1
|
Durmaz E, Dribika L, Kutnyanszky M, Mead B. Utilizing extracellular vesicles as a drug delivery system in glaucoma and RGC degeneration. J Control Release 2024; 372:209-220. [PMID: 38880332 DOI: 10.1016/j.jconrel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Retinal diseases are the leading cause of blindness, resulting in irreversible degeneration and death of retinal neurons. One such cell type, the retinal ganglion cell (RGC), is responsible for connecting the retina to the rest of the brain through its axons that make up the optic nerve and is the primary cell lost in glaucoma and traumatic optic neuropathy. To date, different therapeutic strategies have been investigated to protect RGCs from death and preserve vision, yet currently available strategies are restricted to treating neuron loss by reducing intraocular pressure. A major barrier identified by these studies is drug delivery to RGCs, which is in large part due to drug stability, short duration time at target, low delivery efficiency, and undesired off-target effects. Therefore, a delivery system to deal with these problems is needed to ensure maximum benefit from the candidate therapeutic material. Extracellular vesicles (EV), nanocarriers released by all cells, are lipid membranes encapsulating RNAs, proteins, and lipids. As they naturally shuttle these encapsulated compounds between cells for communicative purposes, they may be exploitable and offer opportunities to overcome hurdles in retinal drug delivery, including drug stability, drug molecular weight, barriers in the retina, and drug adverse effects. Here, we summarize the potential of an EV drug delivery system, discussing their superiorities and potential application to target RGCs.
Collapse
Affiliation(s)
- Esmahan Durmaz
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| | | | | | - Ben Mead
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| |
Collapse
|
2
|
Arsov A, Tsigoriyna L, Batovska D, Armenova N, Mu W, Zhang W, Petrov K, Petrova P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024; 13:2408. [PMID: 39123599 PMCID: PMC11311503 DOI: 10.3390/foods13152408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Antinutrients, also known as anti-nutritional factors (ANFs), are compounds found in many plant-based foods that can limit the bioavailability of nutrients or can act as precursors to toxic substances. ANFs have controversial effects on human health, depending mainly on their concentration. While the positive effects of these compounds are well documented, the dangers they pose and the approaches to avoid them have not been discussed to the same extent. There is no dispute that many ANFs negatively alter the absorption of vitamins, minerals, and proteins in addition to inhibiting some enzyme activities, thus negatively affecting the bioavailability of nutrients in the human body. This review discusses the chemical properties, plant bioavailability, and deleterious effects of anti-minerals (phytates and oxalates), glycosides (cyanogenic glycosides and saponins), polyphenols (tannins), and proteinaceous ANFs (enzyme inhibitors and lectins). The focus of this study is on the possibility of controlling the amount of ANF in food through fermentation. An overview of the most common biochemical pathways for their microbial reduction is provided, showing the genetic basis of these phenomena, including the active enzymes, the optimal conditions of action, and some data on the regulation of their synthesis.
Collapse
Affiliation(s)
- Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
3
|
Adewuyi HA, Kabiru AY, Muhammad HL, Lukman HY, Owolabi MS, Jonathan I, El-Gazzar AM, Mahmoud MH, Batiha GES, Lawal B. Pre-clinical protective potentials of Carica papaya constituents in experimentally induced anemia. Am J Transl Res 2024; 16:3259-3272. [PMID: 39114700 PMCID: PMC11301493 DOI: 10.62347/zqdc9694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/08/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Anemia is a pathological condition characterized by reduced oxygen bioavailability and/or changes in hematological parameters. This study investigated the anti-anemic activities of Carica papaya (CP) phytoconstituents in aluminium-chloride-induced anemic rats. METHOD Twenty-seven rats were randomized into nine groups of three rats as follows; group 1 was the normal (non-induced) group, 2-9 were anemic rats administered 1 mL distilled water, standard drug (3 mg/kg body weight (bw) ferrous sulphate), 100, 300 and 500 mg/kg bw of crude methanolic extract of CP (CMECP) of the leaf and 100, 300 and 500 mg/kg bw of CMECP of the seed respectively in the first stage of the study. In the second stage, thirty-three rats were randomized into eleven groups of three rats as follows; group 1 was the normal group, 2-11 were anemic rats treated with 1 mL distilled water, standard drug, 75 mg/kg bw, 150 mg/kg of alkaloid fraction of CP seed, 75 mg/kg bw, 150 mg/kg bw of flavonoid fraction of CP seed, 75 mg/kg bw and 150 mg/kg of alkaloid fraction of CP leaf, 75 mg/kg bw and 150 mg/kg bw of flavonoid fraction of CP leaf respectively. RESULTS Treatment of anemic rats with CP extracts and fractions of the seed and leaf significantly reversed the hematological parameters and body weight of anemic rats in a dose independent fashion. The CMECP leaf at 100 and 500 mg/kg gave PCV of 42.50±0.50 and 47.00±0.50, while the seed gave 49.50±0.50 and 42.50±0.50 respectively after 2 weeks of treatment. However, the alkaloid and flavonoid fraction of CP presented better anti-anemic properties probably due to constituents' synergism. CONCLUSION This study concluded that CP possesses phytoconstituents which potentiates it as a safe anti-anemic drug candidate.
Collapse
Affiliation(s)
- Hassan Abdulsalam Adewuyi
- Department of Biochemistry, Federal University of TechnologyP.M.B. 65, Minna 920001, Niger State, Nigeria
| | - Adamu Yusuf Kabiru
- Department of Biochemistry, Federal University of TechnologyP.M.B. 65, Minna 920001, Niger State, Nigeria
| | - Hadiza Lami Muhammad
- Department of Biochemistry, Federal University of TechnologyP.M.B. 65, Minna 920001, Niger State, Nigeria
| | - Halimat Yusuf Lukman
- Department of Chemical Sciences, College of Natural and Applied Sciences, Summit UniversityOffa 250101, Kwara State, Nigeria
| | | | - Ibrahim Jonathan
- Department of Biochemistry, Federal University of TechnologyP.M.B. 65, Minna 920001, Niger State, Nigeria
| | - Ahmed M El-Gazzar
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria UniversityAlexandria 21526, Egypt
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud UniversityRiyadh 12372, Kingdom of Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour UniversityDamanhour 22511, AlBeheira, Egypt
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, and Academia SinicaTaipei 11529, Taiwan
| |
Collapse
|
4
|
Albaladejo-García V, Morán L, Santos-Coquillat A, González MI, Ye H, Vázquez Ogando E, Vaquero J, Cubero FJ, Desco M, Salinas B. Curcumin encapsulated in milk small extracellular vesicles as a nanotherapeutic alternative in experimental chronic liver disease. Biomed Pharmacother 2024; 173:116381. [PMID: 38452655 DOI: 10.1016/j.biopha.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Curcumin is a natural molecule widely tested in preclinical and clinical studies due to its antioxidant and anti-inflammatory activity. Nevertheless, its high hydrophobicity and low bioavailability limit in vivo applications. To overcome curcumin´s drawbacks, small extracellular vesicles (sEVs) have emerged as potential drug delivery systems due to their non-immunogenicity, nanometric size and amphiphilic composition. This work presents curcumin cargo into milk sEV structure and further in vitro and in vivo evaluation as a therapeutic nanoplatform. The encapsulation of curcumin into sEV was performed by two methodologies under physiological conditions: a passive incorporation and active cargo employing saponin. Loaded sEVs (sEVCurPas and sEVCurAc) were fully characterized by physicochemical techniques, confirming that neither methodology affects the morphology or size of the nanoparticles (sEV: 113.3±5.1 nm, sEVCurPas: 127.0±4.5 nm and sEVCurAc: 98.5±3.6 nm). Through the active approach with saponin (sEVCurAc), a three-fold higher cargo was obtained (433.5 µg/mL) in comparison with the passive approach (129.1 µg/mL). These sEVCurAc were further evaluated in vitro by metabolic activity assay (MTT), confocal microscopy, and flow cytometry, showing a higher cytotoxic effect in the tumoral cells RAW264.7 and HepG2 than in primary hepatocytes, specially at high doses of sEVCurAc (4%, 15% and 30% of viability). In vivo evaluation in an experimental model of liver fibrosis confirmed sEVCurAc therapeutic effects, leading to a significant decrease of serum markers of liver damage (ALT) (557 U/L to 338 U/L with sEVCurAc therapy) and a tendency towards decreased liver fibrogenesis and extracellular matrix (ECM) deposition.
Collapse
Affiliation(s)
- Virginia Albaladejo-García
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - Laura Morán
- Departamento de Inmunología, Oftalmología y ENT, Facultad de Medicina de la Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ana Santos-Coquillat
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - María I González
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Hui Ye
- Departamento de Inmunología, Oftalmología y ENT, Facultad de Medicina de la Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Elena Vázquez Ogando
- HepatoGastro Lab, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier Vaquero
- HepatoGastro Lab, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Francisco Javier Cubero
- Departamento de Inmunología, Oftalmología y ENT, Facultad de Medicina de la Universidad Complutense de Madrid, Madrid 28040, Spain; HepatoGastro Lab, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid 28911, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| | - Beatriz Salinas
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid 28911, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
6
|
Teneva D, Denev P. Biologically Active Compounds from Probiotic Microorganisms and Plant Extracts Used as Biopreservatives. Microorganisms 2023; 11:1896. [PMID: 37630457 PMCID: PMC10458850 DOI: 10.3390/microorganisms11081896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Ensuring the microbiological safety of food products is a pressing global concern. With the increasing resistance of microorganisms to chemical agents and the declining effectiveness of synthetic preservatives, there is a growing need for alternative sources of natural, bioactive compounds with antimicrobial activity. The incorporation of probiotics and plant extracts into food formulations not only enriches foodstuffs with microorganisms and phytochemicals with biologically active compounds, but also provides a means for product preservation. The current review considers the importance of the process of biological preservation for providing safe foods with high biological value, natural origin and composition, and prolonged shelf life, thereby improving consumers' quality of life. To accomplish this goal, this review presents a series of examples showcasing natural preservatives, including beneficial bacteria, yeasts, and their metabolites, as well as phenolic compounds, terpenoids, and alkaloids from plant extracts. By summarizing numerous studies, identifying research challenges and regulatory barriers for their wider use, and outlining future directions for investigation, this article makes an original contribution to the field of biopreservation.
Collapse
Affiliation(s)
| | - Petko Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
7
|
Ibrahim AM, Gad El-Karim RM, Ali RE, Nasr SM. Toxicological effects of Saponin on the free larval stages of Schistosoma mansoni, infection rate, some biochemical and molecular parameters of Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105357. [PMID: 36963932 DOI: 10.1016/j.pestbp.2023.105357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Saponins have been used as biopesticides. The objective of the present study is to investigate the toxic effects of Saponin against Biomphalaria alexandrina snails. Results showed that Saponin exhibited a molluscicidal activity against adult B. alexandrina snails at LC50 (70.05 mg/l) and had a larvicidal effect on the free larval stages of Schistosoma mansoni. To evaluate the lethal effects, snails were exposed to either LC10 (51.8 mg/l) or LC25 (60.4 mg/l) concentrations of Saponin. The survival, the infection rates, protein, albumin, and total fat levels were decreased, while glucose levels were increased in exposed snails compared to control snails. Also, these concentrations significantly raised Malondialdehyde (MDA) and Glutathione S Transferase (GST) levels, whereas reduced Superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) in exposed snails. Furthermore, these concentrations resulted in endocrine disruptions where it caused a significant increase in testosterone (T) level; while a significant decrease in Estradiol (E2) levels were noticed. As for Estrogen (E) level, it was increased after exposure to LC10 Saponin concentration while after exposure to LC25 concentration, it was decreased. Also, LC10 and LC25 concentrations of Saponin caused a genotoxic effect and down-regulation of metabolic cycles in the snails. In conclusion, Saponins caused deleterious effects on the intermediate host of schistosomiasis mansoni. Therefore, B. alexandrina snails could be used as models to screen the toxic effects of Saponins in the aquatic environment and if it was used as a molluscicide, it should be used cautiously and under controlled circumstances.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt.
| | - Rasha M Gad El-Karim
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Rasha E Ali
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Sami M Nasr
- Biochemistry, Molecular Biology and Medicinal chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
8
|
Banerjee A, Dey T, Majumder R, Bhattacharya T, Dey S, Bandyopadhyay D, Chattopadhyay A. Oleic acid prevents erythrocyte death by preserving haemoglobin and erythrocyte membrane proteins. Free Radic Biol Med 2023; 202:17-33. [PMID: 36965537 DOI: 10.1016/j.freeradbiomed.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Haemolysis of erythrocytes upon exposure to haemato-toxic phenylhydrazine (PHZ), makes it an experimental model of anaemia and a partial model of β-thalassaemia, where oxidative stress (OS) was identified as principal causative factor. Oleic acid (OA) was evidenced to ameliorate such stress with antioxidative potential. Erythrocytes were incubated in vitro using 1 mM PHZ, 0.06 nM OA. Erythrocyte membrane protein densities and haemoglobin (Hb) status were examined. Any interaction of Hb with PHZ/OA was checked by calorimetric and spectroscopic analysis using pure molecules. Occurrence of erythrocyte apoptosis and involvement of free iron in all groups were evaluated. PHZ exposure to erythrocytes results in OS with subsequent apoptosis as evidenced from increased lipid peroxidation and translocation of phosphatidylserine in outer membrane. Preservations of erythrocyte cytoskeletal architecture and membrane bound enzyme activity were found in presence of OA. Moreover, both heme and globin of Hb was examined to be conserved by OA. Presence of OA, impeded apoptosis also, possibly by thwarting Hb breakdown followed by free iron release and consequent free radical generation. Additionally, direct sequential binding of OA with PHZ endorsed another protective mechanism of OA toward erythrocytes. OA affords protection to erythrocytes by conserving its major components and prevents haemolysis which projects OA as a haemato-protective agent. Apart from combating PHZ toxicity, anti-apoptotic action of OA strongly suggests its usage in anaemia and β-thalassaemia patients to curb irreversible erythrocyte breakdown. This research strongly recommends OA in pure form or from dietary sources as a therapeutic against haemolytic disorders.
Collapse
Affiliation(s)
- Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
9
|
He Z, Liu H, Gui S, Liu H, Yang J, Guo Q, Ye X, Zhang B. Procoagulant substances and mechanisms of hemostatic herb Eclipta alba. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Yahaya TO, Oladele EO, Bunza MDA, Yusuf AB, Izuafa A, Danjuma JB, Nnochiri K. Hematotoxicity and nephrotoxicity of long-term administration of Guiera senegalensis (J.F. Gme), Cassia occidentalis (Linn), and Ziziphus mauritiana (Lam) leaves obtained in Birnin Kebbi, Nigeria. JOURNAL OF HERBMED PHARMACOLOGY 2022; 11:367-374. [DOI: 10.34172/jhp.2022.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/13/2022] [Indexed: 01/11/2025] Open
Abstract
Introduction: Previously, we established the phytochemical composition and short-term administration safety of Guiera senegalensis (sabara), Cassia occidentalis (coffee senna), and Ziziphus mauritiana (jujube) leaves, which are common medicinal plants in Northern Nigeria. In the current study, heavy metal contents and long-term administration effects of the plants’ leaf extracts on hematological parameters and the kidneys of albino rats (Rattus norvegicus) were investigated. The heavy metals analyzed were copper, lead, cadmium, nickel, and manganese, while the hematological parameters evaluated were packed cell volume, hemoglobin, red blood cells, white blood cells, lymphocytes, and monocytes. Methods: Twenty-four mixed-sex rats were distributed into four groups of six rats each. Group 1 was made the control, while groups 2, 3, and 4 were administered 1000 mg kg-1 one of the plants extracts for 90 days. Blood and kidney samples were collected across the groups for hematological and histopathological examinations. Results: The heavy metals were present in the extracts within the World Health Organization’s acceptable limits. The treated rats were anemic compared to the control. However, on average, only the C. occidentalis group showed significant differences (P<0.05) in hematological parameters. Unlike the control, the kidneys of the rats fed with Z. mauritiana and G. senegalensis showed vacuolation of cytoplasm and tubular degeneration, while the C. occidentalis-fed rats had inflammation and dilated Bowman’s capsules. Conclusion: These findings reveal that constant administration of high doses of the extracts for a long time may cause health hazards. People are advised to seek an expert’s advice before using the plants.
Collapse
Affiliation(s)
- Tajudeen O. Yahaya
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Esther O. Oladele
- Biology Unit, Distance Learning Institute, University of Lagos, Nigeria
| | - MDA Bunza
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Abdulrahman B. Yusuf
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Nigeria
| | - Abdulrazak Izuafa
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Jamilu B. Danjuma
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Nigeria
| | - Kelechi Nnochiri
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| |
Collapse
|
11
|
Gadouche L, Zidane A, Zerrouki K, Azouni K, Bouinoune S. Cytotoxic effect of Myrtus communis, Aristolochia longa, and Calycotome spinosa on human erythrocyte cells. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-379-386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Myrtus communis, Aristolochia longa, and Calycotome spinosa are medicinal plants frequently used in Algeria. Some plants can cause a fragility of the erythrocyte membrane and lead to hemolysis. Therefore, we aimed to study the cytotoxicity of aqueous extracts from the aerial part of these species against red blood cells.
Study objects and methods. The hemolytic effect was determined spectrophotometrically by incubating an erythrocyte solution with different concentrations of the aqueous extracts (25, 50, 100, and 200 mg/mL) at 37°C during one hour. In addition, we performed phytochemical screening and measured the contents of polyphenols and flavonoids.
Results and discussion. After one hour of incubation of human red blood cells with the aqueous extracts at different concentrations, the hemolysis percentage showed a significant leak of hemoglobin with A. longa (68.75 ± 6.11%; 200 mg/mL), the most toxic extract followed by C. spinosa (34.86 ± 5.06%; 200 mg/mL). In contrast, M. communis showed very low cytotoxicity (20.13 ± 3.11%; 200 mg/mL).
Conclusion. These plants are sources of a wide range of bioactive compounds but their use in traditional medicine must be adapted to avoid any toxic effect.
Collapse
|
12
|
Comparative Evaluation of the Nutritional, Antinutritional, Functional, and Bioactivity Attributes of Rice Bran Stabilized by Different Heat Treatments. Foods 2020; 10:foods10010057. [PMID: 33379306 PMCID: PMC7824238 DOI: 10.3390/foods10010057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate the effects of different stabilization treatments—namely, dry-heating, infrared-radiation, and microwave-heating—on the nutritional, antinutritional, functional, and bioactivity attributes of rice bran (RB). Among the heating treatments, infrared-radiation exerted the strongest inactivation, resulting in 34.7% residual lipase activity. All the stabilization methods were found to be effective in the reduction of antinutrients, including phytates, oxalate, saponins, and trypsin inhibitors. No adverse effect of stabilization was noted on chemical composition and fatty acid profile of RB. Instead, stabilization by all heat treatments caused a significant decrease of vitamin E and total phenolics content in RB; the same trend was observed for the antioxidant activity as evaluated by the DPPH test. The antioxidant activity, as evaluated by ABTS and FRAP tests, and water absorption capacity were improved by the stabilization of RB, whereas the oil absorption capacity and emulsifying properties decreased. Microwave-heating enhanced the foaming properties, whereas infrared-radiation improved the water solubility index and swelling power of RB. Consequently, treatment of RB with infrared-radiation has a potential for industrialization to inactivate the lipase and improve some functional properties of this material for uses as a nutraceutical ingredient in food and cosmetic products.
Collapse
|
13
|
Martínez Y, Más D, Betancur C, Gebeyew K, Adebowale T, Hussain T, Lan W, Ding X. Role of the Phytochemical Compounds like Modulators in Gut Microbiota and Oxidative Stress. Curr Pharm Des 2020; 26:2642-2656. [PMID: 32410554 DOI: 10.2174/1381612826666200515132218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Currently, daily consumption of green herb functional food or medicinal herbs has increased as adopted by many people worldwide as a way of life or even as an alternative to the use of synthetic medicines. Phytochemicals, which are a series of compounds of relatively complex structures and restricted distribution in plants, usually perform the defensive functions for plants against insects, bacteria, fungi or other pathogenic factors. A series of studies have found their effectiveness in the treatment or prevention of systemic diseases such as autoimmune diseases, cancer, neurodegenerative diseases, Crohn's disease and so on. OBJECTIVE This review systematizes the literature on the mechanisms of the phytochemicals that react against unique free radicals and prevent the oxidative stress and also summarizes their role in gut microbiota inhibiting bacterial translocation and damage to the intestinal barrier and improving the intestinal membrane condition. CONCLUSION The gut microbiota modulation and antioxidant activities of the phytochemicals shall be emphasized on the research of the active principles of the phytochemicals.
Collapse
Affiliation(s)
- Yordan Martínez
- Escuela Agrícola Panamericana Zamorano, Valle de Yeguare, San Antonio de Oriente, Francisco Morazan 96, Honduras
| | - Dairon Más
- Laboratorio de Nutricion Animal, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro 76230, Mexico
| | - Cesar Betancur
- Departamento de Ganaderia, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Monteria 230002, Colombia
| | - Kefyalew Gebeyew
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tolulope Adebowale
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), P. O. Box: 128, Jhang Road, Faisalabad, 38000, Pakistan
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Inspection and Quarantine. Food Inspection and Quarantine Center of Shenzhen Custom, 1011Fuqiang Road, Shenzhen 518045, China
| | - Xinghua Ding
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
14
|
Nga NT, Phuong DT, Cuc NT, Phuong TH, Huong PTM, Cuong NX, Huu Tai B, Van Kiem P, Thao DT. Nanoliposomal Cercodemasoide A and Its Improved Activities Against NTERA-2 Cancer Stem Cells. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20982108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, saponins derived from marine sources have received much attention because of their promising bioactivities, such as anticancer, anti-angiogenesis, and anti-inflammation. In particular, a triterpene saponin from the sea cucumber Cercodemas anceps Selenka, cercodemasoide A (CAN1), showed potent cytotoxicity against various cancer cell lines. Recent evidence has indicated that cancer stem cells (CSCs) could be a novel target for efficient cancer therapies. In order to improve the biopharmaceutical properties of CAN1, the compound was loaded into nanoliposomes as an ideal drug carrier. CAN1 was successfully incorporated into nanoliposomes as small unilamellar liposome vesicles with an average size of 73.39 ± 1.57 nm, zeta potential of −0.299 ± 0.046 mV, polydispersity index of 0.336 ± 0.038, and with an encapsulation efficiency of up to 62.9%. For the first time, CAN1 and its nanoliposomal forms have been shown to have a promising cytotoxic activity against NTERA-2 CSCs, with half-maximal inhibitory concentration (IC50) =1.03 ± 0.04 and 0.41 ± 0.03 µM, respectively. The CAN1 nanoliposomes also presented significantly improved activities in suppressing the growth of NTERA-2 3-dimensional tumorspheres (IC50 = 1.71 ± 0.06 µM) in comparison with the free form ( P < .05). The anti-CSC effects of CAN1 nanoliposomes on NTERA-2 cells were due to their apoptotic induction through enhancing caspase-3 activity (more than 2-fold) and arresting the cell cycle at the S phase ( P < .05). The obtained CAN1-encapsulated nanoliposomes suggest valuable applications in CSC-targeting treatment for more efficient clinical therapy.
Collapse
Affiliation(s)
- Nguyen Thi Nga
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Do Thi Phuong
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Cuc
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Trieu Ha Phuong
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Thi Mai Huong
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Xuan Cuong
- Institute of Marine Biochemistry VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Do Thi Thao
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
15
|
Podsiedlik M, Markowicz-Piasecka M, Sikora J. Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery. Chem Biol Interact 2020; 332:109305. [PMID: 33130048 DOI: 10.1016/j.cbi.2020.109305] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Erythrocytes (RBCs) represent the main cell component in circulation and recently have become a topic of intensive scientific interest. The relevance of erythrocytes as a model for cytotoxicity screening of xenobiotics is under the spotlight of this review. Erythrocytes constitute a fundamental cellular model to study potential interactions with blood components of manifold novel polymer or biomaterials. Morphological changes, subsequent disruption of RBC membrane integrity, and hemolysis could be used to determine the cytotoxicity of various compounds. Erythrocytes undergo a programmed death (eryptosis) which could serve as a good model for evaluating certain mechanisms which correspond to apoptosis taking place in nucleated cells. Importantly, erythrocytes can be successfully used as a valuable cellular model in examination of oxidative stress generated by certain diseases or multiple xenobiotics since red cells are subjected to permanent oxidative stress. Additionally, the antioxidant capacity of erythrocytes, and the activity of anti-oxidative enzymes could reflect reactive oxygen species (ROS) generating properties of various substances and allow to determine their effects on tissues. The last part of this review presents the latest findings on the possible application of RBCs as drug delivery systems (DDS). In conclusion, all these findings make erythrocytes highly valuable cells for in vitro biocompatibility assessment, cytotoxicity screening of a wide variety of substances as well as drug delivery.
Collapse
Affiliation(s)
- Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151, Lodz, Poland.
| |
Collapse
|
16
|
Du Y, Martin BA, Valenciano AL, Clement JA, Goetz M, Cassera MB, Kingston DGI. Galtonosides A-E: Antiproliferative and Antiplasmodial Cholestane Glycosides from Galtonia regalis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1043-1050. [PMID: 32227943 PMCID: PMC7183436 DOI: 10.1021/acs.jnatprod.9b01064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
An extract of Galtonia regalis from the Natural Products Discovery Institute showed moderate antiplasmodial activity, with an IC50 value less than 1.25 μg/mL. The two known cholestane glycosides 1 and 2 and the five new cholestane glycosides galtonosides A-E (3-7) were isolated after bioassay-directed fractionation. The structures of the new compounds were determined by interpretation of their NMR and mass spectra. Among these compounds, galtonoside B (4) displayed the most potent antiplasmodial activity, with an IC50 value of 0.214 μM against the drug-resistant Dd2 strain of Plasmodium falciparum.
Collapse
Affiliation(s)
- Yongle Du
- Department of Chemistry and Virginia Tech Center
for Drug Discovery, M/C 0212, Virginia Tech, Blacksburg, VA 24061, United States of
America
| | - Brooke A. Martin
- Department of Chemistry and Virginia Tech Center
for Drug Discovery, M/C 0212, Virginia Tech, Blacksburg, VA 24061, United States of
America
| | - Ana Lisa Valenciano
- Department of Biochemistry and Molecular Biology,
and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia,
Athens, Georgia 30602, United States of America
| | - Jason A. Clement
- Natural Products Discovery Institute, Baruch S.
Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United
States of America
| | - Michael Goetz
- Natural Products Discovery Institute, Baruch S.
Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United
States of America
| | - Maria B. Cassera
- Department of Biochemistry and Molecular Biology,
and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia,
Athens, Georgia 30602, United States of America
| | - David G. I. Kingston
- Department of Chemistry and Virginia Tech Center
for Drug Discovery, M/C 0212, Virginia Tech, Blacksburg, VA 24061, United States of
America
| |
Collapse
|
17
|
Kengaiah J, Nandish SKM, Ramachandraiah C, Chandramma, Shivaiah A, Vishalakshi GJ, Paul M, Santhosh MS, Shankar RL, Sannaningaiah D. Protective Effect of Tamarind Seed Coat Ethanol Extract on Eryptosis Induced by Oxidative Stress. BIOCHEMISTRY (MOSCOW) 2020; 85:119-129. [DOI: 10.1134/s0006297920010113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Vinayaka AC, Ngo TA, Nguyen T, Bang DD, Wolff A. Pathogen Concentration Combined Solid-Phase PCR on Supercritical Angle Fluorescence Microlens Array for Multiplexed Detection of Invasive Nontyphoidal Salmonella Serovars. Anal Chem 2020; 92:2706-2713. [DOI: 10.1021/acs.analchem.9b04863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Platycodin D triggers the extracellular release of programed death Ligand-1 in lung cancer cells. Food Chem Toxicol 2019; 131:110537. [DOI: 10.1016/j.fct.2019.05.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022]
|
20
|
Desai TH, Joshi SV. In silico evaluation of apoptogenic potential and toxicological profile of triterpenoids. Indian J Pharmacol 2019; 51:181-207. [PMID: 31391686 PMCID: PMC6644186 DOI: 10.4103/ijp.ijp_90_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AIM: Caspases-3 and 8 are key mediators of intrinsic and extrinsic pathway of apoptosis, respectively. Triterpenoids of natural and synthetic origin reported as anticancer agents with apoptotic potential and hence may prove to be good candidates for in silico testing against caspases-3 and 8. MATERIALS AND METHODS: Various naturally-occurring and synthetic triterpenoids were subjected to activity prediction using PASS Online software, and among them, 67 compounds were selected for further processing. Protein structure of caspase-3 (3DEI) and caspase-8 (3KJQ) was obtained from the protein data bank and docked with selected triterpenoids using AutoDock Tools and AutoDock Vina. Toxicological profile was predicted based on clinical manifestations using PASS online software. RESULTS: The high docking score of -10.0, -9.9, -9.8, and -9.5 were shown by friedelin, tingenone, albiziasaponin A, and albiziasaponin C, respectively, for caspase-3, and -11.0, -9.6, -9.6, and -9.4 by β-boswellic acid, bryonolic acid, canophyllic acid, and CDDO, respectively, for caspase-8. Possible adverse events were predicted with varying degree of probability and major relevant effects were reported. Hydrostatic interactions along with formation of hydrogen bonds with specific amino acids in the binding pocket were identified with each triterpenoid. CONCLUSION: Lead molecules identified through this in silico study such as friedelin, tingenone, albiziasaponin, bryonolic acid, and canophyllic acid may be utilized for further in vitro/in vivo studies as apoptotic agents targeting caspases-3 and 8.
Collapse
|
21
|
Bian Y, An GJ, Kim K, Ngo T, Shin S, Bae ON, Lim KM, Chung JH. Ginsenoside Rg3, a component of ginseng, induces pro-thrombotic activity of erythrocytes via hemolysis-associated phosphatidylserine exposure. Food Chem Toxicol 2019; 131:110553. [PMID: 31163221 DOI: 10.1016/j.fct.2019.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
Ginseng and its active gradient, ginsenoside Rg3 (Rg3), are widely used for a variety of health benefits, but concerns over their misuses are increasing. Previously, it has been reported that Rg3 can cause hemolysis, but its health outcome remains unknown. Here, we demonstrated that Rg3 could promote the procoagulant activity of erythrocytes through the process of hemolysis, ultimately leading to increased thrombosis. In freshly isolated human erythrocytes, Rg3 caused pore formation and fragmentation of the erythrocyte membrane. Confocal microscopy observation and flow cytometric analysis revealed that remnant erythrocyte fragments after the exposure to Rg3 expressed phosphatidylserine (PS), which can promote blood coagulation through providing assembly sites for coagulation complexes. Rat in vivo experiments further confirmed that intravenous administration of Rg3 produced PS-bearing erythrocyte debris and increased thrombosis. Collectively, we demonstrated that Rg3 could induce the procoagulant activity of erythrocytes by generating PS-bearing erythrocyte debris through hemolysis, which might provoke thrombosis.
Collapse
Affiliation(s)
- Yiying Bian
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Gwang-Jin An
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Thien Ngo
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Sue Shin
- Department of Laboratory Medicine, Boramae Hospital, Seoul, 156-707, South Korea.
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, South Korea.
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
22
|
Balestri F, De Leo M, Sorce C, Cappiello M, Quattrini L, Moschini R, Pineschi C, Braca A, La Motta C, Da Settimo F, Del-Corso A, Mura U. Soyasaponins from Zolfino bean as aldose reductase differential inhibitors. J Enzyme Inhib Med Chem 2019; 34:350-360. [PMID: 30734590 PMCID: PMC6327985 DOI: 10.1080/14756366.2018.1553166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Seven triterpenoid saponins were identified in methanolic extracts of seeds of the Zolfino bean landrace (Phaseolus vulgaris L.) by HPLC fractionation, revealing their ability to inhibit highly purified human recombinant aldose reductase (hAKR1B1). Six of these compounds were associated by MS analysis with the following saponins already reported in different Phaseolus vulgaris varieties: soyasaponin Ba (V), soyasaponin Bb, soyasaponin Bd (sandosaponin A), soyasaponin αg, 3-O-[R-l-rhamnopyranosyl(1 → 2)-α-d-glucopyranosyl(1 → 2)-α-d-glucuronopyranosyl]olean-12-en-22-oxo-3α,-24-diol, and soyasaponin βg. The inhibitory activity of the collected fractions containing the above compounds was tested for hAKR1B1-dependent reduction of both l-idose and 4-hydroxynonenal, revealing that some are able to differentially inhibit the enzyme. The present work also highlights the difficulties in the search for aldose reductase differential inhibitors (ARDIs) in mixtures due to the masking effect on ARDIs exerted by the presence of conventional aldose reductase inhibitors. The possibility of differential inhibition generated by a different inhibitory model of action of molecules on different substrates undergoing transformation is also discussed.
Collapse
Affiliation(s)
- Francesco Balestri
- a Department of Biology , University of Pisa , Pisa , Italy.,b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy
| | - Marinella De Leo
- b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy.,c Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Carlo Sorce
- a Department of Biology , University of Pisa , Pisa , Italy.,b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy
| | - Mario Cappiello
- a Department of Biology , University of Pisa , Pisa , Italy.,b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy
| | - Luca Quattrini
- c Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Roberta Moschini
- a Department of Biology , University of Pisa , Pisa , Italy.,b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy
| | - Carlotta Pineschi
- d PhD School in Biochemistry and Molecular Biology , University of Siena, Siena, Italy
| | - Alessandra Braca
- b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy.,c Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Concettina La Motta
- b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy.,c Department of Pharmacy , University of Pisa , Pisa , Italy
| | | | - Antonella Del-Corso
- a Department of Biology , University of Pisa , Pisa , Italy.,b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy
| | - Umberto Mura
- a Department of Biology , University of Pisa , Pisa , Italy.,b Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'' , University of Pisa , Pisa , Italy
| |
Collapse
|
23
|
Viana EOR, Cruz MDFSJ, da Silva MJ, Pereira GM, da Silva BP, Tinoco LW, Parente JP. Structural characterization of a complex triterpenoid saponin from Albizia lebbeck and investigation of its permeability property and supramolecular interactions with membrane constituents. Carbohydr Res 2019; 471:105-114. [PMID: 30530094 DOI: 10.1016/j.carres.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 11/30/2022]
Abstract
As part of the ongoing efforts in discovering potentially bioactive natural products from medicinal plants, the present study was conducted to isolate a new complex triterpenoid saponin from the barks of Albizia lebbeck. It was isolated by using chromatographic methods and its structural elucidation was performed using detailed analyses of 1H and 13C NMR spectra including 2D-NMR (COSY, TOCSY, HSQC and HMBC) spectroscopic techniques, high-resolution electrospray ionization mass spectrometry (HRESIMS) analysis and chemical conversions. Its structure was established as 21-[[(2E,6S)-6-[6-deoxy-4-O-[(2E,6S)-6-hydroxy-2-(hydroxymethyl)-6-methyl-1-oxo-2,7-octadienyl]-[(β-d-glucopyranosyl)oxy]-2-(hydroxymethyl)-6-methyl-1-oxo-2,7-octadienyl]-[(β-d-glucopyranosyl)oxy]-2,6-dimethyl-1-oxo-2,7-octadienyl]oxy]-16-hydroxy-3-[[O-β-d-xylopyranosyl-(1 → 2)-O-α-l-arabinopyranosyl-(1 → 6)-2-(acetylamino)-2-deoxy-β-d-glucopyranosyl]oxy]-(3β,16α,21β)-olean-12-en-28-oic acid O-α-l-arabinofuranosyl-(1 → 4)-O-[β-d-glucopyranosyl-(1 → 3)]-O-6-deoxy-α-l-mannopyranosyl-(1 → 2)-β-d-glucopyranosyl ester (1). Additionally, this study aimed to investigate the permeability property of 1, its activity on membrane integrity and supramolecular interactions with cellular constituents using in vitro experimental models.
Collapse
Affiliation(s)
- Elaine O R Viana
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Maria de Fátima S J Cruz
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Marília J da Silva
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Gabriela M Pereira
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Bernadete P da Silva
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Luzineide W Tinoco
- Laboratório Multiusuário de Análises por Ressonância Magnética Nuclear, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil
| | - José P Parente
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Attanzio A, Frazzitta A, Vasto S, Tesoriere L, Pintaudi AM, Livrea MA, Cilla A, Allegra M. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology 2018; 411:43-48. [PMID: 30385265 DOI: 10.1016/j.tox.2018.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/10/2023]
Abstract
Cigarette smoking has been linked with oxidative stress and inflammation. In turn, eryptosis, the suicidal erythrocyte death similar to apoptosis that can be triggered by oxidative stress, has been associated with chronic inflammatory diseases including atherosclerosis. However, the link between smoking and eryptosis has not been explored so far. The aim of the present study was to determine the level of eryptotic erythrocytes in healthy male smokers (n = 21) compared to non-smokers (n = 21) and assess its relationship with systemic inflammation (CRP) as well as with antioxidant defense (GSH) and their resistance to ex-vivo induced hemolysis. Smoking caused an increase in phosphatidylserine translocation outside the erythrocyte membrane (hallmark of eryptosis), significantly correlated to the plasma level of CRP (r = 0.546) and GSH concentration in erythrocytes (r=-0.475). With respect to non-smokers, smokers show a marginal increase of total leucocytes and erythrocyte volume, no modifications of the RBC resistance to oxidative stress-induced hemolysis and hematological and lipid parameters unvaried. We conclude that the inflammatory status (high CRP levels) and RBC oxidative stress (low GSH levels) caused by cigarette smoking are associated with an increase of eryptotic erythrocytes, a yet unknown relationship potentially involved with atherosclerosis and cardiovascular disease in smokers.
Collapse
Affiliation(s)
- Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Anna Frazzitta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Anna Maria Pintaudi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Maria Antonia Livrea
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot (Valencia), Spain.
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 28, 90123, Palermo, Italy
| |
Collapse
|
25
|
Dose-dependent effects of Theobroma cacao in iron deficient anemia treatment in rats. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2018. [DOI: 10.1016/j.jnim.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Bissinger R, Schumacher C, Qadri SM, Honisch S, Malik A, Götz F, Kopp HG, Lang F. Enhanced eryptosis contributes to anemia in lung cancer patients. Oncotarget 2017; 7:14002-14. [PMID: 26872376 PMCID: PMC4924694 DOI: 10.18632/oncotarget.7286] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Objectives Anemia is a common complication of malignancy, which could result from either compromised erythropoiesis or decreased lifespan of circulating erythrocytes. Premature suicidal erythrocyte death, characterized by cell shrinkage and phosphatidylserine (PS) externalization, decreases erythrocyte lifespan and could thus cause anemia. Here, we explored whether accelerated eryptosis participates in the pathophysiology of anemia associated with lung cancer (LC) and its treatment. Methods Erythrocytes were drawn from healthy volunteers and LC patients with and without cytostatic treatment. PS exposure (annexin V-binding), cell volume (forward scatter), cytosolic Ca2+ (Fluo3 fluorescence), reactive oxygen species (ROS) production (DCFDA fluorescence) and ceramide formation (anti-ceramide antibody) were determined by flow cytometry. Results Hemoglobin concentration and hematocrit were significantly lower in LC patients as compared to healthy controls, even though reticulocyte number was higher in LC (3.0±0.6%) than in controls (1.4±0.2%). The percentage of PS-exposing erythrocytes was significantly higher in LC patients with (1.4±0.1%) and without (1.2±0.3%) cytostatic treatment as compared to healthy controls (0.6±0.1%). Erythrocyte ROS production and ceramide abundance, but not Fluo3 fluorescence, were significantly higher in freshly drawn erythrocytes from LC patients than in freshly drawn erythrocytes from healthy controls. PS exposure of erythrocytes drawn from healthy volunteers was significantly more pronounced following incubation in plasma from LC patients than following incubation in plasma from healthy controls. Conclusion Anemia in LC patients with and without cytostatic treatment is paralleled by increased eryptosis, which is triggered, at least in part, by increased oxidative stress and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Carla Schumacher
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Abaid Malik
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Jagadish S, Hemshekhar M, NaveenKumar SK, Sharath Kumar KS, Sundaram MS, Basappa, Girish KS, Rangappa KS. Novel oxolane derivative DMTD mitigates high glucose-induced erythrocyte apoptosis by regulating oxidative stress. Toxicol Appl Pharmacol 2017; 334:167-179. [DOI: 10.1016/j.taap.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
|
28
|
Sivagnanam U, Palanirajan SK, Gummadi SN. The role of human phospholipid scramblases in apoptosis: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2261-2271. [PMID: 28844836 DOI: 10.1016/j.bbamcr.2017.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Human phospholipid scramblases (hPLSCRs) are a family of four homologous single pass transmembrane proteins (hPLSCR1-4) initially identified as the proteins responsible for Ca2+ mediated bidirectional phospholipid translocation in plasma membrane. Though in-vitro assays had provided evidence, the role of hPLSCRs in phospholipid translocation is still debated. Recent reports revealed a new class of proteins, TMEM16 and Xkr8 to exhibit scramblase activity challenging the function of hPLSCRs. Apart from phospholipid scrambling, numerous reports have emphasized the multifunctional roles of hPLSCRs in key cellular processes including tumorigenesis, antiviral defense, protein and DNA interactions, transcriptional regulation and apoptosis. In this review, the role of hPLSCRs in mediating cell death through phosphatidylserine exposure, interaction with death receptors, cardiolipin exposure, heavy metal and radiation induced apoptosis and pathological apoptosis followed by their involvement in cancer cells are discussed. This review aims to connect the multifunctional characteristics of hPLSCRs to their decisive involvement in apoptotic pathways.
Collapse
Affiliation(s)
- Ulaganathan Sivagnanam
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Santosh Kumar Palanirajan
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
29
|
Aslanipour B, Gülcemal D, Nalbantsoy A, Yusufoglu H, Bedir E. Secondary metabolites from Astragalus karjaginii BORISS and the evaluation of their effects on cytokine release and hemolysis. Fitoterapia 2017; 122:26-33. [PMID: 28827003 DOI: 10.1016/j.fitote.2017.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022]
Abstract
A new cycloartane sapogenol and a new cycloartane xyloside were isolated from Astragalus karjaginii BORISS along with thirteen known compounds. The structures of the new compounds were established as 3-oxo-6α,16β,24(S),25-tetrahydroxycycloartane (1) and 6-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (2) by 1D- and 2D-NMR experiments as well as ESIMS and HRMS analyses. The presence of the keto function at position 3 was reported for the first time for cyclocanthogenol sapogenin of Astragalus genus. In vitro immunomodulatory effects of the new compounds (1 and 2) along with the n-BuOH and MeOH extracts of A. karjaginii at two different doses (3 and 6μg) were tested on human whole blood for in vitro cytokine release (IL-2, IL-17A and IFN-γ) and hemolytic activities. The results confirmed that compound 2, a monodesmosidic saponin, had the strongest effect on the induction of both IL-2 (6μg, 6345.41±0.12pg/mL (×5), P<0.001) and a slight effect upon IL-17A (3μg, 5217.85±0.72pg/mL, P<0.05) cytokines compared to the other test compounds and positive controls (AST VII: Astragaloside VII; and QS-21: Quillaja saponin 21). All tested extracts and molecules also induced release of IFN-γ remarkably ranging between 5031.95±0.05pg/mL, P<0.001 for MeOH extract (6μg) and 5877.08±0.06pg/mL, P<0.001 for compound 1 (6μg) compared to QS-21 (6μg, 5924.87±0.1pg/mL, P<0.001). Administration of AST VII and other test compounds did not cause any hemolytic activity, whereas QS-21 resulted a noteworthy hemolysis.
Collapse
Affiliation(s)
- Behnaz Aslanipour
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 İzmir, Turkey
| | - Derya Gülcemal
- Department of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey
| | - Ayşe Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 İzmir, Turkey
| | - Hasan Yusufoglu
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia
| | - Erdal Bedir
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, Urla, 35430 Izmir, Turkey.
| |
Collapse
|
30
|
Patel S. Phytochemicals for taming agitated immune-endocrine-neural axis. Biomed Pharmacother 2017; 91:767-775. [DOI: 10.1016/j.biopha.2017.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
|
31
|
Tiwari N, Gupta VK, Pandey P, Patel DK, Banerjee S, Darokar MP, Pal A. Adjuvant effect of Asparagus racemosus Willd. derived saponins in antibody production, allergic response and pro-inflammatory cytokine modulation. Biomed Pharmacother 2017; 86:555-561. [DOI: 10.1016/j.biopha.2016.11.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 01/28/2023] Open
|
32
|
Romero A, Ares I, Ramos E, Castellano V, Martínez M, Martínez-Larrañaga MR, Anadón A, Martínez MA. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay. Toxicology 2016; 353-354:21-33. [PMID: 27153755 DOI: 10.1016/j.tox.2016.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/17/2022]
Abstract
Aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA) and T-2 toxin (T2) are mycotoxins that commonly contaminate the food chain and cause various toxicological effects. Their global occurrence is regarded as an important risk factor for human and animal health. In this study, the results demonstrate that, in human Caco-2 cells, AFB1, FB1, OTA and T2 origin cytotoxic effects, determining cell viability through MTT assay and LDH leakage, and decrease trans-epithelial electrical resistance (TEER). The decrease in barrier properties is concomitant with a reduction in the expression levels of the tight junction constituents claudin-3, claudin-4 and occludin. The protective effect of mineral clays (diosmectite, montmorillonite and illite) on alterations in cell viability and epithelial barrier function induced by the mycotoxins was also evaluated. Illite was the best clay to prevent the mycotoxin effects. Illite plus mycotoxin co-treatment completely abolished AFB1 and FB1-induced cytotoxicity. Also, the decreases in the gene expression of claudins and the reduction of TEER induced by mycotoxins were reversed by the illite plus mycotoxin co-treatment. In conclusion, these results demonstrated that mycotoxins AFB1, FB1, T2 and OTA disrupt the intestinal barrier permeability by a mechanism involving reduction of claudin isoform expressions, and illite counteracts this disruption.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Irma Ares
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eva Ramos
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Víctor Castellano
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
33
|
Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 2015; 20:758-67. [PMID: 25637185 DOI: 10.1007/s10495-015-1094-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson's disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson's disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany
| | | | | | | |
Collapse
|
34
|
Pagano M, Faggio C. The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem Funct 2015; 33:351-5. [PMID: 26399850 DOI: 10.1002/cbf.3135] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/29/2015] [Accepted: 08/12/2015] [Indexed: 12/25/2022]
Abstract
The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments.
Collapse
Affiliation(s)
- Maria Pagano
- Department of Biological and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, S.Agata-Messina, Italy
| | - Caterina Faggio
- Department of Biological and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, S.Agata-Messina, Italy
| |
Collapse
|
35
|
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 2015; 39:35-42. [PMID: 25636585 DOI: 10.1016/j.semcdb.2015.01.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling, is stimulated by Ca(2+) entry through Ca(2+)-permeable, PGE2-activated cation channels, by ceramide, caspases, calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). Eryptosis is triggered by intoxication, malignancy, hepatic failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Eryptosis may precede and protect against hemolysis but by the same token result in anemia and deranged microcirculation.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.
| |
Collapse
|
36
|
Calabrò S, Alzoubi K, Bissinger R, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Ellipticine. Basic Clin Pharmacol Toxicol 2014; 116:485-92. [DOI: 10.1111/bcpt.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tübingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
37
|
Calabrò S, Alzoubi K, Bissinger R, Jilani K, Faggio C, Lang F. Enhanced eryptosis following juglone exposure. Basic Clin Pharmacol Toxicol 2014; 116:460-7. [PMID: 25348830 DOI: 10.1111/bcpt.12340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Juglone, a quinone isolated from Juglans mandshurica Maxim, has previously been shown to be effective against malignancy. The effect is at least partially due to stimulation of suicidal death or apoptosis of tumour cells. On the other hand, juglone has been shown to counteract apoptosis, for example, of neurons. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) activity [(Ca(2+) )i]. This study explored whether juglone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from FITC annexin V binding, ceramide abundance from binding of fluorescent antibodies in flow cytometry and cytosolic ATP with a luciferin-luciferase-based assay. As a result, a 24-hr exposure of human erythrocytes to juglone (5 μM) significantly decreased erythrocyte forward scatter. Juglone (1-5 μM) significantly increased the percentage of annexin V binding cells. Juglone (5 μM) significantly increased ceramide abundance at the erythrocyte surface and decreased erythrocyte ATP concentration. The effect of juglone (10 μM) on annexin V binding was slightly but significantly blunted by removal of extracellular Ca(2+) and by addition of protein kinase C (PKC) inhibitor staurosporine (1 μM). In conclusion, juglone stimulates suicidal erythrocyte death or eryptosis at least in part by upregulation of ceramide abundance, energy depletion and activation of PKC.
Collapse
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology, University of Tuebingen, Tuebingen, Germany; Department of Biological and Environmental Sciences, University of Messina, S. Agata-Messina, Italy
| | | | | | | | | | | |
Collapse
|