of Alzheimer's disease. The deposition of amyloid plaques will cause ER Stress. Activating Transcription Factor 6(ATF6) is a sensor of ER Stress. However, the role of ATF6 in Alzheimer's disease has not been reported yet. METHODS The levels of β-site APP-cleaving enzyme 1 (BACE1) and Aβ1-42 were detected by Western blot, ELISA and Thioflavin S staining. Y maze and Morris water maze tests were used to detect the learning and memory functions. Dual luciferase assay was used to test the promoter activity of BACE1 and ADAM17. RESULTS In our study, we found that the expression of ATF6 was reduced in APPswe/PSNdE9 (APP/PS1) Alzheimer's disease model mice compared with wild type mice. Furthermore, in LN229 cell, we found that ATF6 reduced the expression of full length amyloid precursor protein (APP) in protein level. At the same time, the overexpression of ATF6 strikingly reduced the level of Aβ1-42. Interestingly, ATF6 also downregulated the promoter activity of BACE1. And some behavioral experiments like Y maze and Morris water maze test indicated that ATF6 could protect retention of spatial memory in APP/PS1 mice. CONCLUSION Our findings indicated that ATF6 rescued the amyloid pathology by downregulating BACE1. Therefore, we suggest that ATF6 could be a potential hub for targeting treatment of the Alzheimer's disease.
Collapse
Affiliation(s)
- Yayun Du
- Department of Biochemistry and Molecular Biology & State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoli Liu
- Department of Biochemistry and Molecular Biology & State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xilin Zhu
- Department of Biochemistry and Molecular Biology & State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology & State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinru Wang
- Department of Rehabilitation Medicine, Sijiqing Community Health Center of HangZhou, HangZhou, China
| | - Xiaopan Wu
- Department of Biochemistry and Molecular Biology & State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Shi M, Sun F, Wang Y, Kang J, Zhang S, Li H. CGA restrains the apoptosis of Aβ 25-35-induced hippocampal neurons. Int J Neurosci 2020; 130:700-707. [PMID: 31902262 DOI: 10.1080/00207454.2019.1702547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Chlorogenic acid (CGA) has anti-oxidant and anti-inflammatory effects, but the study on its role in Alzheimer's disease (AD) models remains rare. Here, the effects of CGA on β-amyloid protein (Aβ)-induced cell models were investigated, aiming to provide a direction for Aβ-induced AD.Material and methods: Hippocampal neurons were separated from newborn Sprague-Dawley (SD) rats and identified by immumofluorescence method. Hippocampal neurons were processed with Aβ25-35 after pre-treatment CGA. MTT assay was used for detecting viability of treated cells. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and lactate dehydrogenase (LDH) of treated hippocampal neurons were determined by corresponding kits. Flow cytometry analysis assessed the apoptosis and mitochondrial membrane potential (MMP) in hippocampal neurons after treatment. The expressions of proteins related to apoptosis and endoplasmic reticulum stress (ERS) were measured by western blot (WB) analysis.Results: Immumofluorescence method showed that the Aβ25-35 induction models were successfully constructed. CGA increased the viability and decreased the apoptosis rate of Aβ25-35-induced hippocampal neurons. Decreasing activities of LDH and MDA, and raised contents of SOD and GSH-Px were appeared in Aβ25-35-induced cells that pre-treated with CGA. Moreover, CGA also enhanced MMP intensity of hippocampal neurons induced by Aβ25-35. In WB analysis, CGA reversed the promoting effect of Aβ25-35 on the expressions of proteins related to pro-ERS and pro-apoptosis.Conclusion: CGA restrained the apoptosis of Aβ25-35-induced hippocampal neurons via improving the anti-oxidant capacity, mitochondrial injury and ERS state of cells, which may provide a direction for AD.
Collapse
Affiliation(s)
- Min Shi
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Sun
- Department of Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuqing Zhang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfu Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Chen Y, Zhang L, Gong X, Gong H, Cheng R, Qiu F, Zhong X, Huang Z. Iridoid glycosides from Radix Scrophulariae attenuates focal cerebral ischemia‑reperfusion injury via inhibiting endoplasmic reticulum stress‑mediated neuronal apoptosis in rats. Mol Med Rep 2019; 21:131-140. [PMID: 31746404 PMCID: PMC6896402 DOI: 10.3892/mmr.2019.10833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Iridoid glycosides of Radix Scrophulariae (IGRS) are a group of the major bioactive components from Radix Scrophulariae with extensive pharmacological activities. The present study investigated the effects of IGRS on cerebral ischemia‑reperfusion injury (CIRI) and explored its potential mechanisms of action. A CIRI model in rats was established by occlusion of the right middle cerebral artery for 90 min, followed by 24 h of reperfusion. Prior to surgery, 30, 60 or 120 mg/kg IGRS was administered to the rats once a day for 7 days. Then, the neurological scores, brain edema and volume of the cerebral infarction were measured. The apoptosis index was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling. The effects of IGRS on the histopathology of the cortex in brain tissues and the endoplasmic reticulum ultrastructure in the hippocampus were analyzed. Finally, the expression of endoplasmic reticulum stress (ERS)‑regulating mediators, endoplasmic reticulum chaperone BiP (GRP78), DNA damage‑inducible transcript 3 protein (CHOP) and caspase‑12, were detected by reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. The volume of cerebral infarction and brain water content in the IGRS‑treated groups treated at doses of 60 and 120 mg/kg were decreased significantly compared with the Model group. The neurological scores were also significantly decreased in the IGRS‑treated groups. IGRS treatment effectively decreased neuronal apoptosis resulting from CIRI‑induced neuron injury. In addition, the histopathological damage and the endoplasmic reticulum ultrastructure injury were partially improved in CIRI rats following IGRS treatment. RT‑qPCR and western blot analysis data indicated that IGRS significantly decreased the expression levels of GRP78, CHOP and caspase‑12 at both mRNA and protein levels. The results of the present study demonstrated that IGRS exerted a protective effect against CIRI in brain tissue via the inhibition of apoptosis and ERS.
Collapse
Affiliation(s)
- Yanyue Chen
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Lei Zhang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Xueyuan Gong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Hengpei Gong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Rubin Cheng
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Fengmei Qiu
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Xiaoming Zhong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Zhen Huang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| |
Collapse
|
29
|
Aivazidis S, Jain A, Rauniyar AK, Anderson CC, Marentette JO, Orlicky DJ, Fritz KS, Harris PS, Siegel D, Maclean KN, Roede JR. SNARE proteins rescue impaired autophagic flux in Down syndrome. PLoS One 2019; 14:e0223254. [PMID: 31714914 PMCID: PMC6850524 DOI: 10.1371/journal.pone.0223254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS) is a chromosomal disorder caused by trisomy of chromosome 21 (Ts21). Unbalanced karyotypes can lead to dysfunction of the proteostasis network (PN) and disrupted proteostasis is mechanistically associated with multiple DS comorbidities. Autophagy is a critical component of the PN that has not previously been investigated in DS. Based on our previous observations of PN disruption in DS, we investigated possible dysfunction of the autophagic machinery in human DS fibroblasts and other DS cell models. Following induction of autophagy by serum starvation, DS fibroblasts displayed impaired autophagic flux indicated by autophagolysosome accumulation and elevated p62, NBR1, and LC3-II abundance, compared to age- and sex-matched, euploid (CTL) fibroblasts. While lysosomal physiology was unaffected in both groups after serum starvation, we observed decreased basal abundance of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptor (SNARE) family members syntaxin 17 (STX17) and Vesicle Associated Membrane Protein 8 (VAMP8) indicating that decreased autophagic flux in DS is due at least in part to a possible impairment of autophagosome-lysosome fusion. This conclusion was further supported by the observation that over-expression of either STX17 or VAMP8 in DS fibroblasts restored autophagic degradation and reversed p62 accumulation. Collectively, our results indicate that impaired autophagic clearance is a characteristic of DS cells that can be reversed by enhancement of SNARE protein expression and provides further evidence that PN disruption represents a candidate mechanism for multiple aspects of pathogenesis in DS and a possible future target for therapeutic intervention.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Abhilasha Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Abhishek K. Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Colin C. Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - John O. Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Peter S. Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
| | - Kenneth N. Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
| | - James R. Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America
- The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
31
|
Andhavarapu S, Mubariz F, Arvas M, Bever C, Makar TK. Interplay between ER stress and autophagy: A possible mechanism in multiple sclerosis pathology. Exp Mol Pathol 2019; 108:183-190. [DOI: 10.1016/j.yexmp.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023]
|
32
|
Kam MK, Lee DG, Kim B, Lee HS, Lee SR, Bae YC, Lee DS. Peroxiredoxin 4 ameliorates amyloid beta oligomer-mediated apoptosis by inhibiting ER-stress in HT-22 hippocampal neuron cells. Cell Biol Toxicol 2019; 35:573-588. [PMID: 31147869 DOI: 10.1007/s10565-019-09477-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by amyloid beta oligomers (AβO), which induce cell death by triggering oxidative stress and endoplasmic reticulum (ER) stress. Oxidative stress is regulated by antioxidant enzymes, including peroxiredoxins. Peroxiredoxins (Prx) are classified into six subtypes, based on their localization and cysteine residues, and protect cells by scavenging hydrogen peroxide (H2O2). Peroxiredoxin 4 (Prx4) is unique in being localized to the ER; however, whether Prx4 protects neuronal cells from AβO-induced toxicity remains unclear, although Prx4 expression is upregulated in AβO-induced oxidative stress and ER stress. In this study, we established HT-22 cells in which Prx4 was either overexpressed or silenced to investigate its role in AβO-induced toxicity. AβO-stimulation of HT-22 cells with overexpressed Prx4 caused decreases in both AβO-induced ROS and ER stress (followed by ER expansion). In contrast, AβO stimulation caused increases in both ROS and ER stress that were notably higher in HT-22 cells with silenced Prx4 expression than in HT-22 cells. Consequently, Prx4 overexpression decreased apoptotic cell death and ameliorated the AβO-induced increase in intracellular Ca2+. Therefore, we conclude that Prx4 has a protective effect against AβO-mediated oxidative stress, ER stress, and neuronal cell death. Furthermore, these results suggest that Prx4 may be a target for preventing AβO toxicity in AD. Graphical abstract .
Collapse
Affiliation(s)
- Min Kyoung Kam
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Gil Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Neurology, School of Medicine, UC Davis, Davis, CA, 95817, USA
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheonbuk-do, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
33
|
El Hajj H, Savage JC, Bisht K, Parent M, Vallières L, Rivest S, Tremblay MÈ. Ultrastructural evidence of microglial heterogeneity in Alzheimer's disease amyloid pathology. J Neuroinflammation 2019; 16:87. [PMID: 30992040 PMCID: PMC6469225 DOI: 10.1186/s12974-019-1473-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by the deposition of extracellular fibrillar amyloid β (fΑβ) and the intracellular accumulation of neurofibrillary tangles. As AD progresses, Aβ drives a robust and prolonged inflammatory response via its recognition by microglia, the brain's immune cells. Microglial reactivity to fAβ plaques may impair their normal surveillance duties, facilitating synaptic loss and neuronal death, as well as cognitive decline in AD. METHODS In the current study, we performed correlative light, transmission, and scanning electron microscopy to provide insights into microglial structural and functional heterogeneity. We analyzed microglial cell bodies and processes in areas containing fAβ plaques and neuronal dystrophy, dystrophy only, or appearing healthy, among the hippocampus CA1 of 14-month-old APPSwe-PS1Δe9 mice versus wild-type littermates. RESULTS Our quantitative analysis revealed that microglial cell bodies in the AD model mice were larger and displayed ultrastructural signs of cellular stress, especially nearby plaques. Microglial cell bodies and processes were overall less phagocytic in AD model mice. However, they contained increased fibrillar materials and non-empty inclusions proximal to plaques. Microglial cell bodies and processes in AD model mice also displayed reduced association with extracellular space pockets that contained debris. In addition, microglial processes in healthy subregions of AD model mice encircled synaptic elements more often compared with plaque-associated processes. These observations in mice were qualitatively replicated in post-mortem hippocampal samples from two patients with AD (Braak stage 5). CONCLUSION Together, our findings identify at the ultrastructural level distinct microglial transformations common to mouse and human in association with amyloid pathology.
Collapse
Affiliation(s)
- Hassan El Hajj
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
| | - Julie C. Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
| | - Kanchan Bisht
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
| | - Martin Parent
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Quebec, QC Canada
- CERVO Brain Research Center, Quebec, QC Canada
| | - Luc Vallières
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec, QC Canada
| | - Serge Rivest
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec, QC Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, boulevard Laurier, T2-50, Quebec, QC G1V 4G2 Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec, QC Canada
| |
Collapse
|
34
|
Abid NB, Naseer MI, Kim MO. Comparative Gene-Expression Analysis of Alzheimer's Disease Progression with Aging in Transgenic Mouse Model. Int J Mol Sci 2019; 20:ijms20051219. [PMID: 30862043 PMCID: PMC6429175 DOI: 10.3390/ijms20051219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterized by progressive memory dysfunction and a decline in cognition. One of the biggest challenges to study the pathological process at a molecular level is that there is no simple, cost-effective, and comprehensive gene-expression analysis tool. The present study provides the most detailed (Reverse transcription polymerase chain reaction) RT-PCR-based gene-expression assay, encompassing important genes, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) disease pathway. This study analyzed age-dependent disease progression by focusing on pathological events such as the processing of the amyloid precursor protein, tau pathology, mitochondrial dysfunction, endoplasmic reticulum stress, disrupted calcium signaling, inflammation, and apoptosis. Messenger RNA was extracted from the cortex and hippocampal region of APP/PS1 transgenic mice. Samples were divided into three age groups, six-, nine-, and 12-month-old transgenic mice, and they were compared with normal C57BL/6J mice of respective age groups. Findings of this study provide the opportunity to design a simple, effective, and accurate clinical analysis tool that can not only provide deeper insight into the disease, but also act as a clinical diagnostic tool for its better diagnosis.
Collapse
Affiliation(s)
- Noman Bin Abid
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
35
|
Abstract
Brain is the most complex structure of the human body. The processes going inside the brain and the mechanisms behind it have been unrevealed up to certain extent only. Out of the various physiological phenomena carried out by the brain, calcium signalling can be considered as one of the most important. Calcium being a second messenger plays an important role in transformation of various information. In view of above, an attempt has been made here to study calcium signalling in presence of buffers, i.e. one kind of proteins and endoplasmic reticulum (ER), which is also known as store house of the cell. Being the store house of the cell, it has very high amount of calcium, whereas buffers decrease the level of free calcium ions by binding calcium ions to it. A two-dimensional mathematical model has been developed to see the impact of these parameters on cytosolic calcium concentration. This mathematical model is solved analytically using Laplace transforms and similarity transforms. The simulations are carried out using MATLAB. It is observed that the impact of buffer and ER is significant on calcium signalling. The obtained results are interpreted with the Alzheimeric condition of the nerve cells.
Collapse
Affiliation(s)
- Devanshi D. Dave
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar, Gujarat 382007, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
36
|
Cheng J, North BJ, Zhang T, Dai X, Tao K, Guo J, Wei W. The emerging roles of protein homeostasis-governing pathways in Alzheimer's disease. Aging Cell 2018; 17:e12801. [PMID: 29992725 PMCID: PMC6156496 DOI: 10.1111/acel.12801] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Pathways governing protein homeostasis are involved in maintaining the structural, quantitative, and functional stability of intracellular proteins and involve the ubiquitin-proteasome system, autophagy, endoplasmic reticulum, and mTOR pathway. Due to the broad physiological implications of protein homeostasis pathways, dysregulation of proteostasis is often involved in the development of multiple pathological conditions, including Alzheimer's disease (AD). Similar to other neurodegenerative diseases that feature pathogenic accumulation of misfolded proteins, Alzheimer's disease is characterized by two pathological hallmarks, amyloid-β (Aβ) plaques and tau aggregates. Knockout or transgenic overexpression of various proteostatic components in mice results in AD-like phenotypes. While both Aβ plaques and tau aggregates could in turn enhance the dysfunction of these proteostatic pathways, eventually leading to apoptotic or necrotic neuronal death and pathogenesis of Alzheimer's disease. Therefore, targeting the components of proteostasis pathways may be a promising therapeutic strategy against Alzheimer's disease.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Brian J. North
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Tao Zhang
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Xiangpeng Dai
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Kaixiong Tao
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianping Guo
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Wenyi Wei
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
37
|
Bengesser SA, Reininghaus EZ, Dalkner N, Birner A, Hohenberger H, Queissner R, Fellendorf F, Platzer M, Pilz R, Hamm C, Rieger A, Kapfhammer HP, Mangge H, Reininghaus B, Meier-Allard N, Stracke A, Fuchs R, Holasek S. Endoplasmic reticulum stress in bipolar disorder? - BiP and CHOP gene expression- and XBP1 splicing analysis in peripheral blood. Psychoneuroendocrinology 2018; 95:113-119. [PMID: 29843019 DOI: 10.1016/j.psyneuen.2018.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Endoplasmic Reticulum stress activates the Unfolded Protein Response, which is partially impaired in Bipolar Disorder (BD) according to previous in-vitro studies. Thus, BiP and CHOP gene expression and XBP1 splicing were analyzed in peripheral blood of study participants with BD and controls. METHODS RNA was isolated from fasting blood of study participants with BD (n = 81) and controls (n = 54) and reverse transcribed into cDNA. BiP and CHOP gene expression was analyzed with quantitative RT-PCR. Atypical splicing of XBP1 mRNA was measured by semi-quantitative RT-PCR, gel-electrophoresis and densitometry. ANCOVAs with the covariates age, BMI, sex, lithium and anticonvulsants intake were used with SPSS. Bonferroni correction was used to correct for multiple testing (adjusted p = 0.0083). RESULTS BiP gene expression was significantly higher in BD than in controls (F(1/128) = 10.076, p = 0.002, Partial η2 = 0.073). Total XBP1 (F(1/126) = 9.550, p = 0.002, Partial η2 = 0.070) and unspliced XBP1 (F(1/128)= 8.803, p= 0.004, Patial η2 = 0.065) were significantly decreased in BD. Spliced XBP1 (F(1/126) = 5.848, p = 0.017, Partial η2 = 0.044) and the ratio spliced XBP1/ unspliced XBP1 did not differ between BD and controls (F(1/126) = 0.599, p = 0.441, Partial η2 = 0.005). Gene expression did not differ between euthymia, depression and mania. DISCUSSION BiP gene expression was significantly higher in BD compared to controls. Total and unspliced XBP1 were significantly lower in BD than in the control group. Thus, both genes may be considered as putative trait markers. Nevertheless, XBP1 splicing itself did not differ between both groups.
Collapse
Affiliation(s)
- Susanne A Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria.
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Helena Hohenberger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Frederike Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Rene Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Alexandra Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | | | - Nathalie Meier-Allard
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Anika Stracke
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Robert Fuchs
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Sandra Holasek
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| |
Collapse
|
38
|
Liu D, Zhou Y, Peng Y, Su P, Li Z, Xu Q, Tu Y, Tian X, Yang H, Wu Z, Mei W, Gao F. Endoplasmic Reticulum Stress in Spinal Cord Contributes to the Development of Morphine Tolerance. Front Mol Neurosci 2018; 11:72. [PMID: 29559889 PMCID: PMC5845556 DOI: 10.3389/fnmol.2018.00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Morphine tolerance remains an intractable problem, which hinders its prolonged use in clinical practice. Endoplasmic reticulum (ER) stress has been proved to play a fundamental role in the pathogenesis of Alzheimer's disease, diabetes, atherosclerosis, cancer, etc. In this study, we provide the first direct evidence that ER stress may be a significant driver of morphine tolerance. Binding immunoglobulin protein (BiP), the ER stress marker, was significantly upregulated in neurons in spinal dorsal horn in rats being treated with morphine for 7 days. Additionally, chronic morphine treatment resulted in the activation of three arms of unfolded protein response (UPR): inositol-requiring enzyme 1/X-box binding protein 1 (IRE1/XBP1), protein kinase RNA-like ER kinase/eukaryotic initiation factor 2 subunit alpha (PERK/eIF2α), and activating transcription factor 6 (ATF6). More importantly, inhibiting either one of the three cascades could attenuate the development of morphine tolerance. Taken together, our results suggest that ER stress in spinal cord might contribute to the development of morphine tolerance. These findings implicate a potential clinical strategy for preventing morphine tolerance and may contribute to expanding the morphine usage in clinic.
Collapse
Affiliation(s)
- Daiqiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yawen Peng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei General Hospital, Wuhan, China
| | - Peng Su
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaoqiao Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Liu XJ, Wei J, Shang YH, Huang HC, Lao FX. Modulation of AβPP and GSK3β by Endoplasmic Reticulum Stress and Involvement in Alzheimer's Disease. J Alzheimers Dis 2018; 57:1157-1170. [PMID: 28339396 DOI: 10.3233/jad-161111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a dementia disease with neuronal loss and synaptic impairment. This impairment is caused, at least partly, by the generation of two main AD hallmarks, namely the hyperphosphorylated tau protein comprising neurofibrillary tangles and senile plaques containing amyloid-β (Aβ) peptides. The amyloid-β protein precursor (AβPP) and glycogen synthase kinase-3β (GSK3β) are two main proteins associated with AD and are closely correlated with these hallmarks. Recently, both of the proteins were reported to be modulated by endoplasmic reticulum stress (ERS) and are involved in the pathogenesis of AD. The mechanism of ERS plus the modulation of AβPP processing and GSK3β activity by ERS in AD are summarized and explored in this review.
Collapse
Affiliation(s)
- Xin-Jun Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Jun Wei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Ying-Hui Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Feng-Xue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| |
Collapse
|
40
|
Noh MR, Woo CH, Park MJ, In Kim J, Park KM. Ablation of C/EBP homologous protein attenuates renal fibrosis after ureteral obstruction by reducing autophagy and microtubule disruption. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1634-1641. [PMID: 29425932 DOI: 10.1016/j.bbadis.2018.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Fibrosis is an undesirable consequence of injury and a critical problem in many diseases. Recent studies have demonstrated an association of C/EBP homologous protein (CHOP) with fibrosis. We investigated the mechanism of CHOP in kidney fibrosis progression after unilateral ureteral obstruction (UUO) using Chop gene-deleted (Chop-/-) mice and their wild-type littermates (Chop+/+). UUO-induced kidney fibrosis was reduced in the Chop-/- than Chop+/+ mice. After UUO, CHOP expression was detected in the cytosol and nucleus of distal tubule cells and collecting duct cells of the kidney. UUO formed the autophagosome and increased the expression of autophagy proteins, Beclin-1, LC3-I and II, and p62 in the kidneys. These UUO-induced changes were significantly reduced in Chop-/- mice. Furthermore, Chop gene deletion attenuated mitochondrial fragmentation with lower expression of Fis-1, a mitochondrial fission protein, but higher expression of Opa-1, a mitochondrial fusion protein, than that seen in the wild-type mice. UUO disrupted the microtubule, which is involved in autophagosome formation, and this disruption was milder in the Chop-/- than Chop+/+ mouse kidney, with less reduction of histone deacetylase 6 and α‑tubulin acetyl transferase, which acetylates tubulin, a component of the microtubule. After UUO, apoptosis, a consequence of autophagy and mitochondrial damage, was reduced in the Chop-/- mouse kidney cells than in Chop+/+ mice. Thus, the ablation of Chop attenuates renal fibrosis, accompanied by reduced autophagy, mitochondrial fragmentation, microtubule disruption, and apoptosis. Overall, these results suggest that CHOP plays a critical role in the progression of kidney fibrosis, likely through regulation of autophagy and apoptosis.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Anatomy and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Chang-Hoon Woo
- Department of Pharmacology and Smart-Aging Convergence Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Namgu, Daegu 42415, Republic of Korea
| | - Mae-Ja Park
- Department of Anatomy, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine and MRC, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Dalseogu, Daegu 42601, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea.
| |
Collapse
|
41
|
Kasza Á, Hunya Á, Frank Z, Fülöp F, Török Z, Balogh G, Sántha M, Bálind Á, Bernáth S, Blundell KLIM, Prodromou C, Horváth I, Zeiler HJ, Hooper PL, Vigh L, Penke B. Dihydropyridine Derivatives Modulate Heat Shock Responses and have a Neuroprotective Effect in a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:557-71. [PMID: 27163800 PMCID: PMC4969717 DOI: 10.3233/jad-150860] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heat shock proteins (Hsps) have chaperone activity and play a pivotal role in the homeostasis of proteins by preventing misfolding, by clearing aggregated and damaged proteins from cells, and by maintaining proteins in an active state. Alzheimer’s disease (AD) is thought to be caused by amyloid-β peptide that triggers tau hyperphosphorylation, which is neurotoxic. Although proteostasis capacity declines with age and facilitates the manifestation of neurodegenerative diseases such as AD, the upregulation of chaperones improves prognosis. Our research goal is to identify potent Hsp co-inducers that enhance protein homeostasis for the treatment of AD, especially 1,4-dihydropyridine derivatives optimized for their ability to modulate cellular stress responses. Based on favorable toxicological data and Hsp co-inducing activity, LA1011 was selected for the in vivo analysis of its neuroprotective effect in the APPxPS1 mouse model of AD. Here, we report that 6 months of LA1011 administration effectively improved the spatial learning and memory functions in wild type mice and eliminated neurodegeneration in double mutant mice. Furthermore, Hsp co-inducer therapy preserves the number of neurons, increases dendritic spine density, and reduces tau pathology and amyloid plaque formation in transgenic AD mice. In conclusion, the Hsp co-inducer LA1011 is neuroprotective and therefore is a potential pharmaceutical candidate for the therapy of neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Ágnes Kasza
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ákos Hunya
- LipidArt Research and Development Ltd., Szeged, Hungary
| | - Zsuzsa Frank
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ferenc Fülöp
- Department of Pharmaceutical Chemistry, University of Szeged, Hungary
| | - Zsolt Török
- LipidArt Research and Development Ltd., Szeged, Hungary.,Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Gábor Balogh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Miklós Sántha
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Árpád Bálind
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | | | | | - Ibolya Horváth
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | - Philip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO, USA
| | - László Vigh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Hungary
| |
Collapse
|
42
|
3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle. Viruses 2017; 9:v9100282. [PMID: 28973992 PMCID: PMC5691296 DOI: 10.3390/v9100282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures-namely the ER surface and the membranous webs-based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results deccribed in the present study.
Collapse
|
43
|
Fang S, Wang R, Liu H, Zhuang W, Wang Z, Zhang J, Pei L, Liu Y, Su Y. The retention of prion protein in the endoplasmic reticulum prevents N2A cells from proteasome inhibition-induced cytotoxicity. Biochem Biophys Res Commun 2017; 491:500-507. [PMID: 28669732 DOI: 10.1016/j.bbrc.2017.06.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 11/27/2022]
Abstract
Prion disease is a fatal neurodegenerative disease that may result from the conversion of normal cellular prion protein (PrPC) to the pathogenic scrapie PrP isoform (PrPSc), however, how proliferation of prion leads to neuronal apoptosis is still not clear. In this study, to explore the role of the endoplasmic reticulum (ER) in prion diseases, we engineered the KDEL ER-retention motif to the C-terminus of PrPC and studied its effect on N2A cell toxicity. The KDEL retention signal led to the accumulation of PrP in the ER, and KDEL signal could effectively deplete PrP from the cell surface and trap PrP in the ER/Cis-Golgi compartment. PrPC molecules were delayed in their transit along the early pathway of the secretory compartment, however, they did not aggregate, and were not resistant to Proteinase K (PK) or become detergent-insoluble. Moreover, we found that the ER was not the site where PrP became detergent-insoluble and acquired PK resistance. In addition, an MTT assay indicated cells expressing PrPC/N2A were sensitive to proteasome inhibition, but not N2A cells expressing PrPKDEL. Our findings suggest that the ER is not a compartment in which wild type PrPC is able to initiate aggregation, protease resistance or other scapie-like properties of PrP.
Collapse
Affiliation(s)
- Shuping Fang
- Novomab Biopharmaceuticals Inc, Nanjing 210042, China
| | - Ruixue Wang
- China Pharmaceutical University, Nanjing 210009, China
| | - Honghao Liu
- Novomab Biopharmaceuticals Inc, Nanjing 210042, China
| | | | - Zhen Wang
- Novomab Biopharmaceuticals Inc, Nanjing 210042, China
| | - Jianjun Zhang
- China Pharmaceutical University, Nanjing 210009, China
| | - Lili Pei
- Novomab Biopharmaceuticals Inc, Nanjing 210042, China
| | - Yumei Liu
- China Pharmaceutical University, Nanjing 210009, China
| | - Yunpeng Su
- Novomab Biopharmaceuticals Inc, Nanjing 210042, China; Department of Pharmacology, Binzhou Medical University, Yantai 256603, Shandong, China.
| |
Collapse
|
44
|
Rubin K, Glazer S. The pertussis hypothesis: Bordetella pertussis colonization in the pathogenesis of Alzheimer’s disease. Immunobiology 2017; 222:228-240. [DOI: 10.1016/j.imbio.2016.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022]
|
45
|
Armijo E, Gonzalez C, Shahnawaz M, Flores A, Davis B, Soto C. Increased susceptibility to Aβ toxicity in neuronal cultures derived from familial Alzheimer's disease (PSEN1-A246E) induced pluripotent stem cells. Neurosci Lett 2016; 639:74-81. [PMID: 28034781 DOI: 10.1016/j.neulet.2016.12.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of late-life dementia and represents one of the leading causes of death worldwide. The generation of induced pluripotent stem cells (iPSC) has facilitated the production and differentiation of stem cells from patients somatic cells, offering new opportunities to model AD and other diseases in vitro. In this study, we generated iPSCs from skin fibroblasts obtained from a healthy individual, as well as sporadic (sAD) and familial AD (fAD, PSEN1-A246E mutation) patients. iPSC lines were differentiated into neuronal precursors (iPSC-NPCs) and neurons that were subjected to amyloid beta (Aβ) toxicity assays. We found that neurons derived from the fAD patient have a higher susceptibility to Aβ1-42 oligomers compared with neurons coming from healthy and sAD individuals. Our findings suggest that neurons from patients with PSEN1-A246E mutation have intrinsic properties that make them more susceptible to the toxic effects of Aβ1-42 oligomers in the AD brain.
Collapse
Affiliation(s)
- Enrique Armijo
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA; Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Cesar Gonzalez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Mohammad Shahnawaz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Andrea Flores
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Brian Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA; Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile.
| |
Collapse
|
46
|
Sulforaphane Improves Ischemia-Induced Detrusor Overactivity by Downregulating the Enhancement of Associated Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Rat Bladder. Sci Rep 2016; 6:36110. [PMID: 27824068 PMCID: PMC5099933 DOI: 10.1038/srep36110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/05/2016] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis-associated pelvic ischemia has been reported to be a risk factor for bladder dysfunction and subsequent lower urinary tract symptoms (LUTS) in the elderly population. However, the molecular mechanisms of this association remain unclear. We hypothesized that stress-induced cellular responses might play a role in the pathogenesis of ischemia-induced bladder dysfunction. In the present study, the animal model of bladder ischemia was induced by bilateral partial arterial occlusion (BPAO) in rats. We found that BPAO significantly induced the presence of detrusor overactivity (DO) and upregulated the expression of several molecular reactions, including biomarkers in endoplasmic reticulum stress (78 kDa glucose-regulated protein, GRP78 and C/EBP-homologous protein, CHOP), autophagy (Beclin-1, p62 and LC3 II) and apoptosis (caspase 3). BPAO also disturbed the Kelch-like ECH-associated protein 1–nuclear factor erythroid-2-related factor 2 (Keap1–Nrf2) pathways. These responses might collectively alter muscarinic and purinergic signaling and contribute to the presence of DO in the ischemic bladder. Therapeutically, treatment with neither a muscarinic nor purinergic receptor antagonist restored bladder function. Interestingly, sulforaphane effectively attenuated ischemia-enhanced endoplasmic reticulum stress, autophagy and apoptosis in the bladder, subsequently ameliorated ischemia-induced bladder dysfunction and might emerge as a novel strategy to protect the bladder against ischemia-induced oxidative damage.
Collapse
|
47
|
|
48
|
Determining the Roles of Inositol Trisphosphate Receptors in Neurodegeneration: Interdisciplinary Perspectives on a Complex Topic. Mol Neurobiol 2016; 54:6870-6884. [PMID: 27771899 DOI: 10.1007/s12035-016-0205-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
It is well known that calcium (Ca2+) is involved in the triggering of neuronal death. Ca2+ cytosolic levels are regulated by Ca2+ release from internal stores located in organelles, such as the endoplasmic reticulum. Indeed, Ca2+ transit from distinct cell compartments follows complex dynamics that are mediated by specific receptors, notably inositol trisphosphate receptors (IP3Rs). Ca2+ release by IP3Rs plays essential roles in several neurological disorders; however, details of these processes are poorly understood. Moreover, recent studies have shown that subcellular location, molecular identity, and density of IP3Rs profoundly affect Ca2+ transit in neurons. Therefore, regulation of IP3R gene products in specific cellular vicinities seems to be crucial in a wide range of cellular processes from neuroprotection to neurodegeneration. In this regard, microRNAs seem to govern not only IP3Rs translation levels but also subcellular accumulation. Combining new data from molecular cell biology with mathematical modelling, we were able to summarize the state of the art on this topic. In addition to presenting how Ca2+ dynamics mediated by IP3R activation follow a stochastic regimen, we integrated a theoretical approach in an easy-to-apply, cell biology-coherent fashion. Following the presented premises and in contrast to previously tested hypotheses, Ca2+ released by IP3Rs may play different roles in specific neurological diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
|
49
|
Jang Y, Kim J, Ko JW, Kwon YH. Homocysteine induces PUMA-mediated mitochondrial apoptosis in SH-SY5Y cells. Amino Acids 2016; 48:2559-2569. [PMID: 27339788 DOI: 10.1007/s00726-016-2280-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022]
Abstract
Previous studies have reported that homocysteine induced endoplasmic reticulum (ER) stress in neuronal cells, proposing the underlying mechanism by which it could induce neurotoxicity. Induction of pro-apoptotic transcription factor C/EBP homologous protein (CHOP) and activation of caspase-4 by calpain have been suggested to be an important route in inducing apoptosis in response to ER stress. In this study, we investigated the molecular pathway of homocysteine-induced apoptosis in caspase-4 deficient SH-SY5Y human neuroblastoma cells. Homocysteine significantly increased mRNA levels of CHOP and p53, resulting in the upregulation of their downstream target gene, p53 up-regulated modulator of apoptosis (PUMA). In cells treated with homocysteine, Bcl-2-associated X protein (BAX) protein levels, cytochrome c release from the mitochondria, and caspase-9 activation were significantly increased. Consistently, a caspase-9 inhibitor significantly alleviated homocysteine-induced cytotoxicity. Significantly lower BAX mRNA levels and caspase-9 activation were observed in cells transfected with siRNA for PUMA. Taken together, our findings suggest that PUMA would be involved in the possible crosstalk between the ER and the mitochondria in the homocysteine-induced apoptosis of caspase-4 deficient SH-SY5Y cells.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Je Won Ko
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea. .,Research Institute of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
50
|
Zhang X, Tang S, Zhang Q, Shao W, Han X, Wang Y, Du Y. Endoplasmic reticulum stress mediates JNK-dependent IRS-1 serine phosphorylation and results in Tau hyperphosphorylation in amyloid β oligomer-treated PC12 cells and primary neurons. Gene 2016; 587:183-93. [PMID: 27185631 DOI: 10.1016/j.gene.2016.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/30/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
AIMS Endoplasmic reticulum stress (ERS) and insulin signaling impairment are commonly observed in Alzheimer's disease (AD), but the association between these two factors in AD has not been carefully studied. In peripheral insulin signaling impairment, ERS interferes with insulin signaling through c-Jun. N-terminal kinase (JNK)-dependent insulin receptor substance-1 (IRS-1) serine phosphorylation. We conducted this study to determine whether a similar mechanism contributes to insulin signaling impairment in AD pathogenesis. METHODS Changes in the levels of ERS markers, JNK activation, the insulin signaling status and Tau hyperphosphorylation were examined in amyloid β1-42 (Aβ1-42) oligomer-treated PC12 cells and primary neurons by western blotting and real-time fluorescence quantitative PCR. Inhibitors of ERS and JNK were utilized to confirm their association. RESULTS Our results demonstrated that Aβ1-42 oligomers significantly induced ERS and JNK activation. In addition, in response to Aβ1-42 oligomers, IRS-1 phosphorylation at serines 307, 318 and 612 was increased. Further, an increase in Tau hyperphosphorylation at threonine 181 was observed following Aβ1-42 oligomer treatment. Moreover, inhibition of ERS or JNK could partially reverse the changes induced by the Aβ1-42 oligomers. CONCLUSIONS These findings suggest that ERS may contribute to insulin signaling impairment in AD through JNK-dependent IRS-1 serine phosphorylation. The ERS/JNK/IRS-1 pathway may be involved in Aβ1-42 oligomer-induced Tau hyperphosphorylation in AD.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Wen Shao
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China.
| |
Collapse
|