1
|
Erngren I, Vaivade A, Carlsson H, Al-Grety A, Åkerfeldt T, Kockum I, Hedström AK, Alfredsson L, Olsson T, Burman J, Kultima K. Bile acid metabolism in multiple sclerosis is perturbed and associated with the risk of confirmed disability worsening. BMC Med 2025; 23:212. [PMID: 40200290 PMCID: PMC11980154 DOI: 10.1186/s12916-025-04041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Bile acids (BAs) have emerged as important mediators in neuroinflammation and neurodegeneration, important features of multiple sclerosis (MS). This study aimed to examine serum BA levels in newly diagnosed people with MS (pwMS) and explore their association with disability worsening. METHODS The study included 907 pwMS and 907 matched controls from the Swedish population-based EIMS cohort, with clinical follow-up data from the Swedish MS Registry. Serum BA levels were analyzed using liquid chromatography-high-resolution mass spectrometry. Differential expression analysis was used to study differences in BAs between pwMS and controls. Cox proportional-hazard models were used to assess associations between BA concentrations and confirmed disability worsening (CDW) and the risk of reaching EDSS milestones 4.0 and 6.0. RESULTS PwMS had lower concentrations of the primary conjugated BA, glycochenodeoxycholic acid (GCDCA, log2 FC - 0.29, p = 0.009) compared to controls. In relapsing-remitting MS compared to controls, lower concentrations of primary conjugated BAs (log2 FC - 0.30, p = 8.40E - 5), secondary conjugated BAs (log2 FC - 0.18, p = 0.007), and total BAs (log2 FC - 0.22, p = 2.99E - 4) were found. Sex-specific differences were also found, with male pwMS showing more substantial BA alterations. Elevated total BA levels were associated with increased risk for CDW (HR 1.22, 95% CI 1.08-1.39), driven mainly by primary conjugated (HR 1.19, 95% CI 1.06-1.33) and secondary conjugated BAs (HR 1.21, 95% CI 1.08-1.39). CONCLUSIONS This study identified alterations in serum BA profiles in pwMS compared to controls, with strong associations between conjugated BAs and the risk of disability worsening. These findings underscore the potential role of BAs in MS pathogenesis and disability worsening, suggesting they may be promising targets for future therapeutic interventions. Further research is warranted to clarify the underlying mechanisms of these associations.
Collapse
Affiliation(s)
- Ida Erngren
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Aina Vaivade
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Henrik Carlsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Asma Al-Grety
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Torbjörn Åkerfeldt
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centrum for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Academic Specialist Center, Stockholm, 113 65, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centrum for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Academic Specialist Center, Stockholm, 113 65, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Translational Neurology, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden.
| |
Collapse
|
2
|
An Y, Xi Y, Wang T, Ju M, Feng W, Guo Z, Sun X, Yang K, Qi C, Xiao R. A panel of altered blood oxysterols in patients with mild cognitive impairment: A novel combined diagnostic marker. Pharmacol Res 2025; 213:107661. [PMID: 39984005 DOI: 10.1016/j.phrs.2025.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Perturbed cholesterol metabolism may play an important role in the development of dementia and its preclinical stage, mild cognitive impairment (MCI). Oxysterols, the metabolites generated during cholesterol oxidation, also appear to be risk factors for MCI. Therefore, we aimed to investigate if the metabolic profile of blood oxysterols could be used to characterize MCI risk. This cross-sectional study incorporated 501 participants-253 patients with MCI and 248 cognitively normal controls. Serum levels of 22 free oxysterols were measured, and a set of 27 oxysterol-related gene polymorphisms was genotyped. Five [27-hydroxycholesterol (27-OHC), 27-OHC periphery-derived metabolite 3β-hydroxy-5-cholestenoic acid (27-CA) and brain-derived metabolite 7α-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA), 4β-hydroxycholesterol (4β-OHC); 4α-hydroxycholesterol (4α-OHC)] of the twenty-two oxysterols detected in serum significantly differed between the patients with MCI and controls, greatly distinguishing patients with MCI from control individuals (AUC=0.834, 95 % CI: 0.804-0.866). Association analyses demonstrated significant correlations between these candidate oxysterol biomarkers with younger age, higher blood lipids, worse cognitive performance, and higher monounsaturated fatty acid intake. This panel of serum free oxysterols as candidate serum oxysterol biomarkers for MCI highlighted the essential role of 27-OHC in the pathogenesis of early dementia prevention. (The study registered in the Chinese Clinical Trial Registry as ChiCTR-OOC-17011882).
Collapse
Affiliation(s)
- Yu An
- School of Public Health, Capital Medical University, Beijing 100069, China; Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuandi Xi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tao Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Mengwei Ju
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenjing Feng
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhiting Guo
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xuejing Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kexin Yang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Chengyan Qi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Caratis F, Karaszewski B, Klejbor I, Furihata T, Rutkowska A. Differential expression and modulation of EBI2 and 7α,25-OHC synthesizing (CH25H, CYP7B1) and degrading (HSD3B7) enzymes in mouse and human brain vascular cells. PLoS One 2025; 20:e0318822. [PMID: 39999050 PMCID: PMC11856462 DOI: 10.1371/journal.pone.0318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The endogenous ligand for the EBI2 receptor, oxysterol 7α,25OHC, crucial for immune responses, is finely regulated by CH25H, CYP7B1 and HSD3B7 enzymes. Lymphoid stromal cells and follicular dendritic cells within T cell follicles maintain a gradient of 7α,25OHC, with stromal cells increasing and dendritic cells decreasing its concentration. This gradient is pivotal for proper B cell positioning in lymphoid tissue. In the animal model of multiple sclerosis, the experimental autoimmune encephalomyelitis, the levels of 7α,25OHC rapidly increase in the central nervous system driving the migration of EBI2 expressing immune cells through the blood-brain barrier (BBB). To explore if blood vessel cells in the brain express these enzymes, we examined normal mouse brain microvessels and studied changes in their expression during inflammation. Ebi2 was abundantly expressed in endothelial cells, pericytes/smooth muscle cells, and astrocytic endfeet. Ch25h, Cyp7b1, and Hsd3b7 were variably detected in each cell type, suggesting their active involvement in oxysterol 7α,25OHC synthesis and gradient maintenance under normal conditions. Significant species-specific differences emerged in EBI2 and the enzyme levels between mouse and human BBB-forming cells. Under acute inflammatory conditions, Ebi2 and synthesizing enzyme modulation occurred in the brain, with the magnitude and direction of change based on the enzyme. Lastly, in an in vitro astrocyte migration model, CYP7B1 inhibitor clotrimazole, as well as EBI2 antagonist, NIBR189, inhibited lipopolysaccharide-induced cell migration indicating the involvement of EBI2 and its ligand in brain cell migration under inflammatory conditions.
Collapse
Affiliation(s)
- Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Center, Gdansk, Poland
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Aleksandra Rutkowska
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Konieczna-Wolska K, Caratis F, Opiełka M, Biernacki K, Urbanowicz K, Klimaszewska J, Pobiarzyn P, Krajewski O, Demkowicz S, Smoleński RT, Karaszewski B, Seuwen K, Rutkowska A. Accelerated remyelination and immune modulation by the EBI2 agonist 7α,25-dihydroxycholesterol analogue in the cuprizone model. Biomed Pharmacother 2024; 181:117653. [PMID: 39489122 DOI: 10.1016/j.biopha.2024.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Research indicates a role for EBI2 receptor in remyelination, demonstrating that its deficiency or antagonism inhibits this process. However, activation of EBI2 with its endogenous ligand, oxysterol 7α,25-dihydroxycholesterol (7α,25OHC), does not enhance remyelination beyond the levels observed in spontaneously remyelinating tissue. We hypothesized that the short half-life of the natural ligand might explain this lack of beneficial effects and tested a synthetic analogue, CF3-7α,25OHC, in the cuprizone model. The data showed that extending the bioavailability of 7α,25OHC is sufficient to accelerate remyelination in vivo. Moreover, the analogue, in contrast to the endogenous ligand, upregulated brain expression of Ebi2 and the synthesis of 15 lipids in the mouse corpus callosum. Mechanistically, the increased concentration of oxysterol likely disrupted its gradient in demyelinated areas of the brain, leading to the dispersion of infiltrating EBI2-expressing immune cells rather than their accumulation in demyelinated regions. Remarkably, the analogue CF3-7α,25OHC markedly decreased the lymphocyte and monocyte counts mimicking the key mechanism of action of some of the most effective disease-modifying therapies for multiple sclerosis. Furthermore, the Cd4+ transcripts in the cerebellum and CD4+ cell number in the corpus callosum were reduced compared to vehicle-treated mice. These findings suggest a mechanism by which EBI2/7α,25OHC signalling modulates the immune response and accelerates remyelination in vivo.
Collapse
Affiliation(s)
- Klaudia Konieczna-Wolska
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Gdańsk, Poland
| | - Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Mikołaj Opiełka
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Joanna Klimaszewska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Pobiarzyn
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Oliwier Krajewski
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Bartosz Karaszewski
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Adult Neurology, Medical University of Gdańsk and University Clinical Center, Gdańsk, Poland
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aleksandra Rutkowska
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
5
|
Loiola RA, Nguyen C, Dib S, Saint-Pol J, Dehouck L, Sevin E, Naudot M, Landry C, Pahnke J, Pot C, Gosselet F. 25-Hydroxycholesterol attenuates tumor necrosis factor alpha-induced blood-brain barrier breakdown in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167479. [PMID: 39181516 DOI: 10.1016/j.bbadis.2024.167479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Cindy Nguyen
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Shiraz Dib
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Julien Saint-Pol
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Lucie Dehouck
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Emmanuel Sevin
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Marie Naudot
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Christophe Landry
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO), Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway; Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL), University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv, IL-6997801, Israel
| | - Caroline Pot
- Lausanne University Hospital (CHUV), University of Lausanne, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, CH-1011 Lausanne, Vaud, Switzerland
| | - Fabien Gosselet
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France.
| |
Collapse
|
6
|
Ding J, Chen FP, Song YY, Li HY, Ai XW, Chen Y, Han L, Zhou XJ, Zhu DS, Guan YT. Serum Low-Density Lipoprotein Cholesterol Levels are Associated with Relapse in Neuromyelitis Optica Spectrum Disorder. J Inflamm Res 2024; 17:8227-8240. [PMID: 39525310 PMCID: PMC11549894 DOI: 10.2147/jir.s489723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background The relationship between serum low-density lipoprotein cholesterol (LDL-C) and the risk of relapse in neuromyelitis optica spectrum disorder (NMOSD) remains uncertain. We aimed to examine the association between serum LDL-C level and relapse in NMOSD patients. Methods We conducted an analysis of the prospective observational NMOSD cohort study with consecutive 184 hospitalized NMOSD patients from department of neurology. Blood samples were collected to measure LDL-C level upon admission. Primary and relapse were evaluated during hospitalization. The relationship between serum LDL-C level and relapse were analyzed by linear curve fitting analyses. Crude and adjusted odds ratios (OR) of LDL-C for relapse with 95% confidence intervals were analyzed using multiple logistic regression models. ROC curve analysis was used to identify the target lipid-lowering value of LDL-C and the probability of relapse was evaluated by the Kaplan-Meier Plot. Results Over a mean disease course of 100±87 days, 59.24% (n=109) participants developed relapse with higher LDL-C than the primary group (n=75) (p<0.001). Adjusted smoothed plots suggested that there were linear relationships between serum LDL-C level and relapse (p< 0.001). The OR (95% CI) between serum LDL-C level and relapse were 2.67 (1.76-4.04, p<0.001), and 2.38 (1.48-3.83, p<0.001) respectively in NMOSD patients before and after adjusting for potential confounders. The target LDL-C lowering values were 2.795 mmol/L with potential benefits to prevent relapse in NMOSD. Conclusion In this sample of NMOSD patients, we found that the elevated serum LDL-C was independently and positively associated with the relapse, and serum LDL-C should be well-controlled to prevent the relapse of NMOSD.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Fu-Ping Chen
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Ya-Ying Song
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Hong-Yan Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Xi-Wen Ai
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Yi Chen
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Lu Han
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Xia-Jun Zhou
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - De-Sheng Zhu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Yang-Tai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
- Department of Neurology, Pu Nan Branch of Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Wang B, Han D, Hu X, Chen J, Liu Y, Wu J. Exploring the role of a novel postbiotic bile acid: Interplay with gut microbiota, modulation of the farnesoid X receptor, and prospects for clinical translation. Microbiol Res 2024; 287:127865. [PMID: 39121702 DOI: 10.1016/j.micres.2024.127865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The gut microbiota, mainly resides in the colon, possesses a remarkable ability to metabolize different substrates to create bioactive substances, including short-chain fatty acids, indole-3-propionic acid, and secondary bile acids. In the liver, bile acids are synthesized from cholesterol and then undergo modification by the gut microbiota. Beyond those reclaimed by the enterohepatic circulation, small percentage of bile acids escaped reabsorption, entering the systemic circulation to bind to several receptors, such as farnesoid X receptor (FXR), thereby exert their biological effects. Gut microbiota interplays with bile acids by affecting their synthesis and determining the production of secondary bile acids. Reciprocally, bile acids shape out the structure of gut microbiota. The interplay of bile acids and FXR is involved in the development of multisystemic conditions, encompassing metabolic diseases, hepatobiliary diseases, immune associated disorders. In the review, we aim to provide a thorough review of the intricate crosstalk between the gut microbiota and bile acids, the physiological roles of bile acids and FXR in mammals' health and disease, and the clinical translational considerations of gut microbiota-bile acids-FXR in the treatment of the diseases.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Xinyue Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jing Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yuwei Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
8
|
Sanaie S, Koohi N, Mosaddeghi-Heris R, Rezai S, Movagharnia E, Karimi H, Moghaddamziabari S, Hamzehzadeh S, Gholipour-Khalili E, Talebi M, Naseri A. Serum lipids and cognitive outcomes in multiple sclerosis; a systematic review and meta-analysis. Mult Scler Relat Disord 2024; 85:105530. [PMID: 38522226 DOI: 10.1016/j.msard.2024.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/19/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Cognitive impairment is highly prevalent in multiple sclerosis (MS) with poorly understood underlying mechanisms. Lipids are considered to be associated with MS progression through the inflammatory and oxidative stress pathways, brain atrophy, cellular signaling, and tissue physiology. In addition, serum lipids are proposed as a modifiable factor affecting the neuropsychiatric condition; therefore, this study aims to assess the association between serum lipid levels and cognitive outcomes in MS. METHODS This study was carried out following the PRISMA 2020 statement. A systematic search was conducted in PubMed, Scopus, Web of Science, and Embase in March 2023, and the Joanna Briggs Institute (JBI)'s critical appraisal tools were utilized for risk of bias (RoB) assessments in the included studies. The quantitative synthesis was performed with the comprehensive meta-analysis (CMA3) software. RESULTS Out of 508 screened records, 7 studies were eventually found to meet our inclusion criteria. In two studies, the course of MS in the sample of the study was only Relapsing-Remitting MS (RRMS), whereas the other five studies' sample was a combination of different phenotypes. Studies utilized different scales such as Minimal Assessment of Cognitive Function in MS (MACFIMS), Brief International Cognitive Assessment for MS (BICAMS), Montreal Cognitive Assessment (MoCA), Brief Repeatable Battery of Neuropsychological Tests (BRB-N) for cognitive evaluations. Dealing with possible confounders such as age, disease duration and level of disability was the most common possible source of bias in the included studies. One study revealed an inverse relationship between serum levels of apolipoproteins (including ApoA-I, ApoB, and ApoB/ApoA-I) and Symbol Digit Modalities Test (SDMT) scores. Also, a correlation between 24S-hydroxycholesterol (24OHC) serum concentrations and SDMT score was reported in one study. The association between serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) and different aspects of cognitive function was reported in the studies; however, serum levels of high-density lipoprotein cholesterol (HDL) were not found to be associated. The quantitative synthesis revealed a significant correlation between TC and the MoCA scores (r =-0.238; 95 %CI: -0.366 to -0.100; p-value = 0.001); however, the correlation between TG levels and MoCA were not statistically significant (r:-0.070; 95 %CI: -0.209 to 0.072; p-value: 0.334). In addition, the mata-analyses were not associated with significant findings regarding the correlation between lipid profiles (including HDL, LDL, TG, and TC) and other cognitive assessment scales including SDMT, Brief Visuospatial Memory Test (BVMT), and California Verbal Learning Test (CVLT) (p-values>0.05). DISCUSSION Available evidence suggested a link between TC and LDL with cognitive outcomes of MS patients which was not evident in our quantitative synthesis. The limited number of studies, high RoB, different cognitive assessment scales and reporting methods, and the cross-sectional design of the included studies, were the main limitations that alleviate the clinical significance of the findings of this study and suggested further investigations on this topic. FUNDING AND REGISTRATION The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 71,909). This study is registered in the international prospective register of systematic reviews (PROSPERO ID: CRD42023441625).
Collapse
Affiliation(s)
- Sarvin Sanaie
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Narges Koohi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Shirin Rezai
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Movagharnia
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sina Hamzehzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran; Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| |
Collapse
|
9
|
Zißler J, Rothhammer V, Linnerbauer M. Gut-Brain Interactions and Their Impact on Astrocytes in the Context of Multiple Sclerosis and Beyond. Cells 2024; 13:497. [PMID: 38534341 PMCID: PMC10968834 DOI: 10.3390/cells13060497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) that leads to physical and cognitive impairment in young adults. The increasing prevalence of MS underscores the critical need for innovative therapeutic approaches. Recent advances in neuroimmunology have highlighted the significant role of the gut microbiome in MS pathology, unveiling distinct alterations in patients' gut microbiota. Dysbiosis not only impacts gut-intrinsic processes but also influences the production of bacterial metabolites and hormones, which can regulate processes in remote tissues, such as the CNS. Central to this paradigm is the gut-brain axis, a bidirectional communication network linking the gastrointestinal tract to the brain and spinal cord. Via specific routes, bacterial metabolites and hormones can influence CNS-resident cells and processes both directly and indirectly. Exploiting this axis, novel therapeutic interventions, including pro- and prebiotic treatments, have emerged as promising avenues with the aim of mitigating the severity of MS. This review delves into the complex interplay between the gut microbiome and the brain in the context of MS, summarizing current knowledge on the key signals of cross-organ crosstalk, routes of communication, and potential therapeutic relevance of the gut microbiome. Moreover, this review places particular emphasis on elucidating the influence of these interactions on astrocyte functions within the CNS, offering insights into their role in MS pathophysiology and potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | |
Collapse
|
10
|
Griffiths WJ, Yutuc E, Wang Y. Mass Spectrometry Imaging of Cholesterol and Oxysterols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:73-87. [PMID: 38036876 DOI: 10.1007/978-3-031-43883-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mass spectrometry imaging (MSI) is a new technique in the toolbox of the analytical biochemist. It allows the generation of a compound-specific image from a tissue slice where a measure of compound abundance is given pixel by pixel, usually displayed on a color scale. As mass spectra are recorded at each pixel, the data can be interrogated to generate images of multiple different compounds all in the same experiment. Mass spectrometry (MS) requires the ionization of analytes, but cholesterol and other neutral sterols tend to be poorly ionized by the techniques employed in most MSI experiments, so despite their high abundance in mammalian tissues, cholesterol is poorly represented in the MSI literature. In this chapter, we discuss some of the MSI studies where cholesterol has been imaged and introduce newer methods for its analysis by MSI. Disturbed cholesterol metabolism is linked to many disorders, and the potential of MSI to study cholesterol, its precursors, and its metabolites in animal models and from human biopsies will be discussed.
Collapse
Affiliation(s)
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, UK
| |
Collapse
|
11
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
12
|
Bétous R, Emile A, Che H, Guchen E, Concordet D, Long T, Noack S, Selzer PM, Prichard R, Lespine A. Filarial DAF-12 sense the host serum to resume iL3 development during infection. PLoS Pathog 2023; 19:e1011462. [PMID: 37339136 DOI: 10.1371/journal.ppat.1011462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Nematode parasites enter their definitive host at the developmentally arrested infectious larval stage (iL3), and the ligand-dependent nuclear receptor DAF-12 contributes to trigger their development to adulthood. Here, we characterized DAF-12 from the filarial nematodes Brugia malayi and Dirofilaria immitis and compared them with DAF-12 from the non-filarial nematodes Haemonchus contortus and Caenorhabditis elegans. Interestingly, Dim and BmaDAF-12 exhibit high sequence identity and share a striking higher sensitivity than Hco and CelDAF-12 to the natural ligands Δ4- and Δ7-dafachronic acids (DA). Moreover, sera from different mammalian species activated specifically Dim and BmaDAF-12 while the hormone-depleted sera failed to activate the filarial DAF-12. Accordingly, hormone-depleted serum delayed the commencement of development of D. immitis iL3 in vitro. Consistent with these observations, we show that spiking mouse charcoal stripped-serum with Δ4-DA at the concentration measured in normal mouse serum restores its capacity to activate DimDAF-12. This indicates that DA present in mammalian serum participate in filarial DAF-12 activation. Finally, analysis of publicly available RNA sequencing data from B. malayi showed that, at the time of infection, putative gene homologs of the DA synthesis pathways are coincidently downregulated. Altogether, our data suggest that filarial DAF-12 have evolved to specifically sense and survive in a host environment, which provides favorable conditions to quickly resume larval development. This work sheds new light on the regulation of filarial nematodes development while entering their definitive mammalian host and may open the route to novel therapies to treat filarial infections.
Collapse
Affiliation(s)
- Rémy Bétous
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Anthony Emile
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Hua Che
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, Canada
| | - Eva Guchen
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Thavy Long
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, Canada
| | - Sandra Noack
- Boehringer Ingelheim Animal Health, Ingelheim am Rhein, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Ingelheim am Rhein, Germany
| | - Roger Prichard
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, Canada
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
13
|
Yeo XY, Tan LY, Chae WR, Lee DY, Lee YA, Wuestefeld T, Jung S. Liver's influence on the brain through the action of bile acids. Front Neurosci 2023; 17:1123967. [PMID: 36816113 PMCID: PMC9932919 DOI: 10.3389/fnins.2023.1123967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The liver partakes as a sensor and effector of peripheral metabolic changes and a regulator of systemic blood and nutrient circulation. As such, abnormalities arising from liver dysfunction can influence the brain in multiple ways, owing to direct and indirect bilateral communication between the liver and the brain. Interestingly, altered bile acid composition resulting from perturbed liver cholesterol metabolism influences systemic inflammatory responses, blood-brain barrier permeability, and neuron synaptic functions. Furthermore, bile acids produced by specific bacterial species may provide a causal link between dysregulated gut flora and neurodegenerative disease pathology through the gut-brain axis. This review will cover the role of bile acids-an often-overlooked category of active metabolites-in the development of neurological disorders associated with neurodegeneration. Further studies into bile acid signaling in the brain may provide insights into novel treatments against neurological disorders.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Yong-An Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,*Correspondence: Yong-An Lee,
| | - Torsten Wuestefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,School of Biological Sciences, Nanyang Technological University, Singapore, Siingapore,National Cancer Centre Singapore, Singapore, Singapore,Torsten Wuestefeld,
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Sangyong Jung,
| |
Collapse
|
14
|
Ackerman HD, Gerhard GS. Bile Acids Induce Neurite Outgrowth in Nsc-34 Cells via TGR5 and a Distinct Transcriptional Profile. Pharmaceuticals (Basel) 2023; 16:174. [PMID: 37259326 PMCID: PMC9963315 DOI: 10.3390/ph16020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 09/24/2024] Open
Abstract
Increasing evidence supports a neuroprotective role for bile acids in major neurodegenerative disorders. We studied major human bile acids as signaling molecules for their two cellular receptors, farnesoid X receptor (FXR or NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), as potential neurotrophic agents. Using quantitative image analysis, we found that 20 μM deoxycholic acid (DCA) could induce neurite outgrowth in NSC-34 cells that was comparable to the neurotrophic effects of the culture control 1 μM retinoic acid (RA), with lesser effects observed for chenodexoycholic acid (CDCA) at 20 μM, and similar though less robust neurite outgrowth in SH-SY5Y cells. Using chemical agonists and antagonists of FXR, LXR, and TGR5, we found that TGR5 agonism was comparable to DCA stimulation and stronger than RA, and that neither FXR nor liver X receptor (LXR) inhibition could block bile acid-induced neurite growth. RNA sequencing identified a core set of genes whose expression was regulated by DCA, CDCA, and RA. Our data suggest that bile acid signaling through TGR5 may be a targetable pathway to stimulate neurite outgrowth.
Collapse
Affiliation(s)
- Hayley D Ackerman
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N. Vitamin D in Neurological Diseases. Int J Mol Sci 2022; 24:87. [PMID: 36613531 PMCID: PMC9820561 DOI: 10.3390/ijms24010087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.
Collapse
Affiliation(s)
- Domenico Plantone
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carlo Manco
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Sara Locci
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
16
|
Bile acids and neurological disease. Pharmacol Ther 2022; 240:108311. [PMID: 36400238 DOI: 10.1016/j.pharmthera.2022.108311] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
This review will focus on how bile acids are being used in clinical trials to treat neurological diseases due to their central involvement with the gut-liver-brain axis and their physiological and pathophysiological roles in both normal brain function and multiple neurological diseases. The synthesis of primary and secondary bile acids species and how the regulation of the bile acid pool may differ between the gut and brain is discussed. The expression of several bile acid receptors in brain and their currently known functions along with the tools available to manipulate them pharmacologically are examined, together with discussion of the interaction of bile acids with the gut microbiome and their lesser-known effects upon brain glucose and lipid metabolism. How dysregulation of the gut microbiome, aging and sex differences may lead to disruption of bile acid signalling and possible causal roles in a number of neurological disorders are also considered. Finally, we discuss how pharmacological treatments targeting bile acid receptors are currently being tested in an array of clinical trials for several different neurodegenerative diseases.
Collapse
|
17
|
Evangelopoulos ME, Koutsis G, Boufidou F, Markianos M. Cholesterol levels in plasma and cerebrospinal fluid in patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis. Neurobiol Dis 2022; 174:105889. [DOI: 10.1016/j.nbd.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022] Open
|
18
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Rebeaud J, Peter B, Pot C. How Microbiota-Derived Metabolites Link the Gut to the Brain during Neuroinflammation. Int J Mol Sci 2022; 23:ijms231710128. [PMID: 36077526 PMCID: PMC9456539 DOI: 10.3390/ijms231710128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microbiota-derived metabolites are important molecules connecting the gut to the brain. Over the last decade, several studies have highlighted the importance of gut-derived metabolites in the development of multiple sclerosis (MS). Indeed, microbiota-derived metabolites modulate the immune system and affect demyelination. Here, we discuss the current knowledge about microbiota-derived metabolites implications in MS and in different mouse models of neuroinflammation. We focus on the main families of microbial metabolites that play a role during neuroinflammation. A better understanding of the role of those metabolites may lead to new therapeutical avenues to treat neuroinflammatory diseases targeting the gut–brain axis.
Collapse
|
20
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
21
|
Messedi M, Guidara W, Grayaa S, Khrouf W, Snoussi M, Bahloul Z, Bonnefont-Rousselot D, Lamari F, Ayadi F. Selected plasma oxysterols as a potential multi-marker biosignature panel for Behçet's Disease. J Steroid Biochem Mol Biol 2022; 221:106122. [PMID: 35588947 DOI: 10.1016/j.jsbmb.2022.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Clinical, genetic, and medical evidence has shown the inflammatory vasculitis aspect of Behçet's Disease (BD). Whereas oxysterols are vital factors in inflammation and oxidative stress, it is still unknown whether they are involved in the pathophysiology of BD. The current study aims to explore the profile of oxysterols in plasma of BD patients. Thirty patients diagnosed with BD and forty healthy controls matched for age and gender were included. Results showed that the cholestane-3β,5α,6β-triol, 27-hydroxycholesterol (27-OHC) and cholestanol levels were higher in BD than controls. In addition, plasma levels of 7-ketocholesterol (7-KC) and 25-hydroxycholesterol (25-OHC) were lower in BD patient. However, levels of 24S-hydroxycholesterol (24-OHC) did not significantly differ. For BD patients, the plasma 7-KC level was negatively correlated with the BD activity index (BDAI) while 27-OHC was positively correlated with high-sensitivity C-reactive protein (hs-CRP) in patients with active course of the disease. According to ROC analysis, a remarkable increase in the area under the curve (AUC) with a higher sensitivity (Se) and specificity (Sp) for 7-KC, 25-OHC and 27-OHC combined markers was observed. The present study indicated that the identification of the predictive value of these three-selected biomarkers related to oxidative stress and inflammation in patients should lead to a better identification of the etiological mechanism of BD.
Collapse
Affiliation(s)
- Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia.
| | - Wassim Guidara
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Sahar Grayaa
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Walid Khrouf
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, Paris F-75013, France
| | - Mouna Snoussi
- Internal medicine department, Hedi Chaker Hosptital, Sfax, Tunisia
| | - Zouhir Bahloul
- Internal medicine department, Hedi Chaker Hosptital, Sfax, Tunisia
| | - Dominique Bonnefont-Rousselot
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, Paris F-75013, France; Université de Paris, CNRS, Inserm, UTCBS, Paris F-75006, France
| | - Foudil Lamari
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, Paris F-75013, France
| | - Fatma Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| |
Collapse
|
22
|
de Freitas FA, Levy D, Reichert CO, Cunha-Neto E, Kalil J, Bydlowski SP. Effects of Oxysterols on Immune Cells and Related Diseases. Cells 2022; 11:cells11081251. [PMID: 35455931 PMCID: PMC9031443 DOI: 10.3390/cells11081251] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are the products of cholesterol oxidation. They have a wide range of effects on several cells, organs, and systems in the body. Oxysterols also have an influence on the physiology of the immune system, from immune cell maturation and migration to innate and humoral immune responses. In this regard, oxysterols have been involved in several diseases that have an immune component, from autoimmune and neurodegenerative diseases to inflammatory diseases, atherosclerosis, and cancer. Here, we review data on the participation of oxysterols, mainly 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, in the immune system and related diseases. The effects of these oxysterols and main oxysterol receptors, LXR and EBI2, in cells of the immune system (B cells, T cells, macrophages, dendritic cells, oligodendrocytes, and astrocytes), and in immune-related diseases, such as neurodegenerative diseases, intestinal diseases, cancer, respiratory diseases, and atherosclerosis, are discussed.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy (LIM60), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil;
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
| | - Jorge Kalil
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
- Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence:
| |
Collapse
|
23
|
New Function of Cholesterol Oxidation Products Involved in Osteoporosis Pathogenesis. Int J Mol Sci 2022; 23:ijms23042020. [PMID: 35216140 PMCID: PMC8876989 DOI: 10.3390/ijms23042020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by decreased bone strength, microarchitectural changes in bone tissues, and increased risk of fracture. Its occurrence is closely related to various factors such as aging, genetic factors, living habits, and nutritional deficiencies as well as the disturbance of bone homeostasis. The dysregulation of bone metabolism is regarded as one of the key influencing factors causing OP. Cholesterol oxidation products (COPs) are important compounds in the maintenance of bone metabolic homeostasis by participating in several important biological processes such as the differentiation of mesenchymal stem cells, bone formation in osteoblasts, and bone resorption in osteoclasts. The effects of specific COPs on mesenchymal stem cells are mainly manifested by promoting osteoblast genesis and inhibiting adipocyte genesis. This review aims to elucidate the biological roles of COPs in OP development, starting from the molecular mechanisms of OP, pointing out opportunities and challenges in current research, and providing new ideas and perspectives for further studies of OP pathogenesis.
Collapse
|
24
|
Griffiths WJ, Wang Y. Cholesterol metabolism: from lipidomics to immunology. J Lipid Res 2022; 63:100165. [PMID: 34953867 PMCID: PMC8953665 DOI: 10.1016/j.jlr.2021.100165] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols, the oxidized forms of cholesterol or of its precursors, are formed in the first steps of cholesterol metabolism. Oxysterols have interested chemists, biologists, and physicians for many decades, but their exact biological relevance in vivo, other than as intermediates in bile acid biosynthesis, has long been debated. However, in the first quarter of this century, a role for side-chain oxysterols and their C-7 oxidized metabolites has been convincingly established in the immune system. 25-Hydroxycholesterol has been shown to be synthesized by macrophages in response to the activation of Toll-like receptors and to offer protection against microbial pathogens, whereas 7α,25-dihydroxycholesterol has been shown to act as a chemoattractant to lymphocytes expressing the G protein-coupled receptor Epstein-Barr virus-induced gene 2 and to be important in coordinating the action of B cells, T cells, and dendritic cells in secondary lymphoid tissue. There is a growing body of evidence that not only these two oxysterols but also many of their isomers are of importance to the proper function of the immune system. Here, we review recent findings related to the roles of oxysterols in immunology.
Collapse
Affiliation(s)
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, United Kingdom.
| |
Collapse
|
25
|
Wilson KA, Wang L, O’Mara ML. Site of Cholesterol Oxidation Impacts Its Localization and Domain Formation in the Neuronal Plasma Membrane. ACS Chem Neurosci 2021; 12:3873-3884. [PMID: 34633798 DOI: 10.1021/acschemneuro.1c00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is integral to the structure of mammalian cell membranes. Oxidation of cholesterol alters how it behaves in the membrane and influences the membrane biophysical properties. Elevated levels of oxidized cholesterol are associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Previous work has investigated the impact of oxidized cholesterol in the context of simple model membrane systems. However, there is a growing body of literature that shows that complex membranes possessing physiological phospholipid distributions have different properties from those of binary or trinary model membranes. In the current work, the impact of oxidized cholesterol on the biophysical properties of a complex neuronal plasma membrane is investigated using coarse-grained Martini molecular dynamics simulations. Comparison of the native neuronal membrane to neuronal membranes containing 10% tail-oxidized or 10% head-oxidized cholesterol shows that the site of oxidization changes the behavior of the oxidized cholesterol in the membrane. Furthermore, species-specific domain formation is observed between each oxidized cholesterol and minor lipid classes. Although both tail-oxidized and head-oxidized cholesterols modulate the biophysical properties of the membrane, smaller changes are observed in the complex neuronal membrane than seen in the previous work on simple binary or trinary model membranes. This work highlights the presence of compensatory effects of lipid diversity in the complex neuronal membrane. Overall, this study improves our molecular-level understanding of the effects of oxidized cholesterol on the properties of neuronal tissue and emphasizes the importance of studying membranes with realistic lipid compositions.
Collapse
Affiliation(s)
- Katie A. Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Lily Wang
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
26
|
Griffiths WJ, Abdel-Khalik J, Moore SF, Wijeyekoon RS, Crick PJ, Yutuc E, Farrell K, Breen DP, Williams-Gray CH, Theofilopoulos S, Arenas E, Trupp M, Barker RA, Wang Y. The Cerebrospinal Fluid Profile of Cholesterol Metabolites in Parkinson's Disease and Their Association With Disease State and Clinical Features. Front Aging Neurosci 2021; 13:685594. [PMID: 34526889 PMCID: PMC8435905 DOI: 10.3389/fnagi.2021.685594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Disordered cholesterol metabolism is linked to neurodegeneration. In this study we investigated the profile of cholesterol metabolites found in the cerebrospinal fluid (CSF) of Parkinson’s disease (PD) patients. When adjustments were made for confounding variables of age and sex, 7α,(25R)26-dihydroxycholesterol and a second oxysterol 7α,x,y-trihydroxycholest-4-en-3-one (7α,x,y-triHCO), whose exact structure is unknown, were found to be significantly elevated in PD CSF. The likely location of the additional hydroxy groups on the second oxysterol are on the sterol side-chain. We found that CSF 7α-hydroxycholesterol levels correlated positively with depression in PD patients, while two presumptively identified cholestenoic acids correlated negatively with depression.
Collapse
Affiliation(s)
| | - Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Swansea, United Kingdom
| | - Sarah F Moore
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Ruwani S Wijeyekoon
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Crick
- Swansea University Medical School, ILS1 Building, Swansea, United Kingdom
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Swansea, United Kingdom
| | - Krista Farrell
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | | | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Swansea, United Kingdom
| |
Collapse
|
27
|
Li B, Lian M, Li Y, Qian Q, Zhang J, Liu Q, Tang R, Ma X. Myeloid-Derived Suppressive Cells Deficient in Liver X Receptor α Protected From Autoimmune Hepatitis. Front Immunol 2021; 12:732102. [PMID: 34512667 PMCID: PMC8427166 DOI: 10.3389/fimmu.2021.732102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) emerge as a promising candidate for the immunotherapy of autoimmune hepatitis (AIH). However, targets for modulating MDSC in AIH are still being searched. Liver X receptors (LXRs) are important nuclear receptors linking lipid metabolism and immune responses. Despite the extensive studies of LXR in myeloid compartment, its role in MDSCs is currently less understood. Herein, expression of LXRα was found to be upregulated in AIH patients and colocalized with hepatic MDSCs. In ConA-induced hepatitis, deletion of LXRα led to increased expansion of MDSCs in the liver and alleviated the hepatic injury. MDSCs in LXRα-/- mice exhibited enhanced proliferation and survival comparing with WT mice. T-cell proliferation assay and adoptive cell transfer experiment validated the potent immunoregulatory role of MDSCs in vitro and in vivo. Mechanistically, MDSCs from LXRα-/- mice possessed significantly lower expression of interferon regulatory factor 8 (IRF-8), a key negative regulator of MDSC differentiation. Transcriptional activation of IRF-8 by LXRα was further demonstrated. Conclusion We reported that abrogation of LXRα facilitated the expansion of MDSCs via downregulating IRF-8, and thereby ameliorated hepatic immune injury profoundly. Our work highlights the therapeutic potential of targeting LXRα in AIH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiong Ma
- *Correspondence: Xiong Ma, ; Ruqi Tang,
| |
Collapse
|
28
|
Klejbor I, Shimshek DR, Klimaszewska-Łata J, Velasco-Estevez M, Moryś J, Karaszewski B, Szutowicz A, Rutkowska A. EBI2 is expressed in glial cells in multiple sclerosis lesions, and its knock-out modulates remyelination in the cuprizone model. Eur J Neurosci 2021; 54:5173-5188. [PMID: 34145920 DOI: 10.1111/ejn.15359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
EBI2 receptor regulates the immune system, and in multiple, sclerosis is upregulated in the central nervous system infiltrating lymphocytes. In newborn EBI2-deficient mice, myelin development is delayed, and its persistent antagonism inhibits remyelination in chemically demyelinated organotypic cerebellar slices. We used the cuprizone model of multiple sclerosis to elucidate the role of central nervous system-expressed EBI2 in de- and remyelination. The wild-type and EBI2 knock-out mice were fed 0.2% cuprizone in chow for 5 weeks and allowed to recover on a normal diet for 2 weeks. The data showed less efficient recovery of myelin, attenuated oligodendrocyte loss, fewer astrocytes and increased total cholesterol levels in the EBI2 knock-out mice after recovery. Moreover, the wild-type mice upregulated EBI2 expression after recovery confirming the involvement of EBI2 signalling during recovery from demyelination in the cuprizone model. The pro-inflammatory cytokine levels were at comparable levels in the wild-type and EBI2 knock-out mice, with only minor differences in TNFα and IL1β levels either at peak or during recovery. The neuroinflammatory signalling molecules, Abl1 kinase and NFКB1 (p105/p50) subunit, were significantly downregulated in the EBI2 knock-out mice at peak of disease. Immunohistochemical investigations of EBI2 receptor distribution in the central nervous system (CNS) cells in multiple sclerosis (MS) brain revealed strong expression of EBI2 in astrocytes and microglia inside the plaques implicating glia-expressed EBI2 in multiple sclerosis pathophysiology. Taken together, these findings demonstrate the involvement of EBI2 signalling in the recovery from demyelination rather than in demyelination and as such warrant further research into the role of EBI2 in remyelination.
Collapse
Affiliation(s)
- Ilona Klejbor
- Department of Anatomy and Physiology, Pomeranian University in Słupsk, Słupsk, Poland
| | - Derya R Shimshek
- Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Bartosz Karaszewski
- Division of Neurology, Department of Adult Neurology, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Rutkowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland.,Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
29
|
Velasco-Estevez M, Koch N, Klejbor I, Laurent S, Dev KK, Szutowicz A, Sailer AW, Rutkowska A. EBI2 Is Temporarily Upregulated in MO3.13 Oligodendrocytes during Maturation and Regulates Remyelination in the Organotypic Cerebellar Slice Model. Int J Mol Sci 2021; 22:ijms22094342. [PMID: 33919387 PMCID: PMC8122433 DOI: 10.3390/ijms22094342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The EBI2 receptor regulates the immune system and is expressed in various immune cells including B and T lymphocytes. It is also expressed in astrocytes in the central nervous system (CNS) where it regulates pro-inflammatory cytokine release, cell migration and protects from chemically induced demyelination. Its signaling and expression are implicated in various diseases including multiple sclerosis, where its expression is increased in infiltrating immune cells in the white matter lesions. Here, for the first time, the EBI2 protein in the CNS cells in the human brain was examined. The function of the receptor in MO3.13 oligodendrocytes, as well as its role in remyelination in organotypic cerebellar slices, were investigated. Human brain sections were co-stained for EBI2 receptor and various markers of CNS-specific cells and the human oligodendrocyte cell line MO3.13 was used to investigate changes in EBI2 expression and cellular migration. Organotypic cerebellar slices prepared from wild-type and cholesterol 25-hydroxylase knock-out mice were used to study remyelination following lysophosphatidylcholine (LPC)-induced demyelination. The data showed that EBI2 receptor is present in OPCs but not in myelinating oligodendrocytes in the human brain and that EBI2 expression is temporarily upregulated in maturing MO3.13 oligodendrocytes. Moreover, we show that migration of MO3.13 cells is directly regulated by EBI2 and that its signaling is necessary for remyelination in cerebellar slices post-LPC-induced demyelination. The work reported here provides new information on the expression and role of EBI2 in oligodendrocytes and myelination and provides new tools for modulation of oligodendrocyte biology and therapeutic approaches for demyelinating diseases.
Collapse
Affiliation(s)
- Maria Velasco-Estevez
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Nina Koch
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Ilona Klejbor
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Stephane Laurent
- Chemical Biology and Therapeutics/Disease Area X/Liver, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland; (S.L.); (A.W.S.)
| | - Kumlesh K. Dev
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland;
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
| | - Andreas W. Sailer
- Chemical Biology and Therapeutics/Disease Area X/Liver, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland; (S.L.); (A.W.S.)
| | - Aleksandra Rutkowska
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.V.-E.); (N.K.); (A.S.)
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence:
| |
Collapse
|
30
|
Yutuc E, Dickson AL, Pacciarini M, Griffiths L, Baker PRS, Connell L, Öhman A, Forsgren L, Trupp M, Vilarinho S, Khalil Y, Clayton PT, Sari S, Dalgic B, Höflinger P, Schöls L, Griffiths WJ, Wang Y. Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry. Anal Chim Acta 2021; 1154:338259. [PMID: 33736801 PMCID: PMC7988461 DOI: 10.1016/j.aca.2021.338259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography – tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient. Absolute quantification of oxysterols and cholestenoic acids. Methodology applicable to plasma and cerebrospinal fluid. Data generated for non-esterified and total sterols. Diastereoisomers at C-24 and C-25 separated and quantified.
Collapse
Affiliation(s)
- Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Manuela Pacciarini
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Lauren Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | | | | | - Anders Öhman
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Sílvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Youssef Khalil
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Philip Höflinger
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
31
|
Wang Y, Yutuc E, Griffiths WJ. Standardizing and increasing the utility of lipidomics: a look to the next decade. Expert Rev Proteomics 2020; 17:699-717. [PMID: 33191815 DOI: 10.1080/14789450.2020.1847086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: We present our views on the current application of mass spectrometry (MS) based lipidomics and how lipidomics can develop in the next decade to be most practical use to society. That is not to say that lipidomics has not already been of value. In-fact, in its earlier guise as metabolite profiling most of the pathways of steroid biosynthesis were uncovered and via focused lipidomics many inborn errors of metabolism are routinely clinically identified. However, can lipidomics be extended to improve biochemical understanding of, and to diagnose, the most prevalent diseases of the 21st century? Areas covered: We will highlight the concept of 'level of identification' and the equally crucial topic of 'quantification'. Only by using a standardized language for these terms can lipidomics be translated to fields beyond academia. We will remind the lipid scientist of the value of chemical derivatization, a concept exploited since the dawn of lipid biochemistry. Expert opinion: Only by agreement of the concepts of identification and quantification and their incorporation in lipidomics reporting can lipidomics maximize its value.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School , Swansea, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School , Swansea, Wales, UK
| | | |
Collapse
|
32
|
Choi C, Finlay DK. Diverse Immunoregulatory Roles of Oxysterols-The Oxidized Cholesterol Metabolites. Metabolites 2020; 10:metabo10100384. [PMID: 32998240 PMCID: PMC7601797 DOI: 10.3390/metabo10100384] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings.
Collapse
Affiliation(s)
- Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| |
Collapse
|
33
|
Lanznaster D, Bejan-Angoulvant T, Gandía J, Blasco H, Corcia P. Is There a Role for Vitamin D in Amyotrophic Lateral Sclerosis? A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:697. [PMID: 32849187 PMCID: PMC7411408 DOI: 10.3389/fneur.2020.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition characterized by the progressive loss of motor neurons. Patients usually die 3–5 years after diagnosis from respiratory failure. Several studies investigated the role of vitamin D as a biomarker or a therapeutic option for ALS patients. To clarify the scientific evidence, we performed a systematic review and different meta-analyses regarding the potential role of vitamin D in ALS. Methods: We performed a systematic review of clinical trials, cohorts, and case–control studies retrieved from PubMed, EMBASE, and Cochrane databases reporting vitamin D levels as a putative biomarker for ALS diagnosis or prognosis or the effect of vitamin D supplementation in ALS patients. Whenever possible, data were pooled using a random-effects model, with an assessment of heterogeneity. Results: Out of 2,996 articles retrieved, we finally included 13 research articles, 12 observational studies (50% prospective), and 1 clinical trial. We found that ALS patients had slightly lower levels of vitamin D than controls (mean difference −6 ng/ml, 95% CI [−10.8; −1.3]), but important confounding factors were not considered in the studies analyzed. We found no relationship between vitamin D levels and ALS functional rate score—revised (ALSFRS-R), with highly heterogeneous results. Discordant results were reported in three studies regarding survival. Finally, five studies reported the effects of vitamin D supplementation with discordant results. Two of them showed a small improvement, whereas two others showed a deleterious effect on ALSFRS-R. One very small clinical trial with important methodological limitations showed some improvement in ALSFRS-R with high doses of vitamin D compared with normal doses. Conclusions: Our review did not find evidence to support the role of vitamin D on ALS diagnosis, prognosis, or treatment. Most studies had important limitations, mostly regarding the risk of bias for not considering confounding factors. Vitamin D supplementation should be offered to ALS patients to avoid other health issues related to vitamin D deficiency, but there is not enough evidence to support the use of vitamin D as a therapy for ALS.
Collapse
Affiliation(s)
| | | | - Jorge Gandía
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Helene Blasco
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| |
Collapse
|
34
|
Grant SM, DeMorrow S. Bile Acid Signaling in Neurodegenerative and Neurological Disorders. Int J Mol Sci 2020; 21:E5982. [PMID: 32825239 PMCID: PMC7503576 DOI: 10.3390/ijms21175982] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bile acids are commonly known as digestive agents for lipids. The mechanisms of bile acids in the gastrointestinal track during normal physiological conditions as well as hepatic and cholestatic diseases have been well studied. Bile acids additionally serve as ligands for signaling molecules such as nuclear receptor Farnesoid X receptor and membrane-bound receptors, Takeda G-protein-coupled bile acid receptor and sphingosine-1-phosphate receptor 2. Recent studies have shown that bile acid signaling may also have a prevalent role in the central nervous system. Some bile acids, such as tauroursodeoxycholic acid and ursodeoxycholic acid, have shown neuroprotective potential in experimental animal models and clinical studies of many neurological conditions. Alterations in bile acid metabolism have been discovered as potential biomarkers for prognosis tools as well as the expression of various bile acid receptors in multiple neurological ailments. This review explores the findings of recent studies highlighting bile acid-mediated therapies and bile acid-mediated signaling and the roles they play in neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Stephanie M. Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Research Division, Central Texas Veterans Healthcare System, Austin, TX 78712, USA
| |
Collapse
|
35
|
Wang Y, Yutuc E, Griffiths WJ. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol 2020; 178:3176-3193. [PMID: 32621622 DOI: 10.1111/bph.15191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, Swansea, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
36
|
Rodriguez-Estrada MT, Cardenia V, Poirot M, Iuliano L, Lizard G. Oxysterols and sterols: From lipidomics to food sciences. J Steroid Biochem Mol Biol 2020; 196:105515. [PMID: 31672618 DOI: 10.1016/j.jsbmb.2019.105515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M T Rodriguez-Estrada
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Universita' di Bologna, Viale Fanin 40 (4o. piano, Ala Ovest), 40127 Bologna, Italy.
| | - V Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco TO, Italy.
| | - M Poirot
- Cancer Research Center of Toulouse, team "Cholesterol metabolism and therapeutic innovations" UMR 1037 Inserm-University of Toulouse III, Toulouse, France.
| | - L Iuliano
- UOC of Internal Medicine, Sapienza University of Rome and ICOT Hospital, Latina, & Vascular Biology & Mass Spectrometry Laboratory, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome and ICOT Hospital, Latina, Italy.
| | - G Lizard
- University Bourgogne Franche-Comté (UBFC) / Inserm, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism', EA 7270, 21000 Dijon, France.
| |
Collapse
|
37
|
Griffiths WJ, Wang Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat 2019; 147:106381. [PMID: 31698146 PMCID: PMC7081179 DOI: 10.1016/j.prostaglandins.2019.106381] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Pathways of oxysterol biosynthesis. Pathways of oxysterol metabolism. Oxysterols as bioactive molecules. Disorders of oxysterol metabolism.
There is growing evidence that oxysterols are more than simple metabolites in the pathway from cholesterol to bile acids. Recent data has shown oxysterols to be ligands to nuclear receptors and to G protein-coupled receptors, modulators of N-methyl-d-aspartate receptors and regulators of cholesterol biosynthesis. In this mini-review we will discuss the biosynthetic mechanisms for the formation of different oxysterols and the implication of disruption of these mechanisms in health and disease.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| |
Collapse
|
38
|
Duc D, Vigne S, Pot C. Oxysterols in Autoimmunity. Int J Mol Sci 2019; 20:ijms20184522. [PMID: 31547302 PMCID: PMC6770630 DOI: 10.3390/ijms20184522] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a member of the sterol family that plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized into several molecules including bile acids, hormones, and oxysterols. Studies from the last few decades have demonstrated that oxysterols are not only active metabolites but are further involved in the modulation of immune responses. Liver X Receptors (LXRs), nuclear receptors for oxysterols, are important for cholesterol homeostasis and regulation of inflammatory response but are still poorly characterized during autoimmune diseases. Here we review the current knowledge about the role of oxysterols during autoimmune conditions and focus on the implication of LXR-dependent and LXR-independent pathways. We further highlight the importance of these pathways in particular during central nervous system (CNS) autoimmunity and inflammatory bowel diseases (IBD) in both experimental models and human studies. Finally, we discuss our vision about future applications and research on oxysterols related to autoimmunity.
Collapse
Affiliation(s)
- Donovan Duc
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
39
|
Mouzat K, Chudinova A, Polge A, Kantar J, Camu W, Raoul C, Lumbroso S. Regulation of Brain Cholesterol: What Role Do Liver X Receptors Play in Neurodegenerative Diseases? Int J Mol Sci 2019; 20:E3858. [PMID: 31398791 PMCID: PMC6720493 DOI: 10.3390/ijms20163858] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Liver X Receptors (LXR) alpha and beta are two members of nuclear receptor superfamily documented as endogenous cholesterol sensors. Following conversion of cholesterol in oxysterol, both LXR isoforms detect intracellular concentrations and act as transcription factors to promote expression of target genes. Among their numerous physiological roles, they act as central cholesterol-lowering factors. In the central nervous system (CNS), cholesterol has been shown to be an essential determinant of brain function, particularly as a major constituent of myelin and membranes. In the brain, LXRs act as cholesterol central regulators, and, beyond this metabolic function, LXRs have additional roles such as providing neuroprotective effects and lowering neuroinflammation. In many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis (MS), dysregulations of cholesterol and oxysterol have been reported. In this paper, we propose to focus on recent advances in the knowledge of the LXRs roles on brain cholesterol and oxysterol homeostasis, neuroinflammation, neuroprotection, and their putative involvement in neurodegenerative disorders. We will discuss their potential use as candidates for both molecular diagnosis and as promising pharmacological targets in the treatment of ALS, AD, or MS patients.
Collapse
Affiliation(s)
- Kevin Mouzat
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France.
| | - Aleksandra Chudinova
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - Anne Polge
- Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Jovana Kantar
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, University of Montpellier, 34091 Montpellier, France
| | - Serge Lumbroso
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| |
Collapse
|
40
|
Oxysterol research: a brief review. Biochem Soc Trans 2019; 47:517-526. [PMID: 30936243 PMCID: PMC6490702 DOI: 10.1042/bst20180135] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
In the present study, we discuss the recent developments in oxysterol research. Exciting results have been reported relating to the involvement of oxysterols in the fields of neurodegenerative disease, especially in Huntington's disease, Parkinson's disease and Alzheimer's disease; in signalling and development, in particular, in relation to Hedgehog signalling; and in cancer, with a special focus on (25R)26-hydroxycholesterol. Methods for the measurement of oxysterols, essential for understanding their mechanism of action in vivo, and valuable for diagnosing rare diseases of cholesterol biosynthesis and metabolism are briefly considered.
Collapse
|
41
|
Dias IH, Wilson SR, Roberg-Larsen H. Chromatography of oxysterols. Biochimie 2018; 153:3-12. [DOI: 10.1016/j.biochi.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
|
42
|
Sottero B, Leonarduzzi G, Testa G, Gargiulo S, Poli G, Biasi F. Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700047] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| |
Collapse
|
43
|
Kurschus FC, Wanke F. EBI2 - Sensor for dihydroxycholesterol gradients in neuroinflammation. Biochimie 2018; 153:52-55. [PMID: 29689289 DOI: 10.1016/j.biochi.2018.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
Dihydroxycholesterols such as 7α,25-dihydroxysterols (7α,25-OHC) and 7α,27-OHC are generated from cholesterol by the enzymes CH25H, CYP7B1 and CYP27A1 in steady state but also in the context of inflammation. The G-protein coupled receptor (GPCR) Epstein-Barr virus-induced gene 2 (EBI2), also known as GPR183, senses these oxysterols and induces chemotactic migration of immune cells towards higher concentrations of these ligands. We recently showed that these ligands are upregulated in the CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis and that EBI2 enhanced early infiltration of encephalitogenic T cells into the CNS. In this short-review we discuss the role of dihydroxysterol-sensing by immune cells in neuroinflammation.
Collapse
Affiliation(s)
- Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
44
|
Mutemberezi V, Buisseret B, Masquelier J, Guillemot-Legris O, Alhouayek M, Muccioli GG. Oxysterol levels and metabolism in the course of neuroinflammation: insights from in vitro and in vivo models. J Neuroinflammation 2018. [PMID: 29523207 PMCID: PMC5845224 DOI: 10.1186/s12974-018-1114-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Oxysterols are cholesterol derivatives that have been suggested to play a role in inflammatory diseases such as obesity, atherosclerosis, or neuroinflammatory diseases. However, the effect of neuroinflammation on oxysterol levels has only been partially studied so far. Methods We used an HPLC-MS method to quantify over ten oxysterols both in in vitro and in vivo models of neuroinflammation. In the same models, we used RT-qPCR to analyze the expression of the enzymes responsible for oxysterol metabolism. Using the BV2 microglial cell line, we explored the effect of lipopolysaccharide (LPS)-induced (M1-type) and IL-4-induced (M2-type) cell activation on oxysterol levels. We also used LPS-activated co-cultures of mouse primary microglia and astrocytes. In vivo, we induced a neuroinflammation by administering LPS to mice. Finally, we used a mouse model of multiple sclerosis, namely the experimental autoimmune encephalomyelitis (EAE) model, that is characterized by demyelination and neuroinflammation. Results In vitro, we found that LPS activation induces profound alterations in oxysterol levels. Interestingly, we could discriminate between control and LPS-activated cells based on the changes in oxysterol levels both in BV2 cells and in the primary co-culture of glial cells. In vivo, the changes in oxysterol levels were less marked than in vitro. However, we found in both models increased levels of the GPR183 agonist 7α,25-dihydroxycholesterol. Furthermore, we studied in vitro the effect of 14 oxysterols on the mRNA expression of inflammatory markers in LPS-activated co-culture of microglia and astrocytes. We found that several oxysterols decreased the LPS-induced expression of pro-inflammatory markers. Conclusions These data demonstrate that inflammation profoundly affects oxysterol levels and that oxysterols can modulate glial cell activation. This further supports the interest of a large screening of oxysterol levels when studying the interplay between neuroinflammation and bioactive lipids. Electronic supplementary material The online version of this article (10.1186/s12974-018-1114-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium.
| |
Collapse
|
45
|
Griffiths WJ, Wang Y. An update on oxysterol biochemistry: New discoveries in lipidomics. Biochem Biophys Res Commun 2018; 504:617-622. [PMID: 29421651 PMCID: PMC6381446 DOI: 10.1016/j.bbrc.2018.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
Abstract
Oxysterols are oxidised derivatives of cholesterol or its precursors post lanosterol. They are intermediates in the biosynthesis of bile acids, steroid hormones and 1,25-dihydroxyvitamin D3. Although often considered as metabolic intermediates there is a growing body of evidence that many oxysterols are bioactive and their absence or excess may be part of the cause of a disease phenotype. Using global lipidomics approaches oxysterols are underrepresented encouraging the development of targeted approaches. In this article, we discuss recent discoveries important in oxysterol biochemistry and some of the targeted lipidomic approaches used to make these discoveries. Oxysterols can regulate both the innate and adaptive immune systems. Oxysterols can be tumour suppressors and on cometabolites. Oxysterols can inhibit or activate the Hh signalling pathway.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK.
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
46
|
Rutkowska A, Shimshek DR, Sailer AW, Dev KK. EBI2 regulates pro-inflammatory signalling and cytokine release in astrocytes. Neuropharmacology 2018; 133:121-128. [PMID: 29374507 DOI: 10.1016/j.neuropharm.2018.01.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/28/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
The endogenous oxysterol 7α, 25-dihydroxycholesterol (7α25HC) ligand activates the G protein-coupled receptor EBI2 to regulate T cell-dependant antibody response and B cell migration. We have demonstrated that EBI2 is expressed in human and mouse astrocytes, that 7α25HC induces intracellular signalling and astrocyte migration, and that EBI2 plays a role in the crosstalk between astrocytes and macrophages. Recently, we demonstrate that EBI2 regulates myelin development and inhibits LPC-induced demyelination. Here, we show that 7α25HC inhibits LPS- and IL17/TNF-induced pro-inflammatory cytokine release in astrocytes. We observe the following: 1. Human astrocytes treated with IL17/TNF increases the nuclear translocation of NFκB, which is attenuated by pre-treatment with 7α25HC; 2. IL17/TNF increases cell impedance in human astrocytes, which is also attenuated by pre-treatment with 7α25HC; 3. The EBI2 antagonist NIBR189 inhibits these effects of 7α25HC, supporting the role of EBI2; 4. in vivo data corroborate these in vitro findings, showing that EBI2 knock-out (KO) animals display enhanced pro-inflammatory cytokine in response to LPS challenge, in the brain. These results demonstrate a role for oxysterol/EBI2 signalling in attenuating the response of astrocytes to pro-inflammatory signals as well as limiting the levels of pro-inflammatory cytokines in the brain.
Collapse
Affiliation(s)
- Aleksandra Rutkowska
- Drug Development, School of Medicine, Trinity College, Dublin, Ireland; Department of Laboratory Medicine, Medical University of Gdańsk, Poland.
| | - Derya R Shimshek
- Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas W Sailer
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
47
|
Rutkowska A, Sailer AW, Dev KK. EBI2 receptor regulates myelin development and inhibits LPC-induced demyelination. J Neuroinflammation 2017; 14:250. [PMID: 29246262 PMCID: PMC5732472 DOI: 10.1186/s12974-017-1025-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2) is activated by 7α, 25-dihydroxycholesterol (7α25HC) and plays a role in T cell-dependant antibody response and B cell migration. Abnormal EBI2 signaling is implicated in a range of autoimmune disorders; however, its role in the CNS remains poorly understood. METHODS Here we characterize the role of EBI2 in myelination under normal and pathophysiological conditions using organotypic cerebellar slice cultures and EBI2 knock-out (KO) animals. RESULTS We find that MBP expression in brains taken from EBI2 KO mice is delayed compared to those taken from wild type (WT) mice. In agreement with these in vivo findings, we show that antagonism of EBI2 reduces MBP expression in vitro. Importantly, we demonstrate that EBI2 activation attenuates lysolecithin (LPC)-induced demyelination in mouse organotypic slice cultures. Moreover, EBI2 activation also inhibits LPC-mediated release of pro-inflammatory cytokines such as IL6 and IL1β in cerebellar slices. CONCLUSIONS These results, for the first time, display a role for EBI2 in myelin development and protection from demyelination under pathophysiological conditions and suggest that modulation of this receptor may be beneficial in neuroinflammatory and demyelinating disorders such as multiple sclerosis.
Collapse
Affiliation(s)
- Aleksandra Rutkowska
- Drug Development, School of Medicine, Trinity College, Dublin, Ireland. .,Medical University of Gdańsk, M. Skłodowskiej-Curie 3a, Gdańsk, Poland.
| | - Andreas W Sailer
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|