1
|
Capilla-Flores R, López-Ruíz R, Romero-González R, Garrido Frenich A. Innovative extraction methods for non-phthalate plastic additives determination in water using GC and LC coupled to Q-Orbitrap. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137623. [PMID: 40010226 DOI: 10.1016/j.jhazmat.2025.137623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
This study investigates the presence of non-phthalate plastic additives (NPPAs), emerging contaminants increasingly used as alternatives to hazardous phthalates, in various water sources. To address their potential environmental and health risks, two complementary extraction methods were developed: direct immersion solid-phase microextraction gas chromatography coupled to Q-Orbitrap (DI-SPME-GC-Q-Orbitrap) and salting-out assisted liquid-liquid extraction combined with ultra-high-performance liquid chromatography (SALLE-UHPLC-Q-Orbitrap). The complementary use of these two methods makes it possible to analyse a larger number of analytes, 27 in particular, enabling the detection of 19 and 23 NPPAs by GC and LC, respectively (15 compounds were simultaneously monitored by both techniques), with limits of quantification (LOQs) ranging from 0.05 to 4.0 μg/L. Both methods demonstrated satisfactory trueness and precision in accordance with analytical validation standards. The application of these methods to water samples revealed the widespread presence of NPPAs, particularly 1-hydroxycyclohexyl phenyl ketone (HCPK) and triacetin (TA), which were detected at concentrations up to 5.33 μg/L. Toxicity assessments based on LD50 values indicated that these compounds pose significant environmental and health risks, surpassing some restricted phthalates in toxicity. These findings underscore the urgent need to monitor and regulate NPPAs as hazardous materials to safeguard water quality and public health. This work highlights the utility of green analytical methods for evaluating emerging pollutants in water systems, aligning with the principles of sustainable environmental management.
Collapse
Affiliation(s)
- Raquel Capilla-Flores
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food, Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International, Excellence, ceiA3, Almeria E-04120, Spain.
| | - Rosalía López-Ruíz
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food, Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International, Excellence, ceiA3, Almeria E-04120, Spain.
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food, Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International, Excellence, ceiA3, Almeria E-04120, Spain.
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food, Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International, Excellence, ceiA3, Almeria E-04120, Spain.
| |
Collapse
|
2
|
Zhao K, Zhang X, Wang Y, Du X, Wang S, Shen M. Fate and ecological risk assessment of phthalates in wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125778. [PMID: 40414122 DOI: 10.1016/j.jenvman.2025.125778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/25/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025]
Abstract
With the rapid increase in plastics use worldwide, phthalates (PAEs) as an endocrine disruptor, have been receiving attention. It is necessary to investigate the pivotal considerations affecting the degradation of PAEs and the ecological risk assessment in wastewater treatment plants. The presence and spatial distribution patterns of 16 PAEs across three wastewater treatment plants (WWTPs) in northern China were studied by collecting wastewater samples, and by comparing the mechanism of action of AAO and oxidation ditch process on the removal efficiency of long and short chain PAEs, we fill the gap in the study of comprehensive assessment and process-specific removal effect of multiple PAEs. The influent concentration of PAEs and the treatment process were the pivotal considerations in the primary and secondary treatments, respectively. In the primary treatment stage, long-chain PAEs were more readily removed compared to short-chain PAEs. Conversely, during the secondary treatment, short-chain PAEs were removed more effectively than long-chain PAEs, independent of the specific treatment process. Long-chain PAEs were more easily removed during the AAO processes. Furthermore, the ecological risk assessment of the effluent was conducted at each stage of the three WWTPs. The ecological risk assessment results of the three WWTPs for fish and Daphnia showed no risk, while that for green algae showed a low risk. These findings can be used as a model for controlling PAEs and provide important information on the occurrence and distribution of PAEs in WWTP and their ecological risks of effluents.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Ximing Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Yue Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Xinrong Du
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Su Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China.
| |
Collapse
|
3
|
Löbbecke S, Pape A, Montero L, Uteschil F, Ayala-Cabrera JF, Schmitz OJ. Improving the reliability of phthalate esters analysis in water samples by gas chromatography-tube plasma ionization-high-resolution mass spectrometry (GC-TPI-HRMS). Talanta 2025; 285:127388. [PMID: 39700716 DOI: 10.1016/j.talanta.2024.127388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
The monitoring of phthalate esters (PAEs) is challenging due to background contamination as well as the low selectivity observed when analyzing them by gas chromatography coupled to mass spectrometry (GC-MS) using electron ionization (EI). In this sense, alternative and soft ionization techniques could help to enhance the performance of the analytical determinations of PAEs in food samples. In this work, the use of a novel and soft ionization technique tube plasma ionization (TPI) has been explored to enhance the selectivity and sensitivity in the determination of PAEs in drinking water samples with GC-MS. First, the ionization behavior of PAEs by TPI is evaluated showing the generation of an abundant protonated molecule. Source and plasma related parameters were carefully optimized to increase the ionization efficiency and ion transmission, showing that the fragmentor voltage is a key parameter to avoid in-source fragmentation. Moreover, the use of additives and different electrode materials is also tested to enhance the ionization efficiency and to better understand TPI mechanisms. Tungsten-made electrode with no additives showed the highest performance and better robustness for long-term operation. The proposed methodology using GC-TPI-MS was instrumentally compared with other atmospheric pressure ionization sources showing significantly lower limits of detection for the TPI source compared to atmospheric pressure ionization techniques (up to 700 times). Moreover, TPI also demonstrates comparable figures of merit in regard to the gold-standard ionization technique (EI). The combination of the GC-TPI-HRMS method together with a headspace-solid phase microextraction (HS-SPME) allows the detection of PAEs in drinking water up to 1 ng L-1 with precision (RSD <23 %) and trueness (Rel. Error <20 %). The method is then applied to quantify PAEs in drinking water and carry out migration studies from different polyethylene terephthalate-based bottle under stress situation, showing the high versatility of TPI to face complex analytical determinations such as PAEs analysis.
Collapse
Affiliation(s)
- Sebastian Löbbecke
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany
| | - Alexandra Pape
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany
| | - Lidia Montero
- Institute of Food Science Research - CIAL (CSIC-UAM), Calle Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Florian Uteschil
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany
| | - Juan F Ayala-Cabrera
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Sarriena Auzoa, 48940, Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Areatza Hiribidea 47, 48620, Plentzia, Spain.
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany.
| |
Collapse
|
4
|
Yang Q, Wu Y, Zhang S, Xie H, Han D, Yan H. Recent advancements in the extraction and analysis of phthalate acid esters in food samples. Food Chem 2025; 463:141262. [PMID: 39298858 DOI: 10.1016/j.foodchem.2024.141262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phthalate acid esters (PAEs) are ubiquitous environmental pollutants present in food samples, necessitating accurate detection for risk assessment and remediation efforts. This review provides an updated overview of the recent progress on the PAEs analysis regarding sample pretreatment techniques and analytical methodologies over the latest decade. Advances in sample preparation include solid-based extraction techniques replacing conventional liquid-liquid extraction, with solid sorbents emerging as promising alternatives due to their minimal solvent consumption and enhanced selectivity. Although techniques like the microextraction methods offer versatility and reduced solvent reliance, there is a need for more efficient and environmentally friendly techniques enabling on-site portable detection. High-resolution mass spectrometry is increasingly utilized for its enhanced sensitivity and reduced contamination risks. However, challenges persist in developing in situ analytical techniques for trace PAEs in complex food samples. Future research should prioritize novel analytical techniques with superior sensitivity and selectivity, addressing current limitations to meet the demand for precise PAEs detection in diverse food matrices.
Collapse
Affiliation(s)
- Qian Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Yangqing Wu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Xie
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
6
|
Wang H, Wang C, Huang J, Liu Y, Wu Y, You R, Zhang JH, Lu Y, Shen H. Preparation of SERS substrate with 2D silver plate and nano silver sol for plasticizer detection in edible oil. Food Chem 2023; 409:135363. [PMID: 36592598 DOI: 10.1016/j.foodchem.2022.135363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
As a widely used industrial additive of plastic products, phthalate ester (PAE) plasticizers can easily migrate into food, threatening human health. In this work, we proposed a rapid, precise, and reliable method to detect PAE plasticizers in edible oils by using surface-enhanced Raman spectroscopy (SERS) technology. A two-dimensional (2D) silver plate synergizing with a nanosilver sol was prepared as a substrate for SERS to detect potassium hydrogen phthalate (PHP), a hydrolysate of a PAE plasticizer. Detection conditions, such as pH values, drying times, and hydrolysate interference, were optimized. The working curve was well fitted with a linear parameter R2 of 0.9994, and the minimum detection limit was evaluated as 10-9 mol/L. Furthermore, the detection accuracy was supported by five edible oil samples. Therefore, using SERS technology to detect PHP is expected to provide an avenue for PAE plasticizer detection in oils and fats, and it features promising potential applications in food safety.
Collapse
Affiliation(s)
- Haonan Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian 365004, China
| | - Chuyi Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jiali Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yang Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Jian-Han Zhang
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian 365004, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Huiying Shen
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China
| |
Collapse
|
7
|
Wang C, Wang J, Gao W, Ning X, Xu S, Wang X, Chu J, Ma S, Bai Z, Yue G, Wang D, Shao Z, Zhuang X. The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162201. [PMID: 36805063 DOI: 10.1016/j.scitotenv.2023.162201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Phthalates (PAEs) are gaining attention and being researched as an endocrine disruptor as global plastic use surge. There is an urgent need to explore the key factors affecting the removal of PAEs from wastewater and the impact of wastewater effluent on receiving water. Here we investigated the levels and distribution patterns of 16 typical PAEs in surface water and five wastewater treatment plants (WWTPs) along the Dongyang River from Yiwu, China, collecting 42 surface water and 31 wastewater samples. We found that influent PAEs concentration and treatment process were the key factors affecting the degradation efficiency of PAEs in primary and secondary treatment, respectively. In primary treatment, long-chain PAEs were more easily removed (and sometimes less likely to accumulate) than short-chain PAEs, regardless of the influent PAEs concentration (a key factor in primary treatment), while in secondary treatment, short-chain PAEs were easily removed regardless of the treatment process (a factor in secondary treatment). This was not the case for long-chain PAEs, which were only more readily removed in the A/A/O process. In addition, by comparing the significant differences between wastewater and surface water, we found that the total PAEs in the treated effluent were significantly lower than in surface water upstream and in built-up urban areas, indicating that wastewater discharges in the study area did not increase PAEs in the receiving water. Finally, river in the city center and artificial treatment facilities in the study area were identified as requiring priority attention. The results of this study can serve as a model for controlling PAEs in other similar developing cities in China and provide valuable information on the fate of endocrine disruptor from wastewater treatment in China and their impact on surface water.
Collapse
Affiliation(s)
- Cong Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Wei Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Shengjun Xu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwen Chu
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gecheng Yue
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Zhiping Shao
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Scur R, Dagnoni Huelsmann R, Carasek E. Polyamide-coated paper-based sorptive phase applied in high-throughput thin film microextraction designed by 3D printing. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Santana-Mayor Á, Rodríguez-Ramos R, Herrera-Herrera AV, Socas-Rodríguez B, Rodríguez-Delgado MÁ. Monitoring of the presence of plasticizers and effect of temperature and storage time in bottled water using a green liquid-liquid microextraction method. Food Res Int 2023; 164:112424. [PMID: 36737999 DOI: 10.1016/j.foodres.2022.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
In this work, a natural deep eutectic solvent was used for the liquid-liquid microextraction of fourteen phthalates and one adipate from bottled waters. The methodology was validated in terms of matrix effect, linearity, recovery, and limits of quantification (LOQs). Optimum extraction conditions (10 mL of water at pH 8.0 with 100 μL of thymol: menthol 2:1 (n/n) as solvent) provided satisfactory determination coefficients (≥ 0.9977), recovery values (82-127%), and LOQs (0.018-0.523 μg/L). The effects of temperature and storage time on plasticizer presence were studied for 36 different brands stored at 4 °C, room temperature, and 45 °C, and analyzed at 0, 24, 48, 72 h, and 1 week. Only diethyl-, dibutyl-, bis-(2-ethylhexyl) phthalates, and bis-(2-ethylhexyl) adipate were detected. The results showed that there is no relationship between the storage conditions, the bottle material or water carbonation, and the occurrence of these plasticizers, suggesting that residues are introduced during production or by the water supply. The estimated daily intake was lower than the total daily intake set by the European Food Safety Authority.
Collapse
Affiliation(s)
- Álvaro Santana-Mayor
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Ruth Rodríguez-Ramos
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Antonio V Herrera-Herrera
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, 2, 38206 San Cristóbal de La Laguna, Spain
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain.
| |
Collapse
|
10
|
Berlina AN, Ragozina MY, Komova NS, Serebrennikova KV, Zherdev AV, Dzantiev BB. Development of Lateral Flow Test-System for the Immunoassay of Dibutyl Phthalate in Natural Waters. BIOSENSORS 2022; 12:1002. [PMID: 36354511 PMCID: PMC9688391 DOI: 10.3390/bios12111002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The use of a large amount of toxic synthetic materials leads to an increase in the pollution of environmental objects. Phthalates are compounds structurally related to esters of phthalic acid that are widely used in the manufacturing of synthetic packaging materials as plasticizers. Their danger is conditioned by leaching into the environment and penetrating into living organisms with negative consequences and effects on various organs and tissues. This work presents the first development of lateral flow immunoassay to detect dibutyl phthalate, one of the most common representatives of the phthalates group. To form a test zone, a hapten-protein conjugate was synthesized, and gold nanoparticles conjugated with antibodies to dibutyl phthalate were used as a detecting conjugate. The work includes the preparation of immunoreagents, selectivity investigation, and the study of the characteristics of the medium providing a reliable optical signal. Under the selected conditions for the analysis, the detection limit was 33.4 ng/mL, and the working range of the determined concentrations was from 42.4 to 1500 ng/mL. Time of the assay-15 min. The developed technique was successfully applied to detect dibutyl phthalate in natural waters with recovery rates from 75 to 115%.
Collapse
|
11
|
Alshehri MM, Ouladsmane MA, Aouak TA, ALOthman ZA, Badjah Hadj Ahmed AY. Determination of phthalates in bottled waters using solid-phase microextraction and gas chromatography tandem mass spectrometry. CHEMOSPHERE 2022; 304:135214. [PMID: 35671816 DOI: 10.1016/j.chemosphere.2022.135214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are synthetic chemicals widely used, mainly as plasticizers, which are ubiquitous and recognized as endocrine-disrupting chemicals. For investigation of phthalate residues leached from PET bottles into drinking water, a simple and sensitive method was developed, validated and applied to a series of real samples. Solid-phase microextraction (SPME) was used in direct immersion mode for concentration of phthalate traces from 10 mL of each water sample. Four commercially available SPME fibers were tested and compared, while six dialkyl phthalates were investigated: dimethyl phthalate (DMP), diethyl phthalate (DEP), diisopropyl phthalate (DiPP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP) and di-ethylhexyl phthalate (DEHP). The extracted phthalic acid esters were separated and quantified by gas chromatography hyphenated with tandem mass spectrometry (GC-MS/MS) and a detection method based on multiple reaction monitoring (MRM) mode was fully developed, optimized and validated. The fiber which showed the highest ability for extraction of phthalates was DVB/CAR/PDMS which combines a liquid polymeric coating (polydimethyl siloxane and divinylbenzene) with a carboxen porous sorbent layer. The obtained limit of detection was in the range between 0.3 and 2.6 ng mL-1. Thus, this fiber was used for extraction of phthalates from twelve commercial PET bottled water samples. All investigated water brands showed the presence of two to six phthalates at concentrations between 6.3 and 112.2 ng mL-1. The highest level was observed for DnBP, followed by DEHP, DiBP, DMP, DEP and DiPP.
Collapse
Affiliation(s)
- Mohammed Mousa Alshehri
- King Saud University, College of Science, Chemistry Department, Advanced Materials Research Chair, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Mohamed Ali Ouladsmane
- King Saud University, College of Science, Chemistry Department, Advanced Materials Research Chair, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Taieb Ali Aouak
- King Saud University, College of Science, Chemistry Department, Advanced Materials Research Chair, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Zeid Abdullah ALOthman
- King Saud University, College of Science, Chemistry Department, Advanced Materials Research Chair, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ahmed Yacine Badjah Hadj Ahmed
- King Saud University, College of Science, Chemistry Department, Advanced Materials Research Chair, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Abeysinghe H, Wickramasinghe G, Perera S, Etampawala T. MWCNT Buckypaper as Electrochemical Sensing Platform: A Rapid Detection Technology for Phthalic Acid Esters in Solutions*. ChemistrySelect 2022. [DOI: 10.1002/slct.202201900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hansini Abeysinghe
- Department of Polymer Science Faculty of Applied Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda 10250 Sri Lanka
| | - Gimhani Wickramasinghe
- Department of Physics Faculty of Natural Sciences Open University of Sri Lanka, Nawala Nugegoda 11222 Sri Lanka
| | - Susira Perera
- Department of Physics Faculty of Natural Sciences Open University of Sri Lanka, Nawala Nugegoda 11222 Sri Lanka
| | - Thusitha Etampawala
- Department of Polymer Science Faculty of Applied Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda 10250 Sri Lanka
- Center for Advanced Material Research (CAMR) Faculty of Applied Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda 10250 Sri Lanka
| |
Collapse
|
13
|
Zhang C, Zhou J, Ma T, Guo W, Wei D, Tan Y, Deng Y. Advances in application of sensors for determination of phthalate esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Determination of Five Phthalate Esters in Tea and Their Dynamic Characteristics during Black Tea Processing. Foods 2022; 11:foods11091266. [PMID: 35563987 PMCID: PMC9103538 DOI: 10.3390/foods11091266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
A highly specific and high extraction-rate method for the analysis of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), diisobutyl phthalate (DiBP), and di-(2-ethyl) hexyl phthalate (DEHP) in tea samples was developed. Based on three-factor Box-Behnken response surface design, solid-phase extraction (SPE) of five phthalate ester (PAE) residues in tea was optimized. Optimal extraction conditions were found for extraction temperature (40 °C), extraction time (12 h), and ratio of tea to n-hexane (1:20). The dynamic distribution of PAEs at each stage of black tea processing was also analyzed, and it was found that the baking process was the main stage of PAE emission, indicating that traditional processing of black tea significantly degrades PAEs. Further, principal component analysis of the physicochemical properties and processing factors of the five PAEs identified the main processing stages affecting the release of PAEs, and it was found that the degradation of PAEs during black tea processing is also related to its own physicochemical properties, especially the octanol-water partition coefficient. These results can provide important references for the detection, determination of processing losses, and control of maximum residue limits (MRLs) of PAEs to ensure the quality and safety of black tea.
Collapse
|
15
|
Baranovskaya VS, Berlina AN, Eremin SA. A Fluorescence Polarization Immunoassay Procedure for Determining Dibutyl Phthalate in Water. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Development of a bimodal sensor based on upconversion nanoparticles and surface-enhanced Raman for the sensitive determination of dibutyl phthalate in food. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Gao JJ, Lang XX, Yu QQ, Li HY, Wang HJ, Wang MQ. Amphiphilic BODIPY-based nanoparticles as "light-up" fluorescent probe for PAEs detection by an aggregation/disaggregation approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119492. [PMID: 33517216 DOI: 10.1016/j.saa.2021.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Phthalic acid eaters (PAEs) play the role of plasticizer and have been widely used in the industrial and plastic production process. But due to not chemically bound in the polymeric matrix, PAEs can be easily released directly and/or indirectly into the environment, and pose a threat the ecosystem and human health. Small-molecule self-assembled nanoparticles have drawn more and more attention due to advantages of precise molecular structure, biocompatibility, great diversity, and tunability in optical properties and functionalities. Here we report the use of disaggregation-induced emission (DIE) based supramolecular assembly to design organic nanoprobe for detection PAEs. In the water solution, the designed small organic fluorophore AJ-1 was aggregated via noncovalent forces to form fluorescence off nanoparticles, but in the presence of PAEs, they disaggregated and produced a clear light-up fluorescent signal. The detection of PAEs with selectivity, sensitivity and rapid response were further achieved. The experiment of recovery of PAEs in real-water sample illustrated the practicability of probe AJ-1 in real-world applications. Besides, cellular uptake assay suggested that AJ-1 could pass through membrane and gather in the cytoplasm.
Collapse
Affiliation(s)
- Juan-Juan Gao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xue-Xian Lang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Quan-Qi Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hong-Yao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hai-Jiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
18
|
Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phthalates are multifunctional synthetic chemicals found in a wide array of consumer and industrial products, mainly used to improve the mechanical properties of plastics, giving them flexibility and softness. In the European Union, phthalates are prohibited at levels greater than 0.1% by weight in most food packaging. In the current study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was optimized, through the multivariate optimization process, and validated to evaluate the occurrence of four common phthalates, di-iso-butyl phthalate (DIBP), butyl-benzyl phthalate (BBP), di-n-octyl phthalate (DOP), and 2,2,4,4-tetrabromodiphenyl (BDE), in different food packaging. The best extraction efficiency was achieved using the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber at 80 °C for 30 min. The validated method showed good linearity, precision (RSD < 13%), and recoveries (90.2 to 111%). The limit of detection (LOD) and of quantification (LOQ) ranged from 0.03 to 0.08 µg/L and from 0.10 to 0.24 µg/L, respectively. On average, the phthalates concentration varied largely among the assayed food packaging. DIBP was the most predominant phthalate in terms of occurrence (71.4% of analyzed simples) and concentration (from 3.61 to 10.7 μg/L). BBP was quantified in only one sample and BDE was detected in trace amounts (<LOQ) in only two samples.
Collapse
|
19
|
Huelsmann RD, Will C, Carasek E. Novel strategy for disposable pipette extraction (DPX): Low-cost Parallel-DPX for determination of phthalate migration from common plastic materials to saliva simulant with GC-MS. Talanta 2021; 221:121443. [PMID: 33076068 DOI: 10.1016/j.talanta.2020.121443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
Abstract
In widespread use in commercial products as plasticizers, phthalic acid esters (phthalates) have worried researchers and society in general, given the negative impacts on living organisms, especially human health. Since they are not chemically linked to the polymeric matrix, their migration is evident for samples that come into contact with plastics that contain them, such as water, food and saliva. In this work, a new strategy is described, named parallel-disposable pipette extraction (Pa-DPX), in a fast, efficient and robust analytical method using five simultaneous extractions for the determination of migration of 6 phthalates from common plastic materials (children's toys, school supplies, dog toys and oral contact items) to saliva simulant, using gas chromatography-mass spectrometry (GC-MS). The optimized conditions were 5 extraction cycles with 1600 μL of saliva simulant and desorption with 200 μL of ethyl acetate using 5 cycles with the same aliquot. The calibration curves resulted in determination coefficients higher than 0.9915, limits of detection at 1.5 μg L-1, and the quantification limits were 5.0 μg L-1. Excellent results were obtained for repeatability (relative standard deviation ranging from 8.7% to 20.1% for 5 μg L-1) and intermediate precision, varying the day of analyses (7.9%-16.2%). The analyte recovery ranged from 75% to 114% for two different samples, in four different levels of concentration. The Pa-DPX-GC-MS method was successfully applied to determine the migration of PAE from 21 samples. At least one PAE was detected in 81% of samples, and di-n-octyl phthalate was found in higher concentration, achieving the migration of almost 30 μg per g of sample.
Collapse
Affiliation(s)
| | - Camila Will
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, Brazil.
| |
Collapse
|
20
|
Peñalver R, Arroyo-Manzanares N, Campillo N, Viñas P. Targeted and untargeted gas chromatography-mass spectrometry analysis of honey samples for determination of migrants from plastic packages. Food Chem 2020; 334:127547. [PMID: 32693334 DOI: 10.1016/j.foodchem.2020.127547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Plastic food packages usually contain additives which may migrate from the package into the food and then be ingested by the consumer, representing a risk for their health. In this study, targeted and untargeted analysis by gas chromatography-mass spectrometry (GC-MS) is proposed to monitor any contaminants of this type in honey. The application of dispersive liquid-liquid microextraction (DLLME) as a preconcentration technique allowed very low detection limits to be reached for all the substances. Fifteen target compounds, including styrene, phthalates, fatty acids, alkylphenols and bisphenol A, were quantified. Untargeted analyses were also carried out, allowing other migrants in the honey samples to be identified, such as two phthalates, four acids, three esters, one aldehyde, one hydrocarbon and two alkyl phenol compounds. The proposed method was seen to be a useful approach for the quantification and identification of potential migrants from plastics in challenging samples such as honey.
Collapse
Affiliation(s)
- Rosa Peñalver
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
21
|
Jiang X, Xie Y, Wan D, Zheng F, Wang J. Enrichment-Free Rapid Detection of Phthalates in Chinese Liquor with Electrochemical Impedance Spectroscopy. SENSORS 2020; 20:s20030901. [PMID: 32046225 PMCID: PMC7038971 DOI: 10.3390/s20030901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
A non-invasive real-time detection technique for phthalates in Chinese liquor is proposed in this paper. This method is based on the measurement of Faradaic impedance in the presence of a redox probe, [Fe(CN)6]3−/4−, upon the absorption of phthalates to the graphene electrode surface. This absorption activity is according to the π–π stacking interactions between phthalates and the graphene working electrode which allows direct sampling and analyte preconcentration. The absorption of phthalates retards the interfacial electron-transfer kinetics and increases the charge-transfer resistance (Rct). Numerical values of Rct were extracted from a simulation of electrochemical impedance spectroscopy (EIS) spectra with the corresponding equivalent circuit. Cathodic polarization was employed prior to EIS measurements to effectively eliminate the metal ion interference. The results yielded a detection limit of 0.024 ng/L for diethyl phthalate (DEP) with a linear range from 2.22 ng to 1.11 µg. These results indicate a possibility of developing a household sensor for phthalate determination in Chinese liquor.
Collapse
Affiliation(s)
- Xinyue Jiang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, Hubei, China;
| | - Yuqun Xie
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, Hubei, China;
- Correspondence: (Y.X.); (J.W.)
| | - Duanji Wan
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China;
| | - Fuping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Jun Wang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China;
- Correspondence: (Y.X.); (J.W.)
| |
Collapse
|
22
|
Zakharkiv I, Zui M, Zaitsev V. Determination of Phthalate Esters in Water and Liquid Pharmaceutical Samples by Dispersive Liquid-Liquid Microextraction (DLLME) and Gas Chromatography with Flame Ionization Detection (GC-FID). ANAL LETT 2020. [DOI: 10.1080/00032719.2019.1711384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Igor Zakharkiv
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maryna Zui
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Vladimir Zaitsev
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro, Brazil, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
23
|
Wang X, Chen C, Xu L, Zhang H, Xu Z. Development of molecularly imprinted biomimetic immunoassay method based on quantum dot marker for detection of phthalates. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1649371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ximo Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Chen Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Longhua Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Hongyan Zhang
- College of Life Science, Shandong Normal University, Jinan, PR People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| |
Collapse
|
24
|
Mehrani Z, Ebrahimzadeh H, Moradi E. Poly m-aminophenol/ nylon 6/graphene oxide electrospun nanofiber as an efficient sorbent for thin film microextraction of phthalate esters in water and milk solutions preserved in baby bottle. J Chromatogr A 2019; 1600:87-94. [DOI: 10.1016/j.chroma.2019.04.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 02/07/2023]
|
25
|
Salazar-Beltrán D, Hinojosa-Reyes L, Maya-Alejandro F, Turnes-Palomino G, Palomino-Cabello C, Hernández-Ramírez A, Guzmán-Mar JL. Automated on-line monitoring of the TiO2-based photocatalytic degradation of dimethyl phthalate and diethyl phthalate. Photochem Photobiol Sci 2019; 18:863-870. [DOI: 10.1039/c8pp00307f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An automated on-line system for monitoring the TiO2-based photocatalytic degradation of dimethyl phthalate and diethyl phthalate.
Collapse
Affiliation(s)
- Daniel Salazar-Beltrán
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- San Nicolás de los Garzas
- Mexico
- University of the Balearic Islands
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- San Nicolás de los Garzas
- Mexico
| | | | | | | | | | - Jorge Luis Guzmán-Mar
- Universidad Autónoma de Nuevo León
- Facultad de Ciencias Químicas
- San Nicolás de los Garzas
- Mexico
| |
Collapse
|
26
|
Wang J, Liu M, Zhang L, Zhang T, Yue T, Li Z, Hu N, Suo Y, Wang J. Biomass reinforced graphene oxide solid/liquid phase membrane extraction for the measurement of Pb(II) in food samples. Food Chem 2018; 269:9-15. [DOI: 10.1016/j.foodchem.2018.06.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 11/30/2022]
|
27
|
Wei SL, Liu WT, Huang XC, Ma JK. Preparation and application of a magnetic plasticizer as a molecularly imprinted polymer adsorbing material for the determination of phthalic acid esters in aqueous samples. J Sep Sci 2018; 41:3806-3814. [DOI: 10.1002/jssc.201800535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Shou-Lian Wei
- College of environmental and chemical engineering; Zhaoqing University; Zhaoqing P. R. China
| | - Wan-Ting Liu
- College of environmental and chemical engineering; Zhaoqing University; Zhaoqing P. R. China
| | - Xiao-Chen Huang
- School of Food & Pharmaceutical Engineering; Zhaoqing University; Zhaoqing P. R. China
| | - Jin-Kui Ma
- School of Food & Pharmaceutical Engineering; Zhaoqing University; Zhaoqing P. R. China
| |
Collapse
|
28
|
|