1
|
Lin X, Liu YH, Zhang HQ, Wu LW, Li Q, Deng J, Zhang Q, Yang Y, Zhang C, Li YL, Hu J. DSCC1 interacts with HSP90AB1 and promotes the progression of lung adenocarcinoma via regulating ER stress. Cancer Cell Int 2023; 23:208. [PMID: 37742009 PMCID: PMC10518103 DOI: 10.1186/s12935-023-03047-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths, and the most common type is lung adenocarcinoma (LUAD). LUAD is frequently diagnosed in people who never smoked, patients are always diagnosed at advanced inoperable stages, and the prognosis is ultimately poor. Thus, there is an urgent need for the development of novel targeted therapeutics to suppress LUAD progression. In this study, we demonstrated that the expression of DNA replication and sister chromatid cohesion 1 (DSCC1) was higher in LUAD samples than normal tissues, and the overexpression of DSCC1 or its coexpressed genes were highly correlated with poor outcomes of LUAD patients, highlighting DSCC1 might be involved in LUAD progression. Furthermore, the expression of DSCC1 was positively correlated with multiple genetic mutations which drive cancer development, including TP53, TTN, CSMD, and etc. More importantly, DSCC1 could promote the cell proliferation, stemness, EMT, and metastatic potential of LUAD cells. In addition, DSCC1 interacted with HSP90AB1 and promoted the progression of LUAD via regulating ER stress. Meanwhile, DSCC1 expression negatively correlated with immune cell infiltration in lung cancer, and DSCC1 positively regulated the expression of PD-L1 in LUAD cells. Collectively, this study revealed that DSCC1 is a novel therapeutic target to treat LUAD and a biomarker for predicting the efficiency of PD-1/PD-L1 blockade treatment.
Collapse
Affiliation(s)
- Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ye-Han Liu
- School of Medicine, Hangzhou City University, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huan-Qi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin-Wen Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jun Deng
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuhong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chong Zhang
- School of Medicine, Hangzhou City University, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China.
| | - Yang-Ling Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2022; 13:biom13010036. [PMID: 36671421 PMCID: PMC9855641 DOI: 10.3390/biom13010036] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal for the human organism and for all ecosystems. Cd is naturally found at low levels; however, higher amounts of Cd in the environment result from human activities as it spreads into the air and water in the form of micropollutants as a consequence of industrial processes, pollution, waste incineration, and electronic waste recycling. The human body has a limited ability to respond to Cd exposure since the metal does not undergo metabolic degradation into less toxic species and is only poorly excreted. The extremely long biological half-life of Cd essentially makes it a cumulative toxin; chronic exposure causes harmful effects from the metal stored in the organs. The present paper considers exposure and potential health concerns due to environmental cadmium. Exposure to Cd compounds is primarily associated with an elevated risk of lung, kidney, prostate, and pancreatic cancer. Cd has also been linked to cancers of the breast, urinary system, and bladder. The multiple mechanisms of Cd-induced carcinogenesis include oxidative stress with the inhibition of antioxidant enzymes, the promotion of lipid peroxidation, and interference with DNA repair systems. Cd2+ can also replace essential metal ions, including redox-active ones. A total of 12 cancer types associated with specific genes coding for the Cd-metalloproteome were identified in this work. In addition, we summarize the proper treatments of Cd poisoning, based on the use of selected Cd detoxifying agents and chelators, and the potential for preventive approaches to counteract its chronic exposure.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Alessio Pelucelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Vlasoula Bekiari
- School of Agricultural Science, University of Patras, 30200 Messolonghi, Greece
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Li T. The functions of polycomb group proteins in T cells. CELL INSIGHT 2022; 1:100048. [PMID: 37193554 PMCID: PMC10120301 DOI: 10.1016/j.cellin.2022.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/18/2023]
Abstract
T cells are involved in many aspects of adaptive immunity, including autoimmunity, anti-tumor activity, and responses to allergenic substances and pathogens. T cells undergo comprehensive epigenome remodeling in response to signals. Polycomb group (PcG) proteins are a well-studied complex of chromatin regulators, conserved in animals, and function in various biological processes. PcG proteins are divided into two distinct complexes: PRC1 (Polycomb repressive complex 1) and PRC2. PcG is correlated with the regulation of T cell development, phenotypic transformation, and function. In contrast, PcG dysregulation is correlated with pathogenesis of immune-mediated diseases and compromised anti-tumor responses. This review discusses recent findings on the involvement of PcG proteins in T cell maturation, differentiation, and activation. In addition, we explore implications in the development of the immune system diseases and cancer immunity, which offers promising targets for various treatment protocols.
Collapse
Affiliation(s)
- Ting Li
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| |
Collapse
|
5
|
Angre T, Kumar A, Singh AK, Thareja S, Kumar P. Role of collagen regulators in cancer treatment: A comprehensive review. Anticancer Agents Med Chem 2022; 22:2956-2984. [DOI: 10.2174/1871520622666220501162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Abstract:
Collagen is the most important structural protein and also a main component of extra-cellular matrix (ECM). It plays a role in tumor progression. Collagen can be regulated by altering it’s biosynthesis pathway through various signaling pathways, receptors and genes. Activity of cancer cells can also be regulated by other ECM components like metalloproteinases, hyaluronic acid, fibronectin and so on. Hypoxia is also one of the condition which leads to cancer progression by stimulating the expression of procollagen lysine as a collagen crosslinker, which increases the size of collagen fibres promoting cancer spread. The collagen content in cancerous cells leads to resistance in chemotherapy. So, to reduce this resistance, some of the collagen regulating therapies are introduced, which include inhibiting its biosynthesis, disturbing cancer cell signaling pathway, mediating ECM components and directly utilizing collagenase. This study is an effort to compile the strategies reported to control the collagen level and different collagen inhibitors reported so far. More research is needed in this area, growing understandings of collagen’s structural features and its role in cancer progression will aid in the advancement of newer chemotherapies.
Collapse
Affiliation(s)
- Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
6
|
Abdelmoaty AAA, Zhang P, Lin W, Fan YJ, Ye SN, Xu JH. C0818, a novel curcumin derivative, induces ROS-dependent cytotoxicity in human hepatocellular carcinoma cells in vitro via disruption of Hsp90 function. Acta Pharmacol Sin 2022; 43:446-456. [PMID: 33824458 PMCID: PMC8792041 DOI: 10.1038/s41401-021-00642-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 02/03/2023]
Abstract
Heat shock protein 90 (Hsp90) is the most common molecular chaperone that controls the maturation of many oncoproteins critical in tumor development. Hsp90 has been considered as a promising target for cancer treatment, but the clinical significance of Hsp90 and the mechanisms of Hsp90 regulating the tumor-promoting effects in hepatocellular carcinoma (HCC) remain obscure. Previous studies have shown that curcumin, a polyphenol derived from the plant turmeric (Curcuma longa), inhibits tumor growth, which may provide an effective alternative therapy for HCC. Compared to curcumin, a novel derivative of curcumin, 3,5-(E)-Bis(3-methoxy-4-hydroxybenzal)-4-piperidinone hydrochloride (C0818) that is more potent in Hsp90 inhibition and antitumor activity. In this study, we investigated the effect of C0818 on HCC cells in vitro and its relation to Hsp90 inhibition. We showed that C0818 concentration-dependently inhibited the proliferation, the colony formation and induced apoptosis in HepG2 and Sk-Hep-1 cells. C0818 concentration-dependently inhibited DNA synthesis and induced G2/M phase arrest in HepG2 and Sk-Hep-1 cells. We further demonstrated that C0818 induced ROS- and caspase-dependent apoptosis in HCC cells through the mitochondrial-mediated pathway. C0818 induced the degradation of Hsp90 client proteins as RAS, C-Raf, P-C-Raf, Erk, P-ERK, MEK, P-MEK, Akt and P-Akt, which led to subsequent inhibition of the RAS/RAF/MEK/ERK and PI3K/AKT pathways. We revealed that C0818 could inhibit the binding of Hsp90 with its clients without affecting their transcription, which subsequently induced the degradation of Hsp90 clients by the proteasome rather than the lysosome. These results are of potential importance for elucidating a novel Hsp90 inhibitor targeting HCC.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Ping Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Wen Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Ying-Juan Fan
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Sheng-Nan Ye
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Jian-Hua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Larghi EL, Bruneau A, Sauvage F, Alami M, Vergnaud-Gauduchon J, Messaoudi S. Synthesis and Biological Activity of 3-(Heteroaryl)quinolin-2(1 H)-ones Bis-Heterocycles as Potential Inhibitors of the Protein Folding Machinery Hsp90. Molecules 2022; 27:412. [PMID: 35056725 PMCID: PMC8778022 DOI: 10.3390/molecules27020412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
In the context of our SAR study concerning 6BrCaQ analogues as C-terminal Hsp90 inhibitors, we designed and synthesized a novel series of 3-(heteroaryl)quinolin-2(1H), of types 3, 4, and 5, as a novel class of analogues. A Pd-catalyzed Liebeskind-Srogl cross-coupling was developed as a convenient approach for easy access to complex purine architectures. This series of analogues showed a promising biological effect against MDA-MB231 and PC-3 cancer cell lines. This study led to the identification of the best compounds, 3b (IC50 = 28 µM) and 4e, which induce a significant decrease of CDK-1 client protein and stabilize the levels of Hsp90 and Hsp70 without triggering the HSR response.
Collapse
Affiliation(s)
- Enrique L. Larghi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
- Instituto de Química Rosario (IQUIR) CONICET/UNR, FBioyF, Rosario S2002LRK, Argentina;
| | - Alexandre Bruneau
- Instituto de Química Rosario (IQUIR) CONICET/UNR, FBioyF, Rosario S2002LRK, Argentina;
| | - Félix Sauvage
- CNRS, Institut Galien-Paris Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (F.S.); (J.V.-G.)
| | - Mouad Alami
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| | - Juliette Vergnaud-Gauduchon
- CNRS, Institut Galien-Paris Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (F.S.); (J.V.-G.)
| | - Samir Messaoudi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| |
Collapse
|
8
|
Li G, Zhang C, Liang W, Zhang Y, Shen Y, Tian X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. PHARMACEUTICAL BIOLOGY 2021; 59:21-30. [PMID: 33417512 PMCID: PMC7808376 DOI: 10.1080/13880209.2020.1865407] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Berberine (BBR) is used to treat diarrhoea and gastroenteritis in the clinic. It was found to have anticolon cancer effects. OBJECTIVE To study the anticolon cancer mechanism of BBR by connectivity map (CMAP) analysis. MATERIALS AND METHODS CMAP based mechanistic prediction was conducted by comparing gene expression profiles of 10 μM BBR treated MCF-7 cells with that of clinical drugs such as helveticoside, ianatoside C, pyrvinium, gossypol and trifluoperazine. The treatment time was 12 h and two biological replications were performed. The DMSO-treated cells were selected as a control. The interaction between 100 μM BBR and target protein was measured by cellular thermal shift assay. The protein expression of 1-9 μM BBR treated SW480 cells were measured by WB assay. Apoptosis, cell cycle arrest, mitochondrial membrane potential (MMP) of 1-9 μM BBR treated SW480 cells were measured by flow cytometry and Hoechst 33342 staining methods. RESULTS CMAP analysis found 14 Hsp90, HDAC, PI3K or mTOR protein inhibitors have similar functions with BBR. The experiments showed that BBR inhibited SW480 cells proliferation with IC50 of 3.436 μM, induced apoptosis, autophage, MMP depolarization and arrested G1 phase of cell cycle at 1.0 μM. BBR dose-dependently up-regulated PTEN, while inhibited Notch1, PI3K, Akt and mTOR proteins at 1.0-9.0 μM (p < 0.05). BBR also acted synergistically with Hsp90 and HDAC inhibitor (0.01 μM) in SW480 cells at 0.5 and 1.0 μM. DISCUSSION AND CONCLUSIONS The integrative gene expression-based chemical genomic method using CMAP analysis may be applicable for mechanistic studies of other multi-targets drugs.
Collapse
Affiliation(s)
- Ge Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Chuang Zhang
- School of Pharmacy, Zhengzhou University, Zhengzhou, PR China
| | - Wei Liang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yanbing Zhang
- School of Pharmacy, Zhengzhou University, Zhengzhou, PR China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Xinhui Tian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
9
|
Cisplatin-based Electrochemotherapy Significantly Downregulates Key Heat Shock Proteins in MDA-MB-231-Human Triple-Negative Breast Cancer Cells. Appl Biochem Biotechnol 2021; 194:517-528. [PMID: 34637110 DOI: 10.1007/s12010-021-03703-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Heat shock proteins (HSPs) are available and/or induced for the survival of all organisms, including eukaryotic, prokaryotic, and plants, from higher temperature stresses. They are the chaperone proteins that protect all cells against heat, as the name implies. In addition to thermal stress, they also protect them from chemical, physical, and other stresses, including exposure to oxidative stress, nutritional deficiencies, ultraviolet radiation, ethanol, viral infection, ischemia-reperfusion injury, and cancer-related stresses. They are classified based on their molecular weights in kDa, such as HSP90 and HSP70. In our label-free, high-throughput, quantitative LC-MS/MS-based proteomic studies of MDA-MB-231, human, triple-negative breast cancer cells, treated with electrical pulses (EP) and cisplatin (CsP), we identified a number of HSPs, such as HSP90AA1, and others to be significantly downregulated in EP + CsP, compared to CsP alone. This indicates that cells will undergo apoptotic cell death and hence could cause effective cancer cure/treatment. Considering that over 2 million new cases and over 600,000 deaths in 2020, of which ~ 15% are TNBC, heat shock proteins could be the untapped resources, available for the next biomarkers and/or inhibitors for new/additional therapies.
Collapse
|
10
|
Yang S, Xiao H, Cao L. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacother 2021; 142:112074. [PMID: 34426258 DOI: 10.1016/j.biopha.2021.112074] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. Previous studies have revealed that HSPs play important roles in oncogenesis and malignant progression because they can modulate all six hallmark traits of cancer. Because of this, HSPs have been propelled into the spotlight as biomarkers for cancer diagnosis and prognosis, as well as an exciting anticancer drug target. However, the relationship between the expression level of HSPs and their activity and cancer diagnosis, prognosis, metabolism and treatment is not clear and has not been completely established. Herein, this review summarizes and discusses recent advances and perspectives in major HSPs as biomarkers for cancer diagnosis, as regulators for cancer metabolism or as therapeutic targets for cancer therapy, which may provide new directions to improve the accuracy of cancer diagnosis and develop more effective and safer anticancer therapeutics.
Collapse
Affiliation(s)
- Shuxian Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Haiyan Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
11
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
12
|
Transcriptomic analysis reveals that heat shock protein 90α is a potential diagnostic and prognostic biomarker for cancer. Eur J Cancer Prev 2021; 29:357-364. [PMID: 31567483 DOI: 10.1097/cej.0000000000000549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is highly expressed in tumor tissue according to many studies. However, there is no large-scale study investigating the expression of Hsp90 in pan-cancer so far, and the molecular mechanisms leading to aberrant Hsp90 expression are also largely unknown. To address these questions, we performed an in silico analysis of Hsp90 expression using mRNA sequencing data from The Cancer Genome Atlas study. The results were further validated using independent datasets. We found that the expression of HSP90AA1, a subtype of Hsp90, was much higher in hepatocellular carcinoma than in adjacent normal liver tissue. A large cancer panel with eight more cancer types revealed a similar trend except for prostate cancer, which had low HSP90AA1 expression in tumor tissue. Heat shock factor 1 followed a similar trend as HSP90AA1, with higher expression in cancer. HSP90AA1 expression was closely related to its copy numbers. Deletion of the HSP90AA1 locus in a subset of hepatocellular carcinoma led to low HSP90AA1 expression. In addition, higher HSP90AA1 expression was associated with poorer prognosis in hepatocellular carcinoma patients. In a multivariable analysis including tumor, node and metastasis stage, HSP90AA1 expression remained a negative prognostic factor, suggesting that the effect of HSP90AA1 was independent of tumor stage. In conclusion, we demonstrated that high HSP90AA1 expression was ubiquitous in cancer and that HSP90AA1 was a potential diagnostic and prognostic biomarker for hepatocellular carcinoma.
Collapse
|
13
|
Focus on the Complex Interconnection between Cancer, Narcolepsy and Other Neurodegenerative Diseases: A Possible Case of Orexin-Dependent Inverse Comorbidity. Cancers (Basel) 2021; 13:cancers13112612. [PMID: 34073579 PMCID: PMC8198883 DOI: 10.3390/cancers13112612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This narrative review first describes from several points of view the complex interrelationship between cancer and neurodegeneration, with special attention to the mechanisms that might underlie an inverse relationship between them. In particular, the mechanisms that might induce an imbalance between cell apoptotic and proliferative stimuli are discussed. Second, the review summarizes findings on orexins and their involvement in narcolepsy, neurodegenerative diseases, and cancer, starting from epidemiological data then addressing laboratory findings, animal models, and human clinical observational and interventional investigations. Important research efforts are warranted on these topics, as they might lead to novel therapeutic approaches to both neurodegenerative diseases and cancer. Abstract Conditions such as Alzheimer’s (AD) and Parkinson’s diseases (PD) are less prevalent in cancer survivors and, overall, cancer is less prevalent in subjects with these neurodegenerative disorders. This seems to suggest that a propensity towards one type of disease may decrease the risk of the other. In addition to epidemiologic data, there is also evidence of a complex biological interconnection, with genes, proteins, and pathways often showing opposite dysregulation in cancer and neurodegenerative diseases. In this narrative review, we focus on the possible role played by orexin signaling, which is altered in patients with narcolepsy type 1 and in those with AD and PD, and which has been linked to β-amyloid brain levels and inflammation in mouse models and to cancer in cell lines. Taken together, these lines of evidence depict a possible case of inverse comorbidity between cancer and neurodegenerative disorders, with a role played by orexins. These considerations suggest a therapeutic potential of orexin modulation in diverse pathologies such as narcolepsy, neurodegenerative disorders, and cancer.
Collapse
|
14
|
Song D, Guo M, Xu S, Song X, Bai B, Li Z, Chen J, An Y, Nie Y, Wu K, Wang S, Zhao Q. HSP90-dependent PUS7 overexpression facilitates the metastasis of colorectal cancer cells by regulating LASP1 abundance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:170. [PMID: 33990203 PMCID: PMC8120699 DOI: 10.1186/s13046-021-01951-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pseudouridine synthase (PUS) 7 is a member of the PUS family that catalyses pseudouridine formation. It has been shown to be involved in intellectual development and haematological malignancies. Nevertheless, the role and the underlying molecular mechanisms of PUS7 in solid tumours, such as colorectal cancer (CRC), remain unexplored. This study elucidated, for the first time, the role of PUS7 in CRC cell metastasis and the underlying mechanisms. METHODS We conducted immunohistochemistry, qPCR, and western blotting to quantify the expression of PUS7 in CRC tissues as well as cell lines. Besides, diverse in vivo and in vitro functional tests were employed to establish the function of PUS7 in CRC. RNA-seq and proteome profiling analysis were also applied to identify the targets of PUS7. PUS7-interacting proteins were further uncovered using immunoprecipitation and mass spectrometry. RESULTS Overexpression of PUS7 was observed in CRC tissues and was linked to advanced clinical stages and shorter overall survival. PUS7 silencing effectively repressed CRC cell metastasis, while its upregulation promoted metastasis, independently of the PUS7 catalytic activity. LASP1 was identified as a downstream effector of PUS7. Forced LASP1 expression abolished the metastasis suppression triggered by PUS7 silencing. Furthermore, HSP90 was identified as a client protein of PUS7, associated with the increased PUS7 abundance in CRC. NMS-E973, a specific HSP90 inhibitor, also showed higher anti-metastatic activity when combined with PUS7 repression. Importantly, in line with these results, in human CRC tissues, the expression of PUS7 was positively linked to the expression of HSP90 and LASP1, and patients co-expressing HSP90/PUS7/LASP1 showed a worse prognosis. CONCLUSIONS The HSP90-dependent PUS7 upregulation promotes CRC cell metastasis via the regulation of LASP1. Thus, targeting the HSP90/PUS7/LASP1 axis may be a novel approach for the treatment of CRC.
Collapse
Affiliation(s)
- Dan Song
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Ming Guo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shuai Xu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Xiaotian Song
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Bin Bai
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Zhengyan Li
- Department of General Surgery, Center for Minimally Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gao Tan Yan Road, Chongqing, 400038, China
| | - Jie Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yanxin An
- Department of General Surgery, the First Affiliated Hospital of Xi 'an Medical University, No. 48 Fenghao West Road, Lianhu District, Xi'an, 710077, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Shiqi Wang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Qingchuan Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China.
| |
Collapse
|
15
|
DNAJB9 suppresses the metastasis of triple-negative breast cancer by promoting FBXO45-mediated degradation of ZEB1. Cell Death Dis 2021; 12:461. [PMID: 33966034 PMCID: PMC8106677 DOI: 10.1038/s41419-021-03757-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
DNAJB9, a member of the heat shock protein 40 family, acts as a multifunctional player involved in the maintenance of their client proteins and cellular homeostasis. However, the mechanistic action of DNAJB9 in human malignancies is yet to be fully understood. In this study, we found that ectopic restoration of DNAJB9 inhibits the migration, invasion, in vivo metastasis, and lung colonization of triple-negative breast cancer (TNBC) cells. Mechanistically, DNAJB9 stabilizes FBXO45 protein by suppressing self-ubiquitination and reduces the abundance of ZEB1 by Lys48-linked polyubiquitination to inhibit the epithelial-mesenchymal transition (EMT) and metastasis. Clinically, the reduction of DNAJB9 expression, concomitant with decreased FBXO45 abundance in breast cancer tissues, correlates with poorer clinical outcomes of patients with breast cancer. Taken together, our results provide a novel insight into the metastasis of TNBC and define a promising therapeutic strategy for cancers with overactive ZEB1 by regulating the DNAJB9-FBXO45 signaling axis.
Collapse
|
16
|
Smolle MA, Szkandera J, Andreou D, Palmerini E, Bergovec M, Leithner A. Treatment options in unresectable soft tissue and bone sarcoma of the extremities and pelvis - a systematic literature review. EFORT Open Rev 2020; 5:799-814. [PMID: 33312707 PMCID: PMC7722943 DOI: 10.1302/2058-5241.5.200069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In patients with metastatic or unresectable soft tissue and bone sarcoma of extremities and pelvis, survival is generally poor. The aim of the current systematic review was to analyse recent publications on treatment approaches in patients with inoperable and/or metastatic sarcoma. Original articles published between 1st January 2011 and 2nd May 2020, using the search terms ‘unresectable sarcoma’, ‘inoperability AND sarcoma’, ‘inoperab* AND sarcoma’, and ‘treatment AND unresectable AND sarcoma’ in PubMed, were potentially eligible. Out of the 839 initial articles (containing 274 duplicates) obtained and 23 further articles identified by cross-reference checking, 588 were screened, of which 447 articles were removed not meeting the inclusion criteria. A further 54 articles were excluded following full-text assessment, resulting in 87 articles finally being analysed. Of the 87 articles, 38 were retrospective (43.7%), two prospective (2.3%), six phase I or I/II trials (6.9%), 22 phase II non-randomized trials (27.6%), nine phase II randomized trials (10.3%) and eight phase III randomized trials (9.2%). Besides radio/particle therapy, isolated limb perfusion and conventional chemotherapy, novel therapeutic approaches, including immune checkpoint inhibitors and tyrosine kinase inhibitors were also identified, with partially very promising effects in advanced sarcomas. Management of inoperable, advanced or metastatic sarcomas of the pelvis and extremities remains challenging, with the optimal treatment to be defined individually. Besides conventional chemotherapy, some novel therapeutic approaches have promising effects in both bone and soft tissue subtypes. Considering that only a small proportion of studies were randomized, the clinical evidence currently remains moderate and thus calls for further large, randomized clinical trials.
Cite this article: EFORT Open Rev 2020;5:799-814. DOI: 10.1302/2058-5241.5.200069
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Joanna Szkandera
- Division of Clinical Oncology, Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dimosthenis Andreou
- Division of Orthopaedic Oncology and Sarcoma Surgery, Helios Klinikum Bad Saarow, Sarcoma Center Berlin-Brandenburg, Berlin, Germany
| | - Emanuela Palmerini
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna University, Bologna, Italy
| | - Marko Bergovec
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Do KT, O'Sullivan Coyne G, Hays JL, Supko JG, Liu SV, Beebe K, Neckers L, Trepel JB, Lee MJ, Smyth T, Gannon C, Hedglin J, Muzikansky A, Campos S, Lyons J, Ivy P, Doroshow JH, Chen AP, Shapiro GI. Phase 1 study of the HSP90 inhibitor onalespib in combination with AT7519, a pan-CDK inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 86:815-827. [PMID: 33095286 DOI: 10.1007/s00280-020-04176-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE We conducted a phase 1 trial of the HSP90 inhibitor onalespib in combination with the CDK inhibitor AT7519, in patients with advanced solid tumors to determine the safety profile and maximally tolerated dose, pharmacokinetics, preliminary antitumor activity, and to assess the pharmacodynamic (PD) effects on HSP70 expression in patient-derived PBMCs and plasma. METHODS This study followed a 3 + 3 trial design with 1 week of intravenous (IV) onalespib alone, followed by onalespib/AT7519 (IV) on days 1, 4, 8, and 11 of a 21-days cycle. PK and PD samples were collected at baseline, after onalespib alone, and following combination therapy. RESULTS Twenty-eight patients were treated with the demonstration of downstream target engagement of HSP70 expression in plasma and PBMCs. The maximally tolerated dose was onalespib 80 mg/m2 IV + AT7519 21 mg/m2 IV. Most common drug-related adverse events included Grade 1/2 diarrhea (79%), fatigue (54%), mucositis (57%), nausea (46%), and vomiting (50%). Partial responses were seen in a palate adenocarcinoma and Sertoli-Leydig tumor; a colorectal and an endometrial cancer patient both remained on study for ten cycles with stable disease as the best response. There were no clinically relevant PK interactions for either drug. CONCLUSIONS Combined onalespib and AT7519 is tolerable, though below monotherapy RP2D. Promising preliminary clinical activity was seen. Further benefit may be seen with the incorporation of molecular signature pre-selection. Further biomarker development will require the assessment of the on-target impact on relevant client proteins in tumor tissue.
Collapse
Affiliation(s)
- Khanh T Do
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Center for Cancer Therapeutic Innovation, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue -DA2010, Boston, MA, 02215, USA.
| | | | - John L Hays
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey G Supko
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Stephen V Liu
- Georgetown University Medical Center, Washington, DC, USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | - Alona Muzikansky
- Massachusetts General Hospital Biostatistics Center, Boston, MA, USA
| | | | | | - Percy Ivy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Huang J, Huang J, Hu W, Zhang Z. Heat shock protein 90 alpha and 14-3-3η in postmenopausal osteoporotic rats with varying levels of serum FSH. Climacteric 2020; 23:581-590. [PMID: 32420764 DOI: 10.1080/13697137.2020.1758055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE This study compared the severity of osteoporosis and screened differentially expressed proteins in postmenopausal osteoporotic rats with varying levels of serum follicle stimulating hormone (FSH). METHODS Thirty-six Sprague Dawley female rats were divided into four groups: sham operation (sham) group, ovariectomy (OVX) group, FSH and ovariectomy (OVX + FSH) group, and Leuprorelin (LE) and ovariectomy group (OVX + LE). Body weight, serum estradiol, FSH, tartrate-resistant acid phosphatase, alkaline phosphatase, and bone mineral density were measured. We randomly selected six rats each from the OVX and OVX + FSH groups to detect differentially expressed proteins by data-independent acquisition, and we verified the results in the remaining six rats by enzyme-linked immunosorbent assay (ELISA). RESULTS Nineteen proteins were upregulated and 36 proteins were downregulated in the OVX + FSH group. The expression of heat shock protein 90 alpha (Hsp90α) and 14-3-3η protein was significantly different between the OVX and OVX + FSH groups, and both were linearly correlated with bone trabecular area. Results were verified by ELISA and were found to be consistent with the results of data-independent acquisition. DISCUSSION In rats with high serum FSH, expression of Hsp90α protein was increased and expression of 14-3-3η protein was decreased. Both changes in protein expression were strongly correlated with bone trabecular area.
Collapse
Affiliation(s)
- Jianxia Huang
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital), Hangzhou, Zhejiang Province, China
| | - Jian Huang
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital), Hangzhou, Zhejiang Province, China
| | - Wensheng Hu
- Department of Obstetrics, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital), Hangzhou, Zhejiang Province, China
| | - Zhifen Zhang
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital), Hangzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
20
|
Griguolo G, Dieci MV, Miglietta F, Guarneri V, Conte P. Olaparib for advanced breast cancer. Future Oncol 2020; 16:717-732. [PMID: 32249603 DOI: 10.2217/fon-2019-0689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Olaparib, an oral PARP-inhibitor, has shown clinical benefit for HER2-negative advanced breast cancer patients carrying a germinal BRCA1/2 mutation. In a randomized Phase III trial, olaparib significantly prolonged progression-free survival as compared with chemotherapy of physician choice. Moreover, in the same trial, a prespecified subgroup analysis reported an overall survival benefit for patients not previously pretreated with chemotherapy for metastatic disease. This review focuses on available preclinical, pharmacokinetic and pharmacodynamic data regarding olaparib and clinical evidence of its antitumor efficacy (both as monotherapy and in combination) and tolerability in breast cancer patients. Open questions, such as use of appropriate biomarkers for patient selection and combination/sequencing with other anticancer drugs, are also addressed.
Collapse
Affiliation(s)
- Gaia Griguolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - PierFranco Conte
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| |
Collapse
|
21
|
De Leo SA, Zgajnar NR, Mazaira GI, Erlejman AG, Galigniana MD. Role of the Hsp90-Immunophilin Heterocomplex in Cancer Biology. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666190102120801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of new factors that may function as cancer markers and become eventual pharmacologic targets is a challenge that may influence the management of tumor development and management. Recent discoveries connecting Hsp90-binding immunophilins with the regulation of signalling events that can modulate cancer progression transform this family of proteins in potential unconventional factors that may impact on the screening and diagnosis of malignant diseases. Immunophilins are molecular chaperones that group a family of intracellular receptors for immunosuppressive compounds. A subfamily of the immunophilin family is characterized by showing structural tetratricopeptide repeats, protein domains that are able to interact with the C-terminal end of the molecular chaperone Hsp90, and via the proper Hsp90-immunophilin complex, the biological properties of a number of client-proteins involved in cancer biology are modulated. Recent discoveries have demonstrated that two of the most studied members of this Hsp90- binding subfamily of immunophilins, FKBP51 and FKBP52, participate in several cellular processes such as apoptosis, carcinogenesis progression, and chemoresistance. While the expression levels of some members of the immunophilin family are affected in both cancer cell lines and human cancer tissues compared to normal samples, novel regulatory mechanisms have emerged during the last few years for several client-factors of immunophilins that are major players in cancer development and progression, among them steroid receptors, the transctiption factor NF-κB and the catalytic subunit of telomerase, hTERT. In this review, recent findings related to the biological properties of both iconic Hsp90-binding immunophilins, FKBP51 and FKBP52, are reviewed within the context of their interactions with those chaperoned client-factors. The potential roles of both immunophilins as potential cancer biomarkers and non-conventional pharmacologic targets for cancer treatment are discussed.
Collapse
Affiliation(s)
- Sonia A. De Leo
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Gisela I. Mazaira
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra G. Erlejman
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mario D. Galigniana
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
23
|
Ramkumar B, Dharaskar SP, Mounika G, Paithankar K, Sreedhar AS. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion 2019; 50:42-50. [PMID: 31669620 DOI: 10.1016/j.mito.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
The stress response forms the most ancient defense system in living cells. Heat shock proteins (Hsps) are highly conserved across species and play major roles in mounting the stress response. The emerging information now suggests that Hsp90 family of chaperones display additional cellular roles contributing to diseases like cancer. For this reason, pharmacological targeting of Hsp90 has emerged as a novel antitumor strategy. However, its mitochondrial homologue TRAP1 has not been implicated in cancer with conclusive mechanistic insights. Since understanding the mutational spectrum of cancer cells indicates the outcome of the disease as well as treatment response, we examined mutational spectrum of TRAP1. Our in silico analyses of TRAP1 SNPs and CNVs correlated with the aggressive cancer phenotypes, and are found to be predominant over Hsp90 itself. The increased CNVs have been correlated with increased expression of TRAP1 in metastatic cancer cells, increased ATP production, and decreased oxygen consumption rate of mitochondria. Examining TRAP1 knockdown as well as over expression in metastatic cancer cells furthered our understanding that TRAP1 likely to facilitate the altered energy metabolism in the functional compromise of mitochondrial OXPHOS. Interestingly, the increased ATP levels in the TRAP1 background are found to be independent of glucose oxidation. Our results suggest TRAP1 role in triggering the alternate energy metabolism in cancer cells. Since targeting tumor metabolism is considered as an alternate strategy to combat cancer, we propose pharmacological targeting of TRAP1 to target alternate energy metabolism.
Collapse
Affiliation(s)
- Balaji Ramkumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Shrikant P Dharaskar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India; Academy of Scientific & Innovation Research, Government of India, India
| | - Guntipally Mounika
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Amere Subbarao Sreedhar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India.
| |
Collapse
|
24
|
Wang L, Fan Y, Mei H, Liu Y, Zhang L, Xu J, Huang X. Novel Hsp90 Inhibitor C086 Potently Inhibits Non-Small Cell Lung Cancer Cells As A Single Agent Or In Combination With Gefitinib. Cancer Manag Res 2019; 11:8937-8945. [PMID: 31802936 PMCID: PMC6801566 DOI: 10.2147/cmar.s215970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Inhibition of heat shock protein 90 (Hsp90) can lead to degradation of multiple client proteins, which are involved in tumor progression. Elevated Hsp90 expression has been linked to poor prognosis in patients with non-small cell lung cancer (NSCLC). Discovery of effective drug is a promising strategy to improve patient survival. This study aims to investigate the synergistic antitumor mechanism of C086 combined with gefitinib in NSCLC cells in vitro. Methods The binding of C086, gefitinib, and the combinations to Hsp90 was characterized by fluorescence quenching experiments. The inhibition of A549 or NCI-H1975 cell proliferation and apoptosis by C086 and gefitinib as a single agent or in combinations were performed using CFSE staining assays, AnnexinV-APC/PI and Western blot. Results C086 alone or with gefitinib reduces proliferation and increases proapoptotic caspase activation of both wild-type and mutation NSCLC, with NCI-H1975 cells showing much greater sensitivity to C086 and the combinations than A549 cells. The combination of C086 and gefitinib showed synergistic reduction of EGFR expression and the downstream PI3K/Akt and Ras-Raf-Erk pathways enhanced suppression of Erk signaling. Conclusion C086 combined gefitinib has a good synergistic antitumor effect in vitro. Therefore, the combination of C086 and gefitinib may provide a new theoretical basis and ideas for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Liman Wang
- Institute of Materia Medica, School of Pharmacy, Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, People's Republic of China.,Department of Pharmacy, Fujian Provincial Hospital Jinshan Branch/Fujian Provincial Hospital South Branch, Fuzhou 350028, People's Republic of China.,Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Yingjuan Fan
- Institute of Materia Medica, School of Pharmacy, Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Hanhao Mei
- Institute of Materia Medica, School of Pharmacy, Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Yang Liu
- Institute of Materia Medica, School of Pharmacy, Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Lianru Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jianhua Xu
- Institute of Materia Medica, School of Pharmacy, Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Xuhui Huang
- Department of Pharmacy, Fujian Provincial Hospital Jinshan Branch/Fujian Provincial Hospital South Branch, Fuzhou 350028, People's Republic of China.,Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350000, People's Republic of China
| |
Collapse
|
25
|
Kale Ş, Korcum AF, Dündar E, Erin N. HSP90 inhibitor PU-H71 increases radiosensitivity of breast cancer cells metastasized to visceral organs and alters the levels of inflammatory mediators. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:253-262. [PMID: 31522240 DOI: 10.1007/s00210-019-01725-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90 (HSP90) inhibitors are considered as new radiosensitizing agents. PU-H71, a novel HSP90 inhibitor, is under evaluation for the treatment of advanced cancer. It is however not known whether PU-H71 alters radiosensitivity of metastatic breast cancer. Hence, we here evaluated mechanisms of possible anti-tumoral and radiosensitizing effects of PU-H71 on breast carcinoma cells metastasized to vital organs such as the liver and brain. The effect of PU-H71 on proliferation of breast carcinoma cells was determined using 4T1 cells and its brain (4TBM), liver (4TLM), and heart (4THM) metastatic subsets as well as non-metastatic 67NR cells. Changes in radiation sensitivity were determined by clonogenic assays. Changes in client proteins and levels of angiogenic and inflammatory mediators from these cancer cell cultures and ex vivo cultures were detected. PU-H71 alone inhibited ERK1/2, p38, and Akt activation and reduced N-cadherin and HER2 which further documented the anti-tumoral effects of PU-H71. The combination of PU-H71 and radiotherapy induced cytotoxic effect than PU-H71 alone, and PU-H71 showed a radiosensitizing effect in vitro. On the other hand, PU-H71 and radiation co-treatment increased p38 phosphorylation which is one of the hallmarks of inflammatory response. Accordingly, IL-6 secretion was increased following PU-H71 and radiotherapy co-treatment ex vivo. Levels of angiogenic and inflammatory factors such as MIP-2, SDF-1, and VEGF were increased under in vitro conditions but not under ex vivo conditions. These results demonstrated for the first time that PU-H71 enhances therapeutic effects of radiotherapy especially in highly metastatic breast carcinoma but a possible increase in inflammatory response should also be considered.
Collapse
Affiliation(s)
- Şule Kale
- Department of Pharmacology, School of Medicine, Akdeniz University, B-block, First floor, SBAUM, 07070, Antalya, Turkey
| | - Aylin F Korcum
- Department of Radiation Oncology, School of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Ertuğrul Dündar
- Department of Radiation Oncology, School of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Nuray Erin
- Department of Pharmacology, School of Medicine, Akdeniz University, B-block, First floor, SBAUM, 07070, Antalya, Turkey.
| |
Collapse
|
26
|
Targeting hsp90 family members: A strategy to improve cancer cell death. Biochem Pharmacol 2019; 164:177-187. [PMID: 30981878 DOI: 10.1016/j.bcp.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
A crucial process in biology is the conversion of the genetic information into functional proteins that carry out the genetic program. However, a supplementary step is required to obtain functional proteins: the folding of the newly translated polypeptides into well-defined, three-dimensional conformations. Proteins chaperones are crucial for this final step in the readout of genetic information, which results in the formation of functional proteins. In this review, a special attention will be given to the strategies targeting hsp90 family members in order to increase cancer cell death. We argue that disruption of hsp90 machinery and the further client protein degradation is the main consequence of hsp90 oxidative cleavage taking place at the N-terminal nucleotide-binding site. Moreover, modulation of Grp94 expression will be discussed as a potential therapeutic goal looking for a decrease in cancer relapses.
Collapse
|
27
|
Cho TM, Kim JY, Kim YJ, Sung D, Oh E, Jang S, Farrand L, Hoang VH, Nguyen CT, Ann J, Lee J, Seo JH. C-terminal HSP90 inhibitor L80 elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Cancer Lett 2019; 447:141-153. [DOI: 10.1016/j.canlet.2019.01.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
|
28
|
Zhou JW, Tang JJ, Sun W, Wang H. PGK1 facilities cisplatin chemoresistance by triggering HSP90/ERK pathway mediated DNA repair and methylation in endometrial endometrioid adenocarcinoma. Mol Med 2019; 25:11. [PMID: 30925862 PMCID: PMC6441178 DOI: 10.1186/s10020-019-0079-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Endometrial carcinoma represents one of the most common cancer types of the female reproductive tract. If diagnosed at an early stage, the 5-year survival rate is promising. However, recurrence and chemoresistance remain problematic for at least 15% of the patients. In the present study, we aim to reveal the mechanism by which PGK1 regulates chemoresistance in endometrial carcinoma. Methods qPCR was performed to detect expression of PGK1 in clinical tissue samples of endometrial carcinoma. Specific shRNAs were employed to knockdown PGK1 expression in endometrial cancer cell lines. MTT assay was used to evaluate cell viability and cisplatin sensitivity of endometrial carcinoma cell lines. Western blot was performed to assess the effects of PGK1 knockdown on the expression levels of HSP90, DNA repair-associated proteins (c-JUN, FOSL1, and POLD1), and DNA methylation-related enzymes (DNMT1, DNMT3A and DNMT3B). Immunoprecipitation was performed to verify direct binding between PGK1 and HSP90. Results We first showed that PGK1 expression is elevated in tumor tissues of endometrial cancer, and high PGK1 levels are associated with clinical stages and metastasis. Knockdown of PGK1 inhibits proliferation of endometrial cancer cells, and enhances the inhibitory effect of cisplatin on cell viability. In addition, knockdown of PGK1 down-regulates the expression of DNA repair-related proteins, methylation-related enzymes, and total cellular methylation level. PGK1 was next shown to interact directly with HSP90 and exhibit pro-tumor effects by modulating the ATPase activity of HSP90. Conclusions We propose that PGK1 mediates DNA repair and methylation through the HSP90/ERK pathway, and eventually enhances the chemoresistance to cisplatin. The results provide new insights on functions of PGK1 and HSP90, which might make them as promising targets for endometrial cancer chemotherapy.
Collapse
Affiliation(s)
- Jing-Wei Zhou
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China.
| | - Juan-Juan Tang
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| | - Wei Sun
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| | - Hui Wang
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| |
Collapse
|
29
|
He Q, Zhao L, Liu X, Zheng J, Liu Y, Liu L, Ma J, Cai H, Li Z, Xue Y. MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:9. [PMID: 30621721 PMCID: PMC6323715 DOI: 10.1186/s13046-018-0990-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Abstract
Background RNA binding proteins (RBPs) have been reported to interact with RNAs to regulate gene expression. Circular RNAs (circRNAs) are a type of endogenous non-coding RNAs, which involved in the angiogenesis of tumor. The purpose of this study is to elucidate the potential roles and molecular mechanisms of MOV10 and circ-DICER1 in regulating the angiogenesis of glioma-exposed endothelial cells (GECs). Methods The expressions of circ-DICER1, miR-103a-3p and miR-382-5p were detected by real-time PCR. The expressions of MOV10, ZIC4, Hsp90 and PI3K/Akt were detected by real-time PCR or western blot. The binding ability of circ-SHKBP1 and miR-544a / miR-379, ZIC4 and miR-544a / miR-379 were analyzed with Dual-Luciferase Reporter System or RIP experiment. The direct effects of ZIC4 on the Hsp90β promoter were analyzed by the ChIP experiment. The cell viability, migration and tube formation in vitro were detected by CCK-8, Transwell assay and Matrigel tube formation assay. The angiogenesis in vivo was evaluated by Matrigel plug assay. Student’s t-test (two tailed) was used for comparisons between two groups. One-way analysis of variance (ANOVA) was used for multi-group comparisons followed by Bonferroni post-hoc analysis. Results The expressions of RNA binding proteins MOV10, circ-DICER1, ZIC4, and Hsp90β were up-regulated in GECs, while miR103a-3p/miR-382-5p were down-regulated. MOV10 binding circ-DICER1 regulated the cell viability, migration, and tube formation of GECs. And the effects of both MOV10 and circ-DICER1 silencing were better than the effects of MOV10 or circ-DICER1 alone silencing. In addition, circ-DICER1 acts as a molecular sponge to adsorb miR-103a-3p / miR-382-5p and impair the negative regulation of miR-103a-3p / miR-382-5p on ZIC4 in GECs. Furthermore, ZIC4 up-regulates the expression of its downstream target Hsp90β, and Hsp90 promotes the cell viability, migration, and tube formation of GECs by activating PI3K/Akt signaling pathway. Conclusions MOV10 / circ-DICER1 / miR-103a-3p (miR-382-5p) / ZIC4 pathway plays a vital role in regulating the angiogenesis of glioma. Our findings not only provides novel mechanisms for the angiogenesis of glioma, but also provide potential targets for anti-angiogenesis therapies of glioma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0990-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianru He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lini Zhao
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
30
|
Kang J, Young Lee J, Taş İ, More KN, Kim H, Park JH, Chang DJ. Radiosynthesis, biological evaluation and preliminary microPET study of 18F-labeled 5-resorcinolic triazolone derivative based on ganetespib targeting HSP90. Bioorg Med Chem Lett 2018; 28:3658-3664. [DOI: 10.1016/j.bmcl.2018.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
|
31
|
Prince T, Ackerman A, Cavanaugh A, Schreiter B, Juengst B, Andolino C, Danella J, Chernin M, Williams H. Dual targeting of HSP70 does not induce the heat shock response and synergistically reduces cell viability in muscle invasive bladder cancer. Oncotarget 2018; 9:32702-32717. [PMID: 30220976 PMCID: PMC6135696 DOI: 10.18632/oncotarget.26021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Muscle invasive bladder cancer (MIBC) is a common malignancy and major cause of morbidity worldwide. Over the last decade mortality rates for MIBC have not decreased as compared to other cancers indicating a need for novel strategies. The molecular chaperones HSP70 and HSP90 fold and maintain the 3-dimensional structures of numerous client proteins that signal for cancer cell growth and survival. Inhibition of HSP70 or HSP90 results in client protein degradation and associated oncogenic signaling. Here we targeted HSP70 and HSP90 with small molecule inhibitors that trap or block each chaperone in a low client-affinity “open” conformation. HSP70 inhibitors, VER155008 (VER) and MAL3-101 (MAL), along with HSP90 inhibitor, STA-9090 (STA), were tested alone and in combination for their ability to reduce cell viability and alter protein levels in 4 MIBC cell lines. When combined, VER+MAL synergistically reduced cell viability in each MIBC cell line while not inducing expression of heat shock proteins (HSPs). STA+MAL also synergistically reduced cell viability in each cell line but induced expression of cytoprotective HSPs indicating the merits of targeting HSP70 with VER+MAL. Additionally, we observed that STA induced the expression of the stress-related transcription factor HSF2 while reducing levels of the co-chaperone TTI1.
Collapse
Affiliation(s)
- Thomas Prince
- Urology Department, Geisinger Clinic, Danville, 17822 PA, USA.,Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| | - Andrew Ackerman
- Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| | - Alice Cavanaugh
- Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| | | | - Brendon Juengst
- Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| | - Chaylen Andolino
- Biology Department, Bucknell University, Lewisburg, 17837 PA, USA
| | - John Danella
- Urology Department, Geisinger Clinic, Danville, 17822 PA, USA
| | - Mitch Chernin
- Biology Department, Bucknell University, Lewisburg, 17837 PA, USA
| | - Heinric Williams
- Urology Department, Geisinger Clinic, Danville, 17822 PA, USA.,Weis Center for Research, Geisinger Clinic, Danville, 17822 PA, USA
| |
Collapse
|
32
|
Abstract
From bacteria to humans, ancient stress responses enable organisms to contend with damage to both the genome and the proteome. These pathways have long been viewed as fundamentally separate responses. Yet recent discoveries from multiple fields have revealed surprising links between the two. Many DNA-damaging agents also target proteins, and mutagenesis induced by DNA damage produces variant proteins that are prone to misfolding, degradation, and aggregation. Likewise, recent studies have observed pervasive engagement of a p53-mediated response, and other factors linked to maintenance of genomic integrity, in response to misfolded protein stress. Perhaps most remarkably, protein aggregation and self-assembly has now been observed in multiple proteins that regulate the DNA damage response. The importance of these connections is highlighted by disease models of both cancer and neurodegeneration, in which compromised DNA repair machinery leads to profound defects in protein quality control, and vice versa.
Collapse
|
33
|
McCann KE, Hurvitz SA. Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context 2018; 7:212540. [PMID: 30116283 PMCID: PMC6089618 DOI: 10.7573/dic.212540] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022] Open
Abstract
Poly-ADP-ribose polymerase 1 (PARP-1) and PARP-2 are DNA damage sensors that are most active during S-phase of the cell cycle and that have wider-reaching roles in DNA repair than originally described. BRCA1 and BRCA2 (Breast Cancer) proteins are involved in homologous recombination repair (HRR), which requires a homologous chromosome or sister chromatid as a template to faithfully repair DNA double-strand breaks. The small-molecule NAD+ mimetics, olaparib, niraparib, rucaparib, veliparib, and talazoparib, inhibit the catalytic activity of PARP-1 and PARP-2 and are currently being studied in later-stage clinical trials. PARP inhibitor clinical trials have predominantly focused on patients with breast and ovarian cancer with deleterious germline BRCA1 and BRCA2 mutations (gBRCA1/2+) but are now expanding to include cancers with known, suspected, or more-likely-than-not defects in homologous recombination repair. In ovarian cancer, this group also includes women whose cancers are responsive to platinum therapy. Olaparib was FDA-approved in January 2018 for the treatment of gBRCA1/2+ metastatic breast cancers. gBRCA1+ predisposes women to develop triple-negative breast cancers, while women with gBRCA2+ tend to develop hormone-receptor-positive, human epidermal growth factor receptor 2 negative breast cancers. Although PARP inhibitor monotherapy strategies seem most effective in cancers with homologous recombination repair defects, combination strategies may allow expansion into a wider range of cancers. By interfering with DNA repair, PARP inhibitors essentially sensitize cells to DNA-damaging chemotherapies and radiation therapy. Certainly, one could also consider expanding the utility of PARP inhibitors beyond gBRCA1/2+ cancers by causing DNA damage with cytotoxic agents in the presence of a DNA repair inhibitor. Unfortunately, in numerous phase I clinical trials utilizing a combination of cytotoxic chemotherapy at standard doses with dose-escalation of PARP inhibitors, there has generally been failure to reach monotherapy dosages of PARP inhibitors due to myelosuppressive toxicities. Strategies utilizing angiogenesis inhibitors and immune checkpoint inhibitors are generally not hindered by additive toxicities, though the utility of combining PARP inhibitors with treatments that have not been particularly effective in breast cancers somewhat tempers enthusiasm. Finally, there are combination strategies that may serve to mitigate resistance to PARP inhibitors, namely, upregulation of the intracellular PhosphoInositide-3-kinase, AK thymoma (protein kinase B), mechanistic target of rapamycin (PI3K-AKT-mTOR) pathway, or perhaps are more simply meant to interfere with a cell growth pathway heavily implicated in breast cancers while administering relatively well-tolerated PARP inhibitor therapy.
Collapse
Affiliation(s)
- Kelly E McCann
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Sara A Hurvitz
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
34
|
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 2018; 27:3040-3054. [PMID: 29920826 DOI: 10.1111/mec.14769] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
Abstract
Heat-shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat-shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat-shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in "omic" quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat-shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade-offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Martin E Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. It's not magic - Hsp90 and its effects on genetic and epigenetic variation. Semin Cell Dev Biol 2018; 88:21-35. [PMID: 29807130 DOI: 10.1016/j.semcdb.2018.05.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Canalization, or phenotypic robustness in the face of environmental and genetic perturbation, is an emergent property of living systems. Although this phenomenon has long been recognized, its molecular underpinnings have remained enigmatic until recently. Here, we review the contributions of the molecular chaperone Hsp90, a protein that facilitates the folding of many key regulators of growth and development, to canalization of phenotype - and de-canalization in times of stress - drawing on studies in eukaryotes as diverse as baker's yeast, mouse ear cress, and blind Mexican cavefish. Hsp90 is a hub of hubs that interacts with many so-called 'client proteins,' which affect virtually every aspect of cell signaling and physiology. As Hsp90 facilitates client folding and stability, it can epistatically suppress or enable the expression of genetic variants in its clients and other proteins that acquire client status through mutation. Hsp90's vast interaction network explains the breadth of its phenotypic reach, including Hsp90-dependent de novo mutations and epigenetic effects on gene regulation. Intrinsic links between environmental stress and Hsp90 function thus endow living systems with phenotypic plasticity in fluctuating environments. As environmental perturbations alter Hsp90 function, they also alter Hsp90's interaction with its client proteins, thereby re-wiring networks that determine the genotype-to-phenotype map. Ensuing de-canalization of phenotype creates phenotypic diversity that is not simply stochastic, but often has an underlying genetic basis. Thus, extreme phenotypes can be selected, and assimilated so that they no longer require environmental stress to manifest. In addition to acting on standing genetic variation, Hsp90 perturbation has also been linked to increased frequency of de novo variation and several epigenetic phenomena, all with the potential to generate heritable phenotypic change. Here, we aim to clarify and discuss the multiple means by which Hsp90 can affect phenotype and possibly evolutionary change, and identify their underlying common feature: at its core, Hsp90 interacts epistatically through its chaperone function with many other genes and their gene products. Its influence on phenotypic diversification is thus not magic but rather a fundamental property of genetics.
Collapse
Affiliation(s)
- Rebecca A Zabinsky
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
36
|
Radli M, Rüdiger SGD. Dancing with the Diva: Hsp90-Client Interactions. J Mol Biol 2018; 430:3029-3040. [PMID: 29782836 DOI: 10.1016/j.jmb.2018.05.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
Abstract
The molecular chaperone Hsp90 is involved in the folding, maturation, and degradation of a large number structurally and sequentially unrelated clients, often connected to serious diseases. Elucidating the principles of how Hsp90 recognizes this large variety of substrates is essential for comprehending the mechanism of this chaperone machinery, as well as it is a prerequisite for the design of client specific drugs targeting Hsp90. Here, we discuss the recent progress in understanding the substrate recognition principles of Hsp90 and its implications for the role of Hsp90 in the lifecycle of proteins. Hsp90 acts downstream of the chaperone Hsp70, which exposes its substrate to a short and highly hydrophobic cleft. The subsequently acting Hsp90 has an extended client-binding interface that enables a large number of low-affinity contacts. Structural studies show interaction modes of Hsp90 with the intrinsically disordered Alzheimer's disease-causing protein Tau, the kinase Cdk4 in a partially unfolded state and the folded ligand-binding domain of a steroid receptor. Comparing the features shared by these different proteins provides a picture of the substrate-binding principles of Hsp90.
Collapse
Affiliation(s)
- Martina Radli
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Fan YJ, Zhou YX, Zhang LR, Lin QF, Gao PZ, Cai F, Zhu LP, Liu B, Xu JH. C1206, a novel curcumin derivative, potently inhibits Hsp90 and human chronic myeloid leukemia cells in vitro. Acta Pharmacol Sin 2018; 39:649-658. [PMID: 29219946 DOI: 10.1038/aps.2017.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/16/2017] [Indexed: 12/30/2022]
Abstract
4-(4-Pyridinyl methylene) curcumin (C1206) is a new derivative of curcumin that is more active than curcumin in inhibition of heat shock protein 90 (Hsp90) and antitumor action. In this study we investigated the relationship between C1206-induced inhibition of Hsp90 and its anti-leukemic effects. The fluorescence quenching experiments showed that C1206 seemed to bind the middle dimerization domain of Hsp90. The interaction between C1206 and Hsp90 was driven mainly by electrostatic interaction. In in vitro enzyme activity assay, C1206 dose-dependently inhibited Hsp90 ATPase activity with an IC50 value of 4.17 μmol/L. In both imatinib-sensitive K562 chronic myeloid leukemia cells and imatinib-resistant K562/G01 chronic myeloid leukemia cells, C1206 (0.4-3.2 μmol/L) dose-dependently caused the degradation of Hsp90 client proteins and downstream proteins (AKT, MEK, ERK, C-RAF, P-AKT, P-MEK and P-ERK). Furthermore, C1206 (0.4-3.2 μmol/L) dose-dependently induced apoptosis of K562 and K562/G01 cells through triggering mitochondrial pathway. Consistent with this result, C1206 inhibited the proliferation of K562 and K562/G01 cells with IC50 values of 1.10 and 0.60 μmol/L, respectively. These results suggest that C1206 is a novel Hsp90 inhibitor and a promising therapeutic agent for chronic myeloid leukemia.
Collapse
|
38
|
Ghadban T, Dibbern JL, Reeh M, Miro JT, Tsui TY, Wellner U, Izbicki JR, Güngör C, Vashist YK. HSP90 is a promising target in gemcitabine and 5-fluorouracil resistant pancreatic cancer. Apoptosis 2018; 22:369-380. [PMID: 27878398 DOI: 10.1007/s10495-016-1332-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemotherapy (CT) options in pancreatic cancer (PC) are limited to gemcitabine and 5-fluorouracil (5-FU). Several identified molecular targets in PC represent client proteins of HSP90. HSP90 is a promising target since it interferes with many oncogenic signaling pathways simultaneously. The aim of this study was to evaluate the efficacy of different HSP90 inhibitors in gemcitabine and 5-FU resistant PC. PC cell lines 5061, 5072 and 5156 were isolated and brought in to culture from patients being operated at our institution. L3.6pl cell line served as a control. Anti-proliferative efficacy of three different HSP90 inhibitors (17-AAG, 17-DMAG and 17-AEPGA) was evaluated by the MTT assay. Alterations in signaling pathway effectors and apoptosis upon HSP90 inhibition were determined by western blot analysis and annexin V/PI staining. The cell lines 5061, 5072 and 5156 were resistant to gemcitabine and 5-FU. In contrast 17-AAG and the water-soluble derivates 17-DMAG and 17-AEPGA displayed high anti-proliferative activity in all tested cell lines. The calculated IC50 was below 1 µM. Highly significant down regulation of epidermal-growth-factor-receptor, insulin-like-growth-factor-receptor-1, AKT and MAPK reflected the intracellular molecular signaling-network disruption. Furthermore, besides HSP70 also HSP27 was upregulated in all cell lines. Apoptosis occurred early under HSP90 inhibition and was determined by annexin V/PI staining and CASPASE-3 and PARP assay. In contrast, gemcitabine treated cells did not show any apoptosis. HSP90 inhibition disrupts multiple signaling cascades in gemcitabine and 5-FU resistant PC simultaneously and promotes cancer cell apoptosis. Watersoluble 17-DMAG is equally effective as 17-AAG. HSP27, besides HSP70, may represent an effective response marker of successful HSP90 inhibition.
Collapse
Affiliation(s)
- Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Judith L Dibbern
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jameel T Miro
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tung Y Tsui
- Department of Surgery, University Medical College Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Ulrich Wellner
- Clinic for Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yogesh K Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,Department of Visceral Surgery, Kantonsspital Aarau AG, Tellstrasse 25, 5001, Aarau, Switzerland.
| |
Collapse
|
39
|
Joshi SS, Jiang S, Unni E, Goding SR, Fan T, Antony PA, Hornyak TJ. 17-AAG inhibits vemurafenib-associated MAP kinase activation and is synergistic with cellular immunotherapy in a murine melanoma model. PLoS One 2018; 13:e0191264. [PMID: 29481571 PMCID: PMC5826531 DOI: 10.1371/journal.pone.0191264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone which stabilizes client proteins with important roles in tumor growth. 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of HSP90 ATPase activity, occupies the ATP binding site of HSP90 causing a conformational change which destabilizes client proteins and directs them towards proteosomal degradation. Malignant melanomas have active RAF-MEK-ERK signaling which can occur either through an activating mutation in BRAF (BRAFV600E) or through activation of signal transduction upstream of BRAF. Prior work showed that 17-AAG inhibits cell growth in BRAFV600E and BRAF wildtype (BRAFWT) melanomas, although there were conflicting reports about the dependence of BRAFV600E and BRAFWT upon HSP90 activity for stability. Here, we demonstrate that BRAFWT and CRAF are bound by HSP90 in BRAFWT, NRAS mutant melanoma cells. HSP90 inhibition by 17-AAG inhibits ERK signaling and cell growth by destabilizing CRAF but not BRAFWT in the majority of NRAS mutant melanoma cells. The highly-selective BRAFV600E inhibitor, PLX4032 (vemurafenib), inhibits ERK signaling and cell growth in mutant BRAF melanoma cells, but paradoxically enhances signaling in cells with wild-type BRAF. In our study, we examined whether 17-AAG could inhibit PLX4032-enhanced ERK signaling in BRAFWT melanoma cells. As expected, PLX4032 alone enhanced ERK signaling in the BRAFWT melanoma cell lines Mel-Juso, SK-Mel-2, and SK-Mel-30, and inhibited signaling and cell growth in BRAFV600E A375 cells. However, HSP90 inhibition by 17-AAG inhibited PLX4032-enhanced ERK signaling and inhibited cell growth by destabilizing CRAF. Surprisingly, 17-AAG also stimulated melanin production in SK-Mel-30 cells and enhanced TYRP1 and DCT expression without stimulating TYR production in all three BRAFWT cell lines studied as well as in B16F10 mouse melanoma cells. In vivo, the combination of 17-AAG and cellular immunotherapy directed against Tyrp1 enhanced the inhibition of tumor growth compared to either therapy alone. Our studies support a role for 17-AAG and HSP90 inhibition in enhancing cellular immunotherapy for melanoma.
Collapse
Affiliation(s)
- Sandeep S. Joshi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shunlin Jiang
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Emmanual Unni
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen R. Goding
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tao Fan
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Paul A. Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas J. Hornyak
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Heske CM, Mendoza A, Edessa LD, Baumgart JT, Lee S, Trepel J, Proia DA, Neckers L, Helman LJ. STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget 2018; 7:65540-65552. [PMID: 27608846 PMCID: PMC5323173 DOI: 10.18632/oncotarget.11869] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
Long-term survival in patients with metastatic, relapsed, or recurrent Ewing sarcoma and rhabdomyosarcoma is dismal. Irinotecan, a topoisomerase 1 inhibitor, has activity in these sarcomas, but due to poor bioavailability of its active metabolite (SN-38) has had limited clinical efficacy. In this study we have evaluated the efficacy and toxicity of STA-8666, a novel drug conjugate which uses an HSP90 inhibitor to facilitate intracellular, tumor-targeted delivery of the topoisomerase 1 inhibitor SN-38, thus preferentially delivering and concentrating SN-38 within tumor tissue. We present in vivo evidence from mouse xenograft models that STA-8666 results in more persistent inhibition of topoisomerase 1 and prolonged DNA damage compared to irinotecan. This translates into superior antitumor efficacy and survival in multiple aggressive models of both diseases in mouse xenografts, as well as in an irinotecan-resistant model of pediatric osteosarcoma, demonstrated by dramatic tumor shrinkage, durable remission and prolonged complete regressions following short-term treatment, compared to conventional irinotecan. Gene expression analysis performed on xenograft tumors treated with either irinotecan or STA-8666 showed that STA-8666 affected expression of DNA damage and repair genes more robustly than irinotecan. These results suggest that STA-8666 may be a promising new agent for patients with pediatric-type sarcoma.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leah D Edessa
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua T Baumgart
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jane Trepel
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Len Neckers
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lee J Helman
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Chen C, Zhuang Y, Chen X, Chen X, Li D, Fan Y, Xu J, Chen Y, Wu L. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells. Oncotarget 2018; 8:10025-10036. [PMID: 28036294 PMCID: PMC5354638 DOI: 10.18632/oncotarget.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022] Open
Abstract
Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states.
Collapse
Affiliation(s)
- Chun Chen
- Deptartment of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Fuijan Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China
| | - Yingting Zhuang
- Deptartment of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Fuijan Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China
| | - Xianling Chen
- Fujian Institute of Hematology, Union Hospital, FMU, Fuzhou, China
| | - Xiaole Chen
- Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Fuijan Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Deptartment of Biopharmaceutics, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China
| | - Ding Li
- Deptartment of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Fuijan Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China
| | - Yingjuan Fan
- Deptartment of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Fuijan Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China
| | - Jianhua Xu
- Deptartment of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Fuijan Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China
| | - Yuanzhong Chen
- Fujian Institute of Hematology, Union Hospital, FMU, Fuzhou, China
| | - Lixian Wu
- Deptartment of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Institute of Materia Medica, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China.,Fuijan Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, China
| |
Collapse
|
42
|
Mohammadi-Ostad-Kalayeh S, Stahl F, Scheper T, Kock K, Herrmann C, Heleno Batista FA, Borges JC, Sasse F, Eichner S, Ongouta J, Zeilinger C, Kirschning A. Heat Shock Proteins Revisited: Using a Mutasynthetically Generated Reblastatin Library to Compare the Inhibition of Human and Leishmania Hsp90s. Chembiochem 2018; 19:562-574. [PMID: 29265716 DOI: 10.1002/cbic.201700616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Thirteen new reblastatin derivatives, with alkynyl, amino and fluoro substituents on the aromatic ring, were prepared by a chemo-biosynthetic approach using an AHBA(-) mutant strain of Streptomyces hygroscopicus, the geldanamycin producer. The inhibitory potencies of these mutaproducts and of an extended library of natural products and derivatives were probed with purified heat shock proteins (Hsps), obtained from Leishmania braziliensis (LbHsp90) as well as from human sources (HsHsp90). We determined the activities of potential inhibitors by means of a displacement assay in which fluorescence-labelled ATP competes for the ATP binding sites of Hsps in the presence of the inhibitor in question. The results were compared with those of cell-based assays and, in selected cases, of isothermal titration calorimetry (ITC) measurements. In essence, reblastatin derivatives are also able to bind effectively to the ATP-binding site of LbHsp90, and for selected derivatives, moderate differences in binding to LbHsp90 and HsHsp90 were encountered. This work demonstrates that parasitic heat shock proteins can be developed as potential pharmaceutical targets.
Collapse
Affiliation(s)
- Sona Mohammadi-Ostad-Kalayeh
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Frank Stahl
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - Klaus Kock
- Physical Chemistry I, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | | | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos, SP, 13560-970, Brazil
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Center of Infectious Research (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Simone Eichner
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Jekaterina Ongouta
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Carsten Zeilinger
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
43
|
Lv C, Zeng HW, Wang JX, Yuan X, Zhang C, Fang T, Yang PM, Wu T, Zhou YD, Nagle DG, Zhang WD. The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death Dis 2018; 9:165. [PMID: 29416003 PMCID: PMC5833361 DOI: 10.1038/s41419-017-0247-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Tanshinone IIA (Tan IIA), the primary bioactive compound derived from the traditional Chinese medicine (TCM) Salvia miltiorrhiza Bunge, has been reported to possess antitumor activity. However, its antitumor mechanisms are not fully understood. To resolve the potential antitumor mechanism(s) of Tan IIA, its gene expression profiles from our database was analyzed by connectivity map (CMAP) and the CMAP-based mechanistic predictions were confirmed/validated in further studies. Specifically, Tan IIA inhibited total protein kinase C (PKC) activity and selectively suppressed the expression of cytosolic and plasma membrane PKC isoforms ζ and ε. The Ras/MAPK pathway that is closely regulated by the PKC signaling is also inhibited by Tan IIA. While Tan IIA did not inhibit heat shock protein 90 (Hsp90), it synergistically enhanced the antitumor efficacy of the Hsp90 inhibitors 17-AAG and ganetespib in human breast cancer MCF-7 cells. In addition, Tan IIA significantly inhibited PI3K/Akt/mTOR signaling, and induced both cell cycle arrest and autophagy. Collectively, these studies provide new insights into the molecular mechanisms responsible for antitumor activity of Tan IIA.
Collapse
Affiliation(s)
- Chao Lv
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China
| | - Hua-Wu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, P.R. China
| | - Jin-Xin Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, P.R. China
| | - Xing Yuan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, P.R. China
| | - Chuang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan, 450001, P.R. China
| | - Ting Fang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, 350108, P.R. China
| | - Pei-Ming Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China
| | - Tong Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China
| | - Yu-Dong Zhou
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, Mississippi, MS, 38677-1848, USA
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, MS, 38677-1848, USA
| | - Wei-Dong Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, P.R. China.
| |
Collapse
|
44
|
Rozenberg P, Ziporen L, Gancz D, Saar-Ray M, Fishelson Z. Cooperation between Hsp90 and mortalin/GRP75 in resistance to cell death induced by complement C5b-9. Cell Death Dis 2018; 9:150. [PMID: 29396434 PMCID: PMC5833442 DOI: 10.1038/s41419-017-0240-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells are commonly more resistant to cell death activated by the membranolytic protein complex C5b-9. Several surface-expressed and intracellular proteins that protect cells from complement-dependent cytotoxicity (CDC) have been identified. In this study, we investigated the function of heat shock protein 90 (Hsp90), an essential and ubiquitously expressed chaperone, overexpressed in cancer cells, in C5b-9-induced cell death. As shown, inhibition of Hsp90 with geldanamycin or radicicol is enhancing sensitivity of K562 erythroleukemia cells to CDC. Similarly, Hsp90 inhibition confers in Ramos B cell lymphoma cells elevated sensitivity to treatment with rituximab and complement. C5b-9 deposition is elevated on geldanamycin-treated cells. Purified Hsp90 binds directly to C9 and inhibits zinc-induced C9 polymerization, indicating that Hsp90 may act directly on the C5b-9 complex. Mortalin, also known as stress protein 70 or GRP75, is a mitochondrial chaperone that confers resistance to CDC. The postulated cooperation between Hsp90 and mortalin in protection from CDC was tested. Geldanamycin failed to sensitize toward CDC cells with knocked down mortalin. Direct binding of Hsp90 to mortalin was shown by co-immunoprecipitation in cell extracts after triggering with complement as well as by using purified recombinant proteins. These results provide an insight into the protective mechanisms utilized by cancer cells to evade CDC. They suggest that Hsp90 protects cells from CDC by inhibiting, together with mortalin, C5b-9 assembly and/or stability at the plasma membrane.
Collapse
Affiliation(s)
- Perri Rozenberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Lea Ziporen
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dana Gancz
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Moran Saar-Ray
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
45
|
Karayazi Atici Ö, Urbanska A, Gopinathan SG, Boutillon F, Goffin V, Shemanko CS. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage. Endocrinology 2018; 159:907-930. [PMID: 29186352 DOI: 10.1210/en.2017-00652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents.
Collapse
Affiliation(s)
- Ödül Karayazi Atici
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Urbanska
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sesha Gopal Gopinathan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Carrie S Shemanko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
46
|
Novel poly-ADP-ribose polymerase inhibitor combination strategies in ovarian cancer. Curr Opin Obstet Gynecol 2018; 30:7-16. [DOI: 10.1097/gco.0000000000000428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2018; 7:44879-44905. [PMID: 27270647 PMCID: PMC5216692 DOI: 10.18632/oncotarget.9821] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga L Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | |
Collapse
|
48
|
Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis. Cell Rep 2018; 19:680-687. [PMID: 28445720 DOI: 10.1016/j.celrep.2017.03.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 11/22/2022] Open
Abstract
The Hsp90 chaperone is essential in eukaryotes and activates a large array of client proteins. In contrast, its role is still elusive in bacteria, and only a few Hsp90 bacterial clients are known. Here, we found that Hsp90 is essential in the model bacterium Shewanella oneidensis under heat stress. A genetic screen for Hsp90 client proteins identified TilS, an essential protein involved in tRNA maturation. Overexpression of TilS rescued the growth defect of the hsp90 deletion strain under heat stress. In vivo, the activity and the amount of TilS were significantly reduced in the absence of Hsp90 at high temperature. Furthermore, we showed that Hsp90 interacts with TilS, and Hsp90 prevents TilS aggregation in vitro at high temperature. Together, our results indicate that TilS is a client of Hsp90 in S. oneidensis. Therefore, our study links the essentiality of bacterial Hsp90 at high temperature with the identification of a client.
Collapse
|
49
|
Zhang XH, Wu H, Tang S, Li QN, Xu J, Zhang M, Su YN, Yin B, Zhao QL, Kemper N, Hartung J, Bao ED. Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro. J Vet Sci 2018; 18:129-140. [PMID: 27297424 PMCID: PMC5489459 DOI: 10.4142/jvs.2017.18.2.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022] Open
Abstract
To determine heat-shock protein (Hsp)90 expression is connected with cellular apoptotic response to heat stress and its mechanism, chicken (Gallus gallus) primary myocardial cells were treated with the Hsp90 promoter, aspirin, and its inhibitor, geldanamycin (GA), before heat stress. Cellular viability, heat-stressed apoptosis and reactive oxygen species level under different treatments were measured, and the expression of key proteins of the signaling pathway related to Hsp90 and their colocalization with Hsp90 were detected. The results showed that aspirin treatment increased the expression of protein kinase B (Akt), the signal transducer and activator of transcription (STAT)-3 and p-IKKα/β and the colocalization of Akt and STAT-3 with Hsp90 during heat stress, which was accompanied by improved viability and low apoptosis. GA significantly inhibited Akt expression and p-IKKα/β level, but not STAT-3 quantity, while the colocalization of Akt and STAT-3 with Hsp90 was weakened, followed by lower cell viability and higher apoptosis. Aspirin after GA treatment partially improved the stress response and apoptosis rate of tested cells caused by the recovery of Akt expression and colocalization, rather than the level of STAT-3 (including its co-localization with Hsp90) and p-IKKα/β. Therefore, Hsp90 expression has a positive effect on cellular capacity to resist heat-stressed injury and apoptosis. Moreover, inhibition of Hsp90 before stress partially attenuated its positive effects.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao-Ning Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing 210038, China
| | - Ya-Nan Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi-Ling Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover 30173, Germany
| | - Joerg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover 30173, Germany
| | - En-Dong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
50
|
Boroumand N, Saghi H, Avan A, Bahreyni A, Ryzhikov M, Khazaei M, Hassanian SM. Therapeutic potency of heat-shock protein-90 pharmacological inhibitors in the treatment of gastrointestinal cancer, current status and perspectives. J Pharm Pharmacol 2017; 70:151-158. [DOI: 10.1111/jphp.12824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/26/2017] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Heat-shock protein-90 (HSP90) chaperone machinery is critical to the folding, stability and activity of several client proteins including many responsible for tumour initiation, progression and metastasis. Overexpression of HSP90 is correlated with poor prognosis of GI cancer.
Key findings
Pharmacological inhibitors of HSP90 suppress tumorigenic effects of HSP90 by suppressing angiogenesis, survival, metastasis and drug resistance in GI cancer. This review summarizes the role of HSP90 inhibitors in the treatment of GI cancer.
Summary
We have presented different antitumour mechanisms of HSP90 inhibitors in cancer treatment. Suppression of HSP90 signalling via specific and novel pharmacological inhibitors is a potentially novel therapeutic approach for patients with GI cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Nadia Boroumand
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Saghi
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|