1
|
Nagashima S, Primadharsini PP, Takahashi M, Nishiyama T, Murata K, Okamoto H. Role of Rab13, Protein Kinase A, and Zonula Occludens-1 in Hepatitis E Virus Entry and Cell-to-Cell Spread: Comparative Analysis of Quasi-Enveloped and Non-Enveloped Forms. Pathogens 2024; 13:1130. [PMID: 39770389 PMCID: PMC11678111 DOI: 10.3390/pathogens13121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA. Further investigation into the involvement of tight junction (TJ) proteins revealed that the targeted knockdown of zonula occludens-1 (ZO-1) significantly impaired the entry of both eHEV and neHEV. In addition, in ZO-1 knockout (KO) cells inoculated with either viral form, HEV RNA levels in culture supernatants did not increase, even up to 16 days post-inoculation. Notably, the absence of ZO-1 did not affect the adsorption efficiency of eHEV or neHEV, nor did it influence HEV RNA replication. In cell-to-cell spread assays, ZO-1 KO cells inoculated with eHEV showed a lack of expression of HEV ORF2 and ORF3 proteins. In contrast, neHEV-infected ZO-1 KO cells showed markedly reduced ORF2 and ORF3 protein expression within virus-infected foci, compared to non-targeting knockout (NC KO) cells. These findings underscore the crucial role of ZO-1 in facilitating eHEV entry and mediating the cell-to-cell spread of neHEV in infected cells.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| | | | | | | | | | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| |
Collapse
|
2
|
Ruiz-Ponsell L, Monastiri A, López-Roig M, Sauleda S, Bes M, Mentaberre G, Escobar-González M, Costafreda MI, López-Olvera JR, Serra-Cobo J. Endemic maintenance of human-related hepatitis E virus strains in synurbic wild boars, Barcelona Metropolitan Area, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176871. [PMID: 39395489 DOI: 10.1016/j.scitotenv.2024.176871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Hepatitis E virus (HEV), shared by humans, domestic animals, and wildlife, is an emerging global public health threat. Because wild boars are a major reservoir of HEV, the new zoonotic interfaces resulting from wild boar population increase and synurbization significantly contribute to increasing the risk of zoonotic transmission of HEV. This study characterizes HEV strains of synurbic wild boars and assesses their relationship with sympatric human and domestic swine HEV strains. We analyzed the faeces of 312 synurbic wild boars collected from 2016 to 2021 in the Barcelona Metropolitan Area (BMA), where there is a high density of wild boars, and found 7 HEV-positive samples among those collected between 2019 and 2020. The molecular analysis of these isolates, along with 6 additional wild boar HEV isolates from a previous study, allowed us to establish a close phylogenetic relationship between these HEV strains and human HEV isolates from sympatric blood donors and domestic pigs from Catalonia. HEV-positive wild boar samples belonged to piglet, juvenile and yearling individuals, but not adults, indicating the endemic maintenance of HEV in the wild boar population of the BMA by naïve young individuals. All wild boar HEV isolates in this study classified within HEV genotype 3. The results show, for the first time, a close molecular similarity between the HEV strains endemically maintained by the synurbic wild boars in the BMA and citizens from the same area and period. The data could also indicate that HEV infection presents a seasonal and interannual variability in wild boars of BMA. Further investigation is required to unveil the HEV transmission routes between synurbic wild boars and sympatric citizens. These findings can serve in other synurbic wildlife-human interfaces throughout the world.
Collapse
Affiliation(s)
| | - Abir Monastiri
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| | - Marc López-Roig
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| | - Sílvia Sauleda
- Banc de Sang i Teixits de Catalunya, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Bes
- Banc de Sang i Teixits de Catalunya, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Gregorio Mentaberre
- Wildlife Ecology and Health Group, Barcelona, Spain; Universitat de Lleida, Lleida, Spain
| | - María Escobar-González
- Wildlife Ecology and Health Group, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Barcelona, Spain
| | - Maria I Costafreda
- Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Santa Coloma de Gramanet, Spain.
| | - Jorge R López-Olvera
- Wildlife Ecology and Health Group, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Barcelona, Spain
| | - Jordi Serra-Cobo
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| |
Collapse
|
3
|
de Marguerite Nombot-Yazenguet MP, Doté JW, Koyaweda GW, Zemingui-Bembete PA, Selekon B, Vickos U, Manirakiza A, Nakoune E, Gouandjika-Vasilache I, Komas NPJ. Hepatitis E outbreak in the health district of Bocaranga-Koui, Central African Republic, 2018-2019. BMC Infect Dis 2024; 24:215. [PMID: 38374096 PMCID: PMC10875899 DOI: 10.1186/s12879-024-09116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major public health disease causing large outbreaks and sporadic cases of acute hepatitis. We investigated an outbreak of HEV infection that occurred in September 2018 in the health district (HD) of Bocaranga-Koui, located in the northwestern part of Central African Republic (CAR). METHODS Blood samples were collected from 352 patients aged 0-85 years suspected to be infected with yellow fever (YF), according to the World Health Organization YF case definition. The notification forms from recorded cases were used. Water consumed in the HD were also collected. Human samples found negative for anti-YF IgM were then tested by ELISA for anti-HEV IgM and IgG antibodies. Positive anti-HEV (IgM and/or IgG) samples and collected water were then subjected to molecular biology tests using a real time RT-PCR assay, followed by a nested RT-PCR assay for sequencing and phylogenetic analysis. RESULTS Of the 352 icterus patients included, anti-HEV IgM was found in 142 people (40.3%) and anti-HEV IgG in 175 (49.7%). Although HEV infection was detected in all age groups, there was a significant difference between the 0-10 age groups and others age groups (P = 0.001). Elevated levels of serum aminotransferase were observed in anti-HEV IgM-positive subjects. Phylogenetic analysis showed HEV genotype 1e in infected patients as well as in the contaminated water. CONCLUSION This epidemic showed that CAR remains an HEV-endemic area. The genotype 1e strain was responsible for the HEV outbreak in Bocaranga-Koui HD. It is necessary to implement basic conditions of hygiene and sanitation to prevent further outbreaks of a HEV epidemics, to facilitate access to clean drinking water for the population, to launch intensive health education for basic hygiene measures, to sett up targeted hygiene promotion activities and, finally, to ensure that formal health care is available.
Collapse
Affiliation(s)
| | - Joël Wilfried Doté
- Enteric Viruses and Measles Laboratory, Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic
| | - Giscard Wilfried Koyaweda
- Laboratoire National de Biologie Clinique Et de Santé Publique, PO Box 1426, Bangui, Central African Republic
| | | | - Benjamin Selekon
- Arboviruses, Hemorragic Fever Viruses and Zoonosis Virus Laboratory, Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic
| | - Ulrich Vickos
- Department of Medicine, Infectious and Tropical Diseases Unit, Hôpital de L'Amitié Sino-Centrafricaine, Bangui, Central African Republic
| | - Alexandre Manirakiza
- Epidemiological Service, Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic
| | - Emmanuel Nakoune
- Arboviruses, Hemorragic Fever Viruses and Zoonosis Virus Laboratory, Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic
| | - Ionela Gouandjika-Vasilache
- Enteric Viruses and Measles Laboratory, Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic
| | | |
Collapse
|
4
|
Nagashima S, Primadharsini PP, Nishiyama T, Takahashi M, Murata K, Okamoto H. Development of a HiBiT-tagged reporter hepatitis E virus and its utility as an antiviral drug screening platform. J Virol 2023; 97:e0050823. [PMID: 37681960 PMCID: PMC10537679 DOI: 10.1128/jvi.00508-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023] Open
Abstract
Previously, we developed an infectious hepatitis E virus (HEV) harboring the nanoKAZ gene in the hypervariable region of the open reading frame 1 (ORF1) of the HEV3b (JE03-1760F/P10) genome and demonstrated the usefulness for screening anti-HEV drugs that inhibit the early infection process. In the present study, we constructed another reporter HEV (HEV3b-HiBiT) by placing a minimized HiBiT tag derived from NanoLuc luciferase at the 3'-end of the viral capsid (ORF2) coding sequence. It replicated efficiently in PLC/PRF/5 cells, produced membrane-associated particles identical to those of the parental virus, and was genetically stable and infectious. The HiBiT tag was fused to both secreted ORF2s (ORF2s-HiBiT) and ORF2c capsid protein (ORF2c-HiBiT). The ORF2c-HiBiT formed membrane-associated HEV particles (eHEV3b-HiBiT). By treating these particles with digitonin, we demonstrated that the HiBiT tag was expressed on the surface of capsid and was present inside the lipid membrane. To simplify the measurement of luciferase activity and provide a more convenient screening platform, we constructed an ORF2s-defective mutant (HEV3b-HiBiT/ΔORF2s) in which the secreted ORF2s are suppressed. We used this system to evaluate the effects of introducing small interfering RNAs and treatment with an inhibitor or accelerator of exosomal release on HEV egress and demonstrated that the effects on virus release can readily be analyzed. Therefore, HEV3b-HiBiT and HEV3b-HiBiT/ΔORF2s reporters may be useful for investigating the virus life cycle and can serve as a more convenient screening platform to search for candidate drugs targeting the late stage of HEV infection such as particle formation and release. IMPORTANCE The construction of recombinant infectious viruses harboring a stable luminescence reporter gene is essential for investigations of the viral life cycle, such as viral replication and pathogenesis, and the development of novel antiviral drugs. However, it is difficult to maintain the stability of a large foreign gene inserted into the viral genome. In the present study, we successfully generated a recombinant HEV harboring the 11-amino acid HiBiT tag in the ORF2 coding region and demonstrated the infectivity, efficient virus growth, particle morphology, and genetic stability, suggesting that this recombinant HEV is useful for in vitro assays. Furthermore, this system can serve as a more convenient screening platform for anti-HEV drugs. Thus, an infectious recombinant HEV is a powerful approach not only for elucidating the molecular mechanisms of the viral life cycle but also for the screening and development of novel antiviral agents.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takashi Nishiyama
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
5
|
Ferri G, Giantomassi G, Piccinini A, Olivastri A, Vergara A. Hepatitis E Virus RNA Detection from Hunted Wild Boars in Central Italy: an Epidemiological Investigation. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:158-166. [PMID: 37029274 PMCID: PMC10261184 DOI: 10.1007/s12560-023-09554-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 06/13/2023]
Abstract
Every year, foodborne pathogens, including the hepatitis E virus (HEV), cause thousands of infections in different continents. Final consumers become infected through the ingestion of contaminated animal origin foodstuffs. Generally, in industrialized countries, HEV genotype 3 is involved in sporadic outbreaks. Infections have been described, in Europe and Japan as consequence of pork products and contaminated wild boar's primary or processed products (liver and muscle tissues) consumption. In Central Italy, hunting activities are largely practiced. In these small and rural communities, game meat and liver are ingested by hunters' families or at local and traditional restaurants. Therefore, these food chains can be considered critical HEV reservoirs. In this study, 506 liver and diaphragm tissues were collected from hunted wild boars in the Southern Marche region (Central Italy) and were screened for HEV RNA detection. From the 10.87% of liver and 2.76% of muscle samples, HEV3 subtype c was discovered. The observed prevalence values resulted in line with previous investigations performed in other Central Italian regions, but higher than Northern ones (3.7% and 1.9% from liver tissue). Therefore, the obtained epidemiological data highlighted the wide occurrence of HEV RNA circulation in a low-investigated area. Basing on results, a One-health approach was adopted due to the sanitary relevance of this Public Health concern.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Strada Porvinciale 18, 64100, Teramo, Italy.
| | | | - Andrea Piccinini
- Department of Veterinary Medicine, Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Strada Porvinciale 18, 64100, Teramo, Italy
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Strada Porvinciale 18, 64100, Teramo, Italy
| |
Collapse
|
6
|
Animal Models for Studying Congenital Transmission of Hepatitis E Virus. Microorganisms 2023; 11:microorganisms11030618. [PMID: 36985191 PMCID: PMC10057890 DOI: 10.3390/microorganisms11030618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
One of the most intriguing issues in the hepatitis E virus (HEV) field is the significant increase in mortality rates of the mother and fetus when infection occurs in the second and third trimesters of gestation. A virus that is normally self-limiting and has a mortality rate of less than one percent in otherwise healthy individuals steeply rises by up to 30% in these pregnant populations. Answering this pivotal question has not been a simple task. HEV, in general, has been a difficult pathogen to understand in the laboratory setting. A historical lack of ability to efficiently propagate the virus in tissue culture models has led to many molecular aspects of the viral lifecycle being understudied. Although great strides have been made in recent years to adapt viruses to cell culture, this field remains behind other viruses that are much easier to replicate efficiently in vitro. Some of the greatest discoveries regarding HEV have come from using animal models for which naturally occurring strains of HEV have been identified, including pigs and chickens, but key limitations have made animal models imperfect for studying all aspects of human HEV infections. In addition to the difficulties working with HEV, pregnancy is a very complicated biological process with an elaborate interplay between many different host systems, including hormones, cardiovascular, kidneys, respiratory, gastrointestinal, epithelial, liver, metabolic, immune, and others. Significant differences between the timing and interplay of these systems are notable between species, and making direct comparisons between animals and humans can be difficult at times. No simple answer exists as to how HEV enhances mortality in pregnant populations. One of the best approaches to studying HEV in pregnancy is likely a combinatorial approach that uses the best combination of emerging in vitro and in vivo systems while accounting for the deficiencies that are present in each model. This review describes many of the current HEV animal model systems and the strengths and weaknesses of each as they apply to HEV pregnancy-associated mortality. We consider factors that are critical to analyzing HEV infection within the host and how, despite no perfect animal model for human pregnancy mortality existing, recent developments in HEV models, both in vitro and in vivo, are advancing our overall understanding of HEV in the pregnant host.
Collapse
|
7
|
Srivastava M, Bhukya PL, Barman MK, Bhise N, Lole KS. Modulation of cellular autophagy by genotype 1 hepatitis E virus ORF3 protein. J Gen Virol 2023; 104. [PMID: 36809248 DOI: 10.1099/jgv.0.001824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Hepatitis E virus (HEV) egresses from infected hepatocytes as quasienveloped particles containing open reading frame 3 (ORF3) protein. HEV ORF3 (small phosphoprotein) interacts with host proteins to establish a favourable environment for virus replication. It is a functional viroporin that plays an important role during virus release. Our study provides evidence that pORF3 plays a pivotal role in inducing Beclin1-mediated autophagy that helps HEV-1 replication as well as its exit from cells. The ORF3 interacts with host proteins involved in regulation of transcriptional activity, immune response, cellular and molecular processes, and modulation of autophagy, by interacting with proteins, DAPK1, ATG2B, ATG16L2 and also several histone deacetylases (HDACs). For autophagy induction, the ORF3 utilizes non-canonical NF-κB2 pathway and sequesters p52NF-κB and HDAC2 to upregulate DAPK1 expression, leading to enhanced Beclin1 phosphorylation. By sequestering several HDACs, HEV may prevent histone deacetylation to maintain overall cellular transcription intact to promote cell survival. Our findings highlight a novel crosstalk between cell survival pathways participating in ORF3-mediated autophagy.
Collapse
Affiliation(s)
| | - Prudhvi Lal Bhukya
- Division of Hepatitis, National Institute of Virology, Pune, India
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, India
| | | | - Neha Bhise
- Division of Hepatitis, National Institute of Virology, Pune, India
| | - Kavita S Lole
- Division of Hepatitis, National Institute of Virology, Pune, India
| |
Collapse
|
8
|
Si F, Widén F, Dong S, Li Z. Hepatitis E as a Zoonosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:49-58. [PMID: 37223858 DOI: 10.1007/978-981-99-1304-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E viruses in the family of Hepeviridae have been classified into 2 genus, 5 species, and 13 genotypes, involving different animal hosts of different habitats. Among all these genotypes, four (genotypes 3, 4, 7, and C1) of them are confirmed zoonotic causing sporadic human diseases, two (genotypes 5 and 8) were likely zoonotic showing experimental animal infections, and the other seven were not zoonotic or unconfirmed. These zoonotic HEV carrying hosts include pig, boar, deer, rabbit, camel, and rat. Taxonomically, all the zoonotic HEVs belong to the genus Orthohepevirus, which include genotypes 3, 4, 5, 7, 8 HEV in the species A and genotype C1 HEV in the species C. In the chapter, information of zoonotic HEV such as swine HEV (genotype 3 and 4), wild boar HEV (genotypes 3-6), rabbit HEV (genotype 3), camel HEV (genotype 7 and 8), and rat HEV (HEV-C1) was provided in detail. At the same time, their prevalence characteristics, transmission route, phylogenetic relationship, and detection technology were discussed. Other animal hosts of HEVs were introduced briefly in the chapter. All these information help peer researchers have basic understanding of zoonotic HEV and adopt reasonable strategy of surveillance and prevention.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Frederik Widén
- The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Shijuan Dong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Zhen Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
9
|
Regulatory Role of B Cells and Its Subsets in Hepatitis E Virus Infection. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7932150. [PMID: 36132083 PMCID: PMC9484887 DOI: 10.1155/2022/7932150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Antibodies as well as memory B cells are the potential correlates of a protective immune response against hepatitis E virus (HEV) infection. Literature on the role of B regulatory cells (Bregs) in acute viral infections is limited. We have evaluated the role of IL-10 expressing Bregs in HEV infection. A total of 108 acute hepatitis E patients, 55 hepatitis E recovered individuals and 128 HEV naïve healthy controls were enrolled. The percentages of peripheral CD19+, immature CD19+CD24hiCD38hi, mature CD19+CD24intCD38int and memory CD19+CD24hiCD38− B cells were analyzed by flowcytometry. Intracellular cytokine staining for IL-10 and TGF-β, HEV-rORF2p specific T cell response (IFN-γ expression) pre/post IL-10/IL-10R blocking and CD19+IL-10+ B cells-depletion based assays were carried out to assess the functionality of Bregs. The percentage of HEV-rORF2p specific immature B cell phenotype was significantly higher in acute hepatitis E patients compared to hepatitis E recovered individuals and controls. Significantly higher IL-10 expression on B and HEV-rORF2p stimulated immature B cells of acute hepatitis E patients compared to controls indicated that Bregs are functional and HEV-rORF2p specific. Enhanced IFN-γ expression on CD8+ T cells upon IL-10/IL-10R blocking and also post CD19+IL-10+ B cells depletion suggested that CD3+CD8+IFN-γ+ T cells corroborate the regulatory potential of Bregs via IL-10 dependent mechanism. We have identified HEV specific functional, immature CD19+CD24hiCD38hi B cells having IL-10 mediated regulatory activities and a potential to modulate IFN-γ mediated T cell response in Hepatitis E. The prognostic/pathogenic role of Bregs in recovery from severe hepatitis E needs evaluation.
Collapse
|
10
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Decoding the codon usage patterns in Y-domain region of hepatitis E viruses. J Genet Eng Biotechnol 2022; 20:56. [PMID: 35404024 PMCID: PMC9001762 DOI: 10.1186/s43141-022-00319-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a positive-sense RNA virus belonging to the family Hepeviridae. The genome of HEV is organized into three open-reading frames (ORFs): ORF1, ORF2, and ORF3. The ORF1 non-structural Y-domain region (YDR) has been demonstrated to play an important role in the HEV pathogenesis. The nucleotide composition, synonymous codon usage bias in conjunction with other factors influencing the viral YDR genes of HEV have not been studied. Codon usage represents a significant mechanism in establishing the host-pathogen relationship. The present study for the first time elucidates the detailed codon usage patterns of YDR among HEV and HEV-hosts (Human, Rabbit, Mongoose, Pig, Wild boar, Camel, Monkey). RESULTS The overall nucleotide composition revealed the abundance of C and U nucleotides in YDR genomes. The relative synonymous codon usage (RSCU) analysis indicated biasness towards C and U over A and G ended codons in HEV across all hosts. Codon frequency comparative analyses among HEV-hosts showed both similarities and discrepancies in usage of preferred codons encoding amino acids, which revealed that HEV codon preference neither completely differed nor completely showed similarity with its hosts. Thus, our results clearly indicated that the synonymous codon usage of HEV is a mixture of the two types of codon usage: coincidence and antagonism. Mutation pressure from virus and natural selection from host seems to be accountable for shaping the codon usage patterns in YDR. The study emphasised that the influence of compositional constraints, codon usage biasness, mutational alongside the selective forces were reflected in the occurrence of YDR codon usage patterns. CONCLUSIONS Our study is the first in its kind to have reported the analysis of codon usage patterns on a total of seven different natural HEV hosts. Therefore, knowledge of preferred codons obtained from our study will not only augment our understanding towards molecular evolution but is also envisaged to provide insight into the efficient viral expression, viral adaptation, and host effects on the HEV YDR codon usage.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Zhang D, Yang Y, Li M, Lu Y, Liu Y, Jiang J, Liu R, Liu J, Huang X, Li G, Qu J. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. ENGINEERING (BEIJING, CHINA) 2022; 10:155-166. [PMID: 33903827 PMCID: PMC8060651 DOI: 10.1016/j.eng.2020.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 05/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) and concerns about several other pandemics in the 21st century have attracted extensive global attention. These emerging infectious diseases threaten global public health and raise urgent studies on unraveling the underlying mechanisms of their transmission from animals to humans. Although numerous works have intensively discussed the cross-species and endemic barriers to the occurrence and spread of emerging infectious diseases, both types of barriers play synergistic roles in wildlife habitats. Thus far, there is still a lack of a complete understanding of viral diffusion, migration, and transmission in ecosystems from a macro perspective. In this review, we conceptualize the ecological barrier that represents the combined effects of cross-species and endemic barriers for either the natural or intermediate hosts of viruses. We comprehensively discuss the key influential factors affecting the ecological barrier against viral transmission from virus hosts in their natural habitats into human society, including transmission routes, contact probability, contact frequency, and viral characteristics. Considering the significant impacts of human activities and global industrialization on the strength of the ecological barrier, ecological barrier deterioration driven by human activities is critically analyzed for potential mechanisms. Global climate change can trigger and expand the range of emerging infectious diseases, and human disturbances promote higher contact frequency and greater transmission possibility. In addition, globalization drives more transmission routes and produces new high-risk regions in city areas. This review aims to provide a new concept for and comprehensive evidence of the ecological barrier blocking the transmission and spread of emerging infectious diseases. It also offers new insights into potential strategies to protect the ecological barrier and reduce the wide-ranging risks of emerging infectious diseases to public health.
Collapse
Affiliation(s)
- Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Hooda P, Ishtikhar M, Saraswat S, Bhatia P, Mishra D, Trivedi A, Kulandaisamy R, Aggarwal S, Munde M, Ali N, AlAsmari AF, Rauf MA, Inampudi KK, Sehgal D. Biochemical and Biophysical Characterisation of the Hepatitis E Virus Guanine-7-Methyltransferase. Molecules 2022; 27:1505. [PMID: 35268608 PMCID: PMC8911963 DOI: 10.3390/molecules27051505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatitis E virus (HEV) is an understudied pathogen that causes infection through fecal contaminated drinking water and is prominently found in South Asian countries. The virus affects ~20 million people annually, leading to ~60,000 infections per year. The positive-stranded RNA genome of the HEV genotype 1 has four conserved open reading frames (ORFs), of which ORF1 encodes a polyprotein of 180 kDa in size, which is processed into four non-structural enzymes: methyltransferase (MTase), papain-like cysteine protease, RNA-dependent RNA polymerase, and RNA helicase. MTase is known to methylate guanosine triphosphate at the 5'-end of viral RNA, thereby preventing its degradation by host nucleases. In the present study, we cloned, expressed, and purified MTase spanning 33-353 amino acids of HEV genotype 1. The activity of the purified enzyme and the conformational changes were established through biochemical and biophysical studies. The binding affinity of MTase with magnesium ions (Mg2+) was studied by isothermal calorimetry (ITC), microscale thermophoresis (MST), far-UV CD analysis and, fluorescence quenching. In summary, a short stretch of nucleotides has been cloned, coding for the HEV MTase of 37 kDa, which binds Mg2+ and modulate its activity. The chelation of magnesium reversed the changes, confirming its role in enzyme activity.
Collapse
Affiliation(s)
- Preeti Hooda
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Mohd Ishtikhar
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Shweta Saraswat
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Pooja Bhatia
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Deepali Mishra
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Aditya Trivedi
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Rajkumar Kulandaisamy
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Soumya Aggarwal
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India; (S.A.); (M.M.)
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India; (S.A.); (M.M.)
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.F.A.)
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.F.A.)
| | - Mohd A. Rauf
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Deepak Sehgal
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| |
Collapse
|
13
|
El-Kafrawy SA, El-Daly MM. Hepatitis E virus in Saudi Arabia: more surveillance needed. Future Virol 2022. [DOI: 10.2217/fvl-2021-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatitis E virus (HEV) is a small quasi-enveloped ssRNA causing acute hepatitis. HEV is the leading cause of intermittent acute hepatitis and fulminant hepatic failure. Risk factors include drinking contaminated water in developing countries and consumption of infected animal products in developed countries. Previous reports on HEV prevalence in Saudi Arabia had small sample sizes. Nationwide systematic seroprevalence studies are needed to investigate risk factors and annual incidence. Camels play a cultural and economic role in the life of Saudi citizens with frequent human contact and potential role in zoonotic transmission. Future research needs to include larger sample-sizes and nationwide studies. Future studies should also focus on raising awareness of HEV infection and the need for wider population testing and screening.
Collapse
Affiliation(s)
- Sherif Aly El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mai Mohamed El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
14
|
Gupta J, Kumar A, Surjit M. Production of a Hepatitis E Vaccine Candidate Using the Pichia pastoris Expression System. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:117-141. [PMID: 34918244 DOI: 10.1007/978-1-0716-1892-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). No vaccine is available to combat the HEV except Hecolin, which is available only in China. Virus-like particle (VLP) generated from the capsid protein (ORF2) of HEV is known to be a potent vaccine antigen against HEV. Hecolin consists of 368-606 amino acid (aa) region of the capsid protein of HEV, which forms a VLP. It is expressed and purified from the inclusion bodies of E. coli. Here, we describe a method to express the 112-608aa region of the capsid protein (ORF2) of genotype-1 HEV in Pichia pastoris (P. pastoris) and purify VLPs from the culture medium. 112-608aa ORF2 VLPs are secreted into the culture medium in a methanol inducible manner. The purified VLPs are glycosylated and induce robust immune response in Balb/c mice. Further, 112-608aa ORF2 VLPs are bigger than the 368-606 VLP present in Hecolin, which may help them in inducing a superior immune response. P. pastoris offers a robust and economical heterologous expression system to produce large quantities of glycosylated 112-608aa ORF2 VLP, which appears to be a promising vaccine candidate against the HEV.
Collapse
Affiliation(s)
- Jyoti Gupta
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
15
|
Cancela F, Noceti O, Arbiza J, Mirazo S. Structural aspects of hepatitis E virus. Arch Virol 2022; 167:2457-2481. [PMID: 36098802 PMCID: PMC9469829 DOI: 10.1007/s00705-022-05575-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. Hepatitis E is an enterically transmitted zoonotic disease that causes large waterborne epidemic outbreaks in developing countries and has become an increasing public-health concern in industrialized countries. In this setting, the infection is usually acute and self-limiting in immunocompetent individuals, although chronic cases in immunocompromised patients have been reported, frequently associated with several extrahepatic manifestations. Moreover, extrahepatic manifestations have also been reported in immunocompetent individuals with acute HEV infection. HEV belongs to the alphavirus-like supergroup III of single-stranded positive-sense RNA viruses, and its genome contains three partially overlapping open reading frames (ORFs). ORF1 encodes a nonstructural protein with eight domains, most of which have not been extensively characterized: methyltransferase, Y domain, papain-like cysteine protease, hypervariable region, proline-rich region, X domain, Hel domain, and RNA-dependent RNA polymerase. ORF2 and ORF3 encode the capsid protein and a multifunctional protein believed to be involved in virion release, respectively. The novel ORF4 is only expressed in HEV genotype 1 under endoplasmic reticulum stress conditions, and its exact function has not yet been elucidated. Despite important advances in recent years, the biological and molecular processes underlying HEV replication remain poorly understood, primarily due to a lack of detailed information about the functions of the viral proteins and the mechanisms involved in host-pathogen interactions. This review summarizes the current knowledge concerning HEV proteins and their biological properties, providing updated detailed data describing their function and focusing in detail on their structural characteristics. Furthermore, we review some unclear aspects of the four proteins encoded by the ORFs, highlighting the current key information gaps and discussing potential novel experimental strategies for shedding light on those issues.
Collapse
Affiliation(s)
- Florencia Cancela
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ofelia Noceti
- grid.414402.70000 0004 0469 0889Programa Nacional de Trasplante Hepático y Unidad Docente Asistencial Centro Nacional de Tratamiento Hepatobiliopancreatico. Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Juan Arbiza
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,Av. Alfredo Navarro 3051, PC 11600 Montevideo, Uruguay
| |
Collapse
|
16
|
Althobaiti SO, Alhumaidi GO, Alwagdani WM, Almarwani KM, Altowairqi BS, Alhaddad MS, Abdelwahab SF. Assessment of Knowledge, Attitude, and Practice among Saudi Residents Regarding Hepatitis E Virus. Am J Trop Med Hyg 2021; 106:626-631. [PMID: 34781257 PMCID: PMC8832907 DOI: 10.4269/ajtmh.21-0841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Global data, including those from Saudi Arabia, that examined public knowledge, attitudes, and practices (KAP) toward hepatitis E virus (HEV) are limited. This study examined KAP levels of the general population in Saudi Arabia toward HEV. A cross-sectional study was conducted among 768 participants. An Arabic electronic questionnaire that contained demographic data and had 35 questions was used to measure KAP of the participants concerning HEV. Collected data were analyzed at a significance level of 0.05. A total of 768 individuals participated in the study, of whom 16.3% (N = 125) were males and 83.7% (N = 643) were females. Study subjects were 18 years and above. Most of the participants were Saudi citizens (95.6%; N = 734), and from Western Saudi Arabia (76.4%; N = 587). Thirty-four percent (N = 261) of the participants had not heard of HEV, and 48% were aware that yellowish skin or eyes are the most important sign of hepatitis. The level of participants' knowledge about HEV was low (39.5%). However, positive attitudes and practices were apparent and tended to aim at how to avoid becoming infected with HEV. In conclusion, the level of HEV-related knowledge among the participants was low, and their practices and attitudes were aimed at avoiding HEV infection. Awareness campaigns are required to increase the public's HEV-related knowledge.
Collapse
Affiliation(s)
- Shaima O. Althobaiti
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Ghaida O. Alhumaidi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Waad M. Alwagdani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Kawther M. Almarwani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Batool S. Altowairqi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | | | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Role of "dual-personality" fragments in HEV adaptation-analysis of Y-domain region. J Genet Eng Biotechnol 2021; 19:154. [PMID: 34637041 PMCID: PMC8511232 DOI: 10.1186/s43141-021-00238-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hepatitis E is a liver disease caused by the pathogen hepatitis E virus (HEV). The largest polyprotein open reading frame 1 (ORF1) contains a nonstructural Y-domain region (YDR) whose activity in HEV adaptation remains uncharted. The specific role of disordered regions in several nonstructural proteins has been demonstrated to participate in the multiplication and multiple regulatory functions of the viruses. Thus, intrinsic disorder of YDR including its structural and functional annotation was comprehensively studied by exploiting computational methodologies to delineate its role in viral adaptation. RESULTS Based on our findings, it was evident that YDR contains significantly higher levels of ordered regions with less prevalence of disordered residues. Sequence-based analysis of YDR revealed it as a "dual personality" (DP) protein due to the presence of both structured and unstructured (intrinsically disordered) regions. The evolution of YDR was shaped by pressures that lead towards predominance of both disordered and regularly folded amino acids (Ala, Arg, Gly, Ile, Leu, Phe, Pro, Ser, Tyr, Val). Additionally, the predominance of characteristic DP residues (Thr, Arg, Gly, and Pro) further showed the order as well as disorder characteristic possessed by YDR. The intrinsic disorder propensity analysis of YDR revealed it as a moderately disordered protein. All the YDR sequences consisted of molecular recognition features (MoRFs), i.e., intrinsic disorder-based protein-protein interaction (PPI) sites, in addition to several nucleotide-binding sites. Thus, the presence of molecular recognition (PPI, RNA binding, and DNA binding) signifies the YDR's interaction with specific partners, host membranes leading to further viral infection. The presence of various disordered-based phosphorylation sites further signifies the role of YDR in various biological processes. Furthermore, functional annotation of YDR revealed it as a multifunctional-associated protein, due to its susceptibility in binding to a wide range of ligands and involvement in various catalytic activities. CONCLUSIONS As DP are targets for regulation, thus, YDR contributes to cellular signaling processes through PPIs. As YDR is incompletely understood, therefore, our data on disorder-based function could help in better understanding its associated functions. Collectively, our novel data from this comprehensive investigation is the first attempt to delineate YDR role in the regulation and pathogenesis of HEV.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Kamani L, Padhani ZA, Das JK. Hepatitis E: Genotypes, strategies to prevent and manage, and the existing knowledge gaps. JGH Open 2021; 5:1127-1134. [PMID: 34621997 PMCID: PMC8485408 DOI: 10.1002/jgh3.12646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 12/23/2022]
Abstract
Hepatitis E virus (HEV) is considered an emergent source of viral hepatitis worldwide, with an increasing burden of jaundice, liver failure, extrahepatic illnesses, and deaths in developed countries. With the scarcity of data from efficient animal models, there are still open-ended questions about designing new models to study pathogenesis, types, virology, and evolution of these viruses. With an emphasis on available data and updates, there is still enough information to understand the HEV life cycle, pathogen interaction with the host, and the valuation of the role of vaccine and new anti-HEV therapies. However, the World Health Organization (WHO) and the European Association for the Study of the Liver (EASL) preferred to stress prevention and control measures of HEV infections in animals, zoonotic transmission, and foodborne transmission. It is being reviewed that with current knowledge on HEV and existing prevention tools, there is an excellent room for in-depth information about the virus strains, their replication, pathogenicity, and virulence. The current knowledge set also has gaps regarding standardized and validated diagnostic tools, efficacy and safety of the vaccine, and extrahepatic manifestations specifically in pregnant females, immunocompromised patients, and others. This review highlights the areas for more research exploration, focusing on enlisted research questions based on HEV infection to endorse the need for significant improvement in the current set of knowledge for this public health problem.
Collapse
Affiliation(s)
- Lubna Kamani
- Associate Professor & Director, GI Residency Program, Department of GastroenterologyLiaquat National Hospital and Medical CollegeKarachiPakistan
- ConsultantAga Khan University HospitalKarachiPakistan
| | - Zahra Ali Padhani
- Health Policy and Management, Manager (Research)Aga Khan University HospitalKarachiPakistan
| | - Jai K Das
- Assistant Professor and Head, Section of Public Health and EpidemiologyAga Khan University HospitalKarachiPakistan
| |
Collapse
|
19
|
Ahmad T, Nasir S, Musa TH, AlRyalat SAS, Khan M, Hui J. Epidemiology, diagnosis, vaccines, and bibliometric analysis of the 100 top-cited studies on Hepatitis E virus. Hum Vaccin Immunother 2021; 17:857-871. [PMID: 32755437 PMCID: PMC7993234 DOI: 10.1080/21645515.2020.1795458] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION In low-income countries, Hepatitis E infection is a common cause of acute hepatitis. So far, only two recombinant vaccines (rHEV and HEV 239) have been developed against Hepatitis E virus (HEV). Of which HEV 239 is licensed in China, but is not yet available in any other country. OBJECTIVE This study aims to discuss epidemiology, diagnosis, available vaccines for HEV, and provides an overview of 100 top-cited studies on HEV. METHODS A bibliometric analysis was conducted on the topic "HEV" through a systematic search of the Web of Science. The keywords used were "Hepatitis E" and retrieved articles were assessed for number of attributes. RESULTS The search returned a total of 3,235 publications, cited 95,858 times with h-index 129. The main finding for the 100 top-cited articles on HEV showed: number of authors ranging from 1 to 23, cited references range from 4 to 304, global citations score per year range from 6.61 to 175, and global citations score range from 148 to 791. Of the 100 top-cited studies, the authors who published most articles are Purcell (n = 18), Meng (n = 17), and Emerson (n = 15). Most The largest share of articles on HEV was contributed by United States of America (n = 49) with 12,795 citations. The National Institute of Allergy andInfectious Diseases was leading institute with greatest number of publications (n = 16), cited 3,950 times. CONCLUSIONS The studies conducted on HEV have increased over time. The information presented would be very useful in decision making for policy makers providing health care, and for academicians in providing a reference point for future research.
Collapse
Affiliation(s)
- Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Saima Nasir
- Allama Iqbal Open University, Islamabad, Islamic Republic of Pakistan
| | - Taha Hussein Musa
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | - Muhammad Khan
- Department of Genetics, Centre for Human Genetics, Hazara University, Mansehra, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Jin Hui
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Tian D, Yugo DM, Kenney SP, Lynn Heffron C, Opriessnig T, Karuppannan AK, Bayne J, Halbur PG, Meng XJ. Dissecting the potential role of hepatitis E virus ORF1 nonstructural gene in cross-species infection by using intergenotypic chimeric viruses. J Med Virol 2020; 92:3563-3571. [PMID: 32589758 DOI: 10.1002/jmv.26226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Hepatitis E virus (HEV) infects humans and more than a dozen other animal species. We previously showed that open reading frame 2 (ORF2) and ORF3 are apparently not involved in HEV cross-species infection, which infers that the ORF1 may contribute to host tropism. In this study, we utilize the genomic backbone of HEV-1 which only infects humans to construct a panel of intergenotypic chimeras in which the entire ORF1 gene or its functional domains were swapped with the corresponding regions from HEV-3 that infects both humans and pigs. We demonstrated that the chimeric HEVs were replication competent in human liver cells. Subsequently, we intrahepatically inoculated the RNA transcripts of chimeras into pigs to determine if the swapped ORF1 regions confer the chimeras' ability to infect pigs. We showed that there was no evidence of infectivity in pigs for any of the chimeras. We also investigated the role of human ribosome protein sequence S17, which expanded host range in cultured cells, in HEV cross-species infection. We demonstrated that S17 insertion in HEV ORF1 did not abolish HEV replication competency in vitro, but also did not expand HEV host tropism in vivo. The results highlight the complexity of the underlying mechanism of HEV cross-species infection.
Collapse
Affiliation(s)
- Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Danielle M Yugo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Scott P Kenney
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Wooster, Ohio
| | - C Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Tanja Opriessnig
- Infection and Immunity Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa
| | - Anbu K Karuppannan
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa
| | - Jenna Bayne
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
21
|
Kumar M, Hooda P, Khanna M, Patel U, Sehgal D. Development of BacMam Induced Hepatitis E Virus Replication Model in Hepatoma Cells to Study the Polyprotein Processing. Front Microbiol 2020; 11:1347. [PMID: 32625196 PMCID: PMC7315041 DOI: 10.3389/fmicb.2020.01347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
The processing of polyprotein(s) to form structural and non-structural components remains an enigma due to the non-existence of an efficient and robust Hepatitis E Virus (HEV) culture system. We used the BacMam approach to construct an HEV replication model in which the HEV genome was cloned in the BacMam vector under the CMV promoter. The recombinant BacMam was used to infect Huh7 cells to transfer the HEV genome. HEV replication was authenticated by the presence of RNAs of both the polarity (+) and (-) and formation of hybrid RNA, a replication intermediate. The presence of genes for Papain-like Cysteine Protease (PCP), methyltransferase (MeT), RNA dependent RNA polymerase (RdRp), and ORF2 was confirmed by PCR amplification. Further, the infectious nature of the culture system was established as evidenced by the cross-infection of uninfected cells using the cell lysate from the infected cells. The HEV replication model was validated by detection of the ORF1 (Open Reading Frame1) encoded proteins, identified by Western blotting and Immunofluorescence by using epitope-specific antibodies against each protein. Consequently, discrete bands of 18, 35, 37, and 56 kDa corresponding to PCP, MeT, RdRp, and ORF2, respectively, were seen. Besides demonstrating the presence of non-structural enzymes of HEV along with ORF2, activity of a key enzyme, HEV-methyltransferase has also been observed. A 20% decrease in the replicative forms of RNA could be seen in presence of 100 μM Ribavirin after 48 h of treatment. The inhibition gradually increased from 0 to 24 to 48 h post-treatment. Summarily, infectious HEV culture system has been established, which could demonstrate the presence of HEV replicative RNA forms, the structural and non-structural proteins and the methyltransferase in its active form. The system may also be used to study the mechanism of action of Ribavirin in inhibiting HEV replication and develop a therapy.
Collapse
Affiliation(s)
- Manjeet Kumar
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Preeti Hooda
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Madhu Khanna
- Virology Lab, Department of Virology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Utkarsh Patel
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Deepak Sehgal
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
22
|
Parvez MK. The Hepatitis E Virus Rna Regulatory Elements. Future Virol 2019; 14:445-448. [DOI: 10.2217/fvl-2019-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/14/2019] [Indexed: 11/21/2022]
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy King Saud University College of Pharmacy
Riyadh
11451
Saudi Arabia
| |
Collapse
|
23
|
Netzler NE, Enosi Tuipulotu D, Vasudevan SG, Mackenzie JM, White PA. Antiviral Candidates for Treating Hepatitis E Virus Infection. Antimicrob Agents Chemother 2019; 63:e00003-19. [PMID: 30885901 PMCID: PMC6535575 DOI: 10.1128/aac.00003-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Globally, hepatitis E virus (HEV) causes significant morbidity and mortality each year. Despite this burden, there are no specific antivirals available to treat HEV patients, and the only licensed vaccine is not available outside China. Ribavirin and alpha interferon are used to treat chronic HEV infections; however, severe side effects and treatment failure are commonly reported. Therefore, this study aimed to identify potential antivirals for further development to combat HEV infection. We selected 16 compounds from the nucleoside and nonnucleoside antiviral classes that range in developmental status from late preclinical to FDA approved and evaluated them as potential antivirals for HEV infection, using genotype 1 replicon luminescence studies and replicon RNA quantification. Two potent inhibitors of HEV replication included NITD008 (half-maximal effective concentration [EC50], 0.03 μM; half-maximal cytotoxic concentration [CC50], >100 μM) and GPC-N114 (EC50, 1.07 μM, CC50, >100 μM), and both drugs reduced replicon RNA levels in cell culture (>50% reduction with either 10 μM GPC-N114 or 2.50 μM NITD008). Furthermore, GPC-N114 and NITD008 were synergistic in combinational treatment (combination index, 0.4) against HEV replication, allowing for dose reduction indices of 20.42 and 8.82 at 50% inhibition, respectively. Sofosbuvir has previously exhibited mixed results against HEV as an antiviral, both in vitro and in a few clinical applications; however, in this study it was effective against the HEV genotype 1 replicon (EC50, 1.97 μM; CC50, >100 μM) and reduced replicon RNA levels (47.2% reduction at 10 μM). Together these studies indicate drug repurposing may be a promising pathway for development of antivirals against HEV infection.
Collapse
Affiliation(s)
- Natalie E Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | | | - Jason M Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Hepatitis E: Current Status in India and Other Asian Countries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Vikram T, Kumar P. Analysis of Hepatitis E virus (HEV) X-domain structural model. Bioinformation 2018; 14:398-403. [PMID: 30262978 PMCID: PMC6143357 DOI: 10.6026/97320630014398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 01/22/2023] Open
Abstract
Hepatitis E viral infection is now emerging as a global health concern, which needs to be addressed. Mechanism of viral replication and release is attributed by the different genomic component of HEV. However, few proteins/domain like X and Y domain remain unexplored, so we aim to explore the physiochemical, structural and functional features of HEV ORF-1 X domain. Molecular modeling of the unknown X domain was carried out using Phyre2 and Swiss Model. Active ligand binding sites were predicted using Phyre2. The X-domain protein found to be stable and acidic in nature with high thermostability and better hydrophilic property. Twelve binding sites were predicted along with putative transferase and catalytic functional activity. Homology modeling showed 10 binding sites along with Mg2+ and Zn2+ as metallic heterogen ligands binding to predicted ligand-binding sites. This study may help to decipher the role of this unexplored X-domain of HEV, thereby improving our understanding of the pathogenesis of HEV infection.
Collapse
Affiliation(s)
- Thakur Vikram
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Sec-12, Chandigarh, India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, (HP) India
| |
Collapse
|
26
|
Abstract
Hepatitis E virus (HEV) infection is an emerging zoonotic disease posing a severe threat to public health in the world, especially to pregnant women. Currently, no specific treatments are available for HEV infection. Therefore, it is crucial to develop vaccine to prevent this infection. Although several potential candidate vaccines against HEV have been studied for their immunogenicity and efficacy, only Hecolin® which is developed by Xiamen Innovax Biotech Co., Ltd. and approved by China Food and Drug Administration (CFDA) in 2012, is the licensed HEV vaccine in the world so far. Extensive studies on safety, immunogenicity and efficacy in phase III clinical trials have shown that Hecolin® is a promising vaccine for HEV prevention and control. In this article, the advances on HEV vaccine development and research are briefly reviewed.
Collapse
Affiliation(s)
- Yufeng Cao
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,b Changchun Institute of Biological Products Co. Ltd. , Changchun , Jilin , PR China
| | - Zhenhong Bing
- c Changchun Institute of Biological Products , Changchun , Jilin , PR China
| | - Shiyu Guan
- c Changchun Institute of Biological Products , Changchun , Jilin , PR China
| | - Zecai Zhang
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,d Key laboratory for Zoonosis , Ministry of Education, and Institute for Zoonosis of Jilin University , Changchun , Jilin , PR China
| | - Xinping Wang
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,d Key laboratory for Zoonosis , Ministry of Education, and Institute for Zoonosis of Jilin University , Changchun , Jilin , PR China
| |
Collapse
|
27
|
Niguse S, Hailekiros H, Buruh G, Dejene T, Berhe N, Asmelash T. Seroprevalence and risk factors of Hepatitis E virus infection among pregnant women attending antenatal care in health facilities of Tigray, Northern Ethiopia. J Med Virol 2018; 90:1364-1369. [PMID: 29663452 DOI: 10.1002/jmv.25190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/06/2018] [Indexed: 11/09/2022]
Abstract
Existing literatures from developing countries show an increased mortality and morbidity related to hepatitis E virus during pregnancy as compared to the general population. Studies focusing on pregnant women are required for policy makers to improve maternal and child health. Therefore this study is aimed at determining the prevalence and associated risk factors of hepatitis E virus infection among pregnant women attending the health facilities of Tigray region, Northern Ethiopia. In this cross sectional study 846 pregnant women were included consecutively from April 2014 to February 2016. Clinical and sociodemographic were collected using structured questionnaire and blood was collected for laboratory analysis of Hepatitis E virus using IgG and IgM HEV ELISA. The data were analyzed using SPSS software version 21.0. Association with variables with the risk factors was determined using bivariate and multivariate analysis. The overall sero-prevalence of hepatitis E virus using anti-HEV IgG and anti-HEV IgM antibody among pregnant women were 367 (43.4%). From this 359 (42.4%) and 8 (0.9%) were tested positive for anti-HEV IgG and anti-HEV IgM antibody, respectively. Then finally age, rural residence, not washing after toilet use and lack of prevention aspects to minimize contamination were associated with HEV infection. This study shows the significant public health impact of HEV during pregnancy in low income countries.
Collapse
Affiliation(s)
- Selam Niguse
- Institute of Biomedical Sciences, Mekelle University, Mekelle, Ethiopia
| | | | | | - Tadese Dejene
- College of Natural and Computational Sciences, Raya University, Maichew, Ethiopia
| | - Nega Berhe
- Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsehaye Asmelash
- Department of Microbiology and Immunology Aksum University President, Aksum University, Aksum, Ethiopia
| |
Collapse
|
28
|
Pathak R, Barde PV. Detection of Genotype 1a and 1f of Hepatitis E Virus in Patients Treated at Tertiary Care Hospitals in Central India. Intervirology 2018; 60:201-206. [PMID: 29495017 DOI: 10.1159/000487052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/22/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND AIMS An acute hepatitis, caused by hepatitis E virus (HEV), is a significant global health concern, especially in developing countries. HEV has 1 serotype and 8 genotypes, which are further divided into subtypes. Despite the availability of sporadic cases and outbreak data from India, specific information regarding HEV epidemiological data is lacking from central India. This study was conducted to understand epidemiological and molecular features of HEV in central India. METHODS In this 3-year study conducted from July 2012 to June 2015, IgM ELISA was used for the diagnosis of suspected HEV cases. For identifying the genotype, nRT PCR was conducted and the PCR products were sequenced and analysed. Clinical and demographic data were analysed using statistical tools to highlight the trends. RESULT Out of 1,369 suspected cases, 341 (24.9%) were positive for HEV. The positivity was significantly higher in males (69.2%) and in the age group of > 15-45 years (72.5%). The HEV cases peaked during the summer. Subtypes 1a and 1f of genotype 1 were detected in the area during the study period. CONCLUSION HEV is a major aetiological agent of viral hepatitis in central India with adults and males at higher risk of infection. Two subtypes of the virus were detected in the region. Continuous serological surveillance and molecular monitoring will help to understand the epidemiology of HEV infection, outbreak mitigation and aid in providing treatment.
Collapse
|
29
|
Van der Poel WHM, Dalton HR, Johne R, Pavio N, Bouwknegt M, Wu T, Cook N, Meng XJ. Knowledge gaps and research priorities in the prevention and control of hepatitis E virus infection. Transbound Emerg Dis 2018; 65 Suppl 1:22-29. [PMID: 29318757 DOI: 10.1111/tbed.12760] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/17/2022]
Abstract
Hepatitis E virus (HEV), family Hepeviridae, is a main cause of epidemic hepatitis in developing countries and sporadic and cluster cases of hepatitis in industrialized countries. There are an increasing number of reported cases in humans especially in industrialized countries, and there is a high potential for transboundary spread of zoonotic genotypes of the virus through the transport of pigs, pig products and by-products. Bloodborne transmission of the virus has been reported with a significant medical concern. To better coordinate HEV research and design better control measures of HEV infections in animals, a group of HEV experts reviewed the current knowledge on the disease and considered the existing disease control tools. It was concluded that there is a lack of in-depth information about the spread of the virus from pigs to humans. The role of animals other than pigs in the zoonotic transmission of the virus to humans and the extent of foodborne transmission are poorly understood. Factors involved in development of clinical disease such as infectious dose, susceptibility and virulence of virus strains need to be studied more extensively. However, such studies are greatly hindered by the absence of a broadly applicable, efficient and sensitive in vitro cell culture system for HEV. Diagnostic tools for HEV are available but need to be further validated, harmonized and standardized. Commercially available HEV vaccines for the control of HEV infection in animal populations are needed as such vaccines can minimize the zoonotic risk for humans. Anti-HEV drugs for treatment of HEV-infected patients need to be studied more extensively. The detailed expert review can be downloaded from the project website at http://www.discontools.eu/.
Collapse
Affiliation(s)
| | - H R Dalton
- European Centre for Environment and Human Health, University of Exeter, Exeter, UK
| | - R Johne
- German Federal Institute for Risk Assessment (BFR), Berlin, Germany
| | - N Pavio
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Paris, France
| | | | - T Wu
- School of Public Health, Xiamen University, Xiamen, China
| | - N Cook
- Jorvik Food and Environmental Virology Ltd, York, UK
| | - X J Meng
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
30
|
Characterization of the Quasi-Enveloped Hepatitis E Virus Particles Released by the Cellular Exosomal Pathway. J Virol 2017; 91:JVI.00822-17. [PMID: 28878075 DOI: 10.1128/jvi.00822-17] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/21/2017] [Indexed: 12/30/2022] Open
Abstract
Our previous studies demonstrated that membrane-associated hepatitis E virus (HEV) particles-now considered "quasi-enveloped particles"-are present in the multivesicular body with intraluminal vesicles (exosomes) in infected cells and that the release of HEV virions is related to the exosomal pathway. In this study, we characterized exosomes purified from the culture supernatants of HEV-infected PLC/PRF/5 cells. Purified CD63-, CD9-, or CD81-positive exosomes derived from the culture supernatants of HEV-infected cells that had been cultivated in serum-free medium were found to contain HEV RNA and the viral capsid (ORF2) and ORF3 proteins, as determined by reverse transcription-PCR (RT-PCR) and Western blotting, respectively. Furthermore, immunoelectron microscopy, with or without prior detergent and protease treatment, revealed the presence of virus-like particles in the exosome fraction. These particles were 39.6 ± 1.0 nm in diameter and were covered with a lipid membrane. After treatment with detergent and protease, the diameter of these virus-like particles was 26.9 ± 0.9 nm, and the treated particles became accessible with an anti-HEV ORF2 monoclonal antibody (MAb). The HEV particles in the exosome fraction were capable of infecting naive PLC/PRF/5 cells but were not neutralized by an anti-HEV ORF2 MAb which efficiently neutralizes nonenveloped HEV particles in cell culture. These results indicate that the membrane-wrapped HEV particles released by the exosomal pathway are copurified with the exosomes in the exosome fraction and suggest that the capsids of HEV particles are individually covered by lipid membranes resembling those of exosomes, similar to enveloped viruses.IMPORTANCE Hepatitis E, caused by HEV, is an important infectious disease that is spreading worldwide. HEV infection can cause acute or fulminant hepatitis and can become chronic in immunocompromised hosts, including patients after organ transplantation. The HEV particles present in feces and bile are nonenveloped, while those in circulating blood and culture supernatants are covered with a cellular membrane, similar to enveloped viruses. Furthermore, these membrane-associated and -unassociated HEV particles can be propagated in cultured cells. The significance of our research is that the capsids of HEV particles are individually covered by a lipid membrane that resembles the membrane of exosomes, similar to enveloped viruses, and are released from infected cells via the exosomal pathway. These data will help to elucidate the entry mechanisms and receptors for HEV infection in the future. This is the first report to characterize the detailed morphological features of membrane-associated HEV particles.
Collapse
|
31
|
Wen GP, Tang ZM, Wang SL, Ji WF, Cai W, Zhang X, Huang SJ, Wu T, Zhang J, Zheng ZZ, Xia NS. Classification of human and zoonotic group hepatitis E virus (HEV) using antigen detection. Appl Microbiol Biotechnol 2017; 101:8585-8594. [PMID: 29038976 DOI: 10.1007/s00253-017-8526-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/24/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Hepatitis E virus (HEV) is one of the major pathogens that cause acute viral hepatitis. The human (genotypes 1 and 2) and zoonotic (genotypes 3 and 4) groups of HEV present different epidemiology and clinical features. In this study, we developed a classification method for rapidly classifying HEV into human or zoonotic groups that combines a general antigen test with a zoonotic group-specific antigen test. Evaluation of serial samples from HEV-infected rhesus monkeys indicated that HEV antigen-positive samples can be classified using the antigen-based classification method. The antigen-based classification method was evaluated further on 55 genotyped samples from acute hepatitis E patients, including 9 human and 46 zoonotic groups. The novel method was completely consistent with the sequencing results: 9/9 for the human groups (100%, 95% confidence interval [CI] 66.4-100%) and 46/46 for the zoonotic groups (100%, 95% CI 92.3-100%). This method was also successfully used for the clustering of some samples that could not be clustered by sequencing. Compared with the sequencing-based method, this method is less time-consuming, less expensive, and less technically complex and is therefore ideal for large numbers of samples. In conclusion, this study provides a convenient and sensitive method for classifying different groups of HEV, and it has potentially important public health applications, especially in underdeveloped areas that cannot afford the high cost of nucleic acid testing.
Collapse
Affiliation(s)
- Gui-Ping Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Zi-Min Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Si-Ling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Wen-Fang Ji
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China.,School of Life Sciences, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Wei Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China.,School of Life Sciences, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Shou-Jie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China.
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China. .,School of Life Sciences, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
32
|
Wang H, Zhang W, Gu H, Chen W, Zeng M, Ji C, Song R, Zhang G. Identification and characterization of two linear epitope motifs in hepatitis E virus ORF2 protein. PLoS One 2017; 12:e0184947. [PMID: 28957334 PMCID: PMC5619941 DOI: 10.1371/journal.pone.0184947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/02/2017] [Indexed: 12/23/2022] Open
Abstract
Hepatitis E virus (HEV) is responsible for hepatitis E, which represents a global public health problem. HEV genotypes 3 and 4 are reported to be zoonotic, and animals are monitored for HEV infection in the interests of public hygiene and food safety. The development of novel diagnostic methods and vaccines for HEV in humans is thus important topics of research. Opening reading frame (ORF) 2 of HEV includes both linear and conformational epitopes and is regarded as the primary candidate for vaccines and diagnostic tests. We investigated the precise location of the HEV epitopes in the ORF2 protein. We prepared four monoclonal antibodies (mAbs) against genotype 4 ORF2 protein and identified two linear epitopes, G438IVIPHD444 and Y457DNQH461, corresponding to two of these mAbs using phage display biopanning technology. Both these epitopes were speculated to be universal to genotypes 1, 2, 3, 4, and avian HEVs. We also used two 12-mer fragments of ORF2 protein including these two epitopes to develop a peptide-based enzyme-linked immunosorbent assay (ELISA) to detect HEV in serum. This assay demonstrated good specificity but low sensitivity compared with the commercial method, indicating that these two epitopes could serve as potential candidate targets for diagnosis. Overall, these results further our understanding of the epitope distribution of HEV ORF2, and provide important information for the development of peptide-based immunodiagnostic tests to detect HEV in serum.
Collapse
Affiliation(s)
- Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail: (GZ); (HW)
| | - Weidong Zhang
- Hospital of South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Honglang Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wanli Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Meng Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Chihai Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ruyue Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail: (GZ); (HW)
| |
Collapse
|
33
|
Abstract
Viral hepatitis in poultry is a complex disease syndrome caused by several viruses belonging to different families including avian hepatitis E virus (HEV), duck hepatitis B virus (DHBV), duck hepatitis A virus (DHAV-1, -2, -3), duck hepatitis virus Types 2 and 3, fowl adenoviruses (FAdV), and turkey hepatitis virus (THV). While these hepatitis viruses share the same target organ, the liver, they each possess unique clinical and biological features. In this article, we aim to review the common and unique features of major poultry hepatitis viruses in an effort to identify the knowledge gaps and aid the prevention and control of poultry viral hepatitis. Avian HEV is an Orthohepevirus B in the family Hepeviridae that naturally infects chickens and consists of three distinct genotypes worldwide. Avian HEV is associated with hepatitis-splenomegaly syndrome or big liver and spleen disease in chickens, although the majority of the infected birds are subclinical. Avihepadnaviruses in the family of Hepadnaviridae have been isolated from ducks, snow geese, white storks, grey herons, cranes, and parrots. DHBV evolved with the host as a noncytopathic form without clinical signs and rarely progressed to chronicity. The outcome for DHBV infection varies by the host's ability to elicit an immune response and is dose and age dependent in ducks, thus mimicking the pathogenesis of human hepatitis B virus (HBV) infections and providing an excellent animal model for human HBV. DHAV is a picornavirus that causes a highly contagious virus infection in ducks with up to 100% flock mortality in ducklings under 6 wk of age, while older birds remain unaffected. The high morbidity and mortality has an economic impact on intensive duck production farming. Duck hepatitis virus Types 2 and 3 are astroviruses in the family of Astroviridae with similarity phylogenetically to turkey astroviruses, implicating the potential for cross-species infections between strains. Duck astrovirus (DAstV) causes acute, fatal infections in ducklings with a rapid decline within 1-2 hr and clinical and pathologic signs virtually indistinguishable from DHAV. DAstV-1 has only been recognized in the United Kingdom and recently in China, while DAstV-2 has been reported in ducks in the United States. FAdV, the causative agent of inclusion body hepatitis, is a Group I avian adenovirus in the genus Aviadenovirus. The affected birds have a swollen, friable, and discolored liver, sometimes with necrotic or hemorrhagic foci. Histologic lesions include multifocal necrosis of hepatocytes and acute hepatitis with intranuclear inclusion bodies in the nuclei of the hepatocytes. THV is a picornavirus that is likely the causative agent of turkey viral hepatitis. Currently there are more questions than answers about THV, and the pathogenesis and clinical impacts remain largely unknown. Future research in viral hepatic diseases of poultry is warranted to develop specific diagnostic assays, identify suitable cell culture systems for virus propagation, and develop effective vaccines.
Collapse
Affiliation(s)
- Danielle M Yugo
- A Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061-0913
| | - Ruediger Hauck
- B Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - H L Shivaprasad
- C California Animal Health and Food Safety Laboratory System, University of California-Davis, Tulare, CA 93274
| | - Xiang-Jin Meng
- A Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061-0913
| |
Collapse
|
34
|
Parvez MK. The hepatitis E virus nonstructural polyprotein. Future Microbiol 2017; 12:915-924. [PMID: 28686042 DOI: 10.2217/fmb-2017-0016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) is a globally important pathogen of acute and chronic hepatitis in humans. The HEV ORF1 gene encodes a nonstructural polyprotein, essential for RNA replication and virus infectivity. Expression and processing of ORF1 polyprotein are shown in prokaryotic and eukaryotic systems, however, its proteolysis into individual proteins is still debated. While molecular or biochemical characterization of methyltransferase, protease, hypervariable region, helicase and RNA polymerase domains in ORF1 has been achieved, the role of the X and Y domains in the HEV life cycle has only been demonstrated very recently. Clinically, detection of a number of ORF1 mutants in infected patients is implicated in disease severity, mortality and drug nonresponse. Moreover, several artificial lethal mutations in ORF1 offer a potential basis for developing live-attenuated vaccines for HEV. This article intends to present the molecular and clinical updates on the HEV ORF1 polyprotein.
Collapse
Affiliation(s)
- Mohammad Khalid Parvez
- Department of Pharmacognosy, King Saud University College of Pharmacy, Riyadh 11451, Saudi Arabia
| |
Collapse
|
35
|
Soomro MH, Shi R, She R, Yang Y, Wang T, Wu Q, Li H, Hao W. Molecular and structural changes related to hepatitis E virus antigen and its expression in testis inducing apoptosis in Mongolian gerbil model. J Viral Hepat 2017; 24:696-707. [PMID: 28182318 DOI: 10.1111/jvh.12690] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV) infection has been associated with a wide range of extrahepatic manifestations, so this study was designed to examine the effect and role of HEV on structural and molecular changes in the testicular tissues of Mongolian gerbils experimentally infected with swine HEV. HEV RNA was first detected in testis at 14 days post-inoculation and reached a peak between 28 and 42 days later with viral load between 3.12 and 6.23 logs/g by PCR assays. Changes including vacuolation, sloughing of germ cells, formation of multinuclear giant cells, degeneration, necrosis of tubules and damaged blood-testis barrier were observed through transmission electron microscopy. HEV ORF2 antigen was detected in the sperm cell cytoplasm along with decrease in relative protein of zonula occludens-1 through immunohistochemistry. HEV ORF3 antigen and ZO-1 protein were detectable by Western blotting. Lower (P<.05) serum testosterone and higher (P<.05) blood urea nitrogen level was observed in inoculated Mongolian gerbils. Likewise, increased (P<.05) germ cell apoptosis rate was detected with significant increased expression of Fas-L and Fas in HEV-inoculated groups at each time points. Up-regulation (P<.05 or P<.01) in mRNA level of Fas-L, Fas, Bax, Bcl-2 and caspase-3 was observed in HEV RNA-positive testes. Our study demonstrated that after experimental inoculation, HEV can be detected in testis tissues and viral proteins produce structural and molecular changes that in turn disrupt the blood-testis barrier and induce germ cell apoptosis.
Collapse
Affiliation(s)
- M H Soomro
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China.,Department of Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - R Shi
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - R She
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Y Yang
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - T Wang
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Q Wu
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - H Li
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - W Hao
- Laboratory of Animal Pathology and Public Health, College of Veterinary Medicine, China Agriculture University, Beijing, China
| |
Collapse
|
36
|
Nagashima S, Kobayashi T, Tanaka T, Tanggis, Jirintai S, Takahashi M, Nishizawa T, Okamoto H. Analysis of adaptive mutations selected during the consecutive passages of hepatitis E virus produced from an infectious cDNA clone. Virus Res 2016; 223:170-80. [DOI: 10.1016/j.virusres.2016.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/23/2016] [Accepted: 07/29/2016] [Indexed: 02/08/2023]
|
37
|
van Tong H, Hoan NX, Wang B, Wedemeyer H, Bock CT, Velavan TP. Hepatitis E Virus Mutations: Functional and Clinical Relevance. EBioMedicine 2016; 11:31-42. [PMID: 27528267 PMCID: PMC5049923 DOI: 10.1016/j.ebiom.2016.07.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) infection is a major cause of acute hepatitis and affects more than 20 million individuals, with three million symptomatic cases and 56,000 recognized HEV-related deaths worldwide. HEV is endemic in developing countries and is gaining importance in developed countries, due to increased number of autochthone cases. Although HEV replication is controlled by the host immune system, viral factors (especially specific viral genotypes and mutants) can modulate HEV replication, infection and pathogenesis. Limited knowledge exists on the contribution of HEV genome variants towards pathogenesis, susceptibility and to therapeutic response. Nonsynonymous substitutions can modulate viral proteins structurally and thus dysregulate virus-host interactions. This review aims to compile knowledge and discuss recent advances on the casual role of HEV heterogeneity and its variants on viral morphogenesis, pathogenesis, clinical outcome and antiviral resistance.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Bo Wang
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - C-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | | |
Collapse
|
38
|
Transcriptome Analysis of HepG2 Cells Expressing ORF3 from Swine Hepatitis E Virus to Determine the Effects of ORF3 on Host Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1648030. [PMID: 27648443 PMCID: PMC5018317 DOI: 10.1155/2016/1648030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023]
Abstract
Hepatitis E virus- (HEV-) mediated hepatitis has become a global public health problem. An important regulatory protein of HEV, ORF3, influences multiple signal pathways in host cells. In this study, to investigate the function of ORF3 from the swine form of HEV (SHEV), high-throughput RNA-Seq-based screening was performed to identify the differentially expressed genes in ORF3-expressing HepG2 cells. The results were validated with quantitative real-time PCR and gene ontology was employed to assign differentially expressed genes to functional categories. The results indicated that, in the established ORF3-expressing HepG2 cells, the mRNA levels of CLDN6, YLPM1, APOC3, NLRP1, SCARA3, FGA, FGG, FGB, and FREM1 were upregulated, whereas the mRNA levels of SLC2A3, DKK1, BPIFB2, and PTGR1 were downregulated. The deregulated expression of CLDN6 and FREM1 might contribute to changes in integral membrane protein and basement membrane protein expression, expression changes for NLRP1 might affect the apoptosis of HepG2 cells, and the altered expression of APOC3, SCARA3, and DKK1 may affect lipid metabolism in HepG2 cells. In conclusion, ORF3 plays a functional role in virus-cell interactions by affecting the expression of integral membrane protein and basement membrane proteins and by altering the process of apoptosis and lipid metabolism in host cells. These findings provide important insight into the pathogenic mechanism of HEV.
Collapse
|
39
|
The Bama miniature swine is susceptible to experimental HEV infection. Sci Rep 2016; 6:31813. [PMID: 27534702 PMCID: PMC4989227 DOI: 10.1038/srep31813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
The hepatitis E virus (HEV) is one of the main causes of enterically transmitted hepatitis worldwide. Although the mortality rates associated with HEV are generally low, they can be up to 28% in HEV-infected pregnant women, and the elderly are more susceptible. The reasons for this selective severity are unclear, partially because there is no suitable, easy-to-use model in which to study HEV infection. Non-human primates and standard swine have been identified as being sensitive to infection with HEV and have been used for HEV infection studies. However, studies in these animals have been limited by high housing costs and the difficulty of manipulating these animals. In the current study, we established a model of HEV infection using Bama miniature swine. The model is easy to use and is sensitive to infections with HEV genotypes 3 and 4, which are classified as zoonotic HEVs. In this model, infection of Bama miniature swine with HEV genotypes 3 and 4 caused the typical features. All Bama miniature swine that were infected with HEV genotypes 3 and 4 exhibited significant HEV viremia, shedding, anti-HEV antibody responses and partial liver inflammation. Bama miniature swine may serve as an alternative to standard swine models for the study of zoonotic HEV infection and HEV genotype specificity research.
Collapse
|
40
|
Berebichez-Fridman R, Vázquez-Campuzano R, Galnares-Olalde J, Blachman-Braun R. Hepatitis E virus incidence in patients with non-identified acute viral hepatitis in Mexico. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2016. [DOI: 10.1016/j.hgmx.2016.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Parsa R, Adibzadeh S, Behzad Behbahani A, Farhadi A, Yaghobi R, Rafiei Dehbidi GR, Hajizamani S, Rahbar S, Nikouyan N, Okhovat MA, Naderi S, Salehi S, Alizadeh M, Ranjbaran R, Zarnegar G, Alavi P. Detection of Hepatitis E Virus Genotype 1 Among Blood Donors From Southwest of Iran. HEPATITIS MONTHLY 2016; 16:e34202. [PMID: 27630719 PMCID: PMC5011639 DOI: 10.5812/hepatmon.34202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/16/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Infection with hepatitis E virus (HEV) is endemic in developing countries and reveals significant regional differences. Several studies have reported virus transmission via blood transfusion. To date, however, no cases of HEV RNA detection in blood donors have been reported from Iran. OBJECTIVES The aim of this study was to determine the presence of HEV RNA in plasma samples of blood donors referred to a blood transfusion center in Shiraz in the southwest of Iran. The HEV genotypes were also investigated using nucleotide sequencing. PATIENTS AND METHODS Blood samples were collected from 700 blood donors who were referred to Fars blood transfusion organization from January to March 2014. Plasma samples were screened for the presence of HEV IgG and IgM antibodies by standard enzyme immunoassay. Samples seroreactive to anti-HEV were further tested for the presence of HEV RNA using nested polymerase chain reaction (PCR) with universal primers for detection of all four HEV genotypes. Positive PCR samples were then subjected to DNA sequencing for further analysis. RESULTS Fifty (50, 7.1%) out of 700 plasma samples tested positive for anti-HEV antibodies. HEV RNA was detected in 7/50 (12%) of the antibody-positive samples, the majority of which were IgM positive. Sequence analysis of seven isolates of the HEV RNA ORF 2 gene region revealed > 80% similarity with genotype 1. CONCLUSIONS The analysis indicates that the HEV isolated from blood donors in the southwest of Iran belongs to genotype 1. However, more samples from other geographic regions of Iran are needed to confirm these findings. Because transmission of HEV by administration of blood or blood components is likely to occur, it may be sensible to screen donor blood for HEV to eliminate transfusion-transmitted HEV infection when the recipient is immunocompromised.
Collapse
Affiliation(s)
- Rahil Parsa
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Department of Microbiology, Islamic Azad University of Science and Research of Fars, Shiraz, IR Iran
| | - Setare Adibzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Ali Farhadi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Gholam Reza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Saeideh Hajizamani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Sanaz Rahbar
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Negin Nikouyan
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mohammad Ali Okhovat
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Samaneh Naderi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Saeede Salehi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Marzieh Alizadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | | | - Parnian Alavi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
42
|
de Almeida Ramos D, Miani M, Pandolfi R, Tondo L, Colli ML, Rosado Spilki F, Rovaris Gardinali N, Alves Pinto M, Kreutz LC, Frandoloso R. Production and characterization of a Brazilian candidate antigen for Hepatitis E Virus genotype 3 diagnosis. FEMS Microbiol Lett 2016; 363:fnw021. [PMID: 26832642 DOI: 10.1093/femsle/fnw021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis E, caused by hepatitis E virus (HEV), is a viral infectious pathology of great importance in the public health. Hepatitis E outbreaks were registered in developing countries with poor or no sanitation, where drinking water was contaminated with fecal material, but also in many industrialized countries probably due to consumption of HEV-positive swine meat. In this study, we present the development and characterization of a recombinant antigen from ORF2 HEV genotype 3. Viral RNA was extracted from swine feces infected with the native virus. A total of 267 residues from the C-terminal ORF2((394-661)) coding sequence were cloned into the pET20a vector and expressed in Escherichia coli ER2566. Recombinant protein was purified by liquid chromatography and the fragment obtained a 98% homology against other human or swine HEV genotype 3 ORF2 sequences. Wistar rats were inoculated with ORF2p, developing antibodies able to recognize both the homologous antigen and the native HEV genotype 3 ORF2 present in infected stool. In parallel, HEV-negative swine were experimentally challenged with HEV genotype 3. ORF2 was detected by PCR 14 days post-inoculation in three-fourth piglets' feces and one week later by dot blot. In conclusion, this study proved the immunogenic and antigenic properties of the recombinant protein ORF2p.
Collapse
Affiliation(s)
- Denise de Almeida Ramos
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Michela Miani
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael Pandolfi
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Luis Tondo
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Maikel L Colli
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Fernando Rosado Spilki
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo, RS, 93525-075, Brazil
| | - Noemi Rovaris Gardinali
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute Foundation, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute Foundation, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Luiz C Kreutz
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| |
Collapse
|
43
|
Full coding hepatitis E virus genotype 3 genome amplification method. J Virol Methods 2016; 230:18-23. [PMID: 26784284 PMCID: PMC7172825 DOI: 10.1016/j.jviromet.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
A new amplification method for the complete HEV coding genome was described. HEV genome organization and function were reviewed. Polymorphic amino acids of each HEV genome region were analyzed in reference sequences. Complete coding HEV sequence of an immunocompromised patient with acute infection was analyzed.
Hepatitis E virus (HEV) genotype 3 produces zoonotic infection associated with the consumption of infected animals. HEV infections can become chronic in immunocompromised (IC) patients. The viral genome has three well defined open reading frames (ORF1, ORF2 and ORF3) within which various domains and functions have been described. This paper (i) describes a new method of complete sequencing of the HEV coding region through overlapping PCR systems, (ii) establishes a consensus sequence and polymorphic positions (PP) for each domain, and (iii) analyzes the complete coding sequence of an IC patient. With regard to the consensus, a high percentage of PP was observed in protease (PP = 19%) and the X domain (PP = 22%) within ORF1, the N-terminal region of the S domain (PP = 22%) in ORF2, and the P1 (PP = 35%) and P2 (PP = 25%) domains in ORF3. In contrast, the ORF1 Y, ORF2 S, ORF2 M and ORF3 D1 domains were conserved in the reference sequences (0.40, 1, 0.70 and 0% of PP, respectively). The sequence from the IC patient had more mutations in the RpRp (D1235G, Q1242R, S1454T, V1480I, I1502 V, K1511R, G1373 V, E1442D, V1693 M), the terminal ORF2 S- domain (F10L, S26T, G36S, S70P, A105 V, I113 V), the X domain (T938 M, T856 V, S898A) and the helicase (S1014N, S975T, Q1133 K).
Collapse
|
44
|
Lei Q, Li L, Cai J, Huang W, Qin B, Zhang S. ORF3 of Hepatitis E Virus Inhibits the Expression of Proinflammatory Cytokines and Chemotactic Factors in LPS-Stimulated Human PMA-THP1 Cells by Inhibiting NF-κB Pathway. Viral Immunol 2016; 29:105-11. [PMID: 26771290 DOI: 10.1089/vim.2015.0107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis. It is noteworthy that HEV can develop chronic infection and even lead to liver cirrhosis; however, the mechanism has not been revealed. In this study, the ELISA assay was used to detect protein levels, and we found that HEV open reading frame 3 (ORF3) protein inhibited the expression of proinflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β, IL-6, IL-8, IL-12p40, and IL-18) and chemotactic factors (nitric oxide [NO], interferon-inducible protein-10 (IP-10), macrophage inflammatory protein (MIP)-1α, monocyte chemoattractant protein-1 (MCP-1), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF)] in lipopolysaccharide (LPS)-stimulated human PMA-THP1 cells. Further study showed that mRNA and protein levels of pattern recognition receptors (PRRs), such as Toll-like receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6), and nucleotide-binding oligomerization domain containing 2 (NOD2), decreased after infection of pLL3.7-ORF3 (pORF3); moreover, the inhibition produced corresponding upregulation of IκBα and downregulation of phosphorylated IκB kinase IKKɛ (p-IKKɛ) and phosphorylated nuclear factor (NF)-κB (p-NF-κB), but little variation was found in the concentration of IKKɛ and NF-κB. Taken together, our results demonstrated that HEV ORF3 attenuated LPS-induced cytokine production and chemotactic factors, predominantly by inhibiting various PRRs-mediated NF-κB signaling pathways. The anti-inflammatory properties might be of great importance to clarify the role and mechanism of macrophages in chronic HEV infection and cirrhosis.
Collapse
Affiliation(s)
- Qingsong Lei
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Lin Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jia Cai
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Wenxiang Huang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Bo Qin
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
45
|
Abstract
Hepatitis E (HE) virus infection is not limited to spread from human to human but also occurs between animals and more importantly as zoonotic spread from animals to humans. Genotyping of strains from hepatitis E virus-infected patients has revealed that these infections are not all caused by genotypes 1 or 2 but often by genotypes 3 or 4. Therefore, it is important to understand the striking difference between the spread of genotypes 1 and 2 in countries with poor sanitary standards and the spread of genotypes 3 and 4 in countries with good sanitary standards. The number of animal species known to be infected with HEV is expanding rapidly. The finding of HEV in new host species always raises the question regarding the zoonotic potential of these newfound strains. However, as new strains are found, the complexity increases.Certain genotypes are known to have the ability of zoonotic spread from certain animal species and these animals may even constitute an infection reservoir. Some animal species may contribute to zoonotic infections albeit on a smaller scale, while others are believed to be of minor or no importance at all. This chapter reviews possible sources of zoonotic hepatitis E virus infection.
Collapse
|
46
|
|
47
|
Soomro MH, Shi R, She R, Yang Y, Hu F, Li H. Antigen detection and apoptosis in Mongolian gerbil's kidney experimentally intraperitoneally infected by swine hepatitis E virus. Virus Res 2015; 213:343-352. [PMID: 26724751 DOI: 10.1016/j.virusres.2015.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/29/2023]
Abstract
We examined the effect of hepatitis E virus (HEV) on the renal tissue pathogenesis, morphological damages and related molecular mechanisms following swine HEV suspension intraperitoneally inoculation in Mongolian gerbils. The microscopic and ultramicroscopic analyses of kidney tissue structure were carried out at different points after inoculation of HEV. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated with HEV presence in the renal tissues. Real-time PCR revealed that the copies of HEV RNA in the kidney were detected at 7 dpi, and peaked at 14 dpi at a concentration was 7.18 logs g(-1), with detection of HEV ORF2 antigen by immunohistochemistry. Hematoxylin and eosin (HE) staining showed pathological lesions including glomerular atrophy, degeneration, edema and necrosis of renal tubular epithelial cells and Mallory and Sirius red staining indicated the presence of collagen fibers and fibrosis in kidney tissues of inoculated gerbils. Ultrastructural studies of basal membrane of renal tubules demonstrated the rough and uneven with mitochondria swelling and vacuolation in the tissues of HEV inoculated animals. Similarly, significantly higher number of (TUNEL)-positive cells were seen in renal tubule tissues compared to control group. Moreover, immuno histochemical results indicated that significant increase expression of the B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), FAS and Caspase-3 in HEV inoculated Mongolian gerbils at each time points. Relative mRNA expression by real-time PCR revealed a significantly higher (P<0.05) mRNA level of BAX, Bcl-2 and caspase-3 transcription in HEV inoculated Mongolian gerbils. Our results demonstrates that activation of mitochondria and Caspase-3 protease might be induced the apoptosis which subsequently cause the necrosis and cell death of renal epithelial cells during acute phase of HEV infection in HEV inoculated Mongolian gerbils.
Collapse
Affiliation(s)
- Majid Hussain Soomro
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China; Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ruihan Shi
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China.
| | - Yifei Yang
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Fengjiao Hu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Heng Li
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China
| |
Collapse
|
48
|
Shiota T, Li TC, Yoshizaki S, Kato T, Wakita T, Ishii K. Establishment of hepatitis E virus infection-permissive and -non-permissive human hepatoma PLC/PRF/5 subclones. Microbiol Immunol 2015; 59:89-94. [PMID: 25495578 DOI: 10.1111/1348-0421.12219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 12/18/2022]
Abstract
PLC/PRF/5 cells show limited permissiveness, meaning that almost all subclones are permissive; however, some subclones do not exhibit permissiveness for hepatitis E virus (HEV) infection. In this study, the single-cell cloning of PLC/PRF/5 was performed and heterogeneous subclones characterized. Notably, the efficiency of intracellular virus replication did not correlate with the permissiveness for HEV infection. However, as well as binding permissive subclones, virus-like particles bound non-permissive subclones on various levels, suggesting that these subclones have some deficiencies in the attachment and entry steps of infection. Our data would be useful for investigating the HEV life cycle.
Collapse
Affiliation(s)
- Tomoyuki Shiota
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Dyubankova N, Froeyen M, Abramov M, Mattelaer HP, Herdewijn P, Lescrinier E. NMR study on the interaction of the conserved CREX 'stem-loop' in the Hepatitis E virus genome with a naphthyridine-based ligand. Org Biomol Chem 2015; 13:9665-72. [PMID: 26264660 DOI: 10.1039/c5ob01381j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2-amino-1,8-naphthyridine derivative that is described to bind single guanine bulges in RNA-DNA and RNA-RNA duplexes was synthesized and its interaction with the single G bulge in the conserved CREX of the Hepatitis E Virus (HEV) genome was explored by NMR and molecular modeling. Results indicate that the ligand intercalates in the internal loop, though none of the expected hydrogen bonds with the single G in the bulge could be demonstrated.
Collapse
Affiliation(s)
- N Dyubankova
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
50
|
Xia J, Liu L, Wang L, Zhang Y, Zeng H, Liu P, Zou Q, Wang L, Zhuang H. Experimental infection of pregnant rabbits with hepatitis E virus demonstrating high mortality and vertical transmission. J Viral Hepat 2015; 22:850-7. [PMID: 25760656 DOI: 10.1111/jvh.12406] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
A high mortality rate of approximately 20% in pregnant women with hepatitis E has been reported in previous studies. However, other studies showed no difference between pregnant and nonpregnant women in the severity of hepatitis E. To determine the effects of HEV infection on pregnancy, we successfully established HEV infection in six pregnant rabbits (PR) and six nonpregnant rabbits (NPR) with a rabbit HEV isolate, taking three PR and one NPR without HEV infection as controls. Tests for HEV RNA by RT-PCR, anti-HEV antibodies by ELISA and HEV antigen via immunohistochemistry and histopathology were carried out. Two of six infected PR miscarried and three of the remaining four PR died which may be attributed to severe liver necrosis caused by HEV infection. Moreover, vertical transmission was found to be associated with the replication of HEV in placenta, indicated by the presence of HEV RNA and antigen in placenta from the infected PR. Our findings strongly suggest that HEV infection could lead to adverse outcomes in pregnancy and vertical transmission, suggesting the necessity for pregnant women at risk of HEV infection to be vaccinated.
Collapse
Affiliation(s)
- J Xia
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - L Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - L Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Y Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - H Zeng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - P Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Q Zou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - L Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - H Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|