1
|
Shalaginova I, Pavlova M, Dyuzhikova N. Аmygdala DEGs are associated with the immune system function: A comparative transcriptomic study of high- and low-excitability rat strains. PLoS One 2025; 20:e0323325. [PMID: 40373086 PMCID: PMC12080833 DOI: 10.1371/journal.pone.0323325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/05/2025] [Indexed: 05/17/2025] Open
Abstract
The aim of this study was to investigate differentially expressed genes (DEGs) in the amygdala of Rattus norvegicus with contrasting levels of nervous system excitability (high- and low-excitability). Each group consisted of 5 intact rats (n = 5). RNA sequencing was performed at on a HiSeq1500 (Illumina) generating at least 20 million paired-end reads per sample. A total of 257 DEGs were identified: 152 genes were upregulated in high-excitability rats and 105 genes up-regulated in low-excitability rats. Gene Ontology (GO) and KEGG pathway analyses revealed that the differences in gene expression were associated with immune processes such as antigen presentation and regulation of inflammation. It is also discussed, in conjunction with previous findings, that high-excitability rats may exhibit a predisposition to increased neuroinflammatory activity even without stressor exposure, potentially contributing to varying behavioral responses to stress.
Collapse
Affiliation(s)
- Irina Shalaginova
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Marina Pavlova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Natalia Dyuzhikova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Fung TS, Ryu KW, Thompson CB. Arginine: at the crossroads of nitrogen metabolism. EMBO J 2025; 44:1275-1293. [PMID: 39920310 PMCID: PMC11876448 DOI: 10.1038/s44318-025-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
L-arginine is the most nitrogen-rich amino acid, acting as a key precursor for the synthesis of nitrogen-containing metabolites and an essential intermediate in the clearance of excess nitrogen. Arginine's side chain possesses a guanidino group which has unique biochemical properties, and plays a primary role in nitrogen excretion (urea), cellular signaling (nitric oxide) and energy buffering (phosphocreatine). The post-translational modification of protein-incorporated arginine by guanidino-group methylation also contributes to epigenetic gene control. Most human cells do not synthesize sufficient arginine to meet demand and are dependent on exogenous arginine. Thus, dietary arginine plays an important role in maintaining health, particularly upon physiologic stress. How cells adapt to changes in extracellular arginine availability is unclear, mostly because nearly all tissue culture media are supplemented with supraphysiologic levels of arginine. Evidence is emerging that arginine-deficiency can influence disease progression. Here, we review new insights into the importance of arginine as a metabolite, emphasizing the central role of mitochondria in arginine synthesis/catabolism and the recent discovery that arginine can act as a signaling molecule regulating gene expression and organelle dynamics.
Collapse
Affiliation(s)
- Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Zaccarelli-Magalhães J, Citadin CT, Langman J, Smith DJ, Matuguma LH, Lin HW, Udo MSB. Protein arginine methyltransferases as regulators of cellular stress. Exp Neurol 2025; 384:115060. [PMID: 39551462 PMCID: PMC11973959 DOI: 10.1016/j.expneurol.2024.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Arginine modification can be a "switch" to regulate DNA transcription and a post-translational modification via methylation of a variety of cellular targets involved in signal transduction, gene transcription, DNA repair, and mRNA alterations. This consequently can turn downstream biological effectors "on" and "off". Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs 1-9) in both the nucleus and cytoplasm, and is thought to be involved in many disease processes. However, PRMTs have not been well-documented in the brain and their function as it relates to metabolism, circulation, functional learning and memory are understudied. In this review, we provide a comprehensive overview of PRMTs relevant to cellular stress, and future directions into PRMTs as therapeutic regulators in brain pathologies.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Julia Langman
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Drew James Smith
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Luiz Henrique Matuguma
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Mariana Sayuri Berto Udo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
4
|
Udo MSB, Zaccarelli-Magalhães J, Clemons GA, Citadin CT, Langman J, Smith DJ, Matuguma LH, Tesic V, Lin HW. Blockade of A 2AR improved brain perfusion and cognitive function in a mouse model of Alzheimer's disease. GeroScience 2025:10.1007/s11357-025-01526-8. [PMID: 39843732 DOI: 10.1007/s11357-025-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 6.2 million Americans aged 65 and older, particularly women. Along with AD's main hallmarks (formation of β-amyloid plaques and tau neurofibrillary tangles), there are vascular alterations that occurs in AD pathology. Adenosine A2 receptor (A2AR) is one of the key factors of brain vascular autoregulation and is overexpressed in AD patients. Our previous findings suggest that protein arginine methyltransferase 4 (PRMT4) is overexpressed in AD, which leads to decrease in cerebral blood flow in aged female 3xTg mice. We aimed to investigate the mechanism behind A2AR signaling in the regulation of brain perfusion and blood-brain barrier integrity in age and sex-dependent 3xTg mice, and if it is related to PRMT4. Istradefylline, a highly selective A2AR antagonist, was used to modulate A2AR signaling. Aged female 3xTg and C57BL/6 J mice were evaluated for brain perfusion (via laser speckle) and cognitive function (via open field, T-maze and novel object recognition). Our results suggest that modulation of A2AR signaling in aged female 3xTg increased cerebral perfusion by decreasing PRMT4 expression, restored the levels of APP and tau, maintained blood-brain barrier integrity by maintaining the expression of tight junction proteins, and preserved functional learning/memory.
Collapse
Affiliation(s)
- Mariana Sayuri Berto Udo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Julia Zaccarelli-Magalhães
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Garrett Alan Clemons
- Department of Biomedical Science, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Julia Langman
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Drew James Smith
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Luiz Henrique Matuguma
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Davie JR, Sattarifard H, Sudhakar SRN, Roberts CT, Beacon TH, Muker I, Shahib AK, Rastegar M. Basic Epigenetic Mechanisms. Subcell Biochem 2025; 108:1-49. [PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human genome consists of 23 chromosome pairs (22 autosomes and one pair of sex chromosomes), with 46 chromosomes in a normal cell. In the interphase nucleus, the 2 m long nuclear DNA is assembled with proteins forming chromatin. The typical mammalian cell nucleus has a diameter between 5 and 15 μm in which the DNA is packaged into an assortment of chromatin assemblies. The human brain has over 3000 cell types, including neurons, glial cells, oligodendrocytes, microglial, and many others. Epigenetic processes are involved in directing the organization and function of the genome of each one of the 3000 brain cell types. We refer to epigenetics as the study of changes in gene function that do not involve changes in DNA sequence. These epigenetic processes include histone modifications, DNA modifications, nuclear RNA, and transcription factors. In the interphase nucleus, the nuclear DNA is organized into different structures that are permissive or a hindrance to gene expression. In this chapter, we will review the epigenetic mechanisms that give rise to cell type-specific gene expression patterns.
Collapse
Affiliation(s)
- James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ishdeep Muker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Ma N, Wu F, Liu J, Wu Z, Wang L, Li B, Liu Y, Dong X, Hu J, Fang X, Zhang H, Ai D, Zhou J, Wang X. Kindlin-2 Phase Separation in Response to Flow Controls Vascular Stability. Circ Res 2024; 135:1141-1160. [PMID: 39492718 DOI: 10.1161/circresaha.124.324773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Atheroprotective shear stress preserves endothelial barrier function, while atheroprone shear stress enhances endothelial permeability. Yet, the underlying mechanisms through which distinct flow patterns regulate EC integrity remain to be clarified. This study aimed to investigate the involvement of Kindlin-2, a key component of focal adhesion and endothelial adherens junctions crucial for regulating endothelial cell (EC) integrity and vascular stability. METHODS Mouse models of atherosclerosis in EC-specific Kindlin-2 knockout mice (Kindlin-2iΔEC) were used to study the role of Kindlin-2 in atherogenesis. Pulsatile shear (12±4 dynes/cm2) or oscillatory shear (0.5±4 dynes/cm2) were applied to culture ECs. Live-cell imaging, fluorescence recovery after photobleaching assay, and OptoDroplet assay were used to study the liquid-liquid phase separation (LLPS) of Kindlin-2. Co-immunoprecipitation, mutagenesis, proximity ligation assay, and transendothelial electrical resistance assay were used to explore the underlying mechanism of flow-regulated Kindlin-2 function. RESULTS We found that Kindlin-2 localization is altered under different flow patterns. Kindlin-2iΔEC mice showed heightened vascular permeability. Kindlin-2iΔEC were bred onto ApoE-/- mice to generate Kindlin-2iΔEC; ApoE-/- mice, which displayed a significant increase in atherosclerosis lesions. In vitro data showed that in ECs, Kindlin-2 underwent LLPS, a critical process for proper focal adhesion assembly, maturation, and junction formation. Mass spectrometry analysis revealed that oscillatory shear increased arginine methylation of Kindlin-2, catalyzed by PRMT5 (protein arginine methyltransferase 5). Functionally, arginine hypermethylation inhibits Kindlin-2 LLPS, impairing focal adhesion assembly and junction maturation. Notably, we identified R290 of Kindlin-2 as a crucial residue for LLPS and a key site for arginine methylation. Finally, pharmacologically inhibiting arginine methylation reduces EC activation and plaque formation. CONCLUSIONS Collectively, our study elucidates that mechanical force induces arginine methylation of Kindlin-2, thereby regulating vascular stability through its impact on Kindlin-2 LLPS. Targeting Kindlin-2 arginine methylation emerges as a promising hemodynamic-based strategy for treating vascular disorders and atherosclerosis.
Collapse
Affiliation(s)
- Nina Ma
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Fangfang Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.Z.)
| | - Ziru Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Bochuan Li
- Department of Physiology and Pathophysiology (B.L., D.A.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yuming Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Xue Dong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Junhao Hu
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China (J.H.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla (X.F.)
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology (H.Z.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Ding Ai
- Department of Physiology and Pathophysiology (B.L., D.A.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.Z.)
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| |
Collapse
|
7
|
Najd-Hassan-Bonab L, Daneshpour MS, Jafarinia M, Akbarzadeh M, Moazzam-Jazi M, Asgarian S, Khalili D. Exploring sex-specific genetic architecture of coronary artery disease in Tehran: a cardiometabolic genetic study. Expert Rev Mol Diagn 2024:1-10. [PMID: 39639470 DOI: 10.1080/14737159.2024.2436399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The development of coronary artery disease (CAD) is influenced by sex and genetic factors. Genome-wide association studies (GWAS) have linked genetic loci to CAD, mostly in European populations. The study aims to find sex-related genetic differences in the Iranian population. RESEARCH DESIGN AND METHODS We conducted a sex-stratified GWAS with 4519 subjects (1832 males and 2687 females) in the discovery group and 922 subjects (495 males and 427 females) in the confirmation group of an Iranian cohort. We analyzed 9,141,124 variants using a genome-wide complex trait analysis (GCTA) tool. RESULTS We detected distinct genetic variants associated with CAD in males: rs34952209 [OR = 1.79; p = 5.216E-8], rs1432687863 [OR = 1.95; p = 8.477E-8], and in females, rs7314741 [OR = 1.67; p = 7.142-8E] positively influenced CAD risk. The CAD-associated SNPs that were obtained have been confirmed using independent samples. Rs3495229 May impact histone mark and Pou2f2 motifs, while rs7314741 in the LEM Domain Containing 3 (LEMD3) promoter may affect a regulatory motif for the STAT transcription factor. According to Roadmap and ENCODE data, Rs1432687863 is a new variant affecting CAD in males, potentially through H3K9me3 in the heart. CONCLUSIONS Our findings highlight the role of sex-specific genetic differences in CAD development, providing novel insights into disease pathways which is not appropriate using a sex-combined strategy. [Figure: see text].
Collapse
Affiliation(s)
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Jafarinia
- Department of biology, Marvdasht branch, Islamic Azad University, Marvdasht, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Asgarian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhang Y, Wei S, Jin EJ, Jo Y, Oh CM, Bae GU, Kang JS, Ryu D. Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease. Diabetes Metab J 2024; 48:487-502. [PMID: 39043443 PMCID: PMC11307121 DOI: 10.4093/dmj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders stand as formidable challenges that significantly impact the clinical outcomes and living quality for afflicted individuals. An intricate comprehension of the underlying mechanisms is paramount for the development of efficacious therapeutic strategies. Protein arginine methyltransferases (PRMTs), a class of enzymes responsible for the precise regulation of protein methylation, have ascended to pivotal roles and emerged as crucial regulators within the intrinsic pathophysiology of these diseases. Herein, we review recent advancements in research elucidating on the multifaceted involvements of PRMTs in cardiovascular system and metabolic diseases, contributing significantly to deepen our understanding of the pathogenesis and progression of these maladies. In addition, this review provides a comprehensive analysis to unveil the distinctive roles of PRMTs across diverse cell types implicated in cardiovascular and metabolic disorders, which holds great potential to reveal novel therapeutic interventions targeting PRMTs, thus presenting promising perspectives to effectively address the substantial global burden imposed by CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun-Ju Jin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Gyu-Un Bae
- Muscle Physiome Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure Inc., Suwon, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
9
|
Cueto R, Shen W, Liu L, Wang X, Wu S, Mohsin S, Yang L, Khan M, Hu W, Snyder N, Wu Q, Ji Y, Yang XF, Wang H. SAH is a major metabolic sensor mediating worsening metabolic crosstalk in metabolic syndrome. Redox Biol 2024; 73:103139. [PMID: 38696898 PMCID: PMC11070633 DOI: 10.1016/j.redox.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA β-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.
Collapse
Affiliation(s)
- Ramon Cueto
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Wen Shen
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Lu Liu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ling Yang
- Medical Genetics & Molecular Biochemistry, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nathaniel Snyder
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA; Cardiovascular Research Center, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Hintzen JCJ, Mecinović J. Peptide-based inhibitors of epigenetic proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:25-65. [PMID: 40122647 DOI: 10.1016/bs.pmbts.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Epigenetic drug discovery has become an integral part of medicinal chemistry in the past two decades. Targeting epigenetic proteins-enzymes that modify histone proteins and DNA (writers and erasers) and proteins that recognize such modifications (readers)-has been firmly established as a medicinal strategy for treatment of many human diseases, including cancer and neurological disorders. In this chapter, we systematically describe peptide-based inhibitors of structurally and functionally diverse classes of epigenetic proteins. We show that epigenetic writers, such as DNA methyltransferases, histone methyltransferases and histone acetyltransferases, can be efficiently inhibited by peptides possessing nonproteinogenic amino acids. Moreover, the activity of epigenetic erasers, including TET enzymes, histone demethylases, and histone deacetylases, can be selectively modulated by diverse linear and cyclic peptides. Furthermore, we discuss chromatin-binding epigenetic reader proteins that can be inhibited by histone-mimicking peptides. Overall, this chapter highlights that peptides provide an important molecular platform for epigenetic drug discovery programmes in academia and industry.
Collapse
Affiliation(s)
- Jordi C J Hintzen
- Department of Chemistry and Molecular Biology, Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
11
|
Najar MA, Beyer JN, Crawford CEW, Burslem GM. The Interplay of Acetylation and Ubiquitination Controls PRMT1 Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599616. [PMID: 38948822 PMCID: PMC11213003 DOI: 10.1101/2024.06.18.599616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
PRMT1 plays many important roles in both normal and disease biology, thus understanding it's regulation is crucial. Herein, we report the role of p300-mediated acetylation at K228 in triggering PRMT1 degradation through FBXL17-mediated ubiquitination. Utilizing mass-spectrometry, cellular biochemistry, and genetic code-expansion technologies, we elucidate a crucial mechanism independent of PRMT1 transcript levels. These results underscore the significance of acetylation in governing protein stability and expand our understanding of PRMT1 homeostasis. By detailing the molecular interplay between acetylation and ubiquitination involved in PRMT1 degradation, this work contributes to broader efforts in deciphering post-translational mechanisms that influence protein homeostasis.
Collapse
|
12
|
Sudhakar SRN, Khan SN, Clark A, Hendrickson-Rebizant T, Patel S, Lakowski TM, Davie JR. Protein arginine methyltransferase 1, a major regulator of biological processes. Biochem Cell Biol 2024; 102:106-126. [PMID: 37922507 DOI: 10.1139/bcb-2023-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is a major type I arginine methyltransferase that catalyzes the formation of monomethyl and asymmetric dimethylarginine in protein substrates. It was first identified to asymmetrically methylate histone H4 at the third arginine residue forming the H4R3me2a active histone mark. However, several protein substrates are now identified as being methylated by PRMT1. As a result of its association with diverse classes of substrates, PRMT1 regulates several biological processes like chromatin dynamics, transcription, RNA processing, and signal transduction. The review provides an overview of PRMT1 structure, biochemical features, specificity, regulation, and role in cellular functions. We discuss the genomic distribution of PRMT1 and its association with tRNA genes. Further, we explore the different substrates of PRMT1 involved in splicing. In the end, we discuss the proteins that interact with PRMT1 and their downstream effects in diseased states.
Collapse
Affiliation(s)
- Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Shahper N Khan
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Ariel Clark
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | | | - Shrinal Patel
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Ted M Lakowski
- College of Pharmacy Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
13
|
Knuchel R, Erlic Z, Gruber S, Amar L, Larsen CK, Gimenez-Roqueplo AP, Mulatero P, Tetti M, Pecori A, Pamporaki C, Langton K, Peitzsch M, Ceccato F, Prejbisz A, Januszewicz A, Adolf C, Remde H, Lenzini L, Dennedy M, Deinum J, Jefferson E, Blanchard A, Zennaro MC, Eisenhofer G, Beuschlein F. Association of adrenal steroids with metabolomic profiles in patients with primary and endocrine hypertension. Front Endocrinol (Lausanne) 2024; 15:1370525. [PMID: 38596218 PMCID: PMC11002274 DOI: 10.3389/fendo.2024.1370525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Endocrine hypertension (EHT) due to pheochromocytoma/paraganglioma (PPGL), Cushing's syndrome (CS), or primary aldosteronism (PA) is linked to a variety of metabolic alterations and comorbidities. Accordingly, patients with EHT and primary hypertension (PHT) are characterized by distinct metabolic profiles. However, it remains unclear whether the metabolomic differences relate solely to the disease-defining hormonal parameters. Therefore, our objective was to study the association of disease defining hormonal excess and concomitant adrenal steroids with metabolomic alterations in patients with EHT. Methods Retrospective European multicenter study of 263 patients (mean age 49 years, 50% females; 58 PHT, 69 PPGL, 37 CS, 99 PA) in whom targeted metabolomic and adrenal steroid profiling was available. The association of 13 adrenal steroids with differences in 79 metabolites between PPGL, CS, PA and PHT was examined after correction for age, sex, BMI, and presence of diabetes mellitus. Results After adjustment for BMI and diabetes mellitus significant association between adrenal steroids and metabolites - 18 in PPGL, 15 in CS, and 23 in PA - were revealed. In PPGL, the majority of metabolite associations were linked to catecholamine excess, whereas in PA, only one metabolite was associated with aldosterone. In contrast, cortisone (16 metabolites), cortisol (6 metabolites), and DHEA (8 metabolites) had the highest number of associated metabolites in PA. In CS, 18-hydroxycortisol significantly influenced 5 metabolites, cortisol affected 4, and cortisone, 11-deoxycortisol, and DHEA each were linked to 3 metabolites. Discussions Our study indicates cortisol, cortisone, and catecholamine excess are significantly associated with metabolomic variances in EHT versus PHT patients. Notably, catecholamine excess is key to PPGL's metabolomic changes, whereas in PA, other non-defining adrenal steroids mainly account for metabolomic differences. In CS, cortisol, alongside other non-defining adrenal hormones, contributes to these differences, suggesting that metabolic disorders and cardiovascular morbidity in these conditions could also be affected by various adrenal steroids.
Collapse
Affiliation(s)
- Robin Knuchel
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Zoran Erlic
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Sven Gruber
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Laurence Amar
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- Centre de référence en maladies rares de la surrénale, Hôpital Européen Georges Pompidou, Paris, France
| | - Casper K. Larsen
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessio Pecori
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Christina Pamporaki
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Katharina Langton
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Filippo Ceccato
- Unita' Operativa Complessa (UOC) Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Livia Lenzini
- Internal & Emergency Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Michael Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Jaap Deinum
- Department of Medicine, Section of Vascular Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emily Jefferson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Anne Blanchard
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d’Investigations Cliniques, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, Paris, France
| | - Graeme Eisenhofer
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| |
Collapse
|
14
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
15
|
Bhattacharya D, Shi Ming Li A, Paul B, Ghosh Dastidar U, Santhakumar V, Sarkar D, Chau I, Li F, Ghosh T, Vedadi M, Talukdar A. Development of selective class I protein arginine methyltransferase inhibitors through fragment-based drug design approach. Eur J Med Chem 2023; 260:115713. [PMID: 37597437 DOI: 10.1016/j.ejmech.2023.115713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methylation of the terminal nitrogen atoms of the guanidino group of arginine of protein substrates. The aberrant expression of these methyltransferases is linked to various diseases, making them promising therapeutic targets. Currently, PRMT inhibitors are at different stages of clinical development, which validated their significance as drug targets. Structural Genomics Consortium (SGC) has reported several small fragment inhibitors as Class I PRMT inhibitors, which can be the starting point for rational drug development. Herein, we report the successful application of a fragment-based approach toward the discovery of selective Class I PRMT inhibitors. Structure-based ligand optimization was performed by strategic incorporation of fragment hits on the drug-like quinazoline core and subsequent fragment growth in the desired orientation towards identified hydrophobic shelf. A clear SAR was established, and the lead compounds 55 and 56 displayed potent inhibition of Class I PRMTs with IC50 values of 92 nM and 37 nM against PRMT4. We report the systematic development of potent Class I PRMT inhibitors with good potency and about 100-fold selectivity when tested against a panel of 31 human DNA, RNA, and protein lysine and arginine methyltransferases. These improved small molecules will provide new options for the development of novel potent and selective PRMT4 inhibitors.
Collapse
Affiliation(s)
- Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Alice Shi Ming Li
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | - Dipika Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Irene Chau
- Structural Genomics Consortium, MaRS South Tower, College Street, Toronto, ON M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, MaRS South Tower, College Street, Toronto, ON M5G 1L7, Canada
| | - Trisha Ghosh
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Masoud Vedadi
- Structural Genomics Consortium, MaRS South Tower, College Street, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
16
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
17
|
Mayulu N, Gunawan WB, Park MN, Chung S, Suh JY, Song H, Kusuma RJ, Taslim NA, Kurniawan R, Kartawidjajaputra F, Nurkolis F, Kim B. Sulfated Polysaccharide from Caulerpa racemosa Attenuates the Obesity-Induced Cardiometabolic Syndrome via Regulating the PRMT1-DDAH-ADMA with mTOR-SIRT1-AMPK Pathways and Gut Microbiota Modulation. Antioxidants (Basel) 2023; 12:1555. [PMID: 37627550 PMCID: PMC10451287 DOI: 10.3390/antiox12081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Our investigation intended to analyze the effects of sulfated polysaccharides from Caulerpa racemosa (SPCr) in attenuating obesity-induced cardiometabolic syndrome via regulating the protein arginine N-methyltransferase 1-asymmetric dimethylarginine-dimethylarginine dimethylamino-hydrolase (PRMT1-DDAH-ADMA) with the mammalian target of rapamycin-Sirtuin 1-5' AMP-activated protein kinase (mTOR-SIRT1-AMPK) pathways and gut microbiota modulation. This is a follow-up study that used SPs from previous in vitro studies, consisting of 2,3-di-O-methyl-1,4,5-tri-O-acetylarabinitol, 2,3,4,6-tetra-O-methyl-D-mannopyranose, and type B ulvanobiuronicacid 3-sulfate. A total of forty rats were randomly divided into four treatment groups: Group A received a standard diet; Group B was provided with a diet enriched in cholesterol and fat (CFED); and Groups C and D were given the CFED along with ad libitum water, and daily oral supplementation of 65 or 130 mg/kg of body weight (BW) of SPCr, respectively. Group D showed the lowest low-density lipoprotein, triglyceride, total cholesterol, and blood glucose levels, and the highest HDL level compared to the other groups in this study. These results in the group fed high-dose SPCr demonstrated a significant effect compared to the group fed low-dose SPCr (p < 0.0001), as well as in total cholesterol and blood glucose (p < 0.05). Supplementation with SPCr was also observed to have an upregulation effect on peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, interleukin 10, Sirtuin 1, DDAH-II, superoxide dismutase (SOD) cardio, and AMPK, which was also followed by a downregulation of PRMT-1, TNF-α, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, and mTOR. Interestingly, gut microbiota modulation was also observed; feeding the rats with a cholesterol-enriched diet shifted the gut microbiota composition toward the Firmicutes level, lowered the Bacteroidetes level, and increased the Firmicutes level. A dose of 130 mg/kg BW of SPCr is the recommended dose, and investigation still needs to be continued in clinical trials with humans to see its efficacy at an advanced level.
Collapse
Affiliation(s)
- Nelly Mayulu
- Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado 95249, Indonesia;
| | - William Ben Gunawan
- Alumnus of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Kyung Hee Myungbo Clinic of Korean Medicine, Hwaseong-si 18466, Gyeonggi-do, Republic of Korea
| | - Jin Young Suh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Seoul Forest Korean Medicine Clinic, Ttukseomro 312, Seongdonggu, Seoul 04773, Republic of Korea
| | - Hangyul Song
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Nneul 365 Korean Medical Clinic, 3F, 8-13, Haneulbyeolbit-Ro 65 Beongil, Jung-gu, Incheon 22397, Gyeonggi-do, Republic of Korea
| | - Rio Jati Kusuma
- Department of Nutrition and Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia
- Center of Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia;
| | - Rudy Kurniawan
- Alumnus of Internal Medicine, Faculty of Medicine, University of Indonesia–Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Felicia Kartawidjajaputra
- Health and Nutrition Science Department, Nutrifood Research Center, PT Nutrifood Indonesia, Jakarta 12930, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Cheng X, Wang K, Zhao Y, Wang K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov 2023; 9:275. [PMID: 37507372 PMCID: PMC10382489 DOI: 10.1038/s41420-023-01560-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) such as atherosclerosis, myocardial remodeling, myocardial ischemia-reperfusion (I/R) injury, heart failure, and oxidative stress are among the greatest threats to human health worldwide. Cardiovascular pathogenesis has been studied for decades, and the influence of epigenetic changes on CVDs has been extensively studied. Post-translational modifications (PTMs), including phosphorylation, glycosylation, methylation, acetylation, ubiquitination, ubiquitin-like and nitrification, play important roles in the normal functioning of the cardiovascular system. Over the past decade, with the application of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an increasing number novel acylation modifications have been discovered, including propionylation, crotonylation, butyrylation, succinylation, lactylation, and isonicotinylation. Each change in protein conformation has the potential to alter protein function and lead to CVDs, and this process is usually reversible. This article summarizes the mechanisms underlying several common PTMs involved in the occurrence and development of CVDs.
Collapse
Affiliation(s)
- XueLi Cheng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China.
| |
Collapse
|
19
|
Acosta CH, Clemons GA, Citadin CT, Carr WC, Udo MSB, Tesic V, Sanicola HW, Freelin AH, Toms JB, Jordan JD, Guthikonda B, Wu CYC, Lee RHC, Lin HW. A role for protein arginine methyltransferase 7 in repetitive and mild traumatic brain injury. Neurochem Int 2023; 166:105524. [PMID: 37030326 PMCID: PMC10988608 DOI: 10.1016/j.neuint.2023.105524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Mild traumatic brain injury affects the largest proportion of individuals in the United States and world-wide. Pre-clinical studies of repetitive and mild traumatic brain injury (rmTBI) have been limited in their ability to recapitulate human pathology (i.e. diffuse rotational injury). We used the closed-head impact model of engineered rotation acceleration (CHIMERA) to simulate rotational injury observed in patients and to study the pathological outcomes post-rmTBI using C57BL/6J mice. Enhanced cytokine production was observed in both the cortex and hippocampus to suggest neuroinflammation. Furthermore, microglia were assessed via enhanced iba1 protein levels and morphological changes using immunofluorescence. In addition, LC/MS analyses revealed excess glutamate production, as well as diffuse axonal injury via Bielschowsky's silver stain kit. Moreover, the heterogeneous nature of rmTBI has made it challenging to identify drug therapies that address rmTBI, therefore we sought to identify novel targets in the concurrent rmTBI pathology. The pathophysiological findings correlated with a time-dependent decrease in protein arginine methyltransferase 7 (PRMT7) protein expression and activity post-rmTBI along with dysregulation of PRMT upstream mediators s-adenosylmethionine and methionine adenosyltransferase 2 (MAT2) in vivo. In addition, inhibition of the upstream mediator MAT2A using the HT22 hippocampal neuronal cell line suggest a mechanistic role for PRMT7 via MAT2A in vitro. Collectively, we have identified PRMT7 as a novel target in rmTBI pathology in vivo and a mechanistic link between PRMT7 and upstream mediator MAT2A in vitro.
Collapse
Affiliation(s)
- Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William C Carr
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Henry W Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Anne H Freelin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jamie B Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
20
|
Zhang K, Li C, Sun J, Tian X. PRMT5 inhibition ameliorates inflammation and promotes the osteogenic differentiation of LPS‑induced periodontal stem cells via STAT3/NF‑κB signaling. Exp Ther Med 2023; 25:264. [PMID: 37206565 PMCID: PMC10189754 DOI: 10.3892/etm.2023.11963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 05/21/2023] Open
Abstract
It has been reported that protein arginine methyltransferase 5 (PRMT5) serves a significant role in osteogenic differentiation and inflammatory response. Nevertheless, its role in periodontitis as well as its underlying mechanism remain to be elucidated. The aim of the present study was to explore the role of PRMT5 in periodontitis and whether PRMT5 could reduce liposaccharide (LPS)-induced inflammation of human periodontal ligament stem cells (hPDLSCs) and promote osteogenic differentiation through STAT3/NF-κB signaling. In the current study, the expression levels of PRMT5 were determined in LPS-induced hPDLSCs by reverse transcription-quantitative PCR and western blot analysis. ELISA and western blot analysis were employed to assess the secretion and expression levels of inflammatory factors, respectively. The osteogenic differentiation and mineralization potential of hPDLSCs were evaluated using alkaline phosphatase (ALP) activity assay, Alizarin red staining and western blot analysis. Additionally, western blot analysis was applied to determine the expression levels of the STAT3/NF-κB signaling pathway-related proteins. The results showed that the expression levels of PRMT5 were significantly enhanced in LPS-induced hPDLSCs. Additionally, PRMT5 knockdown reduced the contents of IL-1β, IL-6, TNF-α, inducible nitric oxide synthase and cyclooxygenase-2. PRMT5 depletion also enhanced ALP activity, improved the mineralization ability and upregulated bone morphogenetic protein 2, osteocalcin and runt-related transcription factor 2 in LPS-induced hPDLSCs. Furthermore, PRMT5 knockdown inhibited inflammation and promoted the osteogenic differentiation of hPDLSCs via blocking the activation of the STAT3/NF-κB signaling pathway. In conclusion, PRMT5 inhibition suppressed LPS-induced inflammation and accelerated osteogenic differentiation in hPDLSCs via regulating STAT3/NF-κB signaling, thus providing a potential targeted therapy for the improvement of periodontitis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Changshun Li
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jian Sun
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiaobei Tian
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- Correspondence to: Professor Xiaobei Tian, Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
21
|
Yu J, Yu C, Bayliss G, Zhuang S. Protein arginine methyltransferases in renal development, injury, repair, and fibrosis. Front Pharmacol 2023; 14:1123415. [PMID: 36817133 PMCID: PMC9935595 DOI: 10.3389/fphar.2023.1123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) methylate a range of histone and non-histone substrates and participate in multiple biological processes by regulating gene transcription and post-translational modifications. To date, most studies on PRMTs have focused on their roles in tumors and in the physiological and pathological conditions of other organs. Emerging evidence indicates that PRMTs are expressed in the kidney and contribute to renal development, injury, repair, and fibrosis. In this review, we summarize the role and the mechanisms of PRMTs in regulating these renal processes and provide a perspective for future clinical applications.
Collapse
Affiliation(s)
- Jianjun Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Georgia Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Semenova D, Zabirnyk A, Lobov A, Boyarskaya N, Kachanova O, Uspensky V, Zainullina B, Denisov E, Gerashchenko T, Kvitting JPE, Kaljusto ML, Thiede B, Kostareva A, Stensløkken KO, Vaage J, Malashicheva A. Multi-omics of in vitro aortic valve calcification. Front Cardiovasc Med 2022; 9:1043165. [PMID: 36407442 PMCID: PMC9669078 DOI: 10.3389/fcvm.2022.1043165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 09/10/2023] Open
Abstract
Heart valve calcification is an active cellular and molecular process that partly remains unknown. Osteogenic differentiation of valve interstitial cells (VIC) is a central mechanism in calcific aortic valve disease (CAVD). Studying mechanisms in CAVD progression is clearly needed. In this study, we compared molecular mechanisms of osteogenic differentiation of human VIC isolated from healthy donors or patients with CAVD by RNA-seq transcriptomics in early timepoint (48 h) and by shotgun proteomics at later timepoint (10th day). Bioinformatic analysis revealed genes and pathways involved in the regulation of VIC osteogenic differentiation. We found a high amount of stage-specific differentially expressed genes and good accordance between transcriptomic and proteomic data. Functional annotation of differentially expressed proteins revealed that osteogenic differentiation of VIC involved many signaling cascades such as: PI3K-Akt, MAPK, Ras, TNF signaling pathways. Wnt, FoxO, and HIF-1 signaling pathways were modulated only at the early timepoint and thus probably involved in the commitment of VIC to osteogenic differentiation. We also observed a significant shift of some metabolic pathways in the early stage of VIC osteogenic differentiation. Lentiviral overexpression of one of the most upregulated genes (ZBTB16, PLZF) increased calcification of VIC after osteogenic stimulation. Analysis with qPCR and shotgun proteomics suggested a proosteogenic role of ZBTB16 in the early stages of osteogenic differentiation.
Collapse
Affiliation(s)
- Daria Semenova
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
- Almazov National Medical Research Center Russia, St. Petersburg, Russia
| | - Arsenii Zabirnyk
- Heart Physiology Research Group, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Arseniy Lobov
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | | | - Olga Kachanova
- Almazov National Medical Research Center Russia, St. Petersburg, Russia
| | - Vladimir Uspensky
- Almazov National Medical Research Center Russia, St. Petersburg, Russia
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - John-Peder Escobar Kvitting
- Heart Physiology Research Group, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | | | - Bernd Thiede
- Heart Physiology Research Group, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anna Kostareva
- Almazov National Medical Research Center Russia, St. Petersburg, Russia
| | - Kåre-Olav Stensløkken
- Heart Physiology Research Group, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Heart Physiology Research Group, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Anna Malashicheva
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| |
Collapse
|
23
|
Ali SD, Tayara H, Chong KT. Interpretable machine learning identification of arginine methylation sites. Comput Biol Med 2022; 147:105767. [DOI: 10.1016/j.compbiomed.2022.105767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
|
24
|
Helland A, Bratlie M, Hagen IV, Midttun Ø, Ulvik A, Mellgren G, Ueland PM, Gudbrandsen OA. Consumption of a light meal affects serum concentrations of one-carbon metabolites and B-vitamins. A clinical intervention study. Br J Nutr 2022; 129:1-10. [PMID: 35899805 PMCID: PMC10024976 DOI: 10.1017/s0007114522002446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
Abstract
The transfer of one-carbon units between molecules in metabolic pathways is essential for maintaining cellular homeostasis, but little is known about whether the circulating concentrations of metabolites involved in the one-carbon metabolism are affected by the prandial status. Epidemiological studies do not always consistently use fasting or non-fasting blood samples or may lack information on the prandial status of the study participants. Therefore, the main aim of the present study was to investigate the effects of a light breakfast on serum concentrations of selected metabolites and B-vitamins related to the one-carbon metabolism; i.e. the methionine-homocysteine cycle, the folate cycle, the choline oxidation pathway and the transsulfuration pathway. Sixty-three healthy adults (thirty-six women) with BMI ≥ 27 kg/m2 were included in the study. Blood was collected in the fasting state and 60 and 120 min after intake of a standardised breakfast consisting of white bread, margarine, white cheese, strawberry jam and orange juice (2218 kJ). The meal contained low amounts of choline, betaine, serine and vitamins B2, B3, B6, B9 and B12. Serum concentrations of total homocysteine, total cysteine, flavin mononucleotide, nicotinamide and pyridoxal 5'-phosphate were significantly decreased, and concentrations of choline, betaine, dimethylglycine, sarcosine, cystathionine and folate were significantly increased following breakfast intake (P < 0·05). Our findings demonstrate that the intake of a light breakfast with low nutrient content affected serum concentrations of several metabolites and B-vitamins related to the one-carbon metabolism.
Collapse
Affiliation(s)
- Anita Helland
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, 5021, Norway
| | - Marianne Bratlie
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, 5021, Norway
| | - Ingrid V. Hagen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, 5021, Norway
| | | | - Arve Ulvik
- Bevital AS, Jonas Lies Veg 87, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - Oddrun A. Gudbrandsen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, 5021, Norway
| |
Collapse
|
25
|
Massignani E, Giambruno R, Maniaci M, Nicosia L, Yadav A, Cuomo A, Raimondi F, Bonaldi T. ProMetheusDB: An In-Depth Analysis of the High-Quality Human Methyl-proteome. Mol Cell Proteomics 2022; 21:100243. [PMID: 35577067 PMCID: PMC9207298 DOI: 10.1016/j.mcpro.2022.100243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine (R) methylation is a post-translational modification involved in various biological processes, such as RNA splicing, DNA repair, immune response, signal transduction, and tumor development. Although several advancements were made in the study of this modification by mass spectrometry, researchers still face the problem of a high false discovery rate. We present a dataset of high-quality methylations obtained from several different heavy methyl stable isotope labeling with amino acids in cell culture experiments analyzed with a machine learning–based tool and show that this model allows for improved high-confidence identification of real methyl-peptides. Overall, our results are consistent with the notion that protein R methylation modulates protein–RNA interactions and suggest a role in rewiring protein–protein interactions, for which we provide experimental evidence for a representative case (i.e., NONO [non-POU domain–containing octamer-binding protein]–paraspeckle component 1 [PSPC1]). Upon intersecting our R-methyl-sites dataset with the PhosphoSitePlus phosphorylation dataset, we observed that R methylation correlates differently with S/T-Y phosphorylation in response to various stimuli. Finally, we explored the application of heavy methyl stable isotope labeling with amino acids in cell culture to identify unconventional methylated residues and successfully identified novel histone methylation marks on serine 28 and threonine 32 of H3. The database generated, named ProMetheusDB, is freely accessible at https://bioserver.ieo.it/shiny/app/prometheusdb. hmSEEKER 2.0 identifies methyl-peptides from hmSILAC data through machine learning. Arginine methylation plays a role in modulating protein–protein interactions. Arginine methylations occur more frequently in proximity of phosphorylation sites. hmSEEKER 2.0 was used to identify methylations occurring on nonstandard amino acids.
Collapse
Affiliation(s)
- Enrico Massignani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; European School of Molecular Medicine (SEMM), Milan, Italy
| | - Roberto Giambruno
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Center for Genomic Science of Istituto Italiano di Tecnologia at European School of Molecular Medicine, Istituto Italiano di Tecnologia, Milan, Italy; Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Marianna Maniaci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; European School of Molecular Medicine (SEMM), Milan, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Avinash Yadav
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Raimondi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
26
|
Zheng K, Zhang Y, Zhang C, Ye W, Ye C, Tan X, Xiong Y. PRMT8 Attenuates Cerebral Ischemia/Reperfusion Injury via Modulating Microglia Activation and Polarization to Suppress Neuroinflammation by Upregulating Lin28a. ACS Chem Neurosci 2022; 13:1096-1104. [PMID: 35275616 DOI: 10.1021/acschemneuro.2c00096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation and polarization of microglia are involved in neuroinflammation and regulate ischemic stroke-associated brain injury. Protein arginine methyltransferase 8 functions as a regulatory component of hypoxic stress-induced neuroinflammation. The protective effect of protein arginine methyltransferase 8 (PRMT8) against ischemic stroke-associated brain injury through regulation of microglia activation and polarization was investigated. First, PRMT8 was downregulated in middle cerebral artery occlusion (MCAO)-induced mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced SH-SY5Y. Injection with AAV-PRMT8 reduced infarct volumes in MCAO-induced mice. Moreover, injection with AAV-PRMT8 promoted neuronal survival and ameliorated histopathological changes in the brains of MCAO-induced mice. The neuronal apoptosis and neuroinflammation in MCAO-induced mice were suppressed by AAV-PRMT8 injection. Second, PRMT8 overexpression increased cell viability and suppressed the cell apoptosis and inflammation of OGD/R-induced SH-SY5Y. Third, injection with AAV-PRMT8 reduced almost 50% of CD86 + M1 microglia and enhanced about 20% of CD206 + M2 microglia. Furthermore, PRMT8 overexpression attenuated OGD/R-induced M1 phenotype polarization of BV2. Lastly, PRMT8 upregulated Lin28a and loss of Lin28a attenuated PRMT8 overexpression-induced increase in cell viability and decrease in cell apoptosis and inflammation of OGD/R-induced SH-SY5Y. In conclusion, PRMT8 promoted M2 phenotype polarization of microglia and suppressed neuronal apoptosis to ameliorate cerebral ischemia/reperfusion injury through upregulation of Lin28a.
Collapse
Affiliation(s)
- Kuang Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuliang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengwei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wangyang Ye
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chenxing Ye
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xianxi Tan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ye Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
27
|
Bhurta D, Bharate SB. Styryl Group, a Friend or Foe in Medicinal Chemistry. ChemMedChem 2022; 17:e202100706. [PMID: 35166041 DOI: 10.1002/cmdc.202100706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/12/2022] [Indexed: 11/10/2022]
Abstract
The styryl (Ph-CH=CH-R) group is widely represented in medicinally important compounds, including drugs, clinical candidates, and molecular probes as it positively impacts the lipophilicity, oral absorption, and biological activity. The analysis of matched molecular pairs (styryl vs. phenethyl, phenyl, methyl, H) for the biological activity indicates the superiority aspect of styryl compounds. However, the Michael acceptor site in the styryl group makes it amenable to the nucleophilic attack by biological nucleophiles and transformation to the toxic metabolites. One of the downsides of styryl compounds is isomerization that impacts the molecular conformation and directly affects biological activity. The impact of cis-trans isomerism and isosteric replacements on biological activity is exemplified. We also discuss the styryl group-bearing drugs, clinical candidates, and fluorescent probes. Overall, the present review reveals the utility of the styryl group in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products and medicinal chemistry, 180001, Jammu, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
28
|
Tan C, Xiao Y, Huang X, Wu L, Huang Y. Alterations of Asymmetric Dimethylarginine (ADMA)-Containing Protein Profiles Associated with Chronic Pancreatitis Pathogenesis. J Inflamm Res 2021; 14:7381-7392. [PMID: 34992424 PMCID: PMC8714020 DOI: 10.2147/jir.s346575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The pathophysiological mechanisms of chronic pancreatitis (CP) still remain poorly understood. In this study, we aimed to characterize asymmetric dimethylarginine (ADMA)-containing proteins in pancreatic tissues and its relationship with CP pathogenesis. Methods Totally 36 patients with CP were enrolled in this study. Seven other cholangiocarcinoma patients without pancreas involvements or patients with benign pancreatic tumors were included as the control group. Total proteins in human pancreatic tissues were digested by trypsin, and ADMA-containing peptides were enriched via immunoaffinity purification. The LC-MS/MS was performed to characterize ADMA-containing peptides and their modification sites in CP tissues. Relative asymmetric arginine dimethylation levels of HNRNPA3 proteins in human pancreatic tissues were detected by the immunoprecipitation combined with Western blot. The serum inflammatory factors were determined via the ELISA method. Results A total of 134 ADMA sites in the control group and 137 ADMA sites in CP tissues were characterized by mass spectrometry, which belong to 93 and 94 ADMA-containing proteins in the control group and CP tissues, respectively. Glycine and proline residues were significantly overrepresented in the flanking sequences of ADMA sites. ADMA-containing proteins in the CP tissues were associated with various biological processes, especially the RNA metabolism and splicing pathways. Multiple protein members of the spliceosome pathway such as HNRNPA3 possess ADMA sites in the CP tissues. HNRNPA3 dimethylation levels were greatly increased in CP tissues, which were positively correlated with inflammatory factors. Conclusion The pathogenesis of CP is associated with alterations of asymmetric arginine dimethylation in pancreatic tissues.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Yan Xiao
- Intensive Care Unit, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
- Correspondence: Ying Huang Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), 61 Jiefang Road, Changsha, Hunan, 410005, People’s Republic of ChinaTel +8613974858993 Email
| |
Collapse
|
29
|
Couto E Silva A, Wu CYC, Clemons GA, Acosta CH, Chen CT, Possoit HE, Citadin CT, Lee RHC, Brown JI, Frankel A, Lin HW. Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. J Neurochem 2021; 159:742-761. [PMID: 34216036 DOI: 10.1111/jnc.15462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate (OCR), and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as TNF-α and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.
Collapse
Affiliation(s)
| | | | | | | | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - HarLee E Possoit
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy.,Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
30
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|
31
|
The Role of Protein Arginine Methylation as Post-Translational Modification on Actin Cytoskeletal Components in Neuronal Structure and Function. Cells 2021; 10:cells10051079. [PMID: 34062765 PMCID: PMC8147392 DOI: 10.3390/cells10051079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The brain encompasses a complex network of neurons with exceptionally elaborated morphologies of their axonal (signal-sending) and dendritic (signal-receiving) parts. De novo actin filament formation is one of the major driving and steering forces for the development and plasticity of the neuronal arbor. Actin filament assembly and dynamics thus require tight temporal and spatial control. Such control is particularly effective at the level of regulating actin nucleation-promoting factors, as these are key components for filament formation. Arginine methylation represents an important post-translational regulatory mechanism that had previously been mainly associated with controlling nuclear processes. We will review and discuss emerging evidence from inhibitor studies and loss-of-function models for protein arginine methyltransferases (PRMTs), both in cells and whole organisms, that unveil that protein arginine methylation mediated by PRMTs represents an important regulatory mechanism in neuritic arbor formation, as well as in dendritic spine induction, maturation and plasticity. Recent results furthermore demonstrated that arginine methylation regulates actin cytosolic cytoskeletal components not only as indirect targets through additional signaling cascades, but can also directly control an actin nucleation-promoting factor shaping neuronal cells—a key process for the formation of neuronal networks in vertebrate brains.
Collapse
|