1
|
Amirshahrokhi K, Imani M. Edaravone reduces brain injury in hepatic encephalopathy by upregulation of Nrf2/HO-1 and inhibition of NF-κB, iNOS/NO and inflammatory cytokines. Mol Biol Rep 2025; 52:222. [PMID: 39937373 DOI: 10.1007/s11033-025-10343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Brain damage is the most important complication in patients with hepatic encephalopathy (HE). Oxidative stress and inflammation are essential factors in the progression of brain injury caused by HE. The aim of this study was to investigate the potential therapeutic effect of edaravone and its underlying mechanisms against brain injury associated with HE in mice. METHODS AND RESULTS HE was induced by the injection of thioacetamide (200 mg/kg) for 2 days and then mice treated with edaravone (10 or 20 mg/kg/day, ip) for four consecutive days. The brain tissues were dissected for histopathological, biochemical, ELISA, RT-qPCR and immunofluorescence analysis. The results showed that edaravone improved the locomotor function and ameliorated brain histopathological changes in mice with HE. Edaravone inhibited oxidative stress markers by increasing the levels of glutathione, catalase, superoxide dismutase, glutathione reductase and the upregulation of nuclear erythroid 2-related factor (Nrf2)/HO-1 pathway in the brain tissue. Administration of edaravone significantly decreased the expression of p-NF-κB and iNOS. Edaravone treatment reduced the levels of NO, MPO and MMP-9 in the brain of mice. Additionally, the brain levels and expressions of inflammatory cytokines IL-1β, IL-6, TNF-α and IFN-γ were downregulated in mice treated with edaravone. CONCLUSIONS These results suggest that edaravone exerts significant neuroprotection by modulating of inflammatory and oxidative responses in HE and may serve as a promising agent for the treatment of brain injury associated with HE.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, P. O. Box 5618953141, Ardabil, Iran.
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahsa Imani
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
3
|
Milewski K, Orzeł-Gajowik K, Zielińska M. Mitochondrial Changes in Rat Brain Endothelial Cells Associated with Hepatic Encephalopathy: Relation to the Blood-Brain Barrier Dysfunction. Neurochem Res 2024; 49:1489-1504. [PMID: 35917006 PMCID: PMC11106209 DOI: 10.1007/s11064-022-03698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022]
Abstract
The mechanisms underlying cerebral vascular dysfunction and edema during hepatic encephalopathy (HE) are unclear. Blood-brain barrier (BBB) impairment, resulting from increased vascular permeability, has been reported in acute and chronic HE. Mitochondrial dysfunction is a well-documented result of HE mainly affecting astrocytes, but much less so in the BBB-forming endothelial cells. Here we review literature reports and own experimental data obtained in HE models emphasizing alterations in mitochondrial dynamics and function as a possible contributor to the status of brain endothelial cell mitochondria in HE. Own studies on the expression of the mitochondrial fusion-fission controlling genes rendered HE animal model-dependent effects: increase of mitochondrial fusion controlling genes opa1, mfn1 in cerebral vessels in ammonium acetate-induced hyperammonemia, but a decrease of the two former genes and increase of fis1 in vessels in thioacetamide-induced HE. In endothelial cell line (RBE4) after 24 h ammonia and/or TNFα treatment, conditions mimicking crucial aspects of HE in vivo, we observed altered expression of mitochondrial fission/fusion genes: a decrease of opa1, mfn1, and, increase of the fission related fis1 gene. The effect in vitro was paralleled by the generation of reactive oxygen species, decreased total antioxidant capacity, decreased mitochondrial membrane potential, as well as increased permeability of RBE4 cell monolayer to fluorescein isothiocyanate dextran. Electron microscopy documented enlarged mitochondria in the brain endothelial cells of rats in both in vivo models. Collectively, the here observed alterations of cerebral endothelial mitochondria are indicative of their fission, and decreased potential of endothelial mitochondria are likely to contribute to BBB dysfunction in HE.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| | - Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Orzeł-Gajowik K, Milewski K, Zielińska M. miRNA-ome plasma analysis unveils changes in blood-brain barrier integrity associated with acute liver failure in rats. Fluids Barriers CNS 2023; 20:92. [PMID: 38066639 PMCID: PMC10709860 DOI: 10.1186/s12987-023-00484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) symptoms associated with liver insufficiency are linked to the neurotoxic effects of ammonia and other toxic metabolites reaching the brain via the blood-brain barrier (BBB), further aggravated by the inflammatory response. Cumulative evidence documents that the non-coding single-stranded RNAs, micro RNAs (miRs) control the BBB functioning. However, miRs' involvement in BBB breakdown in HE is still underexplored. Here, we hypothesized that in rats with acute liver failure (ALF) or rats subjected to hyperammonemia, altered circulating miRs affect BBB composing proteins. METHODS Transmission electron microscopy was employed to delineate structural alterations of the BBB in rats with ALF (thioacetamide (TAA) intraperitoneal (ip.) administration) or hyperammonemia (ammonium acetate (OA) ip. administration). The BBB permeability was determined with Evans blue dye and sodium fluorescein assay. Plasma MiRs were profiled by Next Generation Sequencing (NGS), followed by in silico analysis. Selected miRs, verified by qRT-PCR, were examined in cultured rat brain endothelial cells. Targeted protein alterations were elucidated with immunofluorescence, western blotting, and, after selected miR mimics transfection, through an in vitro resistance measurement. RESULTS Changes in BBB structure and increased permeability were observed in the prefrontal cortex of TAA rats but not in the brains of OA rats. The NGS results revealed divergently changed miRNA-ome in the plasma of both rat models. The in silico analysis led to the selection of miR-122-5p and miR-183-5p with their target genes occludin and integrin β1, respectively, as potential contributors to BBB alterations. Both proteins were reduced in isolated brain vessels and cortical homogenates in TAA rats. We documented in cultured primary brain endothelial cells that ammonia alone and, in combination with TNFα increases the relative expression of NGS-selected miRs with a less pronounced effect of TNFα when added alone. The in vitro study also confirmed miR-122-5p-dependent decrease in occludin and miR-183-5p-related reduction in integrin β1 expression. CONCLUSION This work identified, to our knowledge for the first time, potential functional links between alterations in miRs residing in brain endothelium and BBB dysfunction in ALF.
Collapse
Affiliation(s)
- Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura St. 3, 02-093, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
5
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Stolze Larsen F. New Insight Into Mechanisms of Hepatic Encephalopathy: An Integrative Analysis Approach to Identify Molecular Markers and Therapeutic Targets. Bioinform Biol Insights 2023; 17:11779322231155068. [PMID: 36814683 PMCID: PMC9940182 DOI: 10.1177/11779322231155068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic encephalopathy (HE) is a set of complex neurological complications that arise from advanced liver disease. The precise molecular and cellular mechanism of HE is not fully understood. Differentially expressed genes (DEGs) from microarray technologies are powerful approaches to obtain new insight into the pathophysiology of HE. We analyzed microarray data sets of cirrhotic patients with HE from Gene Expression Omnibus to identify DEGs in postmortem cerebral tissues. Consequently, we uploaded significant DEGs into the STRING to specify protein-protein interactions. Cytoscape was used to reconstruct the genetic network and identify hub genes. Target genes were uploaded to different databases to perform comprehensive enrichment analysis and repurpose new therapeutic options for HE. A total of 457 DEGs were identified in 2 data sets totally from 12 cirrhotic patients with HE compared with 12 healthy subjects. We found that 274 genes were upregulated and 183 genes were downregulated. Network analyses on significant DEGs indicated 12 hub genes associated with HE. Enrichment analysis identified fatty acid beta-oxidation, cerebral organic acidurias, and regulation of actin cytoskeleton as main involved pathways associated with upregulated genes; serotonin receptor 2 and ELK-SRF/GATA4 signaling, GPCRs, class A rhodopsin-like, and p38 MAPK signaling pathway were related to downregulated genes. Finally, we predicted 39 probable effective drugs/agents for HE. This study not only confirms main important involved mechanisms of HE but also reveals some yet unknown activated molecular and cellular pathways in human HE. In addition, new targets were identified that could be of value in the future study of HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells Attenuates Surgical Wound-Induced Blood-Brain Barrier Dysfunction in Mice. Stem Cells Int 2023; 2023:8667045. [PMID: 36895785 PMCID: PMC9991482 DOI: 10.1155/2023/8667045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 03/04/2023] Open
Abstract
Blood-brain barrier (BBB) is the most important component of central nervous system (CNS) to keep toxins and pathogens from CNS. Although our studies demonstrated that using interleukin-6 antibodies (IL-6-AB) reversed the increased permeability of BBB, IL-6-AB is limited in their application that only could be used a few hours before surgery and seemed delayed the surgical wounds healing process, which urges us to find another more effective method. In this study, we employed the C57BL/6J female mice to investigate the potential effects of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation on BBB dysfunction induced by surgical wound. Compared to IL-6-AB, the transplantation of UC-MSCs more effectively decreased the BBB permeability after surgical wound evaluated by dextran tracer (immunofluorescence imaging and luorescence quantification). In addition, UC-MSCs can largely decrease the ratio of proinflammatory cytokine IL-6 to the anti-inflammatory cytokine IL-10 in both serum and brain tissue after surgical wound. Moreover, UC-MSCs successfully increased the levels of tight junction proteins (TJs) in BBB such as ZO-1, Occludin, and Claudin-5 and extremely decreased the level of matrix metalloproteinase-9 (MMP-9). Interestingly, UC-MSCs treatment also had positive effects on wound healing while protecting the BBB dysfunction induced by surgical wound compared to IL-6-AB treatment. These findings suggest that UC-MSCs transplantation is a highly efficient and promising approach on protecting the integrity of BBB which caused by peripheral traumatic injuries.
Collapse
|
7
|
A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Sci Rep 2022; 12:17558. [PMID: 36266427 PMCID: PMC9585018 DOI: 10.1038/s41598-022-22423-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic liver disease, characterized by an altered mental state and hyperammonemia. Insight into the brain pathophysiology of HE is limited due to a paucity of well-characterized HE models beyond the rat bile duct ligation (BDL) model. Here, we assess the presence of HE characteristics in the mouse BDL model. We show that BDL in C57Bl/6j mice induces motor dysfunction, progressive liver fibrosis, liver function failure and hyperammonemia, all hallmarks of HE. Swiss mice however fail to replicate the same phenotype, underscoring the importance of careful strain selection. Next, in-depth characterisation of metabolic disturbances in the cerebrospinal fluid of BDL mice shows glutamine accumulation and transient decreases in taurine and choline, indicative of brain ammonia overload. Moreover, mouse BDL induces glial cell dysfunction, namely microglial morphological changes with neuroinflammation and astrocyte reactivity with blood-brain barrier (BBB) disruption. Finally, we identify putative novel mechanisms involved in central HE pathophysiology, like bile acid accumulation and tryptophan-kynurenine pathway alterations. Our study provides the first comprehensive evaluation of a mouse model of HE in chronic liver disease. Additionally, this study further underscores the importance of neuroinflammation in the central effects of chronic liver disease.
Collapse
|
8
|
Henriksen NL, Hansen SH, Lycas MD, Pan X, Eriksen T, Johansen LS, Sprenger RR, Ejsing CS, Burrin DG, Skovgaard K, Christensen VB, Thymann T, Pankratova S. Cholestasis alters brain lipid and bile acid composition and compromises motor function in neonatal piglets. Physiol Rep 2022; 10:e15368. [PMID: 35822260 PMCID: PMC9277266 DOI: 10.14814/phy2.15368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Infants with neonatal cholestasis are prone to neurodevelopmental deficits, however, the underlying pathogenesis is unclear. Lipid malabsorption and accumulation of potentially neurotoxic molecules in the blood such as bile acids are important yet relatively unexplored pathways. Here, we developed a translational piglet model to understand how the molecular bile acid and lipid composition of the brain is affected by this disease and relates to motor function. Piglets (8-days old) had bile duct ligation or sham surgery and were fed a formula diet for 3 weeks. Alongside sensory-motor deficits observed in bile duct-ligated animals, we found a shift toward a more hydrophilic and conjugated bile acid profile in the brain. Additionally, comprehensive lipidomics of the cerebellum revealed a decrease in total lipids including phosphatidylinositols and phosphatidylserines and increases in lysophospholipid species. This was paralleled by elevated cerebellar expression of genes related to inflammation and tissue damage albeit without significant impact on the brain transcriptome. This study offers new insights into the developing brain's molecular response to neonatal cholestasis indicating that bile acids and lipids may contribute in mediating motor deficits.
Collapse
Affiliation(s)
- Nicole Lind Henriksen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Svend Høime Hansen
- Department of Clinical BiochemistryCopenhagen University Hospital, RigshospitaletCopenhagen ØDenmark
| | | | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Thomas Eriksen
- Department of Veterinary Clinical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | | | - Richard R. Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdense MDenmark
| | - Christer Stenby Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdense MDenmark
| | - Douglas G. Burrin
- Department of Pediatrics, United States Department of Agriculture, Agricultural Research ServiceChildren's Nutrition Research Center, Baylor College of MedicineHoustonTexasUSA
| | - Kerstin Skovgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Vibeke Brix Christensen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Department of Pediatrics and Adolescent MedicineCopenhagen University Hospital, RigshospitaletCopenhagen ØDenmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
9
|
Zhai K, Duan H, Wang W, Zhao S, Khan GJ, Wang M, Zhang Y, Thakur K, Fang X, Wu C, Xiao J, Wei Z. Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release. Acta Pharm Sin B 2021; 11:3493-3507. [PMID: 34900532 PMCID: PMC8642604 DOI: 10.1016/j.apsb.2021.03.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/08/2023] Open
Abstract
During the traumatic brain injury (TBI), improved expression of circulatory miR-21 serves as a diagnostic feature. Low levels of exosome-miR-21 in the brain can effectively improve neuroinflammation and blood-brain barrier (BBB) permeability, reduce nerve apoptosis, restore neural function and ameliorate TBI. We evaluated the role of macrophage derived exosomes-miR-21 (M-Exos-miR-21) in disrupting BBB, deteriorating TBI, and Rg1 interventions. IL-1β-induced macrophages (IIM)-Exos-miR-21 can activate NF-κB signaling pathway and induce the expressions of MMP-1, -3 and -9 and downregulate the levels of tight junction proteins (TJPs) deteriorating the BBB. Rg1 reduced miR-21-5p content in IIM-Exos (RIIM-Exos). The interaction of NMIIA-HSP90 controlled the release of Exos-miR-21, this interaction was restricted by Rg1. Rg1 could inhibit the Exos-miR-21 release in peripheral blood flow to brain, enhancing TIMP3 protein expression, MMPs proteolysis, and restricting TJPs degradation thus protected the BBB integrity. Conclusively, Rg1 can improve the cerebrovascular endothelial injury and hold the therapeutic potential against TBI disease.
Collapse
Affiliation(s)
- Kefeng Zhai
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Hong Duan
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin 541004, China
| | - Wei Wang
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Siyu Zhao
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Mengting Wang
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Yuhan Zhang
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuemei Fang
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Chao Wu
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
10
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
11
|
Claeys W, Van Hoecke L, Lefere S, Geerts A, Verhelst X, Van Vlierberghe H, Degroote H, Devisscher L, Vandenbroucke RE, Van Steenkiste C. The neurogliovascular unit in hepatic encephalopathy. JHEP Rep 2021; 3:100352. [PMID: 34611619 PMCID: PMC8476774 DOI: 10.1016/j.jhepr.2021.100352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological complication of hepatic dysfunction and portosystemic shunting. It is highly prevalent in patients with cirrhosis and is associated with poor outcomes. New insights into the role of peripheral origins in HE have led to the development of innovative treatment strategies like faecal microbiota transplantation. However, this broadening of view has not been applied fully to perturbations in the central nervous system. The old paradigm that HE is the clinical manifestation of ammonia-induced astrocyte dysfunction and its secondary neuronal consequences requires updating. In this review, we will use the holistic concept of the neurogliovascular unit to describe central nervous system disturbances in HE, an approach that has proven instrumental in other neurological disorders. We will describe HE as a global dysfunction of the neurogliovascular unit, where blood flow and nutrient supply to the brain, as well as the function of the blood-brain barrier, are impaired. This leads to an accumulation of neurotoxic substances, chief among them ammonia and inflammatory mediators, causing dysfunction of astrocytes and microglia. Finally, glymphatic dysfunction impairs the clearance of these neurotoxins, further aggravating their effect on the brain. Taking a broader view of central nervous system alterations in liver disease could serve as the basis for further research into the specific brain pathophysiology of HE, as well as the development of therapeutic strategies specifically aimed at counteracting the often irreversible central nervous system damage seen in these patients.
Collapse
Key Words
- ABC, ATP-binding cassette
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- ALF, acute liver failure
- AOM, azoxymethane
- AQP4, aquaporin 4
- Acute Liver Failure
- Ammonia
- BBB, blood-brain barrier
- BCRP, breast cancer resistance protein
- BDL, bile duct ligation
- Blood-brain barrier
- Brain edema
- CCL, chemokine ligand
- CCR, C-C chemokine receptor
- CE, cerebral oedema
- CLD, chronic liver disease
- CLDN, claudin
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Cirrhosis
- Energy metabolism
- GS, glutamine synthetase
- Glymphatic system
- HE, hepatic encephalopathy
- HO-1, heme oxygenase 1
- IL-, interleukin
- MMP-9, matrix metalloproteinase 9
- MRP, multidrug resistance associated protein
- NGVU
- NGVU, neurogliovascular unit
- NKCC1, Na-K-2Cl cotransporter 1
- Neuroinflammation
- OCLN, occludin
- ONS, oxidative and nitrosative stress
- Oxidative stress
- P-gp, P-glycoprotein
- PCA, portacaval anastomosis
- PSS, portosystemic shunt
- S1PR2, sphingosine-1-phosphate receptor 2
- SUR1, sulfonylurea receptor 1
- Systemic inflammation
- TAA, thioacetamide
- TGFβ, transforming growth factor beta
- TJ, tight junction
- TNF, tumour necrosis factor
- TNFR1, tumour necrosis factor receptor 1
- ZO, zonula occludens
- mPT, mitochondrial pore transition
Collapse
Affiliation(s)
- Wouter Claeys
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Helena Degroote
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Steenkiste
- Antwerp University, Department of Gastroenterology and Hepatology, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| |
Collapse
|
12
|
Hajipour S, Sarkaki A, Dianat M, Rashno M, Khorsandi LS, Farbood Y. The effects of thymoquinone on memory impairment and inflammation in rats with hepatic encephalopathy induced by thioacetamide. Metab Brain Dis 2021; 36:991-1002. [PMID: 33620578 DOI: 10.1007/s11011-021-00688-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
Hepatic encephalopathy (HE) is a prevalent complication of the central nervous system (CNS) that is caused by acute or chronic liver failure. This study was designed to evaluate the effects of thymoquinone (TQ) on thioacetamide (TAA)-induced HE in rats, and determine the consequential behavioral, biochemical, and histological changes. HE was induced in male Wistar rats by intraperitoneal (i.p.) injection of 200 mg/kg TAA once every 48 h for 14 consecutive days. Control groups received the normal saline containing 5 % DMSO. Thymoquinone (5, 10, and 20 mg/kg) was administered for ten consecutive days intraperitoneally (i.p.) after HE induction and it was continued until the end of the tests. Then, the passive avoidance memory, extracellular single unit, BBB permeability, and brain water content were evaluated. Moreover, hippocampal tissues were used for evaluation of oxidative stress index, inflammatory biomarkers, and histological parameters following HE. As result of the treatment, TQ improved passive avoidance memory, increased the average number of simultaneous firing of spikes/bins, improved the integrity of BBB, and decreased brain water content in the animal model of HE. Furthermore, the results indicated that treatment with TQ decreased the levels of inflammatory cytokines (TNF-α and IL-1β) but increased the levels of glutathione (GSH) and anti-inflammatory cytokine (IL-10) of the surviving cells in the hippocampal tissues. This study demonstrates that TQ may have beneficial therapeutic effects on cognitive, oxidative stress, neuroinflammatory, and histological complications of HE in rat.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Laaya Sadat Khorsandi
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Blood-brain barrier dysfunction as a potential therapeutic target for neurodegenerative disorders. Arch Pharm Res 2021; 44:487-498. [PMID: 34028650 DOI: 10.1007/s12272-021-01332-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is composed of specific tight junction proteins and transporters expressed on the lining of endothelial cells of the vasculature in the brain. The structural and functional integrity of the BBB is one of the most critical factors for maintaining brain homeostasis and is mainly regulated by complex interactions between various cell types, such as endothelial cells, pericytes, and astrocytes, which are shaped by their differential responses to changes in microenvironments. Alterations in these cellular components have been implicated in neurodegenerative disorders. Although it has long been considered that BBB dysfunction is a mere ramification of pathological phenomena, emerging evidence supports its critical role in the pathogenesis of various disorders. In epilepsy, heightened BBB permeability has been found to be associated with increased occurrence of spontaneous seizures. Additionally, exaggerated inflammatory responses significantly correlate with increased BBB permeability during healthy aging. Furthermore, it has been previously reported that BBB disruption can be an early marker for predicting cognitive impairment in the progression of Alzheimer's disease. We herein review a potential role of the major cellular components of the BBB, with a focus on the contribution of BBB disruption, in neurodegenerative disease progression.
Collapse
|
14
|
Tarazona S, Carmona H, Conesa A, Llansola M, Felipo V. A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biol Toxicol 2021; 37:129-149. [PMID: 33404927 DOI: 10.1007/s10565-020-09572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022]
Abstract
Patients with liver cirrhosis may develop covert or minimal hepatic encephalopathy (MHE). Hyperammonemia (HA) and peripheral inflammation play synergistic roles in inducing the cognitive and motor alterations in MHE. The cerebellum is one of the main cerebral regions affected in MHE. Rats with chronic HA show some motor and cognitive alterations reproducing neurological impairment in cirrhotic patients with MHE. Neuroinflammation and altered neurotransmission and signal transduction in the cerebellum from hyperammonemic (HA) rats are associated with motor and cognitive dysfunction, but underlying mechanisms are not completely known. The aim of this work was to use a multi-omic approach to study molecular alterations in the cerebellum from hyperammonemic rats to uncover new molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment. We analyzed metabolomic, transcriptomic, and proteomic data from the same cerebellums from control and HA rats and performed a multi-omic integrative analysis of signaling pathway enrichment with the PaintOmics tool. The histaminergic system, corticotropin-releasing hormone, cyclic GMP-protein kinase G pathway, and intercellular communication in the cerebellar immune system were some of the most relevant enriched pathways in HA rats. In summary, this is a good approach to find altered pathways, which helps to describe the molecular mechanisms involved in the alteration of brain function in rats with chronic HA and to propose possible therapeutic targets to improve MHE symptoms.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Héctor Carmona
- Department of Microbiology and Ecology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
15
|
Chen Z, Ruan J, Li D, Wang M, Han Z, Qiu W, Wu G. The Role of Intestinal Bacteria and Gut-Brain Axis in Hepatic Encephalopathy. Front Cell Infect Microbiol 2021; 10:595759. [PMID: 33553004 PMCID: PMC7859631 DOI: 10.3389/fcimb.2020.595759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disorder that occurs in patients with liver insufficiency. However, its pathogenesis has not been fully elucidated. Pharmacotherapy is the main therapeutic option for HE. It targets the pathogenesis of HE by reducing ammonia levels, improving neurotransmitter signal transduction, and modulating intestinal microbiota. Compared to healthy individuals, the intestinal microbiota of patients with liver disease is significantly different and is associated with the occurrence of HE. Moreover, intestinal microbiota is closely associated with multiple links in the pathogenesis of HE, including the theory of ammonia intoxication, bile acid circulation, GABA-ergic tone hypothesis, and neuroinflammation, which contribute to cognitive and motor disorders in patients. Restoring the homeostasis of intestinal bacteria or providing specific probiotics has significant effects on neurological disorders in HE. Therefore, this review aims at elucidating the potential microbial mechanisms and metabolic effects in the progression of HE through the gut-brain axis and its potential role as a therapeutic target in HE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guobin Wu
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
16
|
Cheon SY, Song J. The Association between Hepatic Encephalopathy and Diabetic Encephalopathy: The Brain-Liver Axis. Int J Mol Sci 2021; 22:ijms22010463. [PMID: 33466498 PMCID: PMC7796499 DOI: 10.3390/ijms22010463] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is one of the main consequences of liver disease and is observed in severe liver failure and cirrhosis. Recent studies have provided significant evidence that HE shows several neurological symptoms including depressive mood, cognitive dysfunction, impaired circadian rhythm, and attention deficits as well as motor disturbance. Liver disease is also a risk factor for the development of diabetes mellitus. Diabetic encephalopathy (DE) is characterized by cognitive dysfunction and motor impairment. Recent research investigated the relationship between metabolic changes and the pathogenesis of neurological disease, indicating the importance between metabolic organs and the brain. Given that a diverse number of metabolites and changes in the brain contribute to neurologic dysfunction, HE and DE are emerging types of neurologic disease. Here, we review significant evidence of the association between HE and DE, and summarise the common risk factors. This review may provide promising therapeutic information and help to design a future metabolic organ-related study in relation to HE and DE.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
17
|
Yang J, Ma K, Zhang C, Liu Y, Liang F, Hu W, Bian X, Yang S, Fu X. Burns Impair Blood-Brain Barrier and Mesenchymal Stem Cells Can Reverse the Process in Mice. Front Immunol 2020; 11:578879. [PMID: 33240266 PMCID: PMC7677525 DOI: 10.3389/fimmu.2020.578879] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Neurological syndromes are observed in numerous patients who suffer burns, which add to the economic burden of societies and families. Recent studies have implied that blood-brain barrier (BBB) dysfunction is the key factor that induces these central nervous system (CNS) syndromes in peripheral traumatic disease, e.g., surgery and burns. However, the effect of burns on BBB and the underlying mechanism remains, largely, to be determined. The present study aimed to investigate the effect of burns on BBB and the potential of umbilical cord-derived mesenchymal stem cells (UC-MSCs), which have strong anti-inflammatory and repairing ability, to protect the integrity of BBB. BBB permeability was evaluated using dextran tracer (immunohistochemistry imaging and spectrophotometric quantification) and western blot, interleukin (IL)-6, and IL-1β levels in blood and brain were measured by enzyme-linked immunosorbent assay. Furthermore, transmission electron microscopy (TEM) was used to detect transcellular vesicular transport (transcytosis) in BBB. We found that burns increased mouse BBB permeability to both 10-kDa and 70-kDa dextran. IL-6 and IL-1β levels increased in peripheral blood and CNS after burns. In addition, burns decreased the level of tight junction proteins (TJs), including claudin-5, occludin, and ZO-1, which indicated increased BBB permeability due to paracellular pathway. Moreover, increased vesicular density after burns suggested increased transcytosis in brain microvascular endothelial cells. Finally, administering UC-MSCs at 1 h after burns effectively reversed these adverse effects and protected the integrity of BBB. These results suggest that burns increase BBB permeability through both paracellular pathway and transcytosis, the potential mechanism of which might be through increasing IL-6 and IL-1β levels and decreasing Mfsd2a level, and appropriate treatment with UC-MSCs can reverse these effects and protect the integrity of BBB after burns.
Collapse
Affiliation(s)
- Jie Yang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Department of Dermatology, Fourth Medical Center, PLA General Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China
| | - Yufan Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Department of Dermatology, Fourth Medical Center, PLA General Hospital, Beijing, China
| | - Feng Liang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China
| | - Xiaowei Bian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Tianjin Medical University, Tianjin, China
| | - Siming Yang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Department of Dermatology, Fourth Medical Center, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Department of Dermatology, Fourth Medical Center, PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Du YL, Liang Y, Cao Y, Liu L, Li J, Shi GQ. LncRNA XIST Promotes Migration and Invasion of Papillary Thyroid Cancer Cell by Modulating MiR-101-3p/CLDN1 Axis. Biochem Genet 2020; 59:437-452. [PMID: 33057875 DOI: 10.1007/s10528-020-09985-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy in the worlds. Long non-coding RNA X-inactive specific transcript (XIST) was found to upregulate in PTC tissues and cell lines. However, the molecular mechanism underlying PTC metastasis and whether XIST plays regulatory role in PTC are still largely unknown. qRT-PCR was performed to detect the expression of lncRNA XIST and mRNAs. Western blotting was carried out to detect CLDN1, MMP2, and MMP9. Transwell assay was used to detect migration and invasion. Starbase bioinformatics prediction and luciferase assay were used to validate the relationship of miR-101-3p and XIST or CLDN1. LncRNA XIST was upregulated in PTC tissues and cells. XIST knockdown suppressed migration and invasion of PTC cells. XIST could directly bind with miR-101-3p. Overexpression of miR-101-3p suppressed migration and invasion of PTC cells. CLDN1 was the target of miR-101-3p, and overexpression of CLDN1 can reverse the inhibition of cell migration and invasion by miR-101-3p, What's more, miR-101-3p inhibition and CLDN1 overexpression can reverse the affection of sh-XIST on migration and invasion of PTC cells inhibition. XIST promotes migration and invasion of papillary thyroid cancer cell via directly regulating miR-101-3p/CLDN1 axis, which is a novel mechanistic of XIST in the regulation of PTC.
Collapse
Affiliation(s)
- Yong-Liang Du
- Nuclear Medicine Department, The Third Xiangya Hospital of Central South University, No.137 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Yan Liang
- Nuclear Medicine Department, The Third Xiangya Hospital of Central South University, No.137 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Yan Cao
- Nuclear Medicine Department, The Third Xiangya Hospital of Central South University, No.137 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Le Liu
- Nuclear Medicine Department, The Third Xiangya Hospital of Central South University, No.137 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Jian Li
- Nuclear Medicine Department, The Third Xiangya Hospital of Central South University, No.137 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China.
| | - Guang-Qing Shi
- Nuclear Medicine Department, The Third Xiangya Hospital of Central South University, No.137 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Ding H, Liu X, Li X, Wen M, Li Y, Han Y, Huang L, Liu M, Zeng H. Hypercapnia exacerbates the disruption of the blood‑brain barrier by inducing interleukin‑1β overproduction in the blood of hypoxemic adult rats. Int J Mol Med 2020; 46:762-772. [PMID: 32626911 PMCID: PMC7307827 DOI: 10.3892/ijmm.2020.4604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Refractory hypoxemia is the main symptom of acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is routinely applied in clinical practice to correct hypoxemia, which aims to prevent ventilator‑induced lung injury. However, this ventilation strategy inevitably leads to hypercapnia. Our previous study demonstrated that hypercapnia aggravated cognitive impairment in hypoxemic rats; however, the underlying mechanism remains unclear. The aim of the present study was to investigate whether hypercapnia exacerbates the blood‑brain barrier (BBB) disruption through inducing interleukin (IL)‑1β overproduction in the blood of hypoxemic rats. The BBB permeability in a rat model of hypercapnia/hypoxemia was evaluated. The levels of IL‑1β in the blood of rats and human whole‑blood cultures were assessed. The expression of IL‑1 receptor 1 (IL‑1R1), phosphorylated IL‑1R1‑associated kinase (p‑IRAK‑1) and tight junctional proteins in cerebral vascular endothelial cells was examined in vitro and in vivo. In addition, IL‑1Ra, an IL‑1 receptor antagonist, was used to determine whether hypercapnia affects tight junctional protein expression in hypoxic cerebral vascular endothelial cells through inducing IL‑1β overproduction. It was observed that hypercapnia alone did not disrupt the BBB, but aggravated the damage to the BBB integrity in hypoxemic rats. Hypercapnia increased IL‑1β expression in the blood of hypoxemic rats as well as in hypoxic human whole‑blood cultures. IL‑1R1 and p‑IRAK‑1 expression was increased, while that of tight junctional proteins was reduced by hypercapnia in hypoxemic cerebral vascular endothelial cells in vitro and in vivo. Additionally, the expression of tight junctional proteins was markedly increased following treatment with IL‑1Ra. These results suggest that hypercapnia‑induced IL‑1β overproduction in the hypoxemic blood may decrease tight junctional protein expression in cerebrovascular endothelial cells via the IL‑1R1/p‑IRAK‑1 pathway, further disrupting BBB integrity, and eventually resulting in increased BBB permeability.
Collapse
Affiliation(s)
- Hongguang Ding
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xinqiang Liu
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xusheng Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Ya Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Mengting Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Hongke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
20
|
Baek SY, Lee EH, Oh TW, Do HJ, Kim KY, Park KI, Kim YW. Network Pharmacology-Based Approaches of Rheum undulatum Linne and Glycyrriza uralensis Fischer Imply their Regulation of Liver Failure with Hepatic Encephalopathy in Mice. Biomolecules 2020; 10:biom10030437. [PMID: 32178308 PMCID: PMC7175377 DOI: 10.3390/biom10030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Rheum undulatum and Glycyrrhiza uralensis have been used as supplementary ingredients in various herbal medicines. They have been reported to have anti-inflammatory and antioxidant effects and, therefore, have potential in the treatment and prevention of various liver diseases. Considering that hepatic encephalopathy (HE) is often associated with chronic liver failure, we investigated whether an R. undulatum and G. uralensis extract mixture (RG) could reduce HE. We applied systems-based pharmacological tools to identify the active ingredients in RG and the pharmacological targets of RG by examining mechanism-of-action profiles. A CCl4-induced HE mouse model was used to investigate the therapeutic mechanisms of RG on HE. We successfully identified seven bioactive ingredients in RG with 40 potential targets. Based on an integrated target–disease network, RG was predicted to be effective in treating neurological diseases. In animal models, RG consistently relieved HE symptoms by protecting blood–brain barrier permeability via downregulation of matrix metalloproteinase-9 (MMP-9) and upregulation of claudin-5. In addition, RG inhibited mRNA expression levels of both interleukin (IL)-1β and transforming growth factor (TGF)-β1. Based on our results, RG is expected to function various biochemical processes involving neuroinflammation, suggesting that RG may be considered a therapeutic agent for treating not only chronic liver disease but also HE.
Collapse
Affiliation(s)
- Su Youn Baek
- Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Korea;
| | - Eun Hye Lee
- School of Medical Science, Kyungpook National University, Daegu 41566, Korea;
| | - Tae Woo Oh
- Korea Institute of Oriental Medicine, Daegu 41062, Korea; (T.W.O.); (H.J.D.); (K.-Y.K.)
| | - Hyun Ju Do
- Korea Institute of Oriental Medicine, Daegu 41062, Korea; (T.W.O.); (H.J.D.); (K.-Y.K.)
| | - Kwang-Youn Kim
- Korea Institute of Oriental Medicine, Daegu 41062, Korea; (T.W.O.); (H.J.D.); (K.-Y.K.)
| | - Kwang-Il Park
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Korea
- Correspondence: ; Fax: +82-31-961-5835
| |
Collapse
|
21
|
Jaeger V, DeMorrow S, McMillin M. The Direct Contribution of Astrocytes and Microglia to the Pathogenesis of Hepatic Encephalopathy. J Clin Transl Hepatol 2019; 7:352-361. [PMID: 31915605 PMCID: PMC6943208 DOI: 10.14218/jcth.2019.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy is a neurological complication resulting from loss of hepatic function and is associated with poor clinical outcomes. During acute liver failure over 20% of mortality can be associated with the development of hepatic encephalopathy. In patients with liver cirrhosis, 1-year survival for those that develop overt hepatic encephalopathy is under 50%. The pathogenesis of hepatic encephalopathy is complicated due to the multiple disruptions in homeostasis that occur following a reduction in liver function. Of these, elevations of ammonia and neuroinflammation have been shown to play a significant contributing role to the development of hepatic encephalopathy. Disruption of the urea cycle following liver dysfunction leads to elevations of circulating ammonia, which enter the brain and disrupt the functioning of astrocytes. This results in dysregulation of metabolic pathways in astrocytes, oxidative stress and cerebral edema. Besides ammonia, circulating chemokines and cytokines are increased following liver injury, leading to activation of microglia and a subsequent neuroinflammatory response. The combination of astrocyte dysfunction and microglia activation are significant contributing factors to the pathogenesis of hepatic encephalopathy.
Collapse
Affiliation(s)
- Victoria Jaeger
- Baylor Scott & White Health, Department of Internal Medicine, Temple, TX, USA
| | - Sharon DeMorrow
- Texas A&M University Health Science Center, Department of Medical Physiology, Temple, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, TX, USA
- University of Texas at Austin, College of Pharmacy, Austin, TX, USA
| | - Matthew McMillin
- Texas A&M University Health Science Center, Department of Medical Physiology, Temple, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, TX, USA
- Correspondence to: Matthew McMillin, University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78701, USA. Tel: +1-512-495-5037, Fax: +1-512-495-5839, E-mail:
| |
Collapse
|
22
|
Bilirubin: a novel predictor of hemorrhagic transformation and symptomatic intracranial hemorrhage after mechanical thrombectomy. Neurol Sci 2019; 41:903-909. [PMID: 31828679 DOI: 10.1007/s10072-019-04182-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/29/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE The role of bilirubin in patients treated with mechanical thrombectomy (MT) is unknown. We investigated the relationship between admission bilirubin levels and hemorrhagic complication in acute ischemic stroke (AIS) patients treated with MT and detailed the roles of direct bilirubin (DB), indirect bilirubin (IDB), and total bilirubin (TB). METHODS Consecutive AIS patients treated with MT were enrolled from two stroke centers. Outcome measures included hemorrhagic transformation (HT) and symptomatic intracranial hemorrhage (sICH) within 48 h. An independent association of bilirubin with outcomes was identified by multivariate logistic regression analysis. The accuracies of bilirubin in predicting outcome were evaluated using receiver operating characteristic curve analysis. RESULTS Of the 153 enrolled patients, 64 (41.8%) were diagnosed with HT, of which 28 (18.3%) had sICH. In univariate analyses, DB, IDB, and TB were higher in patients with HT and sICH than in patients without. After adjustment for potential confounders, DB (odds ratio [OR], 1.364; 95% confidence interval [CI], 1.133-1.641; p = 0.001), IDB (OR, 1.143; 95% CI, 1.052-1.242; p = 0.002), and TB (OR, 1.106; 95% CI, 1.041-1.175; p = 0.001) were independently associated with HT. IDB (OR, 1.177; 95% CI, 1.064-1.303; p = 0.002) and TB (OR, 1.102; 95% CI, 1.027-1.182; p = 0.007) were independently associated with sICH. Receiver operating characteristic curve analysis showed no significant difference between the three indicators of predicting HT and sICH. CONCLUSIONS Elevated admission bilirubin is an independent predictor of HT and sICH in AIS patients treated with MT.
Collapse
|
23
|
Motallebnejad P, Thomas A, Swisher SL, Azarin SM. An isogenic hiPSC-derived BBB-on-a-chip. BIOMICROFLUIDICS 2019; 13:064119. [PMID: 31768205 PMCID: PMC6874510 DOI: 10.1063/1.5123476] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/07/2019] [Indexed: 05/03/2023]
Abstract
The blood-brain barrier (BBB) is composed of brain microvascular endothelial cells (BMECs) that regulate brain homeostasis, and astrocytes within the brain are involved in the maintenance of the BBB or modulation of its integrity in disease states via secreted factors. A major challenge in modeling the normal or diseased BBB is that conventional in vitro models lack either the physiological complexity of the BBB or key functional features such as formation of a sufficiently tight barrier. In this study, we utilized human induced pluripotent stem cell (hiPSC)-derived BMECs in a BBB-on-a-chip device that supports flow and coculture with an astrocyte-laden 3D hydrogel. The BMECs are separated from the hydrogel by a porous membrane with either 0.4 or 8.0 μm pore size, making the device suitable for studying the transport of molecules or cells, respectively, across the BBB. In addition, all cells seeded in the device are differentiated from the same hiPSC line, which could enable genetic and rare disease modeling. Formation of a confluent BMEC barrier was confirmed by immunocytochemistry of tight junction proteins and measurement of fluorescein permeability. Integrity of the barrier was further assessed by performing impedance spectroscopy in the device. Finally, the ability of this device to recapitulate a disease model of BBB disruption was demonstrated, with apical addition of TGF-β1 leading to transendothelial electrical resistance reduction and indicators of astrocyte activation. These results demonstrate the utility of the fabricated device for a broad range of applications such as drug screening and mechanistic studies of BBB disruption.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew Thomas
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sarah L. Swisher
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
24
|
Zhang S, Xue R, Hu R. The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus-related cognitive dysfunction. Eur J Nutr 2019; 59:1295-1311. [PMID: 31598747 DOI: 10.1007/s00394-019-02078-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a complex and prevalent metabolic disorder worldwide. Strong evidence has emerged that DM is a risk factor for the accelerated rate of cognitive decline and the development of dementia. Though traditional pharmaceutical agents are efficient for the management of DM and DM-related cognitive decrement, long-term use of these drugs are along with undesired side effects. Therefore, tremendous studies have focused on the therapeutic benefits of natural compounds at present. Ample evidence exists to prove that polyphenols are capable to modulate diabetic neuropathy with minimal toxicity and adverse effects. PURPOSE To describe the benefits and mechanisms of polyphenols on DM-induced cognitive dysfunction. In this review, we introduce an updated overview of associations between DM and cognitive dysfunction. The risk factors as well as pathological and molecular mechanisms of DM-induced cognitive dysfunction are summarized. More importantly, many active polyphenols that possess preventive and therapeutic effects on DM-induced cognitive dysfunction and the potential signaling pathways involved in the action are highlighted. CONCLUSIONS The therapeutic effects of polyphenols on DM-related cognitive dysfunction pave a novel way for the management of diabetic encephalopathy.
Collapse
Affiliation(s)
- Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Ran Xue
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruizhe Hu
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
25
|
Vairappan B, Sundhar M, Srinivas BH. Resveratrol Restores Neuronal Tight Junction Proteins Through Correction of Ammonia and Inflammation in CCl 4-Induced Cirrhotic Mice. Mol Neurobiol 2019; 56:4718-4729. [PMID: 30377987 DOI: 10.1007/s12035-018-1389-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Systemic inflammation and ammonia (hyperammonemia) act synergistically in the pathogenesis of hepatic encephalopathy (HE), the neurobehavioral sequelae of advanced liver disease. In cirrhotic patients, we have recently observed elevated levels of circulating neuronal tight junction (TJ) protein, zonula occludens 1 (ZO-1), reflective of a change to blood-brain barrier (BBB) integrity. Moreover, ZO-1 levels positively correlated with hyperammonemia, although any potential relationship remains unclear. Using a carbon tetrachloride (CCl4)-induced mouse model of cirrhosis, we primarily looked to explore the relationship between neuronal TJ protein expression and hyperammonemia. Secondarily, we assessed the potential role of a natural antioxidant, resveratrol, on neuronal TJ protein expression and hyperammonemia. Over 12 weeks, male Swiss mice were randomized (n = 8/group) to either naïve controls or induced cirrhosis, using two doses of intraperitoneal CCl4 (0.5 ml/kg/week). After 12 weeks, naïve and cirrhotic mice were randomized to receive either 2 weeks of par-oral resveratrol (10 mg/kg). Plasma samples were analyzed for ammonia, liver biochemistry (ALT, AST, albumin, and bilirubin), and pro-inflammatory cytokines (TNF-α and IL-1β), and brain tissue for brain water content, TJ protein expression (e.g., ZO-1, claudin 5, and occludin), and tissue oxidative stress and inflammatory markers (NF-κB and iNOS) using western blotting. Compared to naïve mice, cirrhosis significantly increased circulating ammonia, brain water, ALT, AST, TNF-α, IL-1β, 4HNE, NF-κB, and iNOS levels, with a concomitant reduction in all TJ proteins (P < 0.05, respectively). In cirrhotic mice, resveratrol treatment ameliorated these changes significantly (P < 0.05, respectively). Our findings provide evidence for a causal association between hyperammonemia and inflammation in cirrhosis linked to TJ protein alterations, BBB disruption, and HE predilection. Moreover, this is the first report of a potential role for resveratrol as a novel therapeutic approach to managing neurological sequelae complicating cirrhosis.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantari Nagar, Pondicherry, 605 006, India.
| | - M Sundhar
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantari Nagar, Pondicherry, 605 006, India
| | - B H Srinivas
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| |
Collapse
|
26
|
Wang Y, Luo J, Li SY. Nano-Curcumin Simultaneously Protects the Blood-Brain Barrier and Reduces M1 Microglial Activation During Cerebral Ischemia-Reperfusion Injury. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3763-3770. [PMID: 30618231 DOI: 10.1021/acsami.8b20594] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxidative stress and inflammation are two important pathophysiological mechanisms that arouse neuronal apoptosis and cerebral damage after ischemia/reperfusion (I/R) injury. Here, we hypothesized that curcumin-encapsulated nanoparticles (NPcurcumin) could reduce oxidative stress and inflammation in the ischemic penumbra via protecting the blood-brain barrier (BBB) and inhibiting M1-microglial activation. Under oxidative stress conditions in vitro, we found that NPcurcumin protected microvascular endothelial cells against oxidative stress and reduced BBB permeability. In vivo, NPcurcumin could cross the BBB and accumulate in the ischemic penumbra. At 3 d after I/R injury, NPcurcumin inhibited the increase in MMP-9, attenuated the decrease in occludin and zona occluden-1, and maintained BBB integrity. NPcurcumin effectively reduced the number of activated M1 microglia and weakened the increase in TNF-α and IL-1β. Furthermore, NPcurcumin also reduced the infarct size and improved function recovery.
Collapse
|
27
|
Grant S, McMillin M, Frampton G, Petrescu AD, Williams E, Jaeger V, Kain J, DeMorrow S. Direct Comparison of the Thioacetamide and Azoxymethane Models of Type A Hepatic Encephalopathy in Mice. Gene Expr 2018; 18:171-185. [PMID: 29895352 PMCID: PMC6190119 DOI: 10.3727/105221618x15287315176503] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute liver failure is a devastating consequence of hepatotoxic liver injury that can lead to the development of hepatic encephalopathy. There is no consensus on the best model to represent these syndromes in mice, and therefore the aim of this study was to classify hepatic and neurological consequences of azoxymethane- and thioacetamide-induced liver injury. Azoxymethane-treated mice were euthanized at time points representing absence of minor and significant stages of neurological decline. Thioacetamide-treated mice had tissue collected at up to 3 days following daily injections. Liver histology, serum chemistry, bile acids, and cytokine levels were measured. Reflexes, grip strength measurement, and ataxia were calculated for all groups. Brain ammonia, bile acid levels, cerebral edema, and neuroinflammation were measured. Finally, in vitro and in vivo assessments of blood-brain barrier function were performed. Serum transaminases and liver histology demonstrate that both models generated hepatotoxic liver injury. Serum proinflammatory cytokine levels were significantly elevated in both models. Azoxymethane-treated mice had progressive neurological deficits, while thioacetamide-treated mice had inconsistent neurological deficits. Bile acids and cerebral edema were increased to a higher degree in azoxymethane-treated mice, while cerebral ammonia and neuroinflammation were greater in thioacetamide-treated mice. Blood-brain barrier permeability exists in both models but was likely not due to direct toxicity of azoxymethane or thioacetamide on brain endothelial cells. In conclusion, both models generate acute liver injury and hepatic encephalopathy, but the requirement of a single injection and the more consistent neurological decline make azoxymethane treatment a better model for acute liver failure with hepatic encephalopathy.
Collapse
Affiliation(s)
- Stephanie Grant
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | | | - Gabriel Frampton
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Anca D. Petrescu
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Elaina Williams
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Victoria Jaeger
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
- †Central Texas Veterans Healthcare System, Temple, TX, USA
- ‡Baylor Scott & White Medical Center, Temple, TX, USA
| | - Jessica Kain
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| | - Sharon DeMorrow
- *Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
- †Central Texas Veterans Healthcare System, Temple, TX, USA
| |
Collapse
|
28
|
Dhanda S, Gupta S, Halder A, Sunkaria A, Sandhir R. Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav Immun 2018. [PMID: 29518527 DOI: 10.1016/j.bbi.2018.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease per se induces neuroinflammation that contributes to cognitive deficits in hepatic encephalopathy (HE). However, the processes by which pro-inflammatory molecules result in cognitive impairment still remains unclear. In the present study, a significant increase in the activity of liver function enzymes viz. alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) was observed along with increase in plasma ammonia levels after four weeks of bile duct ligation (BDL) in rats suggesting hepatocellular damage. A significant increase was observed in mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) in brain regions and liver of BDL rats. Concomitantly, IL-6, TNF-α and MCP-1 protein levels were also increased in brain regions, liver and serum of BDL rats suggesting the involvement of blood-brain-axis in inflammatory response. However, a significant decrease was observed in glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) expression at transcriptional and translation level in brain of BDL rats. Immunohistochemical and flowcytometric analysis revealed reduced number of GFAP-immunopositive astrocytes and Iba1-immunopositive microglia in the brain regions of BDL rats. Further, a significant decline was observed in cognitive functions in BDL rats assessed using Morris water maze and novel object recognition tests. Expression of pro and mature form of brain derived neurotrophic factor (BDNF) and its upstream transcription element showed significant reduction in brain of BDL rats. Taken together, the results of the present study suggest that systemic inflammation and reduced expression of BDNF and its upstream transcription factor plays a key role in cognitive decline in HE.
Collapse
Affiliation(s)
- Saurabh Dhanda
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Smriti Gupta
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Avishek Halder
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Aditya Sunkaria
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
29
|
Paik S, Somvanshi RK, Kumar U. Somatostatin Maintains Permeability and Integrity of Blood-Brain Barrier in β-Amyloid Induced Toxicity. Mol Neurobiol 2018; 56:292-306. [PMID: 29700775 DOI: 10.1007/s12035-018-1045-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
In Alzheimer's disease (AD), the impaired clearance of β-amyloid peptide (Aβ) due to disrupted tight junction and transporter proteins is the prominent cause of disease progression. Somatostatin (SST) blocks the aggregation of Aβ and inflammation whereas reduction of SST levels in the CSF and brain tissue is associated with impaired cognitive function and memory loss. However, the role of SST in preservation of blood-brain barrier (BBB) integrity and functionality in Aβ-induced toxicity is not known. In the present study using human CMEC/D3 cells, we demonstrate that SST prevents Aβ-induced BBB permeability by regulating LRP1 and RAGE expression and improving the disrupted tight junction proteins. Furthermore, SST abrogates Aβ-induced JNK phosphorylation and expression of MMP2. Taken together, results presented here suggest that SST might serve as a therapeutic intervention in AD via targeting multiple pathways responsible for neurotoxicity, impaired BBB function, and disease progression.
Collapse
Affiliation(s)
- Seungil Paik
- Faculty of Pharmaceutical Sciences, The University of British Columbia, V6T1Z3, Vancouver, BC, Canada
| | - Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, V6T1Z3, Vancouver, BC, Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, V6T1Z3, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Dhanda S, Sunkaria A, Halder A, Sandhir R. Mitochondrial dysfunctions contribute to energy deficits in rodent model of hepatic encephalopathy. Metab Brain Dis 2018; 33:209-223. [PMID: 29138968 DOI: 10.1007/s11011-017-0136-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Perturbations in the cerebral energy metabolism are anticipated to be an important factor by which ammonia may exert its toxic effects on the central nervous system. The present study was designed to investigate the role of impaired mitochondrial functions and cerebral energy metabolism in the development hepatic encephalopathy (HE) induced by of bile duct ligation (BDL). After four weeks of BDL, a significant increase in hepatic hydroxyproline and collagen content was observed which confirmed biliary fibrosis. Brain regions viz. cortex, hippocampus, striatum and cerebellum of BDL rats had impaired activity of mitochondrial respiratory chain enzymes. This was accompanied by increase in mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl levels in the brain. Mitochondrial redox ratio was significantly reduced in the brain of BDL rats. In addition, mitochondria from brain of BDL rats were depolarized and swollen compared to the sham controls. Ultrastructure analysis of mitochondria from cortex and hippocampus of BDL animals revealed aberrant cristae, ruptured membranes and non-dense matrix. Further, a significant decrease was observed in creatine kinase activity, glucose uptake and CO2 production in the brain regions of BDL rats. ATP/ADP ratio, a critical parameter of cellular energy status, was also significantly reduced in brain regions of rats with HE. Overall, the findings clearly demonstrate that BDL induced HE involves mitochondrial respiratory chain dysfunctions, mitochondrial depolarization and swelling that accentuates oxidative stress which in turn leads to compromise in cerebral energy metabolism thereby contributing to the pathophysiology of chronic HE.
Collapse
Affiliation(s)
- Saurabh Dhanda
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Aditya Sunkaria
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Avishek Halder
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
31
|
Abstract
Hepatic encephalopathy describes the array of neurological alterations that occur during acute liver failure or chronic liver injury. While key players in the pathogenesis of hepatic encephalopathy, such as increases in brain ammonia, alterations in neurosteroid levels, and neuroinflammation, have been identified, there is still a paucity in our knowledge of the precise pathogenic mechanism. This review gives a brief overview of our understanding of the pathogenesis of hepatic encephalopathy and then summarizes the significant recent advances made in clinical and basic research contributing to our understanding, diagnosis, and possible treatment of hepatic encephalopathy. A literature search using the PubMed database was conducted in May 2017 using "hepatic encephalopathy" as a keyword, and selected manuscripts were limited to those research articles published since May 2014. While the authors acknowledge that many significant advances have been made in the understanding of hepatic encephalopathy prior to May 2014, we have limited the scope of this review to the previous three years only.
Collapse
Affiliation(s)
- Victoria Liere
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | | | - Sharon DeMorrow
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX, USA
- Central Texas Veterans Healthcare System, Temple, TX, USA
| |
Collapse
|