1
|
Chen C, Zhong W, Zheng H, Zhao W, Wang Y, Shen B. Current state of heart failure treatment: are mesenchymal stem cells and their exosomes a future therapy? Front Cardiovasc Med 2025; 12:1518036. [PMID: 40357434 PMCID: PMC12066684 DOI: 10.3389/fcvm.2025.1518036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Heart failure (HF) represents the terminal stage of cardiovascular disease and remains a leading cause of mortality. Epidemiological studies indicate a high prevalence and mortality rate of HF globally. Current treatment options primarily include pharmacological and non-pharmacological approaches. With the development of mesenchymal stem cell (MSC) transplantation technology, increasing research has shown that stem cell therapy and exosomes derived from these cells hold promise for repairing damaged myocardium and improving cardiac function, becoming a hot topic in clinical treatment for HF. However, this approach also presents certain limitations. This review summarizes the mechanisms of HF, current treatment strategies, and the latest progress in the application of MSCs and their exosomes in HF therapy.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Pimentel A, Gonçalves-Silva T, Jasmin, Mendez-Otero R. Isolation and characterization of canine umbilical cord mesenchymal/stromal stem cells. In Vitro Cell Dev Biol Anim 2025; 61:472-485. [PMID: 40325278 DOI: 10.1007/s11626-025-01023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/30/2025] [Indexed: 05/07/2025]
Abstract
Mesenchymal stem cells (MSCs) have therapeutic potential due to their immunomodulatory and anti-inflammatory properties. In veterinary medicine, adipose tissue is the most common source of MSCs to treat canine disease, but the collection process is invasive, and the cells are influenced by the age and health conditions of the donor. These problems enhance interest in seeking alternative MSC sources, such as perinatal tissues. In this study, we developed and validated an optimized protocol for isolating canine umbilical cord MSCs for application in veterinary therapies. Umbilical cords obtained from cesarean sections were processed using three different protocols, involving combinations of mechanical and enzymatic tissue dissociation. The cells were cultured and evaluated for membrane receptors by flow cytometry to identify MSCs and assessed for their differentiation capacity. The number of cells obtained did not differ significantly between the combined protocol with trypsin and collagenase (TRIP + COL) and the collagenase protocol (COL). In in vitro culture, the combined TRIP + COL and COL yielded 12 to 14 times more cells, respectively, in the first passage than the explant (EXP) group, within fewer days of culture. Additionally, the cells obtained from these protocols showed a greater capacity for expansion over passages, and cells from both protocols showed fibroblast-like morphology and proliferation capacity up to the sixth passage. The cells obtained from these protocols were characterized by phenotype: CD45-, CD34-, CD14-, HLA-DR-, CD29+, CD44+, and CD90+, consistent with MSC identity. However, CD90 expression in the cells decreased significantly at sixth passage. Regarding differentiation, cells obtained from the COL protocol showed a capacity for commitment to the chondrogenic and osteogenic lineages. In conclusion, the COL and TRIP + COL protocols were more effective than the EXP protocol in terms of both the number and quality of isolated cells. However, due to its less-aggressive enzymatic nature, we considered the COL protocol to be the best method to obtain canine MSCs.
Collapse
Affiliation(s)
- Aline Pimentel
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro (IBCCF-UFRJ), Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ 21941-170, Brazil.
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (CENABIO-UFRJ), Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ 21941-170, Brazil
| | - Jasmin
- Duque de Caxias Campus, NUMPEX-Bio, Federal University of Rio de Janeiro, Estrada de Xerém, 27 - Xerém, Duque de Caxias, RJ 25245-390, Brazil
| | - Rosalia Mendez-Otero
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro (IBCCF-UFRJ), Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ 21941-170, Brazil
| |
Collapse
|
3
|
Gurel M, Zomer H, McFetridge C, Murfee WL, McFetridge PS. Physiologically-Modeled Dynamic Stimulation and Growth Factors Induce Differentiation of Mesenchymal Stem Cells to a Vascular Endothelial Cell Phenotype. Microcirculation 2025; 32:e70007. [PMID: 40120632 PMCID: PMC12012511 DOI: 10.1111/micc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) represent an attractive option as an endothelial cell (EC) source for regenerative medicine therapies. However, the differentiation of MSCs toward an ECs phenotype can be regulated by a complex and dynamic microenvironment, including specific growth factors as well as local mechanical cues. The objective of this work was to evaluate whether Physiologically-modeled dynamic stimulation (PMDS) characterized by continuous variability in pulse frequencies mimicking the dynamic temporal range of cardiac function would enhance MSC differentiation toward ECs compared to a constant frequency stimulation. METHODS Mesenchymal stem cells were grown in a complex growth factor cocktail versus standard culture media to initiate the endothelial differentiation process, then subsequently exposed to PMDS that vary in duration and constant flow (CF) at a fixed 10 dynes/cm2 shear stress and 1.3 Hz frequency. RESULTS Both PMDS and media type strongly influence cell differentiation and function. Cells were shown to significantly upregulate eNOS activity and displayed lower TNF-a induced leukocyte adhesion compared to cells cultured under CF, consistent with a more quiescent ECs phenotype that regulates anti-inflammatory and anti-thrombotic states. CONCLUSION These findings suggest that the dynamic microenvironment created by perfusion, in contrast to constant frequency, combined with growth factors, enhances MSCs differentiation toward a vascular endothelial-like phenotype.
Collapse
Affiliation(s)
- Mediha Gurel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
- Electronic and Automation Department, Bitlis Eren University, Bitlis, Turkey
| | - Helena Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Calum McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Peter S McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Lisboa MDO, Selenko AH, Hochuli AHD, Senegaglia AC, Fracaro L, Brofman PRS. The influence of fetal bovine serum concentration on stemness and neuronal differentiation markers in stem cells from human exfoliated deciduous teeth. Tissue Cell 2024; 91:102571. [PMID: 39353229 DOI: 10.1016/j.tice.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Dental Stem Cells (DSCs) from discarded teeth are a non-invasive and ethically favorable source with the potential for neurogenesis due to their ectodermal origin. Stem cells from human exfoliated deciduous teeth (SHED) are particularly promising due to their high differentiation potential and relative immaturity compared to other Mesenchymal Stromal Cells (MSCs). Markers like CD56 and CD271 are critical in identifying MSC subpopulations for therapeutic applications because of their roles in neurodevelopment and maintaining stemness. This study investigates how fetal bovine serum (FBS) concentrations affect the expression of CD56 and CD271 in SHED, influencing their stemness and neuronal differentiation potential. SHEDs were isolated from various donors, cultured, and characterized for MSC traits using markers such as CD14, CD19, CD29, CD34, CD45, CD73, CD90, CD105, CD56, and CD271. Culturing SHED in different FBS conditions (standard 15 %, reduced 1 % and 5 %, and FBS-free) showed that lower FBS concentrations increase CD271 and CD56 expression while maintaining the standard MSC immunophenotype. Importantly, the enhanced expression of these markers can be induced even after SHEDs have been expanded in standard FBS concentrations. These findings suggest that FBS concentration can optimize SHED culture conditions, enhancing their suitability for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Ana Helena Selenko
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Agner Henrique Dorigo Hochuli
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| |
Collapse
|
5
|
Niu JW, Li Y, Xu C, Sheng H, Tian C, Ning H, Hu J, Chen J, Li B, Wang J, Lou X, Liu N, Su Y, Sun Y, Qiao Z, Wang L, Zhang Y, Lan S, Xie J, Ren J, Peng B, Wang S, Shi Y, Zhao L, Zhang Y, Chen H, Zhang B, Hu L. Human umbilical cord-derived mesenchymal stromal cells for the treatment of steroid refractory grades III-IV acute graft-versus-host disease with long-term follow-up. Front Immunol 2024; 15:1436653. [PMID: 39211037 PMCID: PMC11357908 DOI: 10.3389/fimmu.2024.1436653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) have been extensively studied as a potential treatment for steroid refractory acute graft-versus-host disease (aGVHD). However, the majority of clinical trials have focused on bone marrow-derived MSCs. Methods In this study, we report the outcomes of 86 patients with grade III-IV (82.6% grade IV) steroid refractory aGVHD who were treated with human umbilical cord-derived mesenchymal stromal cells (UC-MSCs). The patient cohort included 17 children and 69 adults. All patients received intravenous infusions of UC-MSCs at a dose of 1 × 106 cells per kg body weight, with a median of 4 infusions (ranging from 1 to 16). Results The median time between the onset of aGVHD and the first infusion of UC-MSCs was 7 days (ranging from 3 to 88 days). At day 28, the overall response (OR) rate was 52.3%. Specifically, 24 patients (27.9%) achieved complete remission, while 21 (24.4%) exhibited partial remission. The estimated survival probability at 100 days was 43.7%. Following a median follow-up of 108 months (ranging from 61 to 159 months), the survival rate was approximately 11.6% (10/86). Patients who developed acute lower GI tract and liver GVHD exhibited poorer OR rates at day 28 compared to those with only acute lower GI tract GVHD (22.2% vs. 58.8%; p= 0.049). No patient experienced serious adverse events. Discussion These finding suggest that UC-MSCs are safe and effective in both children and adults with steroid refractory aGVHD. UC-MSCs could be considered as a feasible treatment option for this challenging conditon. (NCT01754454).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bin Zhang
- Senior Department of Hematology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Liangding Hu
- Senior Department of Hematology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
6
|
Mello DB, Mesquita FCP, Silva dos Santos D, Asensi KD, Dias ML, Campos de Carvalho AC, Goldenberg RCDS, Kasai-Brunswick TH. Mesenchymal Stromal Cell-Based Products: Challenges and Clinical Therapeutic Options. Int J Mol Sci 2024; 25:6063. [PMID: 38892249 PMCID: PMC11173248 DOI: 10.3390/ijms25116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Debora B. Mello
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
| | | | - Danúbia Silva dos Santos
- Center of Cellular Technology, National Institute of Cardiology, INC, Rio de Janeiro 22240-002, Brazil;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
| | - Karina Dutra Asensi
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Marlon Lemos Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Regina Coeli dos Santos Goldenberg
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
7
|
Sciarretta FV, Ascani C, Sodano L, Fossati C, Campisi S. One-stage cartilage repair using the autologous matrix-induced chondrogenesis combined with simultaneous use of autologous adipose tissue graft and adipose tissue mesenchymal cells technique: clinical results and magnetic resonance imaging evaluation at five-year follow-up. INTERNATIONAL ORTHOPAEDICS 2024; 48:267-277. [PMID: 37656198 PMCID: PMC10766726 DOI: 10.1007/s00264-023-05921-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/30/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE To evaluate medium-term outcomes of knee cartilage defects repair by autologous matrix-induced chondrogenesis combined with simultaneous use of autologous adipose tissue graft and adipose tissue mesenchymal cells, defined as LIPO-AMIC technique. METHODS The LIPO-AMIC technique has been used in ICRS degree III-IV knee defects. Eighteen patients have been prospectively evaluated during two and five years both clinically and by MRI. RESULTS Patients showed progressive significant improvement of all scores starting early at six months, and further increased values were noted till the last follow-up at 60 months. Mean subjective pre-operative IKDC score of 36.1 significantly increased to 86.4 at 24 months and to 87.2 at 60 months. Mean pre-operative Lysholm score of 44.4 reached 93.5 at two years and 93.5 at five years. MRI examination showed early subchondral lamina regrowth and progressive maturation of repair tissue and filling of defects. The mean total MOCART score showed that a significative improvement from two year follow-up (69.1 points) to last follow-up was 81.9 points (range, 30-100 points, SD 24). Complete filling of the defect at the level of the surrounding cartilage was found in 77.8%. CONCLUSIONS Adipose tissue can represent ideal source of MSCs since easiness of withdrawal and definite chondrogenic capacity. This study clearly demonstrated the LIPO-AMIC technique to be feasible for treatment of knee cartilage defects and to result in statistically significant progressive clinical, functional and pain improvement in all treated patients better than what reported for the AMIC standard technique, starting very early from the 6-month follow-up and maintaining the good clinical results more durably with stable results at mid-term follow-up.
Collapse
Affiliation(s)
- Fabio Valerio Sciarretta
- Clinica Nostra Signora della Mercede, Via Tagliamento 25, 00198, Rome, Italy.
- Accademia Biomedica Rigenerativa (ABRI), Via Misurina 56, 00135, Rome, Italy.
- Artemisia Lab, Via Piave 76, 00198, Rome, Italy.
| | | | - Luca Sodano
- Ospedale San Luca, Via Francesco Cammarota, 84078, Vallo della Lucania, SA, Italy
| | - Carolina Fossati
- Accademia Biomedica Rigenerativa (ABRI), Via Misurina 56, 00135, Rome, Italy
- Artemisia Lab, Via Piave 76, 00198, Rome, Italy
| | - Silvana Campisi
- Accademia Biomedica Rigenerativa (ABRI), Via Misurina 56, 00135, Rome, Italy
- Artemisia Lab, Via Piave 76, 00198, Rome, Italy
| |
Collapse
|
8
|
Sun L, Yao Y. Mesenchymal stem/stromal cells- a principal element for tumour microenvironment heterogeneity. Front Immunol 2023; 14:1274379. [PMID: 37885883 PMCID: PMC10599013 DOI: 10.3389/fimmu.2023.1274379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of the tumor microenvironment (TME) is a major obstacle in cancer treatment, making most therapeutic interventions palliative rather than curative. Previous studies have suggested that the reason for the low efficacy of immunotherapy and the relapse of the original responders over time may be due to the complex network of mesenchymal stem/stromal cells (MSCs), a population of multipotent progenitor cells existing in a variety of tissues. Cancer-associated MSCs (CA-MSCs) have already been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. Although the roles of CA-MSCs from different sources vary widely, their origins are still poorly understood. Current evidence suggests that when local resident or distally recruited MSCs interact with tumor cells and other components in the TME, "naïve" MSCs undergo genetic and functional changes to form CA-MSCs. In this review, we mainly focus on the multiple roles of CA-MSCs derived from different sources, which may help in elucidating the formation and function of the entire TME, as well as discover innovative targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
9
|
Tang XL, Nasr M, Zheng S, Zoubul T, Stephan JK, Uchida S, Singhal R, Khan A, Gumpert A, Bolli R, Wysoczynski M. Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells are Ineffective for Myocardial Repair in an Immunodeficient Rat Model of Chronic Ischemic Cardiomyopathy. Stem Cell Rev Rep 2023; 19:2429-2446. [PMID: 37500831 PMCID: PMC10579184 DOI: 10.1007/s12015-023-10590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Although cell therapy provides benefits for outcomes of heart failure, the most optimal cell type to be used clinically remains unknown. Most of the cell products used for therapy in humans require in vitro expansion to obtain a suitable number of cells for treatment; however, the clinical background of the donor and limited starting material may result in the impaired proliferative and reparative capacity of the cells expanded in vitro. Wharton's jelly mesenchymal cells (WJ MSCs) provide a multitude of advantages over adult tissue-derived cell products for therapy. These include large starting tissue material, superior proliferative capacity, and disease-free donors. Thus, WJ MSC if effective would be the most optimal cell source for clinical use. OBJECTIVES This study evaluated the therapeutic efficacy of Wharton's jelly (WJ) and bone marrow (BM) mesenchymal stromal cells (MSCs) in chronic ischemic cardiomyopathy in rats. METHODS Human WJ MSCs and BM MSCs were expanded in vitro, characterized, and evaluated for therapeutic efficacy in a immunodeficient rat model of ischemic cardiomyopathy. Cardiac function was evaluated with hemodynamics and echocardiography. The extent of cardiac fibrosis, hypertrophy, and inflammation was assessed with histological analysis. RESULTS In vitro analysis revealed that WJ MSCs and BM MSCs are morphologically and immunophenotypically indistinguishable. Nevertheless, the functional analysis showed that WJ MSCs have a superior proliferative capacity, less senescent phenotype, and distinct transcriptomic profile compared to BM MSC. WJ MSCs and BM MSC injected in rat hearts chronically after MI produced a small, but not significant improvement in heart structure and function. Histological analysis showed no difference in the scar size, collagen content, cardiomyocyte cross-sectional area, and immune cell count. CONCLUSIONS Human WJ and BM MSC have a small but not significant effect on cardiac structure and function when injected intramyocardially in immunodeficient rats chronically after MI.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marjan Nasr
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Shirong Zheng
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Taylor Zoubul
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Jonah K Stephan
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Richa Singhal
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anna Gumpert
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Jahani S, Zare N, Mirzaei Y, Arefnezhad R, Zarei H, Goleij P, Bagheri N. Mesenchymal stem cells and ovarian cancer: Is there promising news? J Cell Biochem 2023; 124:1437-1448. [PMID: 37682985 DOI: 10.1002/jcb.30471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Ovarian cancer (OC) is described as a heterogeneous complex condition with high mortality, weak prognosis, and late-stage presentation. OC has several subgroups based on different indices, like the origin and histopathology. The current treatments against OC include surgery followed by chemotherapy and radiotherapy; however, these methods have represented diverse side effects without enough effectiveness on OC. Recently, mesenchymal stem cell (MSC)-based therapy has acquired particular attention for treating diverse problems, such as cancer. These multipotent stem cells can be obtained from different sources, such as the umbilical cord, adipose tissues, bone marrow, and placenta, and their efficacy has been investigated against OC. Hence, in this narrative review, we aimed to review and discuss the present studies about the effects of various sources of MSCs on OC with a special focus on involved mechanisms.
Collapse
Affiliation(s)
| | - Nabi Zare
- Coenzyme R Research Institute, Tehran, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran
- International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Evaluation of the Optimal Manufacturing Protocols and Therapeutic Properties of Mesenchymal Stem/Stromal Cells Derived from Wharton's Jelly. Int J Mol Sci 2022; 24:ijms24010652. [PMID: 36614096 PMCID: PMC9820979 DOI: 10.3390/ijms24010652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Wharton's jelly (WJ) from the umbilical cord (UC) is a good source of mesenchymal stem/stromal cells (MSCs), which can be isolated and used in therapy. Current knowledge shows that even small changes in the cell environment may result in obtaining a subpopulation of cells with different therapeutic properties. For this reason, the conditions of UC transportation, cell isolation, and cultivation and the banking of cells destined for clinical use should be unified and optimized. In this project, we tried various protocols for cell vs. bioptat isolation, banking, and transport in order to determine the most optimal. The most efficient isolation method of WJ-MSCs was chopping the whole umbilical matrix with a scalpel after vessel and lining membrane removal. The optimal solution for short term cell transportation was a multi-electrolyte fluid without glucose. Considering the use of WJ-MSCs in cell therapies, it was important to investigate the soluble secretome of both WJ bioptats and WJ-MSCs. WJ-MSCs secreted higher levels of cytokines and chemokines than WJ bioptats. WJ-MSCs secreted HGF, CCL2, ICAM-1, BDNF, and VEGF. Since these cells might be used in treating neurodegenerative disorders, we investigated the impact of cerebrospinal fluid (CSF) on WJ-MSCs' features. In the presence of CSF, the cells expressed consecutive neural markers both at the protein and gene level: nestin, β-III-tubulin, S-100-β, GFAP, and doublecortin. Based on the obtained results, a protocol for manufacturing an advanced-therapy medicinal product was composed.
Collapse
|
12
|
Nagamura-Inoue T, Kato S, Najima Y, Isobe M, Doki N, Yamamoto H, Uchida N, Takahashi A, Hori A, Nojima M, Ohashi K, Nagamura F, Tojo A. Immunological influence of serum-free manufactured umbilical cord-derived mesenchymal stromal cells for steroid-resistant acute graft-versus-host disease. Int J Hematol 2022; 116:754-769. [PMID: 35908021 DOI: 10.1007/s12185-022-03408-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/13/2022] [Indexed: 12/31/2022]
Abstract
This study investigated the safety, efficacy, and immunological influence of allogeneic umbilical cord-derived mesenchymal stromal cells (IMSUT-CORD) processed in serum-free medium and cryoprotectant, for treating steroid-resistant acute graft-versus-host disease (aGVHD). In a phase I dose-escalation trial, IMSUT-CORD were infused intravenously twice weekly over two cycles with up to two additional cycles. Four patients received a dose of 1 × 106 cells/kg, while three received 2 × 106/kg. Of 76 total adverse events, fourteen associated or possibly associated adverse events included 2 cases of a hot flash, headache, and peripheral neuropathy, 1 each of upper abdominal pain, hypoxia, increased γ-GTP, somnolence, peripheral vascular pain at the injection site, thrombocytopenia, hypertension, and decreased fibrinogen. At 16 weeks after the initial IMSUT-CORD infusion, three patients showed complete response (CR), two partial response (PR), one mixed response, and one no response. The overall response rate was 71.4%, and the continuous CR/PR rate was 100% for over 28 days after CR/PR. NK cell count significantly increased and correlated with treatment response, whereas IL-12, IL-17, and IL-33 levels decreased, but did not correlate with treatment response. CCL2 and CCL11 levels increased during IMSUT-CORD therapy. IMSUT-CORD are usable in patients with steroid-resistant aGVHD (UMIN000032819: https://www.umin.ac.jp/ctr ).
Collapse
Affiliation(s)
- Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan. .,Department of Hematology and Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,Department of Global Clinical Research, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Seiko Kato
- Department of Hematology and Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology and Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | | | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Atsuko Takahashi
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Hori
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masanori Nojima
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Fumitaka Nagamura
- Department of Global Clinical Research, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology and Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Institute of Innovation Advancement, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Zhang S, Li J, Li C, He J, Ling F, Liu G. Isolation and identification of a mesenchymal stem/stromal cell-like population from pediatric urethral tissue. In Vitro Cell Dev Biol Anim 2022; 58:503-511. [PMID: 35817989 DOI: 10.1007/s11626-022-00697-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Mesenchymal stem cells (MSCs) are important seed cells for cell therapy and tissue engineering because of their multidirectional differentiation potential, high proliferative capacity, low immunogenicity, and immunomodulatory ability. In this study, we successfully isolated and cultured a population of mesenchymal stem-like cells from pediatric urethra (PU-MSLCs). The cells had a spindle-shaped fibroblast-like morphology, similar to MSCs derived from other tissues. The PU-MSLCs highly expressed MSC surface markers CD29, CD73, CD90, and CD105 but were negative for leukocyte common antigen CD45, and MHC class II-encoded molecule HLA-DR. After in vitro induction, the PU-MSLCs had the potential to differentiate into adipocytes, osteocytes, and chondrocytes. The PU-MSLCs maintained a normal karyotype and showed no tumorigenicity during long-term cultivation. We thus demonstrated that the mesenchymal stem/stromal cell-like population obtained from pediatric urethra tissue is capable of self-renewal and multidirectional differentiation, has promising application prospects for cell therapy and tissue engineering, and is expected to contribute to urethral tissue reconstruction.
Collapse
Affiliation(s)
- Shilin Zhang
- Department of Urology, Child Healthcare Hospital, Southern Medical University, Chancheng District, Affiliated Foshan Maternity &No.11, Renmin West Road, 528000, Foshan, Guangdong, China.
| | - Jierong Li
- Department of Urology, Child Healthcare Hospital, Southern Medical University, Chancheng District, Affiliated Foshan Maternity &No.11, Renmin West Road, 528000, Foshan, Guangdong, China
| | - Chunjing Li
- Department of Urology, Child Healthcare Hospital, Southern Medical University, Chancheng District, Affiliated Foshan Maternity &No.11, Renmin West Road, 528000, Foshan, Guangdong, China
| | - Jun He
- Department of Urology, Child Healthcare Hospital, Southern Medical University, Chancheng District, Affiliated Foshan Maternity &No.11, Renmin West Road, 528000, Foshan, Guangdong, China
| | - Fengsheng Ling
- Department of Urology, Child Healthcare Hospital, Southern Medical University, Chancheng District, Affiliated Foshan Maternity &No.11, Renmin West Road, 528000, Foshan, Guangdong, China
| | - Guoqing Liu
- Department of Urology, Child Healthcare Hospital, Southern Medical University, Chancheng District, Affiliated Foshan Maternity &No.11, Renmin West Road, 528000, Foshan, Guangdong, China
| |
Collapse
|
14
|
Nilforoushzadeh MA, Afzali H, Raoofi A, Nouri M, Naser R, Gholami O, Nasiry D, Mohammadnia A, Razzaghi Z, Alimohammadi A, Naraghi ZS, Peyrovan A, Jahangiri F, Khodaverdi Darian E, Rustamzadeh A, Zare S. Topical spray of Wharton's jelly mesenchymal stem cells derived from umbilical cord accelerates diabetic wound healing. J Cosmet Dermatol 2022; 21:5156-5167. [PMID: 35478316 DOI: 10.1111/jocd.15022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIM Cell-based therapy utilizing mesenchymal stem cells (MSCs) is currently being investigated as a therapeutic agent for chronic wounds. There is no evidence regarding effectiveness of the spray and local transfer of this cellular product in diabetic wound healing. Accordingly, the present study, using clinical, pathological and biometric parameters, investigated the effectiveness of the spray of these cells in the healing of diabetic wounds in rats. METHODS Three days after the induction of diabetes (50 mg/kg single dose of streptozotocin) a circular excision was created on the back of rats. Diabetic rats were divided into two groups (n=21): Control and WJ-MSCs group. Sampling of the studied groups was performed on days 7, 14 and 21 after wounding. Histological, ultrasound imaging of dermis and epidermis in the wound area for thickness and density measurement and skin elasticity were evaluated. RESULTS Our results on days 7, 14, and 21 after wounding showed that the wound closure, thickness and density of new epidermis and dermis, as well as skin elasticity in healed wound were significantly higher in WJ-MSCs group compared to the Control group. CONCLUSION Application of WJ-MSCs suspension spray on the wound area can accelerate healing in diabetic wounds. Our findings may potentially provide a helpful therapeutic strategy for patients with a diabetic wound.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maryam Nouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Naser
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolreza Mohammadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alimohammad Alimohammadi
- Forensic medicine specialist, Research center of legal medicine organization of Iran, Tehran, Iran
| | - Zahra Safaie Naraghi
- Department of Pathology, Razi Skin Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aisan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faeze Jahangiri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Khodaverdi Darian
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Extraembryonic Mesenchymal Stromal/Stem Cells in Liver Diseases: A Critical Revision of Promising Advanced Therapy Medicinal Products. Cells 2022; 11:cells11071074. [PMID: 35406638 PMCID: PMC8997603 DOI: 10.3390/cells11071074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Liver disorders have been increasing globally in recent years. These diseases are associated with high morbidity and mortality rates and impose high care costs on the health system. Acute liver failure, chronic and congenital liver diseases, as well as hepatocellular carcinoma have been limitedly treated by whole organ transplantation so far. But novel treatments for liver disorders using cell-based approaches have emerged in recent years. Extra-embryonic tissues, including umbilical cord, amnion membrane, and chorion plate, contain multipotent stem cells. The pre-sent manuscript discusses potential application of extraembryonic mesenchymal stromal/stem cells, focusing on the management of liver diseases. Extra-embryonic MSC are characterized by robust and constitutive anti-inflammatory and anti-fibrotic properties, indicating as therapeutic agents for inflammatory conditions such as liver fibrosis or advanced cirrhosis, as well as chronic inflammatory settings or deranged immune responses.
Collapse
|
16
|
Kaffash Farkhad N, Mahmoudi A, Mahdipour E. Regenerative therapy by using Mesenchymal Stem Cells-derived exosomes in COVID-19 treatment. The potential role and underlying mechanisms. Regen Ther 2022; 20:61-71. [PMID: 35340407 PMCID: PMC8938276 DOI: 10.1016/j.reth.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), started in December 2019 in Wuhan, China, and quickly became the global pandemic. The high spread rate, relatively high mortality rate, and the lack of specific medicine have led researchers and clinicians worldwide to find new treatment strategies. Unfortunately, evidence shows that the virus-specific receptor Angiotensin-Converting Enzyme 2 (ACE-2) is present on the surface of most cells in the body, leading to immune system dysfunction and multi-organ failure in critically ill patients. In this context, the use of Mesenchymal Stem Cells (MSCs) and their secret has opened new therapeutic horizons for patients due to the lack of ACE2 receptor expression. MSCs exert their beneficial therapeutic actions, particularly anti-inflammatory and immunomodulatory properties, mainly through paracrine effects which are mediated by exosomes. Exosomes are bilayer nanovesicles that carry a unique cargo of proteins, lipids and functional nucleic acids based on their cell origin. This review article aims to investigate the possible role of exosomes and the underlying mechanism involved in treating COVID-19 disease based on recent findings.
Collapse
Affiliation(s)
- Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding author. Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, University campus. Azadi Sq, Mashhad. Iran.
| |
Collapse
|
17
|
Li J, Zou Y, Wang S, Guo S, Huang Z, Huo R. Long-term explant culture: an improved method for consistently harvesting homogeneous populations of keloid fibroblasts. Bioengineered 2022; 13:1565-1574. [PMID: 34989327 PMCID: PMC8805853 DOI: 10.1080/21655979.2021.2014674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Explant culture is a more suitable method than enzyme digestion for the isolation of keloid fibroblasts (KFs), but it has a longer isolation period. In this study, we propose a long-term explant culture method. Unlike in the conventional explant culture method, we continued culturing explants to isolate KFs rather than discarding them during passage. We demonstrated that keloid explants could be cultured for more than 4 months to continuously yield enriched KFs, and the KFs from the repeatedly cultured explants had shorter isolation times. The biological behavior and fibrotic phenotypic characteristics of the KFs from the explants cultured long term were investigated, and no statistical differences were found compared with the KFs from the original explants. In conclusion, the long-term explant culture method was shown to be efficient for harvesting a large, homogeneous population of KFs. The high efficiency as well as ease of operation and sample saving make this method convenient for researchers working with KFs.
Collapse
Affiliation(s)
- Jing Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuqing Zou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Song Wang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shikai Guo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Zhishun Huang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Zhuang M, Zhang W, Cheng N, Zhou L, Liu D, Yan H, Fang G, Heng BC, Sun Y, Tong G. Human umbilical cord mesenchymal stromal cells promote the regeneration of severe endometrial damage in a rat model. Acta Biochim Biophys Sin (Shanghai) 2021; 54:148-151. [PMID: 35130612 PMCID: PMC9909317 DOI: 10.3724/abbs.2021015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Mei Zhuang
- Department of GynecologyShanghai Traditional Chinese Medicine Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Wuwen Zhang
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China,Correspondence address. Tel: +86-21-20256688; E-mail: (W.Z.) / E-mail: (Y.S.) / E-mail: (G.T.)@
| | - Nuo Cheng
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ling Zhou
- Department of Obstetrics and GynecologyStrategic Support Force Medical CenterBeijing100101China
| | - Dan Liu
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hua Yan
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ge Fang
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Boon Chin Heng
- Hospital & Institute of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghai200011China
| | - Yan Sun
- Correspondence address. Tel: +86-21-20256688; E-mail: (W.Z.) / E-mail: (Y.S.) / E-mail: (G.T.)@
| | - Guoqing Tong
- Reproductive Medicine CenterShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China,Correspondence address. Tel: +86-21-20256688; E-mail: (W.Z.) / E-mail: (Y.S.) / E-mail: (G.T.)@
| |
Collapse
|
19
|
Making More Womb: Clinical Perspectives Supporting the Development and Utilization of Mesenchymal Stem Cell Therapy for Endometrial Regeneration and Infertility. J Pers Med 2021; 11:jpm11121364. [PMID: 34945836 PMCID: PMC8707522 DOI: 10.3390/jpm11121364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
The uterus is a homeostatic organ, unwavering in the setting of monthly endometrial turnover, placental invasion, and parturition. In response to ovarian steroid hormones, the endometrium autologously prepares for embryo implantation and in its absence will shed and regenerate. Dysfunctional endometrial repair and regeneration may present clinically with infertility and abnormal menses. Asherman's syndrome is characterized by intrauterine adhesions and atrophic endometrium, which often impacts fertility. Clinical management of infertility associated with abnormal endometrium represents a significant challenge. Endometrial mesenchymal stem cells (MSC) occupy a perivascular niche and contain regenerative and immunomodulatory properties. Given these characteristics, mesenchymal stem cells of endometrial and non-endometrial origin (bone marrow, adipose, placental) have been investigated for therapeutic purposes. Local administration of human MSC in animal models of endometrial injury reduces collagen deposition, improves angiogenesis, decreases inflammation, and improves fertility. Small clinical studies of autologous MSC administration in infertile women with Asherman's Syndrome suggested their potential to restore endometrial function as evidenced by increased endometrial thickness, decreased adhesions, and fertility. The objective of this review is to highlight translational and clinical studies investigating the use of MSC for endometrial dysfunction and infertility and to summarize the current state of the art in this promising area.
Collapse
|
20
|
Kaffash Farkhad N, Reihani H, sedaghat A, Moghadam AA, Moghadam AB, Tavakol-Afshari J. Are mesenchymal stem cells able to manage cytokine storm in COVID-19 patients? A review of recent studies. Regen Ther 2021; 18:152-160. [PMID: 34124322 PMCID: PMC8185247 DOI: 10.1016/j.reth.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The Covid-19 disease has recently become one of the biggest challenges globally, and there is still no specific medication. Findings showed the immune system in severe Covid-19 patients loses regulatory control of pro-inflammatory cytokines, especially IL-6 production, called the "Cytokine storm" process. This process can cause injury to vital organs, including lungs, kidneys, liver, and ultimately death if not inhibited. While many treatments have been proposed to reduce cytokine storm, but the safety and effectiveness of each of them are still in doubt. Mesenchymal stem cells (MSCs) are multipotent cells with self-renewal potential capable of suppressing overactive immune responses and leading to tissue restoration and repair. These immuno-modulatory properties of MSCs and their derivatives (like exosomes) can improve the condition of Covid-19 patients with serious infectious symptoms caused by adaptive immune system dysfunction. Many clinical trials have been conducted in this field using various MSCs around the world. Some of these have been published and summarized in the present article, while many have not yet been completed. Based on these available data, MSCs can reduce inflammatory cytokines, increase oxygen saturation, regenerate lung tissue and improve clinical symptoms in Covid-19 patients. The review article aims to collect available clinical data in more detail and investigate the role of MSCs in reducing cytokine storms as well as improving clinical parameters of Covid-19 patients for use in future clinical studies.
Collapse
Affiliation(s)
- Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hamidreza Reihani
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Alireza sedaghat
- Fellowship of Critical Care Medicine (FCCM), Lung Disease Research Center, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Adhami Moghadam
- Specialty of Internal Medicine and Critical Care, Head of Army Hospital ICU and Intensivist, Iran
| | - Ahmad Bagheri Moghadam
- Internal Medicine and Critical Care, Department of Anesthesiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Bie Q, Zhai R, Chen Y, Li Y, Xie N, Wang B, Yuan P, Zhou X, Cong H, Chang X, Xiong H, Zhang B. Sox9 Is Crucial for Mesenchymal Stem Cells to Enhance Cutaneous Wound Healing. Int J Stem Cells 2021; 14:465-474. [PMID: 34456192 PMCID: PMC8611311 DOI: 10.15283/ijsc21078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Human umbilical cord mesenchymal stem cells (HUC-MSCs) are promising candidates for cell-based therapy in regenerative medicine or other diseases due to their superior characteristics, including higher proliferation, faster self-renewal ability, lower immunogenicity, a noninvasive harvest procedure, easy expansion in vitro, and ethical access, compared with stem cells from other sources. METHODS AND RESULTS In the present study, we knocked down the expression of SOX9 in HUC-MSCs by lentivirus interference and found that knockdown of SOX9 inhibited the proliferation and migration of HUC-MSCs and influenced the expression of cytokines (IL-6 and IL-8), growth factors (GM-CSF and VEGF) and stemness-related genes (OCT4 and SALL4). In addition, the repair effect of skin with burn injury in rats treated with HUC-MSCs transfected with sh-control was better than that rats treated with HUC-MSCs transfected with shSOX9 or PBS, and the accessory structures of the skin, including hair follicles and glands, were greater than those in the other groups. We found that knockdown of the expression of SOX9 obviously inhibited the expression of Ki67, CK14 and CK18. CONCLUSIONS In conclusion, this study will provide a guide for modifying HUC-MSCs by bioengineering technology in the future.
Collapse
Affiliation(s)
- Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Ruixia Zhai
- Department of Obstetric, Affiliated Hospital of Jining
Medical University, Jining Medical University, Jining,
China
| | - Yanrong Chen
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Yingao Li
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Na Xie
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Baoyi Wang
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Poyun Yuan
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Xinjie Zhou
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Haiyan Cong
- Department of Central Lab, Weihai Municipal Hospital,
Cheeloo College of Medicine, Weihai, China
| | - Xin Chang
- Department of Central Lab, Weihai Municipal Hospital,
Cheeloo College of Medicine, Weihai, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining
Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| |
Collapse
|
22
|
Morey R, Farah O, Kallol S, Requena DF, Meads M, Moretto-Zita M, Soncin F, Laurent LC, Parast MM. Transcriptomic Drivers of Differentiation, Maturation, and Polyploidy in Human Extravillous Trophoblast. Front Cell Dev Biol 2021; 9:702046. [PMID: 34540826 PMCID: PMC8446284 DOI: 10.3389/fcell.2021.702046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
During pregnancy, conceptus-derived extravillous trophoblast (EVT) invades the endomyometrium, anchors the placenta to the maternal uterus, and remodels the spiral arteries in order to establish maternal blood supply to the fetoplacental unit. Recent reports have described early gestation EVT as polyploid and senescent. Here, we extend these reports by performing comprehensive profiling of both the genomic organization and transcriptome of first trimester and term EVT. We define pathways and gene regulatory networks involved in both initial differentiation and maturation of this important trophoblast lineage at the maternal-fetal interface. Our results suggest that like first trimester EVT, term EVT undergoes senescence and endoreduplication, is primarily tetraploid, and lacks high rates of copy number variations. Additionally, we have highlighted senescence and polyploidy-related genes, pathways, networks, and transcription factors that appeared to be important in normal EVT differentiation and maturation and validated a key role for the unfolded protein response in this context.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Omar Farah
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Sampada Kallol
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Daniela F Requena
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Morgan Meads
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Matteo Moretto-Zita
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Francesca Soncin
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mana M Parast
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
23
|
Razavi M, Rezaee M, Telichko A, Inan H, Dahl J, Demirci U, Thakor AS. The Paracrine Function of Mesenchymal Stem Cells in Response to Pulsed Focused Ultrasound. Cell Transplant 2021; 29:963689720965478. [PMID: 33028105 PMCID: PMC7784560 DOI: 10.1177/0963689720965478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We studied the paracrine function of mesenchymal stem cells (MSCs) derived from various sources in response to pulsed focused ultrasound (pFUS). Human adipose tissue (AD), bone marrow (BM), and umbilical cord (UC) derived MSCs were exposed to pFUS at two intensities: 0.45 W/cm2 ISATA (310 kPa PNP) and 1.3 W/cm2 ISATA (540 kPa PNP). Following pFUS, the viability and proliferation of MSCs were assessed using a hemocytometer and confocal microscopy, and their secreted cytokine profile determined using a multiplex ELISA. Our findings showed that pFUS can stimulate the production of immunomodulatory, anti-inflammatory, and angiogenic cytokines from MSCs which was dependent on both the source of MSC being studied and the acoustic intensity employed. These important findings set the foundation for additional mechanistic and validation studies using this novel noninvasive and clinically translatable technology for modulating MSC biology.
Collapse
Affiliation(s)
- Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, 6429Stanford University, Palo Alto, CA, USA.,BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, 6243University of Central Florida, Orlando, FL, USA.,Department of Materials Science and Engineering, 6243University of Central Florida, Orlando, FL, USA
| | - Melika Rezaee
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, 6429Stanford University, Palo Alto, CA, USA
| | - Arsenii Telichko
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, 6429Stanford University, Palo Alto, CA, USA
| | - Hakan Inan
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, 6429Stanford University, Palo Alto, CA, USA
| | - Jeremy Dahl
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, 6429Stanford University, Palo Alto, CA, USA
| | - Utkan Demirci
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, 6429Stanford University, Palo Alto, CA, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, 6429Stanford University, Palo Alto, CA, USA
| |
Collapse
|
24
|
Rahmani-Moghadam E, Zarrin V, Mahmoodzadeh A, Owrang M, Talaei-Khozani T. Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Curr Stem Cell Res Ther 2021; 17:71-90. [PMID: 34161214 DOI: 10.2174/1574888x16666210622125309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Breast milk (BrM) not only supplies nutrition, but it also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation with other cells. In this review, we have compared different characteristics, such as CD markers, differentiation capacity, and morphology of stem cells, derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). Through the literature review, it was revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified, which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs todifferentiate into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered as a source of stem cells with high differentiation potential without any ethical concern.
Collapse
Affiliation(s)
- Ebrahim Rahmani-Moghadam
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Owrang
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
García-Muñoz E, Vives J. Towards the standardization of methods of tissue processing for the isolation of mesenchymal stromal cells for clinical use. Cytotechnology 2021; 73:513-522. [PMID: 33994662 PMCID: PMC8109215 DOI: 10.1007/s10616-021-00474-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are currently the most extensively studied type of adult stem cells in advanced stages of development in the field of regenerative medicine. The biological properties of MSCs have generated great hope for their therapeutic use in degenerative and autoimmune conditions that, at present, lack effective treatment options. Over the last decades, MSCs have been typically obtained from adult bone marrow, but the extraction process is highly invasive and the quality and numbers of isolated cells is drastically influenced by patient age, medication and associated comorbidities. Therefore, there is currently an open discussion on the convenience of allogeneic over autologous treatments, despite potential disadvantages such as rejection by the host. This shift to the allogeneic setting entails the need for high production of MSCs to ensure availability of sufficient cell numbers for transplantation, and therefore making the search for alternative tissue sources of highly proliferative MSC cultures with low levels of senescence occurrence, which is one of the greatest current challenges in the scale up of therapeutic cell bioprocessing. Herein we (i) present the main isolation protocols of MSCs from bone marrow, adipose tissue and Wharton’s jelly of the umbilical cord; and (ii) compare their qualities from a bioprocess standpoint, addressing both quality and regulatory aspects, in view of their anticipated clinical use.
Collapse
Affiliation(s)
- Elisabeth García-Muñoz
- Banc de Sang iTeixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang iTeixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain
| |
Collapse
|
26
|
Modeling preeclampsia using human induced pluripotent stem cells. Sci Rep 2021; 11:5877. [PMID: 33723311 PMCID: PMC7961010 DOI: 10.1038/s41598-021-85230-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder, affecting up to 10% of pregnancies worldwide. The primary etiology is considered to be abnormal development and function of placental cells called trophoblasts. We previously developed a two-step protocol for differentiation of human pluripotent stem cells, first into cytotrophoblast (CTB) progenitor-like cells, and then into both syncytiotrophoblast (STB)- and extravillous trophoblast (EVT)-like cells, and showed that it can model both normal and abnormal trophoblast differentiation. We have now applied this protocol to induced pluripotent stem cells (iPSC) derived from placentas of pregnancies with or without PE. While there were no differences in CTB induction or EVT formation, PE-iPSC-derived trophoblast showed a defect in syncytialization, as well as a blunted response to hypoxia. RNAseq analysis showed defects in STB formation and response to hypoxia; however, DNA methylation changes were minimal, corresponding only to changes in response to hypoxia. Overall, PE-iPSC recapitulated multiple defects associated with placental dysfunction, including a lack of response to decreased oxygen tension. This emphasizes the importance of the maternal microenvironment in normal placentation, and highlights potential pathways that can be targeted for diagnosis or therapy, while absence of marked DNA methylation changes suggests that other regulatory mechanisms mediate these alterations.
Collapse
|
27
|
Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052619. [PMID: 33807695 PMCID: PMC7961389 DOI: 10.3390/ijms22052619] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative and chronic joint disease characterized by clinical symptoms and distortion of joint tissues. It primarily damages joint cartilage, causing pain, swelling, and stiffness around the joint. It is the major cause of disability and pain. The prevalence of OA is expected to increase gradually with the aging population and increasing prevalence of obesity. Many potential therapeutic advances have been made in recent years due to the improved understanding of the underlying mechanisms, diagnosis, and management of OA. Embryonic stem cells and induced pluripotent stem cells differentiate into chondrocytes or mesenchymal stem cells (MSCs) and can be used as a source of injectable treatments in the OA joint cavity. MSCs are known to be the most studied cell therapy products in cell-based OA therapy owing to their ability to differentiate into chondrocytes and their immunomodulatory properties. They have the potential to improve cartilage recovery and ultimately restore healthy joints. However, despite currently available therapies and advances in research, unfulfilled medical needs persist for OA treatment. In this review, we focused on the contents of non-cellular and cellular therapies for OA, and briefly summarized the results of clinical trials for cell-based OA therapy to lay a solid application basis for clinical research.
Collapse
|
28
|
Fujii-Tezuka R, Ishige-Wada M, Nagoshi N, Okano H, Mugishima H, Takahashi S, Morioka I, Matsumoto T. Umbilical artery tissue contains p75 neurotrophin receptor-positive pericyte-like cells that possess neurosphere formation capacity and neurogenic differentiation potential. Regen Ther 2021; 16:1-11. [PMID: 33426237 PMCID: PMC7773767 DOI: 10.1016/j.reth.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/07/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The p75 neurotrophin receptor (p75NTR) is known as an efficient marker for the prospective isolation of mesenchymal stem cells (MSCs) and neural crest-derived stem cells (NCSCs). To date, there is quite limited information concerning p75NTR-expressing cells in umbilical cord (UC), although UC is known as a rich source of MSCs. We show for the first time the localization, phenotype, and functional properties of p75NTR+ cells in UC. METHODS Human UC tissue sections were subjected to immunohistochemistry for MSC markers including p75NTR. Enzymatically isolated umbilical artery (UA) cells containing p75NTR+ cells were assessed for immunophenotype, clonogenic capacity, and differentiation potential. To identify the presence of neural crest-derived cells in the UA, P0-Cre/Floxed-EGFP reporter mouse embryos were used, and immunohistochemical analysis of UC tissue was performed. RESULTS Immunohistochemical analysis revealed that p75NTR+ cells were specifically localized to the subendothelial area of the UA and umbilical vein. The p75NTR+ cells co-expressed PDGFRβ, CD90, CD146, and NG2, phenotypic markers of MSCs and pericytes. Isolated UA cells possessed the potential to form neurospheres that further differentiated into neuronal and glial cell lineages. Genetic lineage tracing analysis showed that EGFP+ neural crest-derived cells were detected in the subendothelial area of UA with p75NTR immunoreactivity. CONCLUSIONS These results show that UA tissue harbors p75NTR+ pericyte-like cells in the subendothelial area that have the capacity to form neurospheres and the potential for neurogenic differentiation. The lineage tracing data suggests the p75NTR+ cells are putatively derived from the neural crest.
Collapse
Key Words
- ASMA, α-smooth muscle actin
- BDNF, bone-derived neurotrophic factor
- CFU-F, colony-forming unit fibroblast
- DAPI, 4′,6-diamino-2-phenylindole
- DMEM, Dulbecco's modified Eagle medium
- EGF, epidermal growth factor
- EGFP, enhanced green fluorescent protein
- EdU, 5-ethynyl-2′-deoxyuridine
- FBS, fetal bovine serum
- FGF-2, fibroblast growth factor-2
- FSK, forskolin
- GFAP, glial fibrillary acidic protein
- MAP2, microtubule-associated protein 2
- MSCs, mesenchymal stem cells
- Mesenchymal stem cells
- NCSCs, neural crest-derived stem cells
- NF200, neurofilament 200
- NG2, neuron-glial antigen 2
- Neural crest stem cells
- Neurosphere
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- RA, all-trans-retinoic acid
- TBS, Tris-buffered saline
- UA, umbilical artery
- UC, umbilical cord
- UV, umbilical vein
- Umbilical cord
- WJ, Wharton's jelly
- p75 neurotrophin receptor
- p75NTR, p75 neurotrophin receptor
- vWF, von Willebrand factor
- α-MEM, alpha-modified minimum essential medium
- βME, β-mercaptoethanol
Collapse
Affiliation(s)
- Rina Fujii-Tezuka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Mika Ishige-Wada
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideo Mugishima
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Kawagoe Preventive Medical Center Clinic, Kawagoe, Japan
| | - Shori Takahashi
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Itabashi Chuo Medical Center, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Latifi N, Lecce M, Simmons CA. Porcine Umbilical Cord Perivascular Cells for Preclinical Testing of Tissue-Engineered Heart Valves. Tissue Eng Part C Methods 2021; 27:35-46. [PMID: 33349127 DOI: 10.1089/ten.tec.2020.0314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many children born with congenital heart disease need a heart valve repair or replacement. Currently available repair materials and valve replacements are incapable of growth, repair, and adaptation, rendering them inadequate for growing children. Heart valve tissue engineering (HVTE) aims to develop living replacement valves that can meet these needs. Among numerous cell sources for in vitro HVTE, umbilical cord perivascular cells (UCPVCs) are particularly attractive because they are autologous, readily available, and have excellent regenerative capacity. As an essential step toward preclinical testing of heart valves engineered from UCPVCs, the goal of this study was to establish methods to isolate, expand, and promote extracellular matrix (ECM) synthesis by UCPVCs from pigs (porcine umbilical cord perivascular cells [pUCPVCs]), as a relevant preclinical model. We determined that Dulbecco's modified Eagle's medium with 20% fetal bovine serum supported isolation and substantial expansion of pUCPVCs, whereas media designed for human mesenchymal stromal cell (MSC) expansion did not. We further demonstrated the capacity of pUCPVCs to synthesize the main ECM components of heart valves (collagen type I, elastin, and glycosaminoglycans), with maximal collagen and elastin per-cell production occurring in serum-free culture conditions using StemMACS™ MSC Expansion Media. Altogether, these results establish protocols that enable the use of pUCPVCs as a viable cell source for preclinical testing of engineered heart valves. Impact statement This study establishes methods to successfully isolate, expand, and promote the synthesis of the main extracellular matrix components of heart valves (collagen type I, elastin, and glycosaminoglycans) by porcine umbilical cord perivascular cells (pUCPVCs). These protocols enable further evaluation of pUCPVCs as an autologous, readily available, and clinically relevant cell source for preclinical testing of pediatric tissue-engineered heart valves.
Collapse
Affiliation(s)
- Neda Latifi
- Translational Biology and Engineering Program, The Ted Rogers Centre for Heart Research, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Monica Lecce
- Translational Biology and Engineering Program, The Ted Rogers Centre for Heart Research, Toronto, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, The Ted Rogers Centre for Heart Research, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Salehinejad P, Moshrefi M, Eslaminejad T. An Overview on Mesenchymal Stem Cells Derived from Extraembryonic Tissues: Supplement Sources and Isolation Methods. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:57-65. [PMID: 32753904 PMCID: PMC7354009 DOI: 10.2147/sccaa.s248519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Purpose The main aim of this review was to provide an updated comprehensive report regarding isolation methods of MSCs from human extra embryonic tissues, including cord blood, amniotic fluid, and different parts of the placenta and umbilical cord, with respect to the efficacy of these methods. Results Extra embryonic tissues are the most available source for harvesting of mesenchymal stem cells (MSCs). They make a large number of cells accessible using non-invasive methods of isolation and the least immune-rejection reactions. A successful culture of primary cells requires obtaining a maximum yield of functional and viable cells from the tissues. In addition, there are many reports associated with their differentiation into various kinds of cells, and there are some clinical trials regarding their utilization for patients. Conclusion Currently, cord blood-MSCs have been tested for cartilage and lung diseases. Umbilical cord-MSCs were tested for liver and neural disorders. However, these MSCs can be isolated, expanded, and cryopreserved in a cell bank for patients in need.
Collapse
Affiliation(s)
- Parvin Salehinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Moshrefi
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
31
|
Sepúlveda RV, Eleotério In Memorian RB, Valente FL, Araújo FR, Sabino ADP, Evangelista FCG, Reis ECC, Borges APB. Canine umbilical cord perivascular tissue: A source of stem cells for therapy and research. Res Vet Sci 2020; 129:193-202. [PMID: 32087438 DOI: 10.1016/j.rvsc.2020.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/17/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
There are numerous sources of multipotent mesenchymal stromal cells (MSC) with therapeutic potential, and bone marrow is the main one. However, pain, lack of donors and comorbidities associated with harvesting stimulate the search for new sources of MSCs. The aim of this work is to obtain cells from umbilical cord (UC) perivascular tissue of dogs and characterize them as MSCs. For this, the UC was obtained from therapeutic cesarean sections and submitted to enzymatic digestion. The obtained cells were subjected to growth and proliferation tests, as well as the analysis of surface markers, differentiation test in three mesenchymal lineages and analysis of differentiation markers expression. From all the UC used in this study an adherent with fibroblastoid shape cell was obtained, with an initial number of 4.8 × 105 of cells. The growth curves showed a lag phase from 0 to 24 h, followed by a phase of growth of 24 to 168 h, and then phase of cell decay. The doubling time was kept around 15 h until the sixth passage, from which there were signs of cellular senescence. The differentiation assays demonstrated the ability of cells to differentiate into osteoblasts, adipocytes and chondrocytes when subjected to the induction mediums. The study of surface markers was positive for adhesion markers and negative for hematopoietic markers. Thus, cells obtained from canine UC perivascular tissue by enzymatic digestion are multipotent MSC and the protocol developed ensures the perivascular origin of these cells.
Collapse
Affiliation(s)
| | | | | | - Fabiana Rocha Araújo
- Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | | | | |
Collapse
|
32
|
Ren Z, Zheng X, Yang H, Zhang Q, Liu X, Zhang X, Yang S, Xu F, Yang J. Human umbilical-cord mesenchymal stem cells inhibit bacterial growth and alleviate antibiotic resistance in neonatal imipenem-resistant Pseudomonas aeruginosa infection. Innate Immun 2019; 26:215-221. [PMID: 31623477 PMCID: PMC7144031 DOI: 10.1177/1753425919883932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human umbilical-cord mesenchymal stem cells (hUCMSCs) are a safe and convenient source of MSCs and have shown beneficial effects in neonatal infection and sepsis animal models. However, the factors leading to improved outcomes are still unclear. The aim of this study was to investigate the antibacterial effect and regulation of antimicrobial resistance of hUCMSCs. We separated imipenem-resistant Pseudomonas aeruginosa (PA) from neonates and incubated it with hUCMSCs as well as their culture medium. Assessment of direct inhibition of bacterial growth was done by counting CFUs. The concentration of antibacterial peptides in the culture medium of hUCMSCs was measured. Standard PA was inoculated with a sub-inhibitory concentration of imipenem with and without hUCMSC conditioned medium and antimicrobial peptides. The sensitivity to imipenem was detected until PA showed resistance to imipenem. Outer membrane protein (OprD2) mRNA expression in PA before and after the induction of imipenem resistance was analysed. We found that HUCMSCs possessed direct antimicrobial properties against bacteria and could alleviate antibiotic resistance via reserving OprD2 expression in PA.
Collapse
Affiliation(s)
- Zhuxiao Ren
- Department of Neonatology, Guangdong Women and Children Hospital, PR China
| | - Xuaner Zheng
- Department of Neonatology, Guangdong Women and Children Hospital, PR China
| | - Haoming Yang
- Department of Neonatology, Guangdong Women and Children Hospital, PR China
| | - Qi Zhang
- Department of Clinical Genetic Center, Guangdong Women and Children Hospital, PR China
| | - Xiaohong Liu
- Department of Neonatology, The People's Hospital of Zhuhai, PR China
| | - Xiaoling Zhang
- Department of Neonatology, Guangdong Women and Children Hospital, PR China
| | - Shumei Yang
- Department of Neonatology, Guangdong Women and Children Hospital, PR China
| | - Fang Xu
- Department of Neonatology, Guangdong Women and Children Hospital, PR China
| | - Jie Yang
- Department of Neonatology, Guangdong Women and Children Hospital, PR China
| |
Collapse
|
33
|
Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11:548-564. [PMID: 31523373 PMCID: PMC6716089 DOI: 10.4252/wjsc.v11.i8.548] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver; in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis; advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
34
|
From 3D to 3D: isolation of mesenchymal stem/stromal cells into a three-dimensional human platelet lysate matrix. Stem Cell Res Ther 2019; 10:248. [PMID: 31399129 PMCID: PMC6688329 DOI: 10.1186/s13287-019-1346-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are considered an important candidate in cell therapy and tissue engineering approaches. The culture of stem cells in a 3D environment is known to better resemble the in vivo situation and to promote therapeutically relevant effects in isolated cells. Therefore, the aim of this study was to develop an approach for the direct isolation of MSCs from adipose tissue into a 3D environment, avoiding contact to a 2D plastic surface. Furthermore, the use of a cryoprotective medium for the cryopreservation of whole adipose tissue was evaluated. Materials and methods Cryopreservation of fresh adipose tissue with and without a cryoprotective medium was compared with regard to the viability and metabolic activity of cells. After thawing, the tissue was embedded in a novel human platelet lysate-based hydrogel for the isolation of MSCs. The migration, yield, viability, and metabolic activity of cells from the 3D matrix were compared to cells from 2D explant culture. Also, the surface marker profile and differentiation capacity of MSCs from the 3D matrix were evaluated and compared to MSCs from isolation by enzymatic treatment or 2D explant culture. Results The cryopreservation of whole adipose tissue was found to be feasible, and therefore, adipose tissue can be stored and is available for MSC isolation on demand. Also, we demonstrate the isolation of MSCs from adipose tissue into the 3D matrix. The cells derived from this isolation procedure display a similar phenotype and differentiation capacity like MSCs derived by traditional procedures. Conclusions The presented approach allows to cryopreserve adipose tissue. Furthermore, for the first time, MSCs were directly isolated from the tissue into a soft 3D hydrogel environment, avoiding any contact to a 2D plastic culture surface. Electronic supplementary material The online version of this article (10.1186/s13287-019-1346-2) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Coccini T, De Simone U, Roccio M, Croce S, Lenta E, Zecca M, Spinillo A, Avanzini MA. In vitro toxicity screening of magnetite nanoparticles by applying mesenchymal stem cells derived from human umbilical cord lining. J Appl Toxicol 2019; 39:1320-1336. [PMID: 31211441 DOI: 10.1002/jat.3819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/05/2023]
Abstract
Despite the growing interest in nanoparticles (NPs), their toxicity has not yet been defined and the development of new strategies and predictive models are required. Human stem cells (SCs) offer a promising and innovative cell-based model. Among SCs, mesenchymal SCs (MSCs) derived from cord lining membrane (CL) may represent a new species-specific tool for establishing efficient platforms for primary screening and toxicity/safety testing of NPs. Superparamagnetic iron oxide NPs, including magnetite (Fe3 O4 NPs), have aroused great public health and scientific concerns despite their extensive uses. In this study, CL-MSCs were characterized and applied for in vitro toxicity screening of Fe3 O4 NPs. Cytotoxicity, internalization/uptake, differentiation and proliferative capacity were evaluated after exposure to different Fe3 O4 NP concentrations. Data were compared with those obtained from bone marrow (BM)-MSCs. We observed, at early passages (P3), that: (1) cytotoxicity occurred at 10 μg/mL in CL-MSCs and 100 μg/mL in BM-MSCs (no differences in toxicity, between CL- and BM-MSCs, were observed at higher dosage, 100-300 μg/mL); (2) cell density decrease and monolayer features loss were affected at ≥50 μg/mL in CL-MSCs only; and (3) NP uptake was concentration-dependent in both MSCs. After 100 μg/mL Fe3 O4 NP exposures, the capacity of proliferation was decreased (P5-P9) in CL-MSCs without morphology alteration. Moreover, a progressive decrease of intracellular Fe3 O4 NPs was observed over culture time. Antigen surface expression and multilineage differentiation were not influenced. These findings suggest that CL-MSCs could be used as a reliable cell-based model for Fe3 O4 NP toxicity screening evaluation and support the use of this approach for improving the confidence degree on the safety of NPs to predict health outcomes.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS, Pavia, Italy
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Elisa Lenta
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Zecca
- Paediatric Haematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
36
|
Obradovic H, Krstic J, Trivanovic D, Mojsilovic S, Okic I, Kukolj T, Ilic V, Jaukovic A, Terzic M, Bugarski D. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche. Placenta 2019; 82:25-34. [PMID: 31174623 DOI: 10.1016/j.placenta.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Mesenchymal stem cells from Wharton's Jelly of a human umbilical cord (WJ-MSCs) are a potential tool in regenerative medicine based on their availability, proliferative potential and differentiation capacity. Since their physiological niche contains low oxygen levels, we investigated whether cultivation of WJ-MSCs at 3% O2 affects their main features. METHODS WJ-MSCs were cultured under 21% and 3% O2. Proliferation rate was followed by short and long term proliferation assays, clonogenic capacity by CFU-F assay and cell cycle and death by flow cytometry. Differentiation capacity was investigated by histochemical staining after induced differentiation. Pluripotency and differentiation markers' expression was determined by RT-PCR. Migration capacity was followed by scratch assay and mobilization from collagen, and the activity of proteolytic enzymes by zymography. Specific inhibitors of MAPK and Wnt/β-catenin pathways were used to investigate underlying molecular mechanisms. RESULTS Compared to standard 21% O2, cultivation of WJ-MSCs at 3% O2 did not influence their immunophenotype, while it modulated their differentiation process and enhanced their clonogenic and expansion capacity. 3% O2 induced transient change in cell cycle and prevented cell death. The expression of NANOG, OCT4A, OCT4B and SOX2 was increased at 3% O2. Both cultivation and preculturing of WJ-MSCs at 3% O2 increased their in vitro migratory capacity and enhanced the activity of proteolytic enzymes. ERK1/2 mediated WJ-MSCs' mobilization from collagen regardless of oxygen levels, while Wnt/β-catenin pathway was activated during migration and mobilization at standard conditions. CONCLUSION Culturing of WJ-MSCs under 3% O2 should be considered a credible condition when investigating their properties and potential use.
Collapse
Affiliation(s)
- Hristina Obradovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Jelena Krstic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Drenka Trivanovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Slavko Mojsilovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Ivana Okic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Vesna Ilic
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Dr Subotića 4, PO BOX 102, 11129, Belgrade, Serbia.
| | - Aleksandra Jaukovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Milan Terzic
- Department of Obstetrics and Gynecology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia; Medical Faculty, University of Belgrade, Belgrade, Serbia.
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| |
Collapse
|
37
|
Umbilical Cord Blood Mesenchymal Stem Cells as an Infertility Treatment for Chemotherapy Induced Premature Ovarian Insufficiency. Biomedicines 2019; 7:biomedicines7010007. [PMID: 30669278 PMCID: PMC6466426 DOI: 10.3390/biomedicines7010007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/06/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Premature ovarian insufficiency (POI) is a challenging disease, with limited treatment options at the moment. Umbilical cord blood mesenchymal stem cells (UCMSCs) have demonstrated promising regenerative abilities in several diseases including POI. Materials and Method: A pre-clinical murine case versus vehicle control randomized study. Two experiments ran in parallel in each of the three groups. The first was to prove the ability of UCMSCs in restoring ovarian functions. The second was to prove improved fertility. A total of 36 mice were randomly assigned; 6 mice into each of 3 groups for two experiments. Group 1 (control), group 2 (sham chemotherapy), group 3 (stem cells). Results: In the first experiment, post-UCMSCs treatment (group 3) showed signs of restored ovarian function in the form of increased ovarian weight and estrogen-dependent organs (liver, uterus), increased follicular number, and a significant decrease in FSH serum levels (p < 0.05) compared to group 2, and anti-Mullerian hormone (AMH) serum levels increased (p < 0.05) in group 3 versus group 2. Immuno-histochemistry analysis demonstrated a higher expression of AMH, follicle stimulating hormone receptor (FSHR) and Inhibin A in the growing follicles of group 3 versus group 2. In the second experiment, post-UCMSCs treatment (group 3) pregnancy rates were higher than group 2, however, they were still lower than group 1. Conclusion: We demonstrated the ability of UCMSCs to restore fertility in female cancer survivors with POI and as another source of stem cells with therapeutic potentials.
Collapse
|
38
|
Gauthier-Fisher A, Szaraz P, Librach CL. Pericytes in the Umbilical Cord. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:211-233. [DOI: 10.1007/978-3-030-11093-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Sineh Sepehr K, Razavi A, Saeidi M, Mossahebi-Mohammadi M, Abdollahpour-Alitappeh M, Hashemi SM. Development of a novel explant culture method for the isolation of mesenchymal stem cells from human breast tumor. J Immunoassay Immunochem 2018; 39:207-217. [PMID: 29741994 DOI: 10.1080/15321819.2018.1447487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) were isolated from various sources, including various types of tumors. However choosing an appropriate isolation method is an important step in obtaining cells with optimal quality and yield in companion with economical considerations. The purpose of this study was to isolate more pure MSCs from human breast tumor tissue by a modified explant culture method. METHODS AND MATERIALS The tumor tissues (n = 8) were cut into 1 to 3-mm cube-like pieces (explant). Each explant was placed in a well of 24-well format plates, cultured in Dulbecco's Modified Eagle's medium (DMEM), and maintained at 37°C with 5% humidified incubator. Morphological phenotypes of the cells were surveyed by an inverted microscope and wells with rather homogenous fibroblast-like morphology cell were considered as positive and selected for more expansion and characterization. RESULTS A total of 185 wells, 63.7% of wells were positive that were chosen for expansion. Flowcytometry analysis demonstrated that isolated cells were positive for CD73, CD44, CD29, CD105, and CD90 but negative for CD11b, CD45, CD34, and HLA‑DR. In addition, cells possessed the capability of multipotential differentiation into osteoblasts and adipocytes.
Collapse
Affiliation(s)
- Koushan Sineh Sepehr
- a Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Razavi
- a Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohsen Saeidi
- b Stem Cell Research Center , Golestan University of Medical Sciences , Gorgan , Iran
| | | | - Meghdad Abdollahpour-Alitappeh
- d Gastroenterology and Liver Diseases Research Center , Reasearch Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Seyed Mahmoud Hashemi
- e Department of Immunology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,f Department of Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
40
|
Human Urine-Derived Stem Cells: Potential for Cell-Based Therapy of Cartilage Defects. Stem Cells Int 2018; 2018:4686259. [PMID: 29765413 PMCID: PMC5932456 DOI: 10.1155/2018/4686259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/25/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023] Open
Abstract
Stem cell therapy is considered an optimistic approach to replace current treatments for cartilage defects. Recently, human urine-derived stem cells (hUSCs), which are isolated from the urine, are studied as a promising candidate for many tissue engineering therapies due to their multipotency and sufficient proliferation activities. However, it has not yet been reported whether hUSCs can be employed in cartilage defects. In this study, we revealed that induced hUSCs expressed chondrogenic-related proteins, including aggrecan and collagen II, and their gene expression levels were upregulated in vitro. Moreover, we combined hUSCs with hyaluronic acid (HA) and injected hUSCs-HA into a rabbit knee joint with cartilage defect. Twelve weeks after the injection, the histologic analyses (HE, toluidine blue, and Masson trichrome staining), immunohistochemistry (aggrecan and collagen II), and histologic grade of the sample indicated that hUSCs-HA could stimulate much more neocartilage formation compared with hUSCs alone, pure HA, and saline, which only induced the modest cartilage regeneration. In this study, we demonstrated that hUSCs could be a potential cell source for stem cell therapies to treat cartilage-related defects in the future.
Collapse
|
41
|
Li T, Liu Y, Yu L, Lao J, Zhang M, Jin J, Lu Z, Liu Z, Xu Y. Human Umbilical Cord Mesenchymal Stem Cells Protect Against SCA3 by Modulating the Level of 70 kD Heat Shock Protein. Cell Mol Neurobiol 2018; 38:641-655. [PMID: 28667374 PMCID: PMC11482022 DOI: 10.1007/s10571-017-0513-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/17/2017] [Indexed: 02/06/2023]
Abstract
Spinocerebellar ataxia 3 (SCA3), which is a progressive neurodegenerative disease, is currently incurable. Emerging studies have reported that human umbilical cord mesenchymal stem cells (HUC-MSCs) transplantation could be a promising therapeutic strategy for cerebellar ataxias. However, few studies have evaluated the effects of HUC-MSCs on SCA3 transgenic mouse. Thus, we investigated the effects of HUC-MSCs on SCA3 mice and the underlying mechanisms in this study. SCA3 transgenic mice received systematic administration of 2 × 106 HUC-MSCs once per week for 12 continuous weeks. Motor coordination was measured blindly by open field tests and footprint tests. Immunohistochemistry and Nissl staining were applied to detect neuropathological alternations. Neurotrophic factors in the cerebellum were assessed by ELISA. We used western blotting to detect the alternations of heat shock protein 70 (HSP70), IGF-1, mutant ataxin-3, and apoptosis-associated proteins. Tunel staining was also used to detect apoptosis of affected cells. The distribution and differentiation of HUC-MSCs were determined by immunofluorescence. Our results exhibited that HUC-MSCs transplantation significantly alleviated motor impairments, corresponding to a reduction of cerebellar atrophy, preservation of neurons, decreased expression of mutant ataxin-3, and increased expression of HSP70. Implanted HUC-MSCs were mainly distributed in the cerebellum and pons with no obvious differentiation, and the expressions of IGF-1, VEGF, and NGF in the cerebellum were significantly elevated. Furthermore, with the use of HSP70 analogy quercetin injection, it demonstrated that HSP70 is involved in mutant ataxin-3 reduction. These results showed that HUC-MSCs implantation is a potential treatment for SCA3, likely through upregulating the IGF-1/HSP70 pathway and subsequently inhibiting mutant ataxin-3 toxicity.
Collapse
Affiliation(s)
- Tan Li
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Yi Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Jiamin Lao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Meijuan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiali Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhengjuan Lu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhuo Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China.
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
42
|
Liu Z, Yu D, Xu J, Li X, Wang X, He Z, Zhao T. Human umbilical cord mesenchymal stem cells improve irradiation-induced skin ulcers healing of rat models. Biomed Pharmacother 2018. [PMID: 29524881 DOI: 10.1016/j.biopha.2018.02.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irradiation-induced skin ulcers can be resultant from nuclear accident or reaction to radiation therapy of tumor and is intractable for healing. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been considered to be the potential therapeutic tools for tissue regeneration. However, the underlying mechanisms are still not well understood. This study aims to investigate the effects of hUC-MSCs on irradiation-induced skin ulcers healing and the related mechanisms. The ulcers were induced by irradiating the skin of adult SD rats. The ulcers of SD rats were treated with vehicle or hUC-MSCs donated from mother giving birth. The ulcer healing was measured by imaging the healing rate and the H&E staining. CD31 and VEGF expression was measured with immunohistochemistry assay. iTRAQ proteomics analysis was used to analyze the signaling pathway. The results showed that hUC-MSCs improved healing of irradiation-induced skin ulcers in vivo using a rat model of skin ulcer. Transplantation of hUC-MSCs promoted keratin generation and keratinocytes proliferation of ulcer areas. Furthermore, the results demonstrated that hUC-MSCs increased expression of CD31 and VEGF in ulcers and promoted neovascularization. iTRAQ proteomics analysis results indicated that PI3K/Akt signaling pathway involved in hUC-MSCs-mediated repairing of irradiation-induced skin ulcer. In conclusion, human umbilical cord mesenchymal stem cells promoted neovascularization and re-epithelization, and improved healing of irradiation-induced skin ulcers. This healing improvement may be conducted through activating the PI3K/Akt signaling pathway, however, which needs to be proven by the further investigations.
Collapse
Affiliation(s)
- Zhongshan Liu
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of the Burns and Plastic, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daojiang Yu
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianwei Xu
- The Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, China
| | - Xiujie Li
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianyao Wang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Zhixu He
- The Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, China.
| | - Tianlan Zhao
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
43
|
Effects of Hexachlorophene, a Chemical Accumulating in Adipose Tissue, on Mouse and Human Mesenchymal Stem Cells. Tissue Eng Regen Med 2018; 15:211-222. [PMID: 30603548 PMCID: PMC6171693 DOI: 10.1007/s13770-017-0103-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
The hexachlorophene (HCP) is a highly lipophilic chlorinated bisphenol present in hygienic and dermatological products. The HCP accumulates preferentially in adipose tissue that is a privileged source of mesenchymal stem cells (MSCs). The evaluation of the potential effects of HCP on MSCs is important for their medical application. Here we examined the effects of HCP on murine adipose tissue-derived stem cells (ADSCs) and human umbilical cord-derived stem cells (UCSCs) in cell culture. We found that 10−4 and 10−5 M HCP inhibits proliferation, osteogenesis and increases apoptosis of ADSCs and UCSCs. While the effect of HCP on proliferation and differentiation potential of these two cell lines was similar, the UCSCs appeared much more resistant to HCP-induced apoptosis than ADSCs. These results suggest that the adipose tissue-derived ADSCs have higher sensitive for HCP than umbilical cord-derived UCSCs and indicate that the umbilical cord can be a preferable source of MSCs for prospective medical applications in the future.
Collapse
|
44
|
Bharti D, Shivakumar SB, Park JK, Ullah I, Subbarao RB, Park JS, Lee SL, Park BW, Rho GJ. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res 2017; 372:51-65. [PMID: 29204746 PMCID: PMC5862947 DOI: 10.1007/s00441-017-2699-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Easy isolation, lack of ethical issues, high proliferation, multi-lineage differentiation potential and immunomodulatory properties of umbilical cord (UC)-derived mesenchymal stem cells (MSCs) make them a valuable tool in stem cell research. Recently, Wharton’s jelly (WJ) was proven as the best MSC source among various compartments of UC. However, it is still unclear whether or not Wharton’s jelly-derived MSCs (WJMSCs) from different parts of the whole cord exhibit the same characteristics. There may be varied MSCs present in different parts of WJ throughout the length of the UC. For this purpose, using an explant attachment method, WJMSCs were isolated from three different parts of the UC, mainly present towards the placenta (mother part), the center of the whole cord (central part) and the part attached to the fetus (baby part). WJMSCs from all three parts were maintained in normal growth conditions (10% ADMEM) and analyzed for mesenchymal markers, pluripotent genes, proliferation rate and tri-lineage differentiation potential. All WJMSCs were highly proliferative, positively expressed CD90, CD105, CD73 and vimentin, while not expressing CD34, CD45, CD14, CD19 or HLA-DR, differentiated into adipocytes, osteocytes and chondrocytes and expressed pluripotency markers OCT-4, SOX-2 and NANOG at gene and protein levels. Furthermore, MSCs derived from all the parts were shown to have potency towards hepatocyte-like cell differentiation. Human bone marrow-derived MSCs were used as a positive control. Finally, we conclude that WJMSCs derived from all the parts are valuable sources and can be efficiently used in various fields of regenerative medicine.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Kwon Park
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea. .,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
45
|
Hoffmann A, Floerkemeier T, Melzer C, Hass R. Comparison of in vitro-cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord. J Tissue Eng Regen Med 2017; 11:2565-2581. [PMID: 27125777 DOI: 10.1002/term.2153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/15/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Cell-mediated therapy is currently considered as a novel approach for many human diseases. Potential uses range from topic applications with the regeneration of confined tissue areas to systemic applications. Stem cells including mesenchymal stroma/stem cells (MSCs) represent a highly attractive option. Their potential to cure or alleviate human diseases is investigated in a number of clinical trials. A wide variety of methods has been established in the past years for isolation, cultivation and characterization of human MSCs as expansion is presently deemed a prerequisite for clinical application with high numbers of cells carrying reproducible properties. MSCs have been retrieved from various tissues and used in a multitude of settings whereby numerous experimental protocols are available for expansion of MSCs in vitro. Accordingly, different isolation, culture and upscaling techniques contribute to the heterogeneity of MSC characteristics and the, sometimes, controversial results. Therefore, this review discusses and summarizes certain experimental conditions for MSC in vitro culture focusing on adult bone marrow-derived and neonatal umbilical cord-derived MSCs in order to enhance our understanding for MSC tissue sources and to stratify different procedures. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Department of Orthopaedic Surgery, OE 8893, Hannover Medical School, Hannover, Germany
| | - Thilo Floerkemeier
- Department of Orthopaedic Surgery (Annastift), OE 6270, Hannover Medical School, Hannover, Germany
| | - Catharina Melzer
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, OE 6411, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, OE 6411, Hannover Medical School, Hannover, Germany
| |
Collapse
|
46
|
Kouroupis D, Wang XN, El-Sherbiny Y, McGonagle D, Jones E. The Safety of Non-Expanded Multipotential Stromal Cell Therapies. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-59165-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Zeineddine HA, Frush TJ, Saleh ZM, El-Othmani MM, Saleh KJ. Applications of Tissue Engineering in Joint Arthroplasty: Current Concepts Update. Orthop Clin North Am 2017; 48:275-288. [PMID: 28577777 DOI: 10.1016/j.ocl.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research in tissue engineering has undoubtedly achieved significant milestones in recent years. Although it is being applied in several disciplines, tissue engineering's application is particularly advanced in orthopedic surgery and in degenerative joint diseases. The literature is full of remarkable findings and trials using tissue engineering in articular cartilage disease. With the vast and expanding knowledge, and with the variety of techniques available at hand, the authors aimed to review the current concepts and advances in the use of cell sources in articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Hussein A Zeineddine
- Department of Surgery, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Todd J Frush
- Department of Orthopaedics and Sports Medicine, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA
| | - Zeina M Saleh
- Department of Surgery, American University of Beirut Medical Center, Bliss Street, Riad El-Solh, Beirut 11072020, Lebanon
| | - Mouhanad M El-Othmani
- Department of Orthopaedics and Sports Medicine, Musculoskeletal Institute of Excellence, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA
| | - Khaled J Saleh
- Department of Orthopaedics and Sports Medicine, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA.
| |
Collapse
|
48
|
Xu WW, Huang L, Chong KKL, Leung DSY, Li BFL, Yin ZQ, Huang YF, Pang CP. Differentiation potential of human adipose tissue derived stem cells into photoreceptors through explants culture and enzyme methods. Int J Ophthalmol 2017; 10:23-29. [PMID: 28149772 DOI: 10.18240/ijo.2017.01.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/18/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the retinal photoreceptor differentiation potential of human orbital adipose tissue-derived stem cells (ADSCs) generated by enzyme (EN) and explant (EX) culture methods. METHODS We investigated potentials of human orbital ADSCs to differentiate into photoreceptors through EN and EX culture methods. EN and EX orbital ADSCs were obtained from the same donor during rehabilitative orbital decompression, and then were subject to a 3-step induction using Noggin, DKK-1, IGF-1 and b-FGF at different time points for 38d. Stem cell, eye-field and photoreceptor-related gene and protein markers were measured by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescent (IMF) staining. RESULTS Both EX and EN orbital ADSCs expressed CD133, a marker of cell differentiation. Moreover, PAX6 and rhodopsin, markers of the retinal progenitor cells, were detected from EX and EN orbital ADSCs. In EX orbital ADSCs, PAX6 mRNA was detected on the 17th day and then the rhodopsin mRNA was detected on the 24th day. In contrast, the EN orbital ADSCs expressed PAX6 and rhodopsin mRNA on the 31st day. EX orbital ADSCs expressed rhodopsin protein on the 24th day, while EN orbital ADSCs expressed rhodopsin protein on the 31st day. CONCLUSION Orbital ADSCs isolated by direct explants culture show earlier and stronger expressions of markers towards eye field and retinal photoreceptor differentiation than those generated by conventional EN method.
Collapse
Affiliation(s)
- Wei-Wei Xu
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China; Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li Huang
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kelvin K L Chong
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Doreen S Y Leung
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Benjamin F L Li
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zheng-Qin Yin
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi-Fei Huang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
49
|
Converse GL, Li D, Buse EE, Hopkins RA, Aljitawi OS. Wharton's Jelly Matrix Decellularization for Tissue Engineering Applications. Methods Mol Biol 2017; 1577:25-33. [PMID: 28786033 DOI: 10.1007/7651_2017_61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Scaffolds, both natural and synthetic, used in tissue engineering provide mechanical support to cells. Tissue decellularization has been used to provide natural extracellular matrix scaffolds for tissue engineering purposes. In this chapter we focus on describing the methodology used to decellularize Wharton's jelly matrix, the mucous connective tissue that surrounds umbilical cord vessels, to obtain decellularized Wharton's jelly matrix (DWJM); an extracellular matrix that can be used for tissue engineering purposes. We also, briefly, describe our experience with processing DWJM for cell seeding and recellularization.
Collapse
Affiliation(s)
| | - Dandan Li
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Eric E Buse
- Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | | | - Omar S Aljitawi
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
50
|
Sanluis-Verdes A, Sanluis-Verdes N, Manso-Revilla MJ, Castro-Castro AM, Pombo-Otero J, Fraga-Mariño M, Sanchez-Ibañez J, Doménech N, Rendal-Vázquez ME. Tissue engineering for neurodegenerative diseases using human amniotic membrane and umbilical cord. Cell Tissue Bank 2016; 18:1-15. [PMID: 27830445 DOI: 10.1007/s10561-016-9595-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/24/2016] [Indexed: 12/27/2022]
Abstract
Regenerative medicine, based on the use of stem cells, scaffolds and growth factors, has the potential to be a good approach for restoring damaged tissues of the central nervous system. This study investigated the use of human amniotic mesenchymal stem cells (hAMSC), human amniotic epithelial stem cells (hAESC), and human Wharton's jelly mesenchymal stem cells (hWJMSC) derived from human umbilical cord as a source of stem cells, and the potential of the human amniotic membrane (HAM) as a scaffold and/or source of growth factors to promote nerve regeneration. The hAMSC and hAESC obtained from HAM and the hWJMSC from umbilical cords were cultured in induction medium to obtain neural-like cells. The morphological differentiation of hAMSC, hAESC and hWJMSC into neural-like cells was evident after 4-5 days, when they acquired an elongated and multipolar shape, and at 21 days, when they expressed neural and glial markers. On other way, the HAM was completely decellularized without affecting the components of the basement membrane or the matrix. Subsequently, hAMSC, hAESC and hWJMSC differentiated into neural-like cells were seeded onto the decellularized HAM, maintaining their morphology. Finally, conditioned media from the HAM allowed proliferation of hAMSC, hAESC and hWJMSC differentiated to neural-like cells. Both HAM and umbilical cord are biomaterials with great potential for use in regenerative medicine for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anahí Sanluis-Verdes
- Unidad de Criobiología-Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC)-Instituto de Investigaciones Biomédicas A Coruña (INIBIC), As Xubias, s/n, 15006, A Coruña, Spain
| | - Namibia Sanluis-Verdes
- Unidad de Criobiología-Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC)-Instituto de Investigaciones Biomédicas A Coruña (INIBIC), As Xubias, s/n, 15006, A Coruña, Spain
- Servicio de Cirugía General y del Aparato Digestivo, Complexo Hospitalario Universitario de A Coruña (CHUAC)-Instituto de Investigaciones Biomédicas A Coruña (INIBIC), As Xubias, s/n, 15006, A Coruña, Spain
| | - María Jesús Manso-Revilla
- Grupo NEUROVER, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de A Coruña (UDC), Campus de A Coruña, 15071, A Coruña, Spain
| | - Antonio Manuel Castro-Castro
- Grupo NEUROVER, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de A Coruña (UDC), Campus de A Coruña, 15071, A Coruña, Spain
| | - Jorge Pombo-Otero
- Servicio de Anatomía Patológica, Complexo Hospitalario Universitario de A Coruña (CHUAC)-Instituto de Investigaciones Biomédicas A Coruña (INIBIC), As Xubias, s/n, 15006, A Coruña, Spain
| | - María Fraga-Mariño
- Biobanco A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC)-Instituto de Investigaciones Biomédicas A Coruña (INIBIC), As Xubias, s/n, 15006, A Coruña, Spain
| | - Jacinto Sanchez-Ibañez
- Unidad de Criobiología-Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC)-Instituto de Investigaciones Biomédicas A Coruña (INIBIC), As Xubias, s/n, 15006, A Coruña, Spain
| | - Nieves Doménech
- Biobanco A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC)-Instituto de Investigaciones Biomédicas A Coruña (INIBIC), As Xubias, s/n, 15006, A Coruña, Spain.
| | - María Esther Rendal-Vázquez
- Unidad de Criobiología-Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC)-Instituto de Investigaciones Biomédicas A Coruña (INIBIC), As Xubias, s/n, 15006, A Coruña, Spain.
| |
Collapse
|