1
|
Tonk O, Tokgun PE, Yılmaz ÖS, Tokgun O, Inci K, Çelikkaya B, Altintas N. An In Vitro Study for the Role of Schizophrenia-Related Potential miRNAs in the Regulation of COMT Gene. Mol Neurobiol 2024; 61:7680-7690. [PMID: 38427212 PMCID: PMC11415445 DOI: 10.1007/s12035-024-04070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
This study aimed to analyze the possible association of miR-30a-5p, miR-30e-5p, and miR-34a-5p identified as potential candidate miRNAs in schizophrenia, with the COMT gene. Candidate miRNAs were obtained from the TargetScan database. The SH-SY5Y human neuroblastoma cell line was used as a cellular model for schizophrenia. miR-30a-5p, miR-30e-5p, and miR-34a-5p mimics were transfected into the SH-SY5Y cell line. Total RNA was isolated from transfected cells and RNA-IP samples and reverse transcripted for miRNA and mRNA analysis. RT-qPCR and western blot were performed to observe changes in expression levels of COMT. RNA-ımmunoprecipitation was performed to determine RNA-protein interactions after mimic transfection. In the study, it was observed that COMT gene expression levels decreased significantly after miR-30a-5p and miR-34a-5p expressions, whereas increased significantly as a result of miR-30e-5p transfection. RNA-IP data have shown that the amount of COMT pulled down by Ago2 was increased after miR-30a-5p and miR-34a-5p transfections. RNA-IP results revealed that miR-30a-5p and miR-34a-5p are direct targets for the COMT gene.
Collapse
Affiliation(s)
- Onur Tonk
- Faculty of Medicine, Department of Medical Biology, Celal University, Manisa, Turkey
| | - Pervin Elvan Tokgun
- Faculty of Medicine, Department of Medical Genetics, Pamukkale University, Kınıklı, Denizli, Turkey.
| | - Özge Sarıca Yılmaz
- Faculty of Medicine, Department of Medical Biology, Celal University, Manisa, Turkey
| | - Onur Tokgun
- Faculty of Medicine, Department of Medical Genetics, Pamukkale University, Kınıklı, Denizli, Turkey
- Department of Cancer Molecular Biology, Institute of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Kubilay Inci
- Department of Cancer Molecular Biology, Institute of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Büşra Çelikkaya
- Department of Cancer Molecular Biology, Institute of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Nuray Altintas
- Faculty of Medicine, Department of Medical Biology, Celal University, Manisa, Turkey
| |
Collapse
|
2
|
Cavalcante DA, Noto M, Cerqueira RDO, Costa GO, Coutinho L, Malinovski F, Fonseca AO, Santoro ML, Ota V, Cordeiro Q, Bressan RA, Belangero S, Gadelha A, Noto C. GAPi: A description of the initiative for early psychosis intervention in Latin America and the short- to medium-term outcomes in early psychosis patients. Asian J Psychiatr 2024; 98:104104. [PMID: 38878447 DOI: 10.1016/j.ajp.2024.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 08/03/2024]
Abstract
INTRODUCTION Schizophrenia is a debilitating disorder that affects a significant proportion of the population and leads to impaired functionality and long-term challenges. The first episode of psychosis (FEP) is a critical intervention stage for improving long-term outcomes. The GAPi program was established in São Paulo, Brazil to provide early intervention services and evaluate biomarkers in individuals with FEP. This article delineates the objectives of the GAPi program, detailing its innovative research protocol, examining the clinical outcomes achieved, and discussing the operational challenges encountered during its initial decade of operation. METHODS The study comprised a prospective cohort of antipsychotic-naïve individuals with first-episode psychosis aged between 16 and 35 years. Participants were recruited from a public psychiatric facility in São Paulo. Emphasizing the initiative's commitment to early intervention, clinical assessments were systematically conducted at baseline and at two months, one year, two years, and five years of treatment to capture both short- and medium-term outcomes. Various assessment tools were utilized, including structured interviews, symptom scales, the Addiction Severity Index, and functional assessments. RESULTS A total of 232 patients were enrolled in the cohort. Among them, 65.95 % completed the 2-month follow-up. Most patients presented with schizophrenia spectrum disorders, followed by bipolar disorder and major depressive disorder with psychotic features. Treatment response rates and remission rates were evaluated at different time points, with promising outcomes observed. The program also assessed socio-demographic factors, substance use, family history, and genetic and biomarker profiles, providing valuable data for research. DISCUSSION The GAPi program has emerged as the largest ongoing cohort of antipsychotic-naïve first-episode psychosis in Latin America, contributing to the understanding of early psychosis in low- and middle-income countries. Despite operational challenges, the program has demonstrated efficacy in reducing the duration of untreated psychosis and in improving clinical outcomes. A multidisciplinary approach, including pharmacological treatment, psychosocial interventions, and family involvement, has been instrumental in enhancing treatment adherence and long-term prognosis. CONCLUSION The GAPi program represents a valuable model for early intervention in first-episode psychosis and provides insights into the pathophysiology, treatment, and long-term outcomes of individuals with schizophrenia and related disorders. Continued research and resource allocation are essential for addressing operational challenges and expanding early intervention services in low- and middle-income countries.
Collapse
Affiliation(s)
- Daniel A Cavalcante
- Grupo de Atenção às Psicose Iniciais (GAPi), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil
| | - Mariane Noto
- Grupo de Atenção às Psicose Iniciais (GAPi), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil
| | - Raphael de O Cerqueira
- Grupo de Atenção às Psicose Iniciais (GAPi), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil
| | - Giovany Oliveira Costa
- Grupo de Atenção às Psicose Iniciais (GAPi), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil; Genetic Division, Department of Morphology and Genetics, UNIFESP, Brazil
| | - Luccas Coutinho
- Programa de Esquizofrenia (PROESQ), UNIFESP, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil
| | - Fernando Malinovski
- Programa de Esquizofrenia (PROESQ), UNIFESP, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil
| | - Ana Olívia Fonseca
- Grupo de Atenção às Psicose Iniciais (GAPi), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil; Programa de Esquizofrenia (PROESQ), UNIFESP, Brazil
| | - Marcos Leite Santoro
- Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil; Genetic Division, Department of Morphology and Genetics, UNIFESP, Brazil
| | - Vanessa Ota
- Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil; Genetic Division, Department of Morphology and Genetics, UNIFESP, Brazil
| | - Quirino Cordeiro
- Grupo de Atenção às Psicose Iniciais (GAPi), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil
| | - Rodrigo A Bressan
- Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil; Programa de Esquizofrenia (PROESQ), UNIFESP, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil; Instituto Ame Sua Mente, Brazil
| | - Sintia Belangero
- Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil; Genetic Division, Department of Morphology and Genetics, UNIFESP, Brazil
| | - Ary Gadelha
- Grupo de Atenção às Psicose Iniciais (GAPi), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil; Programa de Esquizofrenia (PROESQ), UNIFESP, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil
| | - Cristiano Noto
- Grupo de Atenção às Psicose Iniciais (GAPi), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Centro de Pesquisa e Inovação em Prevenção de Transtornos Mentais e Uso de Álcool e Outras Drogas (CEPIPREV), Health Ministry, Brazil; Programa de Esquizofrenia (PROESQ), UNIFESP, Brazil; Laboratório de Neurociências Integrativas (LINC), UNIFESP, Brazil.
| |
Collapse
|
3
|
Karanikas E. The Gordian knot of the immune-redox systems' interactions in psychosis. Int Clin Psychopharmacol 2023; 38:285-296. [PMID: 37351570 DOI: 10.1097/yic.0000000000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
During the last decades the attempt to enlighten the pathobiological substrate of psychosis, from merely focusing on neurotransmitters, has expanded into new areas like the immune and redox systems. Indeed, the inflammatory hypothesis concerning psychosis etiopathology has exponentially grown with findings reflecting dysfunction/aberration of the immune/redox systems' effector components namely cytokines, chemokines, CRP, complement system, antibodies, pro-/anti-oxidants, oxidative stress byproducts just to name a few. Yet, we still lie far from comprehending the underlying cellular mechanisms, their causality directions, and the moderating/mediating parameters affecting these systems; let alone the inter-systemic (between immune and redox) interactions. Findings from preclinical studies on the stress field have provided evidence indicative of multifaceted interactions among the immune and redox components so tightly intertwined as a Gordian knot. Interestingly the literature concerning the interactions between these same systems in the context of psychosis appears minimal (if not absent) and ambiguous. This review attempts to draw a frame of the immune-redox systems' interactions starting from basic research on the stress field and expanding on clinical studies with cohorts with psychosis, hoping to instigate new avenues of research.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Ring Road, Nea Efkarpia, Thessaloniki, Greece
| |
Collapse
|
4
|
Wang L, Mou L, Guan S, Wang C, Sik A, Stoika R, Liu K, Jin M. Isoliquiritigenin induces neurodevelopmental-toxicity and anxiety-like behavior in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109555. [PMID: 36717046 DOI: 10.1016/j.cbpc.2023.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Isoliquiritigenin, a flavonoid compound, exhibits a variety of pharmacological properties, including anti-inflammatory, anti-oxidative, anti-microbial, anti-viral, and anti-tumor effects. In the past few years, the consumption of isoliquiritigenin-containing dietary supplements has increased due to their health benefits. Although the neuroprotective effects of isoliquiritigenin have been well-investigated, these studies were performed in cells and adult animals. The potential effects of isoliquiritigenin on the development, especially the neurodevelopment, of certain populations, such as zebrafish larvae, have not been investigated. In this study, zebrafish larvae were employed as a model to investigate the effects of isoliquiritigenin on development and neurodevelopment. Zebrafish embryos treated with high concentrations of isoliquiritigenin (10 and 15 μM) exhibited high rates of mortality, hatching, and malformation, indicating that isoliquiritigenin can affect zebrafish development. In addition, isoliquiritigenin impeded the development of central nervous system regions and the length of dopaminergic neurons located in midbrains and thalami of transgenic zebrafish larvae. The locomotor ability of zebrafish larvae exposed to high concentrations of isoliquiritigenin was negatively affected. The total distance and the average velocity significantly decreased, and anxiety-related behaviors were observed under light-dark challenge. Furthermore, the levels of gap43, tuba1b, mbp, hcrt, vmat2, and pomc, which mediate neurodevelopment, neurotoxicity, and anxiety were significantly decreased in zebrafish larvae exposed to isoliquiritigenin. These results indicate that isoliquiritigenin can disrupt the development of dopaminergic neurons and the function of the central nervous system in zebrafish, causing anxiety-like symptoms.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Ji'nan 250098, Shandong Province, People's Republic of China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China.
| |
Collapse
|
5
|
Hoprekstad GE, Kjelby E, Gjestad R, Fathian F, Larsen TK, Reitan SK, Rettenbacher M, Torsvik A, Skrede S, Johnsen E, Kroken RA. Depression trajectories and cytokines in schizophrenia spectrum disorders - A longitudinal observational study. Schizophr Res 2023; 252:77-87. [PMID: 36634451 DOI: 10.1016/j.schres.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/01/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
Depression occurs frequently in all phases of schizophrenia spectrum disorders. Altered activity in the immune system is seen in both depression and schizophrenia. We aimed to uncover depressive trajectories in a sample of 144 adult individuals with schizophrenia spectrum disorders followed for one year, in order to identify possible cytokine profile differences. Patients were assessed longitudinally with the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS), where a score above 6 predicts depression. The serum cytokine concentrations for tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-1beta, IL-2, IL-4, IL-6, IL-10, IL-12p70 and IL-17A were measured using immunoassays. Latent growth curve models, multilevel models and latent class growth analysis (LCGA) were applied. The LCGA model supported three latent classes (trajectories) with differing CDSS profiles during the one-year follow-up: a high CDSS group (40.8 % of participants), a moderate CDSS group (43.9 %) and a low CDSS group (15.3 %). Five single PANSS items predicted affiliation to depressive trajectory: hallucinations, difficulty in abstract thinking, anxiety, guilt feelings and tension. In the high CDSS group, despite diminishing psychotic symptoms, depressive symptoms persisted throughout one year. The pro-inflammatory cytokines IFN-γ, IL-1β and TNF-α were differentially distributed between the depressive trajectories, although levels remained remarkably stable throughout 12 months. Significant changes were found for the anti-inflammatory cytokine IL-10 at baseline with an accompanying difference in change over time. More research is required to optimize future treatment stratification and investigate the contribution of inflammation in depressed patients with schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Gunnhild E Hoprekstad
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway.
| | - Eirik Kjelby
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| | - Rolf Gjestad
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Farivar Fathian
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| | - Tor K Larsen
- Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; The TIPS-center, Stavanger University Hospital, Stavanger, Norway
| | - Solveig K Reitan
- St. Olav's University Hospital, Department of Mental Health, Trondheim, Norway; Norwegian University of Science and Technology, Department of Mental Health, Trondheim, Norway
| | | | - Anja Torsvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| |
Collapse
|
6
|
Karanikas E. The immune-stress/endocrine-redox-metabolic nature of psychosis' etiopathology; focus on the intersystemic pathways interactions. Neurosci Lett 2023; 794:137011. [PMID: 36513162 DOI: 10.1016/j.neulet.2022.137011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
The evidence supporting the involvement of a number of systems in the neurobiological etiopathology of psychosis has recently grown exponentially. Indeed, the focus of research has changed from measuring solely neurotransmitters to estimating parameters from fields like immunity, stress/endocrine, redox, and metabolism. Yet, little is known regarding the exact role of each one of these fields on the formation of not only the brain neuropathological substrate in psychosis but also the associated general systemic pathology, in terms of causality directions. Research has shown deviations in the levels and/or function of basic effector molecules of the aforementioned fields namely cytokines, pro-/anti- oxidants, glucocorticoids, catecholamines, glucose, and lipids metabolites as well as kynurenines, in psychosis. Yet the evidence regarding their impact on neurotransmitters is minimal and the findings concerning these systems' interactions in the psychotic context are even more dispersed. The present review aims to draw holistically the frame of the hitherto known "players" in the field of psychosis' cellular pathobiology, with a particular focus on their in-between interactions.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Thessaloniki, Greece.
| |
Collapse
|
7
|
Major neurocognitive psychosis: a novel schizophrenia endophenotype class that is based on machine learning and resembles Kraepelin's and Bleuler's conceptions. Acta Neuropsychiatr 2022; 35:123-137. [PMID: 36373497 DOI: 10.1017/neu.2022.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study is to describe how to use the precision nomothetic psychiatry approach to (a) delineate the associations between schizophrenia symptom domains, including negative symptoms, psychosis, hostility, excitation, mannerism, formal thought disorders, psychomotor retardation (PHEMFP), and cognitive dysfunctions and neuroimmunotoxic and neuro-oxidative pathways and (b) create a new endophenotype class based on these features. We show that all symptom domains (negative and PHEMFP) may be used to derive a single latent trait called overall severity of schizophrenia (OSOS). In addition, neurocognitive test results may be used to extract a general cognitive decline (G-CoDe) index, based on executive function, attention, semantic and episodic memory, and delayed recall scores. According to partial least squares analysis, the impacts of adverse outcome pathways (AOPs) on OSOS are partially mediated by increasing G-CoDe severity. The AOPs include neurotoxic cytokines and chemokines, oxidative damage to proteins and lipids, IgA responses to neurotoxic tryptophan catabolites, breakdown of the vascular and paracellular pathways with translocation of Gram-negative bacteria, and insufficient protection through lowered antioxidant levels and impairments in the innate immune system. Unsupervised machine learning identified a new schizophrenia endophenotype class, named major neurocognitive psychosis (MNP), which is characterised by increased negative symptoms and PHEMFP, G-CoDe and the above-mentioned AOPs. Based on these pathways and phenome features, MNP is a distinct endophenotype class which is qualitatively different from simple psychosis (SP). It is impossible to draw any valid conclusions from research on schizophrenia that ignores the MNP and SP distinctions.
Collapse
|
8
|
Ramos-Méndez MA, Tovilla-Zárate CA, Juárez-Rojop IE, Villar-Soto M, Genis-Mendoza AD, González-Castro TB, López-Narváez ML, Martínez-Magaña JJ, Castillo-Avila RG, Villar-Juárez GE. Effect of risperidone on serum IL-6 levels in individuals with schizophrenia: a systematic review and meta-analysis. Int J Psychiatry Clin Pract 2022:1-8. [PMID: 35839173 DOI: 10.1080/13651501.2022.2100264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Risperidone has been significant correlated with a direct effect of interleukin-6 (IL-6) levels in patients with schizophrenia. This fact allows the opportunity to link the probable immunomodulatory effect of antipsychotic medication. Specially, a proper functioning of IL-6 pathway plays a potential role in the treatment or development of schizophrenia. OBJECTIVE Our primary aim was to perform a systematic review and meta-analysis to determine the effect of risperidone on IL-6 levels in individuals with schizophrenia. METHODS Studies were identified through a systematic search using PubMed, Scopus, and Web of Science databases. The articles found were subjected to the inclusion and exclusion criteria; then, the mean and standardised differences were extracted to calculate the standardised mean differences using the CMA software. RESULTS IL-6 levels in individuals with schizophrenia were compared before and after receiving risperidone as treatment. Increased levels of IL-6 levels were observed in individuals with schizophrenia who received risperidone (point estimate 0.249, lower limit 0.042, upper limit 0.455, p-value 0.018). In the Asian population sub-analysis, no statistically significant differences were observed (point estimate 0.103, lower limit -0.187, upper limit 0.215, p value 0.890). When we compared individuals with schizophrenia to the control groups, a significant increase of IL-6 levels was observed in the group with schizophrenia (point estimate 0.248, lower limit 0.024, upper limit 0.472, p-value 0.30). CONCLUSIONS Risperidone appears to play an important role in IL-6 levels in schizophrenia. Potential implications of increased IL-6 levels in people with schizophrenia should be considered in future studies.KEY POINTSIncreased levels of IL-6 levels were observed in individuals with schizophrenia who received risperidone.Risperidone appears to play an important role in IL-6 levels in schizophrenia.This study could serve for future research focussed on IL-6.
Collapse
Affiliation(s)
- Miguel Angel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | | | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Mario Villar-Soto
- Hospital Regional de Alta Especialidad de Salud Mental, Villahermosa, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Mexico
| | - María Lilia López-Narváez
- Hospital Chiapas Nos Une Dr. Gilberto Gómez Maza, Secretaría de Salud de Chiapas, Tuxtla Gutiérrez, Mexico
| | - José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | | |
Collapse
|
9
|
Choline Supplementation Modifies the Effects of Developmental Alcohol Exposure on Immune Responses in Adult Rats. Nutrients 2022; 14:nu14142868. [PMID: 35889826 PMCID: PMC9316525 DOI: 10.3390/nu14142868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure can disrupt the development of numerous systems, including the immune system. Indeed, alterations in cytokine levels may contribute to the neuropathological, behavioral, and cognitive problems, and other adverse outcomes observed in individuals with fetal alcohol spectrum disorders. Importantly, supplementation with the essential nutrient choline can improve performance in hippocampal-dependent behaviors; thus, the present study examined the effects of choline on plasma and hippocampal cytokines in adult rats exposed to ethanol in early development. From postnatal day (PD) 4–9 (third trimester equivalent), pups received ethanol (5.25 g/kg/day) or Sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline from PD10–30. On PD60, plasma and hippocampal tissue was collected before and after an immune challenge (lipopolysaccharide (LPS); 50 ug/kg). Prior to the immune challenge, ethanol-exposed subjects showed an overall increase in hippocampal pro-inflammatory cytokines, an effect mitigated by choline supplementation. In contrast, in the plasma, choline reduced LPS-related increases in pro-inflammatory markers, particularly in ethanol-exposed subjects. Thus, early choline supplementation may modify both brain and peripheral inflammation. These results suggest that early choline can mitigate some long-term effects of ethanol exposure on hippocampal inflammation, which may contribute to improved hippocampal function, and could also influence peripheral immune responses that may impact overall health.
Collapse
|
10
|
Heart rate variability is associated with disease severity in psychosis spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110108. [PMID: 32946948 DOI: 10.1016/j.pnpbp.2020.110108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
While a growing literature links cardiac autonomic dysregulation to a variety of psychiatric disorders, the relationship between cardiac autonomic functioning and specific symptoms in schizophrenia (SZ) and bipolar disorder (BD) remains elusive. Thus, we investigated heart rate variability (HRV), a proxy for vagal activity, as a biological marker for symptom severity in patients with SZ and BD. HRV was calculated in 35 patients with SZ and 52 patients with BD, as well as in 149 healthy controls. In the patient groups, symptom severity and function were measured by the Positive and Negative Syndrome Scale (PANSS) and the Global Assessment of Functioning (GAF) scale. Results showed that HRV was significantly lower in both clinical groups compared to the healthy controls, with no significant HRV differences between patient groups. PANSS general psychopathology scores, GAF symptom scores, and GAF function scores showed statistically significant associations with HRV across groups. These results suggest that disease severity is associated with autonomic dysfunction and that HRV may provide a potential biomarker of disease severity in SZ and BD.
Collapse
|
11
|
Airapetov MI, Eresko SO, Bychkov ER, Lebedev AA, Shabanov PD. [Prenatal exposure to alcohol alters TLR4 signaling in the prefrontal cortex in rats]. BIOMEDITSINSKAIA KHIMIIA 2021; 67:500-506. [PMID: 34964444 DOI: 10.18097/pbmc20216706500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prenatal alcohol exposure (PAE) can lead to developmental disorders of the central nervous system (CNS) and mental retardation. Toll-like receptor (TLR) 4 plays an important role in the development of defects in the nervous system caused by PAE. However, how PAE affects the TLR4 response in the brain remains unclear. Using the model of semi-forced alcoholization of pregnant rats, we investigated TLR4-mediated signaling on the 30th day of postnatal development in their offspring. Rats exposed to PAE showed a higher expression of proinflammatory cytokines in the prefrontal cortex, but TLR4-mediated signaling in response to lipopolysaccharide (LPS) was weakened. These data suggest that PAE can lead to neuroinflammation and suppression of the TLR4-mediated response to LPS in the prefrontal cortex of young rats. Since innate immunity plays an important role in brain development, PAE-induced suppression of the TLR4-mediated response may be one of the mechanisms for the development of CNS pathology.
Collapse
Affiliation(s)
- M I Airapetov
- Institute of Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - S O Eresko
- Institute of Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg State University, Saint Petersburg, Russia
| | - E R Bychkov
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - A A Lebedev
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - P D Shabanov
- Institute of Experimental Medicine, Saint Petersburg, Russia; Kirov Military Medical Academy, Saint Petersburg, Russia
| |
Collapse
|
12
|
Maes M, Plaimas K, Suratanee A, Noto C, Kanchanatawan B. First Episode Psychosis and Schizophrenia Are Systemic Neuro-Immune Disorders Triggered by a Biotic Stimulus in Individuals with Reduced Immune Regulation and Neuroprotection. Cells 2021; 10:cells10112929. [PMID: 34831151 PMCID: PMC8616258 DOI: 10.3390/cells10112929] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
There is evidence that schizophrenia is characterized by activation of the immune-inflammatory response (IRS) and compensatory immune-regulatory systems (CIRS) and lowered neuroprotection. Studies performed on antipsychotic-naïve first episode psychosis (AN-FEP) and schizophrenia (FES) patients are important as they may disclose the pathogenesis of FES. However, the protein–protein interaction (PPI) network of FEP/FES is not established. The aim of the current study was to delineate a) the characteristics of the PPI network of AN-FEP and its transition to FES; and b) the biological functions, pathways, and molecular patterns, which are over-represented in FEP/FES. Toward this end, we used PPI network, enrichment, and annotation analyses. FEP and FEP/FES are strongly associated with a response to a bacterium, alterations in Toll-Like Receptor-4 and nuclear factor-κB signaling, and the Janus kinases/signal transducer and activator of the transcription proteins pathway. Specific molecular complexes of the peripheral immune response are associated with microglial activation, neuroinflammation, and gliogenesis. FEP/FES is accompanied by lowered protection against inflammation, in part attributable to dysfunctional miRNA maturation, deficits in neurotrophin and Wnt/catenin signaling, and adherens junction organization. Multiple interactions between reduced brain derived neurotrophic factor, E-cadherin, and β-catenin and disrupted schizophrenia-1 (DISC1) expression increase the vulnerability to the neurotoxic effects of immune molecules, including cytokines and complement factors. In summary: FEP and FES are systemic neuro-immune disorders that are probably triggered by a bacterial stimulus which induces neuro-immune toxicity cascades that are overexpressed in people with reduced anti-inflammatory and miRNA protections, cell–cell junction organization, and neurotrophin and Wnt/catenin signaling.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- IMPACT Strategic Research Center, Deakin University, Geelong 3220, Australia
- Correspondence:
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Cristiano Noto
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil;
- Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
13
|
Marefati N, Beheshti F, Vafaee F, Barabadi M, Hosseini M. The Effects of Incensole Acetate on Neuro-inflammation, Brain-Derived Neurotrophic Factor and Memory Impairment Induced by Lipopolysaccharide in Rats. Neurochem Res 2021; 46:2473-2484. [PMID: 34173963 DOI: 10.1007/s11064-021-03381-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Incensole acetate (IA) is a major component of Boswellia serrata resin that has been shown to have anti-inflammatory, anti-oxidant and neuroprotective properties. The present study determined the effect of IA on lipopolysaccharide (LPS)-induced memory impairment, and hippocampal cytokines and oxidative stress indicators level. We used 32 Wistar rats (220-250 g weight) randomly divided into four groups. The control group, which only received the saline-diluted DMSO (vehicle); LPS group which received LPS and was treated with the vehicle; and two IA-treated groups which received 2.5 or 5 mg/ kg IA before LPS injection. Morris water maze (MWM) and passive avoidance (PA) tests were performed. Finally, the brains were removed and were used to assess cytokines levels and oxidative stress status. Compared to the LPS group, IA administration reduced the time spent and path traveled to reach the hidden platform during 5 days of learning in MWM while increased the time spent in the target quadrant in the probe test. Moreover, IA increased latency while decreased entry number and time spent in the dark chamber of PA test compared to the LPS group. Additionally, pre-treatment with IA attenuated interleukin(IL)-6, tumor necrosis alpha (TNF-α), glial fibrillary acidic protein (GFAP), malondialdehyde (MDA) and nitric oxide (NO) metabolites levels while increased those of IL-10, total thiol, superoxide dismutase (SOD), catalase (CAT) and brain-derived neurotrophic factor (BDNF). Our results indicated that IA improved LPS-induced learning and memory impairments. The observed effects seem to be mediated via a protective activity against neuro-inflammation and brain tissue oxidative damage and through improving BDNF.
Collapse
Affiliation(s)
- Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moslem Barabadi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Identifying Infliximab- (IFX-) Responsive Blood Signatures for the Treatment of Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/5556784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rheumatoid arthritis (RA) is a severe chronic pathogenic inflammatory abnormality that damages small joints. Comprehensive diagnosis and treatment procedures for RA have been established because of its severe symptoms and relatively high morbidity. Medication and surgery are the two major therapeutic approaches. Infliximab (IFX) is a novel biological agent applied for the treatment of RA. IFX improves physical functions and benefits the achievement of clinical remission even under discontinuous medication. However, not all patients react to IFX, and distinguishing IFX-sensitive and IFX-resistant patients is quite difficult. Thus, how to predict the therapeutic effects of IFX on patients with RA is one of the urgent translational medicine problems in the clinical treatment of RA. In this study, we present a novel computational method for the identification of the applicable and substantial blood gene signatures of IFX sensitivity by liquid biopsy, which may assist in the establishment of a clinical drug sensitivity test standard for RA and contribute to the revelation of unique IFX-associated pharmacological mechanisms.
Collapse
|
15
|
Ni P, Liu M, Wang D, Tian Y, Zhao L, Wei J, Yu X, Qi X, Li X, Yu H, Ni R, Ma X, Deng W, Guo W, Wang Q, Li T. Association Analysis Between Catechol-O-Methyltransferase Expression and Cognitive Function in Patients with Schizophrenia, Bipolar Disorder, or Major Depression. Neuropsychiatr Dis Treat 2021; 17:567-574. [PMID: 33654399 PMCID: PMC7910219 DOI: 10.2147/ndt.s286102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Schizophrenia, bipolar disorder (BD), and major depressive disorder are three common mental disorders. Although their diagnosis and treatment differ, they partially overlap. METHODS To explore the similarities and characteristics of these three psychiatric diseases, an intelligence quotient (IQ) assessment was performed to evaluate cognitive deficits. Relative catechol-O-methyltransferase (COMT) expression in peripheral blood mononuclear cells was examined in all three groups compared with healthy controls (HCs). RESULTS The results indicated that patients with any of the three psychiatric diseases presented IQ deficits, and that the first-episode schizophrenia (FES) group had even lower cognitive function than the other two groups. The relative COMT expression decreased in the FES group and increased in the BD group compared with the HC group. The correlation analysis of COMT expression level and IQ scores showed a positive correlation between relative COMT expression and full-scale IQ in the HC group. However, this correlation disappeared in all three psychiatric diseases studied. CONCLUSION In conclusion, this cross-disease strategy provided important clues to explain lower IQ scores and dysregulated COMT expression among three common mental illnesses.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Manli Liu
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dequan Wang
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yang Tian
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liansheng Zhao
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jinxue Wei
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xueli Yu
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xueyu Qi
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaojing Li
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hua Yu
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Rongjun Ni
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohong Ma
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Deng
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wanjun Guo
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qiang Wang
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tao Li
- The Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Huaxi Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Cavalcante DA, Coutinho LS, Ortiz BB, Noto MN, Cordeiro Q, Ota VK, Belangeiro SI, Bressan RA, Gadelha A, Noto C. Impact of duration of untreated psychosis in short-term response to treatment and outcome in antipsychotic naïve first-episode psychosis. Early Interv Psychiatry 2020; 14:677-683. [PMID: 31637865 DOI: 10.1111/eip.12889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022]
Abstract
AIM Duration of untreated psychosis (DUP) is one of the few potentially modifiable outcome predictors in psychosis. Previous studies have associated a longer DUP with a poor prognosis, but few of them were performed in countries with low and middle level of income. This study aimed to investigate the DUP in a Brazilian sample of antipsychotic-naïve first-episode psychosis (AN-FEP) patients and its association with clinical characteristics and treatment outcomes in a short-term follow-up. METHODS One hundred forty-five AN-FEP patients between 16 and 40 years were enrolled and were reassessed 10 weeks after risperidone treatment. We investigated the association between DUP and symptom severity, functionality and response to treatment, using the Positive and Negative Syndrome Scale (PANSS), the Clinical Global Impression-Severity Scale (CGI) and the Global Assessment of Functionality (GAF) scale. DUP was defined as the period between the onset of the first psychotic symptoms and the first effective antipsychotic treatment. For the analysis, we performed multivariate linear regressions. RESULTS The DUP's median was 61 days. At baseline, we did not find any significant association between DUP and clinical characteristics. After treatment, the longer DUP predicted worse positive and negative symptom dimensions, worse total PANSS, GAF and CGI scores and poorer response to treatment. CONCLUSION Our results showed that DUP is associated with worse outcomes after short treatment, but it does not modify the baseline clinical profile of the AN-FEP patients. Such results reinforce the need to develop early intervention strategies, reducing DUP.
Collapse
Affiliation(s)
- Daniel A Cavalcante
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luccas S Coutinho
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruno B Ortiz
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Schizophrenia Program (PROESQ), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mariane N Noto
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry, Faculdade de Ciências Médica da Santa Casa de São Paulo (FCMSCSP), São Paulo, Brazil
| | - Vanessa K Ota
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sintia I Belangeiro
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo A Bressan
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Schizophrenia Program (PROESQ), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ary Gadelha
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Schizophrenia Program (PROESQ), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Cristiano Noto
- Department of Psychiatry, Interdisciplinary Laboratory in Clinical Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Schizophrenia Program (PROESQ), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
17
|
Widespread transcriptional disruption of the microRNA biogenesis machinery in brain and peripheral tissues of individuals with schizophrenia. Transl Psychiatry 2020; 10:376. [PMID: 33149139 PMCID: PMC7642431 DOI: 10.1038/s41398-020-01052-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
In schizophrenia, altered transcription in brain and peripheral tissues may be due to altered expression of the microRNA biogenesis machinery genes. In this study, we explore the expression of these genes both at the cerebral and peripheral levels. We used shinyGEO application to analyze gene expression from ten Gene Expression Omnibus datasets, in order to perform differential expression analyses for eight genes encoding the microRNA biogenesis machinery. First, we compared expression of the candidate genes between control subjects and individuals with schizophrenia in postmortem cerebral samples from seven different brain regions. Then, we compared the expression of the candidate genes between control subjects and individuals with schizophrenia in three peripheral tissues. In brain and peripheral tissues of individuals with schizophrenia, we report distinct altered expression patterns of the microRNA biogenesis machinery genes. In the dorsolateral prefrontal cortex, associative striatum and cerebellum of individuals with schizophrenia, we observed an overexpression pattern of some candidate genes suggesting a heightened miRNA production in these brain regions. Additionally, mixed transcriptional abnormalities were identified in the hippocampus. Moreover, in the blood and olfactory epithelium of individuals with schizophrenia, we observed distinct aberrant transcription patterns of the candidate genes. Remarkably, in individuals with schizophrenia, we report DICER1 overexpression in the dorsolateral prefrontal cortex, hippocampus and cerebellum as well as a congruent DICER1 upregulation in the blood compartment suggesting that it may represent a peripheral marker. Transcriptional disruption of the miRNA biogenesis machinery may contribute to schizophrenia pathogenesis both in brain and peripheral tissues.
Collapse
|
18
|
CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090230. [PMID: 32887304 PMCID: PMC7558796 DOI: 10.3390/ph13090230] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: CCL-11 (eotaxin) is a chemokine with an important role in allergic conditions. Recent evidence indicates that CCL-11 plays a role in brain disorders as well. This paper reviews the associations between CCL-11 and aging, neurodegenerative, neuroinflammatory and neuropsychiatric disorders. Methods: Electronic databases were searched for original articles examining CCL-11 in neuropsychiatric disorders. Results: CCL-11 is rapidly transported from the blood to the brain through the blood-brain barrier. Age-related increases in CCL-11 are associated with cognitive impairments in executive functions and episodic and semantic memory, and therefore, this chemokine has been described as an “Endogenous Cognition Deteriorating Chemokine” (ECDC) or “Accelerated Brain-Aging Chemokine” (ABAC). In schizophrenia, increased CCL-11 is not only associated with impairments in cognitive functions, but also with key symptoms including formal thought disorders. Some patients with mood disorders and premenstrual syndrome show increased plasma CCL-11 levels. In diseases of old age, CCL-11 is associated with lowered neurogenesis and neurodegenerative processes, and as a consequence, increased CCL-11 increases risk towards Alzheimer’s disease. Polymorphisms in the CCL-11 gene are associated with stroke. Increased CCL-11 also plays a role in neuroinflammatory disease including multiple sclerosis. In animal models, neutralization of CCL-11 may protect against nigrostriatal neurodegeneration. Increased production of CCL-11 may be attenuated by glucocorticoids, minocycline, resveratrol and anti-CCL11 antibodies. Conclusions: Increased CCL-11 production during inflammatory conditions may play a role in human disease including age-related cognitive decline, schizophrenia, mood disorders and neurodegenerative disorders. Increased CCL-11 production is a new drug target in the treatment and prevention of those disorders.
Collapse
|
19
|
Feng Z, Zhang Y, You X, Zhang W, Ma Y, Long Q, Liu Z, Hao W, Zeng Y, Teng Z. Effects of risperidone on blood levels of interleukin-6 in schizophrenia: A meta-analysis. Medicine (Baltimore) 2020; 99:e19694. [PMID: 32282724 PMCID: PMC7220116 DOI: 10.1097/md.0000000000019694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To evaluate the association between risperidone use and interleukin-6 (IL-6) levels by conducting a meta-analysis of controlled before-and-after studies. METHODS Studies were identified through a systematic search of PubMed and Embase. The mean and standardized differences were extracted to calculate the standardized mean differences. IL-6 levels were compared in patients with schizophrenia before and after risperidone treatment. RESULTS Ten studies were included in the final meta-analysis. The primary findings from our study suggest that there was a significant decrease in serum IL-6 levels after risperidone treatment (P = .021). A subgroup analysis revealed the sources of heterogeneity. The sensitivity analysis indicated that the results were stable, and no publication bias was observed. CONCLUSIONS The present meta-analysis provides evidence that risperidone can significantly reduce IL-6 levels in schizophrenia. IL-6 is a potential biomarker of the pathophysiology and clinical processes of schizophrenia.
Collapse
Affiliation(s)
- Ziqiao Feng
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| | - Yunqiao Zhang
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| | - Xu You
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| | - Wenyu Zhang
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| | - Yuhan Ma
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| | - Qing Long
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| | - Zijun Liu
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| | - Wei Hao
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Disorders and National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Yong Zeng
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| | - Zhaowei Teng
- Kunming Medical University Sixth Affiliated Hospital, Yuxi, Yunnan
| |
Collapse
|
20
|
Xie R, Hong S, Ye Y, Wang X, Chen F, Yang L, Yan Y, Liao L. Ketamine Affects the Expression of ErbB4 in the Hippocampus and Prefrontal Cortex of Rats. J Mol Neurosci 2020; 70:962-967. [PMID: 32096126 DOI: 10.1007/s12031-020-01502-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a severe chronic neuropsychiatric disorder, and its exact pathogenesis remains unclear. This study investigated the effect of ketamine on the expression of ErbB4 (considered a schizophrenia candidate gene) in the hippocampus and prefrontal cortex of rats. Rats were randomly divided into four groups: control, low-dose, medium-dose and high-dose groups. The low-dose, medium-dose and high-dose groups were intraperitoneally injected with 15 mg/kg, 30 mg/kg and 60 mg/kg ketamine, respectively, twice a day (9:00 a.m. and 9:00 p.m.); the control group was administered normal saline. The treatment lasted 7 days. After treatment, rats were euthanized, and their brain tissues were collected and then analyzed by immunohistochemistry. The results of immunohistochemistry staining demonstrated that the ErbB4 protein was expressed exclusively in the CA3 region of the hippocampus and the Cg1 region of the prefrontal cortex. Ketamine administration significantly decreased the expression of ErbB4 in a dose-dependent manner. The high-dose ketamine treatment was found to be optimal for establishing a rat model for schizophrenia. Ketamine induced symptoms similar to schizophrenia in humans. The ketamine-induced rat model for schizophrenia constructed in this study provides novel insights to better understand the pathogenic mechanisms of schizophrenia and aid in drug discovery.
Collapse
Affiliation(s)
- Runfang Xie
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, People's Republic of China
| | - Shijun Hong
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, People's Republic of China
| | - Yi Ye
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueyan Wang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Chen
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lin Yang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Youyi Yan
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Linchuan Liao
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Zhao M, Chen L, Qiao Z, Zhou J, Zhang T, Zhang W, Ke S, Zhao X, Qiu X, Song X, Zhao E, Pan H, Yang Y, Yang X. Association Between FoxO1, A2M, and TGF-β1, Environmental Factors, and Major Depressive Disorder. Front Psychiatry 2020; 11:675. [PMID: 32792993 PMCID: PMC7394695 DOI: 10.3389/fpsyt.2020.00675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/29/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Investigations of gene-environment (G×E) interactions in major depressive disorder (MDD) have been limited to hypothesis testing of candidate genes while poly-gene-environmental causation has not been adequately address. To this end, the present study analyzed the association between three candidate genes, two environmental factors, and MDD using a hypothesis-free testing approach. METHODS A logistic regression model was used to analyze interaction effects; a hierarchical regression model was used to evaluate the effects of different genotypes and the dose-response effects of the environment; genetic risk score (GRS) was used to estimate the cumulative contribution of genetic factors to MDD; and protein-protein interaction (PPI) analyses were carried out to evaluate the relationship between candidate genes and top MDD susceptibility genes. RESULTS Allelic association analyses revealed significant effects of the interaction between the candidate genes Forkhead box (Fox)O1, α2-macroglobulin (A2M), and transforming growth factor (TGF)-β1 genes and the environment on MDD. Gene-gene (G×G) and gene-gene-environment (G×G×E) interactions in MDD were also included in the model. Hierarchical regression analysis showed that the effect of environmental factors on MDD was greater in homozygous than in heterozygous mutant genotypes of the FoxO1 and TGF-β1 genes; a dose-response effect between environment and MDD on genotypes was also included in this model. Haplotype analyses revealed significant global and individual effects of haplotypes on MDD in the whole sample as well as in subgroups. There was a significant association between GRS and MDD (P = 0.029) and a GRS and environment interaction effect on MDD (P = 0.009). Candidate and top susceptibility genes were connected in PPI networks. CONCLUSIONS FoxO1, A2M, and TGF-β1 interact with environmental factors and with each other in MDD. Multi-factorial G×E interactions may be responsible for a higher explained variance and may be associated with causal factors and mechanisms that could inform new diagnosis and therapeutic strategies, which can contribute to the personalized medicine of MDD.
Collapse
Affiliation(s)
- Mingzhe Zhao
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Lu Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Zhengxue Qiao
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Jiawei Zhou
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Tianyu Zhang
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Wenxin Zhang
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Siyuan Ke
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Xiaoyun Zhao
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Xuejia Song
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Erying Zhao
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Hui Pan
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Yanjie Yang
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| | - Xiuxian Yang
- Psychology Department, Public Health Institute, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Li N, Wang Q, Wang Y, Sun A, Lin Y, Jin Y, Li X. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 2019; 22:592-602. [PMID: 31124390 DOI: 10.1080/10253890.2019.1617267] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have demonstrated that there are significant changes in the gut microbiota (GM) of humans with depression and animal models of depression and chronic stress. In our present study, we determined whether an alteration in GM is a decisive factor in anxiety-like and depression-like behavior and its impact on brain neurochemistry. An antibiotic cocktail was used to deplete the GM of mice before they were colonized, via fecal microbiota transplantation (FMT), by the GM of control mice or mice that had been exposed to chronic unpredictable mild stress (CUMS donors). The CUMS-donor group of mice and the mice that were colonized by their microbiota (the CUMS-recipient group) both showed higher levels of anxiety- and depression-like behavior compared to the controls. The GM community of the CUMS-donor and CUMS-recipient was distinctively different from the controls, with the CUMS group characterized by a lower relative abundance of Lactobacillus and a higher relative abundance of Akkermansia. Interestingly, FMT affected both behavior and neuroinflammation. Mice given the CUMS microbiota had significant elevations of interferon-γ (IFN-γ) and the tumor necrosis factor-alpha (TNF-α) in the hippocampus, which were accompanied by upregulated indoleamine 2,3-dioxygenase 1 (IDO1) in the hippocampus. These results suggest that GM modulates pro-inflammatory cytokines in the hippocampus through dysfunctional microbiota-gut-brain axis, exacerbating anxiety- and depression-like phenotypes. Key Points Chronic unpredictable mild stress increased anxiety- and depression-like behavior in mice. Mice colonized with gut microbiota (GM) from stressed mice showed similar behaviors. The GM composition of the donor and recipient mice was also comparable. Their relative pattern of two bacteria has been tied to neuroinflammatory activity. The results suggest a link between GM, brain function, and anxiety and depression.
Collapse
Affiliation(s)
- Nannan Li
- a Department of Geriatrics Cardiology, First Hospital of China Medical University , Shenyang , China
| | - Qi Wang
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Yan Wang
- c Mental Health Center, China Medical University , Shenyang , China
| | - Anji Sun
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Yiwei Lin
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Ye Jin
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Xiaobai Li
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
23
|
Pillinger T, Osimo EF, Brugger S, Mondelli V, McCutcheon RA, Howes OD. A Meta-analysis of Immune Parameters, Variability, and Assessment of Modal Distribution in Psychosis and Test of the Immune Subgroup Hypothesis. Schizophr Bull 2019; 45:1120-1133. [PMID: 30407606 PMCID: PMC6737479 DOI: 10.1093/schbul/sby160] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune parameters are elevated in psychosis, but it is unclear whether alterations are homogenous across patients or heterogeneity exists, consistent with the hypothesis that immune alterations are specific to a subgroup of patients. To address this, we examine whether antipsychotic-naïve first-episode psychosis patients exhibit greater variability in blood cytokines, C-reactive protein, and white cell counts compared with controls, and if group mean differences persist after adjusting for skewed data and potential confounds. Databases were searched for studies reporting levels of peripheral immune parameters. Means and variances were extracted and analyzed using multivariate meta-analysis of mean and variability of differences. Outcomes were (1) variability in patients relative to controls, indexed by variability ratio (VR) and coefficient of variation ratio (CVR); (2) mean differences indexed by Hedges g; (3) Modal distribution of raw immune parameter data using Hartigan's unimodality dip test. Thirty-five studies reporting on 1263 patients and 1470 controls were included. Variability of interleukin-6 (IL6) (VR = 0.19), tumor necrosis factor-α (TNFα) (VR = 0.36), interleukin-1β (VR = 0.35), interleukin-4 (VR = 0.55), and interleukin-8 (VR = 0.28) was reduced in patients. Results persisted for IL6 and IL8 after mean-scaling. Ninety-four percent and one hundred percent of raw data were unimodally distributed in psychosis and controls, respectively. Mean levels of IL6 (g = 0.62), TNFα (g = 0.56), interferon-γ (IFNγ) (g = 0.32), transforming growth factor-β (g = 0.53), and interleukin-17 (IL17) (g = 0.48) were elevated in psychosis. Sensitivity analyses indicated this is unlikely explained by confounders for IL6, IFNγ, and IL17. These findings show elevated cytokines in psychosis after accounting for confounds, and that the hypothesis of an immune subgroup is not supported by the variability or modal distribution.
Collapse
Affiliation(s)
- Toby Pillinger
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Emanuele F Osimo
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Stefan Brugger
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,Medical Research Council London Institute of Medical Sciences, London, UK,Division of Psychiatry, University College London, London, UK
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,Medical Research Council London Institute of Medical Sciences, London, UK
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,Medical Research Council London Institute of Medical Sciences, London, UK,To whom correspondence should be addressed; tel: +44-207-848-0355, e-mail:
| |
Collapse
|
24
|
Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M. The Role of Aberrations in the Immune-Inflammatory Response System (IRS) and the Compensatory Immune-Regulatory Reflex System (CIRS) in Different Phenotypes of Schizophrenia: the IRS-CIRS Theory of Schizophrenia. Mol Neurobiol 2019; 57:778-797. [PMID: 31473906 DOI: 10.1007/s12035-019-01737-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Several lines of evidence indicate that aberrations in immune-inflammatory pathways may contribute to the pathophysiology of schizophrenia spectrum disorders. Here, we propose a novel theoretical framework that was previously developed for major depression and bipolar disorder, namely, the compensatory immune-regulatory reflex system (CIRS), as applied to the neuro-immune pathophysiology of schizophrenia and its phenotypes, including first-episode psychosis (FEP), acute relapses, chronic and treatment-resistant schizophrenia (TRS), comorbid depression, and deficit schizophrenia. These schizophrenia phenotypes and manifestations are accompanied by increased production of positive acute-phase proteins, including haptoglobin and α2-macroglobulin, complement factors, and macrophagic M1 (IL-1β, IL-6, and TNF-α), T helper (Th)-1 (interferon-γ and IL-2R), Th-2 (IL-4, IL-5), Th-17 (IL-17), and T regulatory (Treg; IL-10 and transforming growth factor (TGF)-β1) cytokines, cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway, and chemokines, including CCL-11 (eotaxin), CCL-2, CCL-3, and CXCL-8. While the immune profiles in the different schizophrenia phenotypes indicate the activation of the immune-inflammatory response system (IRS), there are simultaneous signs of CIRS activation, including increased levels of the IL-1 receptor antagonist (sIL-1RA), sIL-2R and tumor necrosis factor-α receptors, Th-2 and Treg phenotypes with increased IL-4 and IL-10 production, and increased levels of TRYCATs and haptoglobin, α2-macroglobulin, and other acute-phase reactants, which have immune-regulatory and anti-inflammatory effects. Signs of activated IRS and CIRS pathways are also detected in TRS, chronic, and deficit schizophrenia, indicating that these conditions are accompanied by a new homeostatic setpoint between upregulated IRS and CIRS components. In FEP, increased baseline CIRS activity is a protective factor that may predict favorable clinical outcomes. Moreover, impairments in the CIRS are associated with deficit schizophrenia and greater impairments in semantic and episodic memory. It is concluded that CIRS plays a key role in the pathophysiology of schizophrenia by negatively regulating the primary IRS and contributing to recovery from the acute phase of illness. Therefore, components of the CIRS may offer promising therapeutic targets for schizophrenia.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cristiano Noto
- Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Marta Kubera
- Department of Experimental Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andre F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, M6J 1H4, Canada
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- IMPACT Strategic Research Centre, Deakin University, Geelong, Vic, Australia.
| |
Collapse
|
25
|
Kalayasiri R, Kraijak K, Mutirangura A, Maes M. Paranoid schizophrenia and methamphetamine-induced paranoia are both characterized by a similar LINE-1 partial methylation profile, which is more pronounced in paranoid schizophrenia. Schizophr Res 2019; 208:221-227. [PMID: 30826260 DOI: 10.1016/j.schres.2019.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/03/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND There is evidence that schizophrenia is a neuro-immune disorder. Genes linked to intragenic LINE-1 methylation show a strong association with immune-associated disorders including psychosis. The aim of this study was to examine LINE-1 methylation patterns in paranoid schizophrenia and methamphetamine-induced paranoia, a model for schizophrenia. METHODS This study recruited 31 patients with paranoid schizophrenia, 94 with methamphetamine-induced paranoia (MIP) and 163 normal controls. LINE-1 methylation patterns were assayed in peripheral blood mononuclear cells and a combined bisulphite restriction analysis and COBRA were used to estimate LINE1 methylation (mC) and CpG dinucleotide methylation patterns, namely 2 methylated (mCmC) and 2 unmethylated (uCuC) CpGs and the partially methylated loci mCuC (5'm with 3'u) and uCmC (5'u with 3'm). RESULTS Patients with paranoid schizophrenia show highly significant changes in LINE-1 partial methylation patterns, namely a higher percentage of mCuC and lower percentage of uCmC as compared with controls and MIP patients, while the latter show a higher percentage of mCuC but lower percentage of uCmC as compared with controls. Higher mCuC significantly predicts paranoid schizophrenia with a sensitivity of 51.6%, specificity of 97.5% and an area under the ROC curve of 0.895. CONCLUSIONS The results indicate that a common dysfunction in LINE-1 partial methylation may underpin both paranoid schizophrenia and MIP and that this methylation pattern is significantly more expressed in paranoid schizophrenia than MIP. Reciprocal links between impairments in LINE-1 methylation and neuro-immune and neuro-oxidative pathways may underpin the pathophysiology of both MIP and paranoid schizophrenia.
Collapse
Affiliation(s)
- Rasmon Kalayasiri
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Korakot Kraijak
- Master of Science Program in Medical Science, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; IMPACT Strategic Research Center, Barwon Health, Geelong, Australia; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
26
|
Wang P, Liu BY, Wu MM, Wei XY, Sheng S, You SW, Shang LX, Kuang F. Moderate prenatal alcohol exposure suppresses the TLR4-mediated innate immune response in the hippocampus of young rats. Neurosci Lett 2019; 699:77-83. [DOI: 10.1016/j.neulet.2019.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/22/2022]
|
27
|
Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M. A New Schizophrenia Model: Immune Activation is Associated with the Induction of Different Neurotoxic Products which Together Determine Memory Impairments and Schizophrenia Symptom Dimensions. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:124-140. [DOI: 10.2174/1871527317666181119115532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
Abstract
Objective: Recently, we reported that stable-phase schizophrenia is characterized by two interrelated
symptom dimensions: PHEMN (psychotic, hostility, excitation, mannerism and negative symptoms);
and DAPS (depressive, anxiety and physio-somatic symptoms) and that Major Neuro-Cognitive
psychosis (MNP) is the full-blown phenotype of schizophrenia (largely overlapping with deficit schizophrenia).
Herein we examined the effects of immune activation in association with tryptophan catabolite
(TRYCAT) patterning and memory disorders on PHEMN/DAPS dimensions and MNP.
Methods:
Serum levels of macrophage inflammatory protein-1 (MIP-1), soluble interleukin (IL)-1 receptor
antagonist (sIL-1RA), IL-10, eotaxin, IgA/IgM responses to TRYCATs, and Consortium to Establish
a Registry for Alzheimer’s disease (CERAD) tests were assessed in 40 controls and 80 schizophrenia
patients.
Results:
Schizophrenia and MNP were predicted by significantly increased levels of IL-10, eotaxin
and TRYCATs. A large part of variance in both PHEMN/DAPS symptom dimensions (42.8%) was
explained by cytokine levels and TRYCATs combined. The MIP+sIL-1RA+IL-10 composite score
and eotaxin explained each around on the basis of 19% of the variance in symptom dimensions, and
approximately 18% of memory deficits. Moreover, MIP+sIL-1RA+IL-10 was significantly associated
with elevations in picolinic acid, xanthurenic acid and 3-OH-kynurenine. Partial Least Squares path
modeling shows that highly significant effects of MIP+sIL-1RA+IL-10 on symptomatology are mediated
by the effects of noxious TRYCATs on memory deficits.
Conclusion:
Current findings indicate that in schizophrenia, immune activation may underpin activation
of indoleamine-2,3-dioxygenase and kynurenine monooxygenase, while impairments in episodic
and semantic memory may be caused by the neurotoxic effects of TRYCATs and eotaxin. The combined
effects of immune activation, eotaxin and memory defects determine to a large extent,
PHEMN/DAPS symptoms and the MNP phenotype. These findings indicate that schizophrenia phenomenology
is largely mediated by multiple neuro-immune pathways and that immune activation, increased
production of eotaxin and neurotoxic TRYCATs (picolinic acid, xanthurenic acid and 3-HOkynurenine)
are new drug targets in schizophrenia and MNP.
Collapse
Affiliation(s)
- Sunee Sirivichayakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaksorn Thika
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - André F. Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Noto MN, Maes M, Nunes SOV, Ota VK, Rossaneis AC, Verri WA, Cordeiro Q, Belangero SI, Gadelha A, Bressan RA, Noto C. Activation of the immune-inflammatory response system and the compensatory immune-regulatory system in antipsychotic naive first episode psychosis. Eur Neuropsychopharmacol 2019; 29:416-431. [PMID: 30594344 DOI: 10.1016/j.euroneuro.2018.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/23/2018] [Accepted: 12/16/2018] [Indexed: 01/07/2023]
Abstract
Psychotic disorders are accompanied by activation of the immune inflammatory response system (IRS). The compensatory immune-regulatory system (CIRS) is a regulatory immune response that is induced by the IRS but exerts negative feedback through increased levels of anti-inflammatory cytokines such as interleukin (IL)-4, IL-13 and IL-10. This study aims to examine the IRS and CIRS components, including macrophagic M1, T-helper (Th)-1, Th-2, Th-17 and T-regulatory (Treg) phenotypes, in antipsychotic-naïve first episode psychosis (AN-FEP) before and after risperidone treatment. We included 31 AN-FEP and 22 healthy controls. AN-FEP showed increments in M1, Th-1, Th-2, Th-17 and Treg phenotypes and a relatively greater IRS response (especially granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6 and IL-12) as compared with the CIRS response. Inflammatory markers, especially IL-6 and IL-8, were significantly correlated with negative, psychotic, affective and excitation symptom dimensions. Treatment with risperidone significantly suppressed the IRS and CIRS. Baseline levels of CIRS biomarkers, especially higher soluble tumor necrosis factor receptor-1 and IL-10 predicted clinical improvement after treatment. Our findings indicate that AN-FEP is characterized by robust IRS (M1 + Th-1 + Th-17) and CIRS responses, suggesting that monocytes, macrophages, Th-1, Th-2, Th-17 and Treg cells are activated. The findings indicate that (a) FEP patients are prone to the detrimental effects of M1, Th-1, Th-17 and Th-2 cells, which may contribute to long-lasting abnormalities in brain circuitry; and (b) in FEP, the CIRS may contribute to recovery from the acute phase of illness. Enhancing the CIRS might be a new drug target to treat FEP.
Collapse
Affiliation(s)
- Mariane Nunes Noto
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3(o) Andar, CEP 04039-032, São Paulo, SP, Brazil
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana C Rossaneis
- Department of Pathology, Biological Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry, Faculdade de Ciências Médica da Santa Casa de São Paulo (FCMSCSP), São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ary Gadelha
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3(o) Andar, CEP 04039-032, São Paulo, SP, Brazil; Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Cristiano Noto
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3(o) Andar, CEP 04039-032, São Paulo, SP, Brazil; Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
29
|
Kanchanatawan B, Sriswasdi S, Maes M. Supervised machine learning to decipher the complex associations between neuro-immune biomarkers and quality of life in schizophrenia. Metab Brain Dis 2019; 34:267-282. [PMID: 30467771 DOI: 10.1007/s11011-018-0339-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/04/2018] [Indexed: 12/17/2022]
Abstract
Stable phase schizophrenia is characterized by altered patterning in tryptophan catabolites (TRYCATs) and memory impairments, which are associated with PHEMN (psychosis, hostility, excitation, mannerism and negative) and DAPS (depression, anxiety and physio-somatic) symptoms. This study was carried out to examine the association between TRYCAT patterning, memory impairments, psychopathological features and health-related quality of life (HR-QoL) in schizophrenia. The World Health Organization (WHO) QoL instrument-Abbreviated version (WHO-QoL-BREF), IgA/IgM responses to TRYCATs, cognitive tests, Scale for the Assessment of Negative Symptoms (SANS), Hamilton and Depression (HAMD) and Anxiety (HAMA) Rating Scales and the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale (FF) were measured in 80 schizophrenia patients and 40 controls. Neural Network analysis shows that the total HR-Qol score is best predicted by (in descending order) HAMA, FF, HAMD, and psychosis. Partial least Squares (PLS) analysis shows that 56.7% of the variance in the WHO-QoL scores is explained by PHEMN / DAPS symptoms, while 64.3% of the variance in those symptoms is explained by TRYCAT patterning and episodic/semantic memory impairments. IgA responses to picolinic acid, xanthurenic acid and 3-hydroxy-kynurenine (all negatively) and anthranilic acid (positively) have highly significant indirect effects on WHO-QoL scores, which are completely mediated by cognitive impairments and PHEMN / DAPS symptoms. The results show that lowered HR-Qol in schizophrenia is strongly associated with noxious TRYCATs and that these effects are mediated by impairments in episodic / semantic memory and schizophrenia phenomenology, especially physio-somatic and anxiety symptoms. Mucosal activation of the TRYCAT pathway combined with a deficit in natural IgM isotype antibodies to TRYCATs determine cognitive impairments and DAPS/PHEMN symptoms, which together determine to a large extent lowered HR-QoL in schizophrenia.
Collapse
Affiliation(s)
- Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Sira Sriswasdi
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, 4000, Plovdiv, Bulgaria.
- IMPACT Strategic Research Center, Barwon Health, Deakin University, PO Box 281, Geelong, Vic, 3220, Australia.
| |
Collapse
|
30
|
Moreira EG, Boll KM, Correia DG, Soares JF, Rigobello C, Maes M. Why Should Psychiatrists and Neuroscientists Worry about Paraoxonase 1? Curr Neuropharmacol 2019; 17:1004-1020. [PMID: 30592255 PMCID: PMC7052826 DOI: 10.2174/1570159x17666181227164947] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nitro-oxidative stress (NOS) has been implicated in the pathophysiology of psychiatric disorders. The activity of the polymorphic antioxidant enzyme paraoxonase 1 (PON1) is altered in diseases where NOS is involved. PON1 activity may be estimated using different substrates some of which are influenced by PON1 polymorphisms. OBJECTIVES 1) to review the association between PON1 activities and psychiatric diseases using a standardized PON1 substrate terminology in order to offer a state-of-the-art review; and 2) to review the efficacy of different strategies (nutrition, drugs, lifestyle) to enhance PON1 activities. METHODS The PubMed database was searched using the terms paraoxonase 1 and psychiatric diseases. Moreover, the database was also searched for clinical trials investigating strategies to enhance PON1 activity. RESULTS The studies support decreased PON1 activity as determined using phenylacetate (i.e., arylesterase or AREase) as a substrate, in depression, bipolar disorder, generalized anxiety disorder (GAD) and schizophrenia, especially in antipsychotic-free patients. PON1 activity as determined with paraoxon (i.e., POase activity) yields more controversial results, which can be explained by the lack of adjustment for the Q192R polymorphism. The few clinical trials investigating the influence of nutritional, lifestyle and drugs on PON1 activities in the general population suggest that some polyphenols, oleic acid, Mediterranean diet, no smoking, being physically active and statins may be effective strategies that increase PON1 activity. CONCLUSION Lowered PON1 activities appear to be a key component in the ongoing NOS processes that accompany affective disorders, GAD and schizophrenia. Treatments increasing attenuated PON1 activity could possibly be new drug targets for treating these disorders.
Collapse
Affiliation(s)
- Estefania Gastaldello Moreira
- Address correspondence to this author at the Departamento de Ciencias Fisiologicas, Lab. 6; Centro de Ciências Biologicas, CEP 86057-970, Londrina, PR Brazil; Tel: +55 (43) 3371-4307; E-mail:
| | | | | | | | | | | |
Collapse
|
31
|
Li N, Wang Q, Wang Y, Sun A, Lin Y, Jin Y, Li X. Oral Probiotics Ameliorate the Behavioral Deficits Induced by Chronic Mild Stress in Mice via the Gut Microbiota-Inflammation Axis. Front Behav Neurosci 2018; 12:266. [PMID: 30459574 PMCID: PMC6232506 DOI: 10.3389/fnbeh.2018.00266] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 01/23/2023] Open
Abstract
In recent years, a burgeoning body of research has revealed links between depression and the gut microbiota, leading to the therapeutic use of probiotics for stress-related disorders. In this study, we explored the potential antidepressant efficacy of a multi-strain probiotics treatment (Lactobacillus helveticus R0052, Lactobacillus plantarum R1012, and Bifidobacterium longum R0175) in a chronic mild stress (CMS) mouse model of depression and determined its probable mechanism of action. Our findings revealed that mice subjected to CMS exhibited anxiety- and depressive-like behaviors in the sucrose preference test, elevated plus maze, and forced swim test, along with increased interferon-γ, tumor necrosis factor-α, and indoleamine 2,3-dioxygenase-1 levels in the hippocampus. Moreover, the microbiota distinctly changed from the non-stress group and was characterized by highly diverse bacterial communities associated with significant reductions in Lactobacillus species. Probiotics attenuated CMS-induced anxiety- and depressive-like behaviors, significantly increased Lactobacillus abundance, and reversed the CMS-induced immune changes in the hippocampus. Thus, the possible mechanism involved in the antidepressant-like activity of probiotics is correlated with Lactobacillus species via the gut microbiota-inflammation-brain axis.
Collapse
Affiliation(s)
- Nannan Li
- Department of Geriatrics Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Qi Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wang
- Department of Mental Health Center, China Medical University, Shenyang, China
| | - Anji Sun
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yiwei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Ye Jin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Kanchanatawan B, Sriswasdi S, Thika S, Stoyanov D, Sirivichayakul S, Carvalho AF, Geffard M, Maes M. Towards a new classification of stable phase schizophrenia into major and simple neuro-cognitive psychosis: Results of unsupervised machine learning analysis. J Eval Clin Pract 2018; 24:879-891. [PMID: 29790237 DOI: 10.1111/jep.12945] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Deficit schizophrenia, as defined by the Schedule for Deficit Syndrome, may represent a distinct diagnostic class defined by neurocognitive impairments coupled with changes in IgA/IgM responses to tryptophan catabolites (TRYCATs). Adequate classifications should be based on supervised and unsupervised learning rather than on consensus criteria. METHODS This study used machine learning as means to provide a more accurate classification of patients with stable phase schizophrenia. RESULTS We found that using negative symptoms as discriminatory variables, schizophrenia patients may be divided into two distinct classes modelled by (A) impairments in IgA/IgM responses to noxious and generally more protective tryptophan catabolites, (B) impairments in episodic and semantic memory, paired associative learning and false memory creation, and (C) psychotic, excitation, hostility, mannerism, negative, and affective symptoms. The first cluster shows increased negative, psychotic, excitation, hostility, mannerism, depression and anxiety symptoms, and more neuroimmune and cognitive disorders and is therefore called "major neurocognitive psychosis" (MNP). The second cluster, called "simple neurocognitive psychosis" (SNP) is discriminated from normal controls by the same features although the impairments are less well developed than in MNP. The latter is additionally externally validated by lowered quality of life, body mass (reflecting a leptosome body type), and education (reflecting lower cognitive reserve). CONCLUSIONS Previous distinctions including "type 1" (positive)/"type 2" (negative) and DSM-IV-TR (eg, paranoid) schizophrenia could not be validated using machine learning techniques. Previous names of the illness, including schizophrenia, are not very adequate because they do not describe the features of the illness, namely, interrelated neuroimmune, cognitive, and clinical features. Stable-phase schizophrenia consists of 2 relevant qualitatively distinct categories or nosological entities with SNP being a less well-developed phenotype, while MNP is the full blown phenotype or core illness. Major neurocognitive psychosis and SNP should be added to the DSM-5 and incorporated into the Research Domain Criteria project.
Collapse
Affiliation(s)
- Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaksorn Thika
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Drozdstoy Stoyanov
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michel Geffard
- Research Department, IDRPHT, Talence, France
- GEMAC, Saint Jean d'Illac, France
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
33
|
Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M. Eotaxin, an Endogenous Cognitive Deteriorating Chemokine (ECDC), Is a Major Contributor to Cognitive Decline in Normal People and to Executive, Memory, and Sustained Attention Deficits, Formal Thought Disorders, and Psychopathology in Schizophrenia Patients. Neurotox Res 2018; 35:122-138. [PMID: 30056534 DOI: 10.1007/s12640-018-9937-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022]
Abstract
Eotaxin is increased in neurodegenerative disorders and schizophrenia, and preclinical studies indicate that eotaxin may induce cognitive deficits. This study aims to examine whether peripheral levels of eotaxin impact cognitive functioning in healthy volunteers and formal thought disorder (FTD) and psychopathology in schizophrenia patients. Serum levels of eotaxin were assayed and cognitive tests were performed on a sample of 40 healthy participants and 80 schizophrenia patients. Among healthy participants, eotaxin levels were significantly associated with episodic/semantic memory, executive functions, Mini Mental State Examination, emotion recognition, and sustained attention. In addition, age-related effects on these cognitive measures were partly mediated by eotaxin. The super-variable "age-eotaxin" predicted a large part of the variance in cognitive functions among healthy participants, and hence, eotaxin may act as an "accelerated brain aging chemokine" (ABAC). In schizophrenia, eotaxin levels had a strong impact on formal thought disorders and psychopathology. In schizophrenia, increased eotaxin strongly impacts memory and sustained attention, which together to a large extent determine FTD. FTD together with memory deficits predicts around 92.5% of the variance in psychopathology. Moreover, the effects of eotaxin are partially mediated by executive functioning, while the effects of male sex on FTD and psychopathology are mediated by eotaxin. In healthy subjects, eotaxin strongly impacts executive functioning and multiple cognitive domains. In schizophrenia, peripheral levels of eotaxin strongly impact both negative symptoms and psychosis (hallucinations and delusions), and these eotaxin effects are mediated by impairments in frontal functioning, memory, sustained attention, and FTD. Eotaxin is an endogenous cognitive deteriorating chemokine (ECDC) and a novel therapeutic target for age-related cognitive decline and schizophrenia as well.
Collapse
Affiliation(s)
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaksorn Thika
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Maes
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
34
|
Bocchio-Chiavetto L, Zanardini R, Tosato S, Ventriglia M, Ferrari C, Bonetto C, Lasalvia A, Giubilini F, Fioritti A, Pileggi F, Pratelli M, Pavanati M, Favaro A, De Girolamo G, Frisoni GB, Ruggeri M, Gennarelli M. Immune and metabolic alterations in first episode psychosis (FEP) patients. Brain Behav Immun 2018; 70:315-324. [PMID: 29548996 DOI: 10.1016/j.bbi.2018.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022] Open
Abstract
The molecular underpinnings associated to first episode psychosis (FEP) remains to be elucidated, but compelling evidence supported an association of FEP with blood alterations in biomarkers related to immune system, growth factors and metabolism regulators. Many of these studies have not been already confirmed in larger samples or have not considered the FEP diagnostic subgroups. In order to identify biochemical signatures of FEP, the serum levels of the growth factors BDNF and VEGF, the immune regulators IL-1RA, IL-6, IL-10 and IL-17, RANTES/CCL5, MIP-1b/CCL4, IL-8 and the metabolic regulators C-peptide, ghrelin, GIP, GLP-1, glucagon, insulin, leptin, PAI-1, resistin and visfatin were analysed in 260 subjects collected in the GET UP project. The results indicated an increase of MIP-1b/CCL4, VEGF, IL-6 and PAI-1, while IL-17, ghrelin, glucagon and GLP-1 were decreased in the whole sample of FEP patients (p < 0.01 for all markers except for PAI-1 p < 0.05). No differences were evidenced for these markers among the diagnostic groups that constitute the FEP sample, whereas IL-8 is increased only in patients with a diagnosis of affective psychosis. The principal component analysis (PCA) and variable importance analysis (VIA) indicated that MIP-1b/CCL4, ghrelin, glucagon, VEGF and GLP-1 were the variables mostly altered in FEP patients. On the contrary, none of the analysed markers nor a combination of them can discriminate between FEP diagnostic subgroups. These data evidence a profile of immune and metabolic alterations in FEP patients, providing new information on the molecular mechanism associated to the psychosis onset for the development of preventive strategies and innovative treatment targets.
Collapse
Affiliation(s)
- Luisella Bocchio-Chiavetto
- IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Faculty of Psychology, eCampus University, Novedrate (Como), Italy.
| | | | - Sarah Tosato
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation, AFaR Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Clarissa Ferrari
- IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Chiara Bonetto
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonio Lasalvia
- Unit of Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | | | | | | | | | - Michele Pavanati
- Department of Medical Sciences of Communication and Behavior, Section of Psychiatry, The Consultation-Liaison Psychiatric Service and Psychiatric Unit, University of Ferrara, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua and Azienda Ospedaliera, Padua, Italy
| | | | - Giovanni Battista Frisoni
- IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Geneva University Hospital and University of Geneva, Switzerland
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Gennarelli
- IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Dept. of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Italy
| |
Collapse
|
35
|
Kanchanatawan B, Sirivichayakul S, Carvalho AF, Anderson G, Galecki P, Maes M. Depressive, anxiety and hypomanic symptoms in schizophrenia may be driven by tryptophan catabolite (TRYCAT) patterning of IgA and IgM responses directed to TRYCATs. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:205-216. [PMID: 28690204 DOI: 10.1016/j.pnpbp.2017.06.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/22/2023]
Abstract
The aim of this study was to delineate the associations between the tryptophan catabolite (TRYCAT) pathway and affective symptoms in schizophrenia. Towards this end we measured immunoglobulin (Ig)A and IgM responses to relatively noxious TRYCATs, namely quinolinic (QA), xanthurenic (XA), picolinic (PA) acid and 3-OH-kynurenine (3HK), and generally protective TRYCATs, namely anthranilic (AA) and kynurenic (KA) acid in 80 patients with schizophrenia and 40 healthy controls. The Hamilton Rating Scale for Depression (HDRS) and anxiety (HAMA), Young Mania Rating Scale (YMRS) as well as the Positive and Negative Symptoms Scale of Schizophrenia (PANSS) were measured. Depression, anxiety and hypomanic as well as negative and positive symptoms were associated with increased IgA responses to PA. Increased IgA responses to XA were associated with anxiety, hypomanic and negative symptoms. Moreover, depressive, anxiety, hypomanic and negative symptoms were characterized by increased IgA responses to the noxious (XA+3HK+QA+PA)/protective (AA+KA) TRYCAT ratio. All symptom dimensions were associated with increased IgM responses to QA, while depressive, anxiety, positive and negative symptoms were accompanied by lowered IgM responses to 3HK. Hypomanic symptoms were additionally accompanied by lowered IgM responses to AA, and negative symptoms by increased IgM responses to KA. In conclusion, both shared and distinct alterations in the activity of the TRYCAT pathway, as well as its regulatory factors and consequences, may underpin affective and classical psychotic symptoms of schizophrenia. Increased mucosa-generated production of noxious TRYCATs, especially PA, and specific changes in IgM-mediated regulatory activities may be associated with the different symptom dimensions of schizophrenia.
Collapse
Affiliation(s)
- Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Poland
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil; Revitalis, Waalre, The Netherlands; IMPACT Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
36
|
Li Z, He Y, Han H, Zhou Y, Ma X, Wang D, Zhou J, Ren H, Yuan L, Tang J, Zong X, Hu M, Chen X. COMT, 5-HTR2A, and SLC6A4 mRNA Expressions in First-Episode Antipsychotic-Naïve Schizophrenia and Association With Treatment Outcomes. Front Psychiatry 2018; 9:577. [PMID: 30483162 PMCID: PMC6242860 DOI: 10.3389/fpsyt.2018.00577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/22/2018] [Indexed: 01/30/2023] Open
Abstract
Background: Dopaminergic and serotonergic systems play crucial roles in the pathophysiology of schizophrenia and modulate response to antipsychotic treatment. However, previous studies of dopaminergic and serotonergic genes expression are sparse, and their results have been inconsistent. In this longitudinal study, we aim to investigate the expressions of Catechol-O-methyltransferase (COMT), serotonin 2A receptor (5-HTR2A), and serotonin transporter gene (SLC6A4) mRNA in first-episode antipsychotic-naïve schizophrenia and to test if these mRNA expressions are associated with cognitive deficits and treatment outcomes or not. Method: We measured COMT, 5-HTR2A, and SLC6A4 mRNA expressions in 45 drug-naive first-episode schizophrenia patients and 38 health controls at baseline, and repeated mRNA measurements in all patients at the 8-week follow up. Furthermore, we also assessed antipsychotic response and cognitive improvement after 8 weeks of risperidone monotherapy. Results: Patients were divided into responders (N = 20) and non-responders groups (N = 25) according to the Remission criteria of the Schizophrenia Working Group. Both patient groups have significantly higher COMT mRNA expression and lower SLC6A4 mRNA expression when compared with healthy controls. Interestingly, responder patients have significantly higher levels of COMT and 5-HTR2A mRNA expressions than non-responder patients at baseline. However, antipsychotic treatment has no significant effect on the expressions of COMT, 5-HTR2A, and SLC6A4 mRNA over 8-week follow up. Conclusion: Our findings suggest that dysregulated COMT and SLC6A4 mRNA expressions may implicate in the pathophysiology of schizophrenia, and that COMT and 5-HTR2A mRNA may be potential biomarkers to predict antipsychotic response.
Collapse
Affiliation(s)
- Zongchang Li
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ying He
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yao Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoqian Ma
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Dong Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Jun Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Honghong Ren
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Liu Yuan
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jinsong Tang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaogang Chen
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
37
|
Tomassi S, Tosato S. Epigenetics and gene expression profile in first-episode psychosis: The role of childhood trauma. Neurosci Biobehav Rev 2017; 83:226-237. [PMID: 29056292 DOI: 10.1016/j.neubiorev.2017.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/02/2017] [Accepted: 10/18/2017] [Indexed: 11/24/2022]
Abstract
Childhood Trauma (CT) mediation of the epigenome and its impact on gene expression profile could provide a mechanism for the gene-environment interaction underling psychosis. We reviewed the evidence concerning epigenetic and gene expression modifications associated with CT in both First-Episode Psychosis (FEP) and healthy subjects. In order to explore the relative role of psychosis itself in determining these modifications, evidence about FEP and epigenetics/gene expression was also summarized. We performed a systematic search on PubMed, last updated in December 2016. Out of 2966 potentially relevant records, only 41 studies were included. CT resulted associated: in FEP subjects, with global DNA hypo-methylation and reduced BDNF gene-expression; in healthy subjects, with hyper-methylation of SLC6A4, NR3C1, KITLG, and OXTR; hypo-methylation of FKBP5, IL-6, and BDNF; increased IL1B, IL8, and PTGS gene expression; and decreased SLC6A4 gene expression. FEP showed global DNA hypo-methylation; increased methylation and reduced gene expression of GCH1; hyper-expression of MPB, NDEL1, AKT1, and DICER1; and hypo-expression of DROSHA, COMT, and DISC1 in comparison with healthy controls.
Collapse
Affiliation(s)
- Simona Tomassi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Sarah Tosato
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy.
| |
Collapse
|
38
|
Liu L, Luo Y, Zhang G, Jin C, Zhou Z, Cheng Z, Yuan G. Correlation of DRD2 mRNA expression levels with deficit syndrome severity in chronic schizophrenia patients receiving clozapine treatment. Oncotarget 2017; 8:86515-86526. [PMID: 29156812 PMCID: PMC5689702 DOI: 10.18632/oncotarget.21230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/26/2017] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a complex, severe, chronic psychiatric disorder, and the associated deficit syndrome is widely regarded as an important clinical aspect of schizophrenia. This study analyzed the relationship of deficit syndrome severity with the mRNA levels of members of signaling pathways that associate with the pathophysiology of schizophrenia, including the dopamine D2 receptor (DRD2), protein kinase B (AKT1), and phosphoinositide-3 kinase (PI3KCB), in peripheral blood leukocytes (PBLs) of 20 healthy controls and 19 chronic schizophrenia patients with long-term clozapine treatment. The DRD2 expression levels in chronic schizophrenia group were statistically higher than those in controls (t=2.168, p=0.037). Moreover, in chronic schizophrenia group, correlations were observed between the expression levels of DRD2 and PI3KCB (r=0.771, p<0.001), DRD2 and AKT1 (r=0.592, p=0.008), and PI3KCB and AKT1 (r=0.562, p=0.012) and between the DRD2 mRNA levels and the Proxy for the Deficit Syndrome score (r=0.511, p=0.025). In control group, the correlation between PI3KCB expression levels and DRD2 expression levels was only observed (r=0.782, p<0.001). In conclusion, a correlation was observed between increased deficit syndrome severity and elevated expression levels of DRD2 in PBLs of chronic schizophrenia patients receiving long-term clozapine treatment.
Collapse
Affiliation(s)
- Liang Liu
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Yin Luo
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Guofu Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Chunhui Jin
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zhenhe Zhou
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Guozhen Yuan
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| |
Collapse
|
39
|
Deak T, Kudinova A, Lovelock DF, Gibb BE, Hennessy MB. A multispecies approach for understanding neuroimmune mechanisms of stress. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566946 PMCID: PMC5442363 DOI: 10.31887/dcns.2017.19.1/tdeak] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relationship between stress challenges and adverse health outcomes, particularly for the development of affective disorders, is now well established. The highly conserved neuroimmune mechanisms through which responses to stressors are transcribed into effects on males and females have recently garnered much attention from researchers and clinicians alike. The use of animal models, from mice to guinea pigs to primates, has greatly increased our understanding of these mechanisms on the molecular, cellular, and behavioral levels, and research in humans has identified particular brain regions and connections of interest, as well as associations between stress-induced inflammation and psychiatric disorders. This review brings together findings from multiple species in order to better understand how the mechanisms of the neuroimmune response to stress contribute to stress-related psychopathologies, such as major depressive disorder, schizophrenia, and bipolar disorder.
Collapse
Affiliation(s)
- Terrence Deak
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Anastacia Kudinova
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Dennis F Lovelock
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Brandon E Gibb
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | | |
Collapse
|
40
|
Fond G, Godin O, Boyer L, Llorca PM, Andrianarisoa M, Brunel L, Aouizerate B, Berna F, Capdevielle D, D'Amato T, Denizot H, Dubertret C, Dubreucq J, Faget C, Gabayet F, Mallet J, Misdrahi D, Passerieux C, Rey R, Richieri R, Schandrin A, Urbach M, Vidailhet P, Leboyer M, Bulzacka E, Schürhoff F. Advanced paternal age is associated with earlier schizophrenia onset in offspring. Results from the national multicentric FACE-SZ cohort. Psychiatry Res 2017; 254:218-223. [PMID: 28476014 DOI: 10.1016/j.psychres.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/02/2017] [Indexed: 10/19/2022]
Abstract
The association between advanced paternal age (APA) and increased risk of schizophrenia (SZ) is well established. The objectives of the present study were to further determine if SZ participants with APA (APA+), versus those without (APA-), had: (i) different illness characteristics; (ii) different responses to antipsychotic medication; and (iii) different cognitive characteristics. Participants were a non-selected representative multicentric sample of stabilized community-dwelling people diagnosed with SZ included in the FACE-SZ cohort. 389 participants (73% males, mean aged 32.7 years, mean illness duration 10.8 years) formed the study sample, with each comprehensively evaluated, clinically and neuropsychologically, over 2 days. 118 participants (30.3%) were defined as APA+ according to their father's age at birth (≥35 years). APA+ was associated with a wide range of cognitive dysfunctions in univariate analyses. In multivariate analyses, the only significant difference was the age at onset, with a mean 1.6 year earlier in APA+, compared to APA- (20.7 vs. 22.3 years; p=0.02). This difference is independent of sociodemographic characteristics and I.Q. No association with clinical symptomatology and treatment response was found. The present study supports the neomutation hypothesis and confirms APA as a relevant clinical variable to discriminate potential schizophrenia subtypes. Potential underlying pathophysiological mechanisms are discussed.
Collapse
Affiliation(s)
- Guillaume Fond
- Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France; Bordeaux Sleep Clinique, Pellegrin University Hospital, Bordeaux University, USR CNRS 3413 SANPSY, Research Unit, 33000 Bordeaux, France; Clinique Jeanne d'Arc, Hôpital Privé Parisien, F-94160 Saint-Mandé, France.
| | - Ophélia Godin
- Fondation FondaMental, Créteil, France; UPMC University Paris 06, UMRS 943, F-75013 Paris, France; INSERM, UMRS 943, F-75013 Paris, France
| | - Laurent Boyer
- Fondation FondaMental, Créteil, France; Pôle psychiatrie universitaire, CHU Sainte-Marguerite, F-13274 Marseille cedex 09, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, Créteil, France; CMP B, CHU, EA 7280 Faculté de Médecine, Université d'Auvergne, BP 69 63003 Clermont-Ferrand Cedex 1, France
| | - Meja Andrianarisoa
- Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France
| | - Lore Brunel
- Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, France; Centre Hospitalier Charles Perrens, F-33076 Bordeaux, France; Université de Bordeaux; Inserm, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France
| | - Fabrice Berna
- Fondation FondaMental, Créteil, France; Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Delphine Capdevielle
- Fondation FondaMental, Créteil, France; Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Thierry D'Amato
- Fondation FondaMental, Créteil, France; INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, BP 30039, 69678 Bron Cedex, France
| | - Hélène Denizot
- Fondation FondaMental, Créteil, France; CMP B, CHU, EA 7280 Faculté de Médecine, Université d'Auvergne, BP 69 63003 Clermont-Ferrand Cedex 1, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France; AP-HP, Department of Psychiatry, Louis Mourier Hospital, Colombes, Inserm U894, Université Paris Diderot, Sorbonne Paris Cité, Faculté de médecine, France
| | - Julien Dubreucq
- Fondation FondaMental, Créteil, France; Centre Référent de Réhabilitation Psychosociale, CH Alpes Isère, Grenoble, France
| | - Catherine Faget
- Fondation FondaMental, Créteil, France; Assistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrie, Marseille, France
| | - Franck Gabayet
- Fondation FondaMental, Créteil, France; Centre Référent de Réhabilitation Psychosociale, CH Alpes Isère, Grenoble, France
| | - Jasmina Mallet
- Fondation FondaMental, Créteil, France; AP-HP, Department of Psychiatry, Louis Mourier Hospital, Colombes, Inserm U894, Université Paris Diderot, Sorbonne Paris Cité, Faculté de médecine, France
| | - David Misdrahi
- Fondation FondaMental, Créteil, France; Centre Hospitalier Charles Perrens, F-33076 Bordeaux, France; Université de Bordeaux; CNRS UMR 5287-INCIA
| | - Christine Passerieux
- Fondation FondaMental, Créteil, France; Service de psychiatrie d'adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Romain Rey
- Fondation FondaMental, Créteil, France; INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, BP 30039, 69678 Bron Cedex, France
| | - Raphaelle Richieri
- Fondation FondaMental, Créteil, France; Assistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrie, Marseille, France
| | - Aurélie Schandrin
- Fondation FondaMental, Créteil, France; Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Mathieu Urbach
- Fondation FondaMental, Créteil, France; Service de psychiatrie d'adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Pierre Vidailhet
- Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France
| | - Ewa Bulzacka
- Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France
| | - Franck Schürhoff
- Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France
| | | |
Collapse
|
41
|
Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Ormstad H, Anderson G, Maes M. Deficit, but Not Nondeficit, Schizophrenia Is Characterized by Mucosa-Associated Activation of the Tryptophan Catabolite (TRYCAT) Pathway with Highly Specific Increases in IgA Responses Directed to Picolinic, Xanthurenic, and Quinolinic Acid. Mol Neurobiol 2017; 55:1524-1536. [PMID: 28181189 DOI: 10.1007/s12035-017-0417-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
Evidence suggests that activation of the tryptophan catabolite (TRYCAT) pathway is involved in the pathophysiology of schizophrenia. However, no previous study examined whether TRYCAT pathway activation is associated with deficit schizophrenia. We measured IgA responses to TRYCATs, namely quinolinic acid, picolinic acid, kynurenic acid, xanthurenic acid, and anthranilic acid and 3-OH-kynurenine, in 40 healthy controls and in schizophrenic patients with (n = 40) and without (n = 40) deficit, defined according to the Schedule for the Deficit Syndrome (SDS). Primary deficit schizophrenia is accompanied by an activated TRYCAT pathway as compared to controls and nondeficit schizophrenia. Participants with deficit schizophrenia show increased IgA responses to xanthurenic acid, picolinic acid, and quinolinic acid and relatively lowered IgA responses to kynurenic and anthranilic acids, as compared to patients with nondeficit schizophrenia. Both schizophrenia subgroups show increased IgA responses to 3-OH-kynurenine as compared to controls. The IgA responses to noxious TRYCATs, namely xanthurenic acid, picolinic acid, quinolinic acid, and 3-OH-kynurenine, but not protective TRYCATS, namely anthranilic acid and kunyrenic acid, are significantly higher in deficit schizophrenia than in controls. The negative symptoms of schizophrenia are significantly and positively associated with increased IgA responses directed against picolinic acid and inversely with anthranilic acid, whereas no significant associations between positive symptoms and IgA responses to TRYCATs were found. In conclusion, primary deficit schizophrenia is characterized by TRYCAT pathway activation and differs from nondeficit schizophrenia by a highly specific TRYCAT pattern suggesting increased excitotoxicity, cytotoxicity, and neurotoxicity, as well as inflammation and oxidative stress. The specific alterations in IgA responses to TRYCATs provide further insight for the biological delineation of deficit versus nondeficit schizophrenia.
Collapse
Affiliation(s)
- Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Kiat Ruxrungtham
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michel Geffard
- IDRPHT, Research Department, Talence, France
- GEMAC, Saint Jean d'Illac, France
| | - Heidi Ormstad
- Faculty of Health Sciences, University College of Southeast Norway, Drammen, Norway
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia.
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil.
- Revitalis, Waalre, the Netherlands.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
42
|
da Silva Araújo T, Maia Chaves Filho AJ, Monte AS, Isabelle de Góis Queiroz A, Cordeiro RC, de Jesus Souza Machado M, de Freitas Lima R, Freitas de Lucena D, Maes M, Macêdo D. Reversal of schizophrenia-like symptoms and immune alterations in mice by immunomodulatory drugs. J Psychiatr Res 2017; 84:49-58. [PMID: 27697587 DOI: 10.1016/j.jpsychires.2016.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023]
Abstract
Immune dysregulation observed in schizophrenia alters tryptophan metabolism. Tryptophan metabolism is triggered by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). Tryptophan is converted to quinolinic acid, a potent neurotoxin, and to kynurenic acid, an NMDA antagonist. 1-Methyl-D-tryptophan (MDT) inhibits IDO. Melatonin is metabolized by IDO while inhibiting TDO. We evaluated the reversal of ketamine-induced schizophrenia-like behavioral and neurochemical alterations in mice by the administration of MDT (20 or 40 mg/kg, i.p.) or melatonin (15 mg/kg, per os). Oxidative stress and inflammatory alterations, i.e. myeloperoxidase activity (MPO), reduced glutathione (GSH), lipid peroxidation (LPO) and interleukin (IL)-4 and IL-6 were measured in the prefrontal cortex (PFC), hippocampus and striatum. Risperidone was used as standard antipsychotic. Ketamine triggered positive- (PPI deficits and hyperlocomotion), cognitive- (working memory deficits) and negative (social interaction deficits) schizophrenia-like symptoms. These symptoms were accompanied by increased MPO activity, decreased GSH and increased LPO in all brain areas and increments in hippocampal IL-4 and IL-6. MDT and melatonin reversed all ketamine-induced behavioral alterations. Risperidone did not reverse working memory deficits. MDT and melatonin reversed alterations in MPO activity and GSH levels. LP was reversed only by melatonin and risperidone. Risperidone could not reverse MPO alterations in the PFC and striatum. All drugs reversed the alterations in IL-4 and IL-6. The hippocampus and striatum of ketamine+melatonin-treated animals had lower levels of IL-6. Our findings provide further preclinical evidence that immune-inflammatory and oxidative pathways are involved in schizophrenia and that targeting these pathways is a valid treatment option in schizophrenia.
Collapse
Affiliation(s)
- Tatiane da Silva Araújo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Adriano Jose Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aline Santos Monte
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ana Isabelle de Góis Queiroz
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rafaela Carneiro Cordeiro
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michel de Jesus Souza Machado
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ricardo de Freitas Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
43
|
Altered cytokine profile, pain sensitivity, and stress responsivity in mice with co-disruption of the developmental genes Neuregulin-1×DISC1. Behav Brain Res 2016; 320:113-118. [PMID: 27916686 DOI: 10.1016/j.bbr.2016.11.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Abstract
The complex genetic origins of many human disorders suggest that epistatic (gene×gene) interactions may contribute to a significant proportion of their heritability estimates and phenotypic heterogeneity. Simultaneous disruption of the developmental genes and schizophrenia risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) in mice has been shown to produce disease-relevant and domain-specific phenotypic profiles different from that observed following disruption of either gene alone. In the current study, anxiety and stress responsivity phenotypes in male and female mutant mice with simultaneous disruption of DISC1 and NRG1 were examined. NRG1×DISC1 mutant mice were generated and adult mice from each genotype were assessed for pain sensitivity (hot plate and tail flick tests), anxiety (light-dark box), and stress-induced hypothermia. Serum samples were assayed to measure circulating levels of pro-inflammatory cytokines. Mice with the NRG1 mutation, irrespective of DISC1 mutation, spent significantly more time in the light chamber, displayed increased core body temperature following acute stress, and decreased pain sensitivity. Basal serum levels of cytokines IL8, IL1β and IL10 were decreased in NRG1 mutants. Mutation of DISC1, in the absence of epistatic interaction with NRG1, was associated with increased serum levels of IL1β. Epistatic effects were evident for IL6, IL12 and TNFα. NRG1 mutation alters stress and pain responsivity, anxiety, and is associated with changes in basal cytokine levels. Epistasis resulting from synergistic NRG1 and DISC1 gene mutations altered pro-inflammatory cytokine levels relative to the effects of each of these genes individually, highlighting the importance of epistatic mechanisms in immune-related pathology.
Collapse
|
44
|
Bodnar TS, Hill LA, Weinberg J. Evidence for an immune signature of prenatal alcohol exposure in female rats. Brain Behav Immun 2016; 58:130-141. [PMID: 27263429 PMCID: PMC5067180 DOI: 10.1016/j.bbi.2016.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Evidence for immune/neuroimmune disturbances as a possible root cause of a range of disorders, including neurodevelopmental disorders, is growing. Although prenatal alcohol exposure (PAE) impacts immune function, few studies to date have examined immune function in relation to long-term negative health outcomes following PAE, and most have focused on males. To fill this gap, we utilized a rat model to examine the effects of PAE on immune/neuroimmune function during early-life [postnatal day 1 (P1), P8, and P22] in PAE and control females. Due to the extensive interplay between the immune and endocrine systems, we also measured levels of corticosterone and corticosterone binding globulin (CBG). While corticosterone levels were not different among groups, CBG levels were lower in PAE offspring from P1 to P8, suggesting a lower corticosterone reservoir that may underlie susceptibility to inflammation. Spleen weights were increased in PAE rats on P22, a marker of altered immune function. Moreover, we detected a unique cytokine profile in PAE compared to control offspring on P8 - higher levels in the PFC and hippocampus, and lower levels in the hypothalamus and spleen. The finding of a specific immune signature in PAE offspring during a sensitive developmental period has important implications for understanding the basis of long-term immune alterations and health outcomes in children with Fetal Alcohol Spectrum Disorder (FASD). Our findings also highlight the future possibility that immune-based intervention strategies could be considered as an adjunctive novel therapeutic approach for individuals with FASD.
Collapse
Affiliation(s)
- Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3,Corresponding author: Tamara Bodnar, Department of Cellular and Physiological Sciences, University of British Columbia, 3302 – 2350, Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3, Phone: 604-822-4554,
| | - Lesley A. Hill
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
45
|
Dieset I, Andreassen OA, Haukvik UK. Somatic Comorbidity in Schizophrenia: Some Possible Biological Mechanisms Across the Life Span. Schizophr Bull 2016; 42:1316-1319. [PMID: 27033328 PMCID: PMC5049521 DOI: 10.1093/schbul/sbw028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is associated with decreased life expectancy (15-25 y) compared to the general population, with comorbid somatic diseases and in particular cardiovascular diseases being a major cause. Life style and medication probably account for much of the increased mortality risk due to somatic diseases in schizophrenia, but the evidence implicating biological pathways potentially affecting both body and brain is increasing. This includes overlapping genes between schizophrenia and somatic diseases, prenatal risk factors such as hypoxia and infections, and increased cardiovascular disease risk in drug-naïve patients at illness onset. Although environmental bias increases throughout the disease course, there are also some studies on chronic schizophrenia and postmortem brain samples that warrant further attention. In the following, we will attempt to move beyond environmental impact and explore some of the shared pathophysiological mechanisms potentially underlying both schizophrenia and somatic diseases.
Collapse
Affiliation(s)
- Ingrid Dieset
- NORMENT K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT and K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway;
| | - Ole A Andreassen
- NORMENT K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT and K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Unn K Haukvik
- Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital Trust, Fredrikstad, Norway
| |
Collapse
|
46
|
Gene expression alterations related to mania and psychosis in peripheral blood of patients with a first episode of psychosis. Transl Psychiatry 2016; 6:e908. [PMID: 27701407 PMCID: PMC5315542 DOI: 10.1038/tp.2016.159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
Psychotic disorders affect ~3% of the general population and are among the most severe forms of mental diseases. In early stages of psychosis, clinical aspects may be difficult to distinguish from one another. Undifferentiated psychopathology at the first-episode of psychosis (FEP) highlights the need for biomarkers that can improve and refine differential diagnosis. We investigated gene expression differences between patients with FEP-schizophrenia spectrum (SCZ; N=53) or FEP-Mania (BD; N=16) and healthy controls (N=73). We also verified whether gene expression was correlated to severity of psychotic, manic, depressive symptoms and/or functional impairment. All participants were antipsychotic-naive. After the psychiatric interview, blood samples were collected and the expression of 12 psychotic-disorder-related genes was evaluated by quantitative PCR. AKT1 and DICER1 expression levels were higher in BD patients compared with that in SCZ patients and healthy controls, suggesting that expression of these genes is associated more specifically to manic features. Furthermore, MBP and NDEL1 expression levels were higher in SCZ and BD patients than in healthy controls, indicating that these genes are psychosis related (independent of diagnosis). No correlation was found between gene expression and severity of symptoms or functional impairment. Our findings suggest that genes related to neurodevelopment are altered in psychotic disorders, and some might support the differential diagnosis between schizophrenia and bipolar disorder, with a potential impact on the treatment of these disorders.
Collapse
|
47
|
Deans E. Microbiome and mental health in the modern environment. J Physiol Anthropol 2016; 36:1. [PMID: 27405349 PMCID: PMC4940716 DOI: 10.1186/s40101-016-0101-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022] Open
Abstract
A revolution in the understanding of the pathophysiology of mental illness combined with new knowledge about host/microbiome interactions and psychoneuroimmunology has opened an entirely new field of study, the “psychobiotics”. The modern microbiome is quite changed compared to our ancestral one due to diet, antibiotic exposure, and other environmental factors, and these differences may well impact our brain health. The sheer complexity and scope of how diet, probiotics, prebiotics, and intertwined environmental variables could influence mental health are profound obstacles to an organized and useful study of the microbiome and psychiatric disease. However, the potential for positive anti-inflammatory effects and symptom amelioration with perhaps few side effects makes the goal of clarifying the role of the microbiota in mental health a vital one.
Collapse
Affiliation(s)
- Emily Deans
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Wellcare Physicians Group, 100 Morse St. Ste 105, Norwood, MA, 02062, USA.
| |
Collapse
|
48
|
Brites D, Fernandes A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front Cell Neurosci 2015; 9:476. [PMID: 26733805 PMCID: PMC4681811 DOI: 10.3389/fncel.2015.00476] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Patients with chronic inflammation are often associated with the emergence of depression symptoms, while diagnosed depressed patients show increased levels of circulating cytokines. Further studies revealed the activation of the brain immune cell microglia in depressed patients with a greater magnitude in individuals that committed suicide, indicating a crucial role for neuroinflammation in depression brain pathogenesis. Rapid advances in the understanding of microglial and astrocytic neurobiology were obtained in the past 15–20 years. Indeed, recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions, besides their involvement in immune-response generating cytokines. The communication between microglia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), comprising ectosomes and exosomes with a size ranging from 0.1–1 μm, are key players in intercellular signaling. These EVs may carry specific proteins, mRNAs and microRNAs (miRNAs). Transfer of exosomes to neurons was shown to be mediated by oligodendrocytes, microglia and astrocytes that may either be supportive to neurons, or instead disseminate the disease. Interestingly, several recent reports have identified changes in miRNAs in depressed patients, which target not only crucial pathways associated with synaptic plasticity, learning and memory but also the production of neurotrophic factors and immune cell modulation. In this article, we discuss the role of neuroinflammation in the emergence of depression, namely dynamic alterations in the status of microglia response to stimulation, and how their activation phenotypes may have an etiological role in neurodegeneneration, in particular in depressive-like behavior. We will overview the involvement of miRNAs, exosomes, ectosomes and microglia in regulating critical pathways associated with depression and how they may contribute to other brain disorders including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD), which share several neuroinflammatory-associated processes. Specific reference will be made to EVs as potential biomarkers and disease monitoring approaches, focusing on their potentialities as drug delivery vehicles, and on putative therapeutic strategies using autologous exosome-based delivery systems to treat neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|