1
|
Zhou Q, Wang Y. A shadow in the treatment of acute leukemia: lineage switch. BLOOD SCIENCE 2025; 7:e00220. [PMID: 40123764 PMCID: PMC11927657 DOI: 10.1097/bs9.0000000000000220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
Lineage switch is a rare phenomenon in which acute myeloid leukemia (AML) transforms into acute lymphoblastic leukemia (ALL) and vice versa, sharing the same clonal origin. It is more common for AML to relapse as ALL. Cytogenetics, microenvironment, and preceding therapies are associated with lineage switch. Since the etiology of lineage switch is unclear, presumptions include clonal selection, pluripotent stem cells, and differentiated cell trans-differentiation or re-differentiation. The key point for diagnosing lineage switch is that the relapsed tumor originates from the common cell of the primary leukemia, although it is occasionally derived via clonal evolution. It is very important to distinguish lineage switch from other illnesses, such as secondary leukemia or the blast phase of chronic leukemia. Although direct treatment of the present lineage results in an improved prognosis, the outcome of these patients remains poor, with low survival and rapid progression. Hematopoietic stem cell transplantation can extend survival. Lineage switch risk-adapted management stratification may be beneficial for detecting relapse and more promptly provide suitable therapy. Efficient and toxicity-restricted therapy is being developed to improve the very poor prognosis.
Collapse
Affiliation(s)
- Qiaoyi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
2
|
Luo J, Bishop JA, DuBois SG, Hanna GJ, Sholl LM, Stelow EB, Thompson LDR, Shapiro GI, French CA. Hiding in plain sight: NUT carcinoma is an unrecognized subtype of squamous cell carcinoma of the lungs and head and neck. Nat Rev Clin Oncol 2025; 22:292-306. [PMID: 39900969 PMCID: PMC12077380 DOI: 10.1038/s41571-025-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
In the past two decades, treatment for non-small-cell lung cancers (NSCLCs) and head and neck squamous cell carcinoma (HNSCC) has advanced considerably, owing largely to the characterization of distinct oncological subtypes, the development of targeted therapies for each subtype and the advent of immunotherapy. Data emerging over the past two decades suggest that NUT carcinoma, a highly aggressive malignancy driven by a NUT fusion oncoprotein and arising in the lungs, head and neck, and rarely in other sites, is a squamous cell carcinoma (SCC) based on transcriptional, histopathological, cell-of-origin and molecular characteristics. NUT carcinoma has an estimated incidence of 1,400 cases per year in the United States, surpassing that of some rare NSCLC and HNSCC subtypes. However, NUT carcinoma is currently not recognized as an SCC of the lungs or head and neck. The orphan classification of NUT carcinoma as a distinct entity leads to a lack of awareness of this malignancy among oncologists and surgeons, despite early diagnosis being crucial for this cancer type with a median survival of only ~6.5 months. Consequently, NUT carcinoma is underdiagnosed and often misdiagnosed, resulting in limited research and progress in developing effective treatments in one of the most aggressive forms of lung and head and neck cancer. With a growing number of targeted agents that can potentially be used to treat NUT carcinoma, improved recognition through reclassification and inclusion of NUT carcinoma as a squamous NSCLC or an HNSCC when arising in these locations will accelerate the development of effective therapies for this disease. Thus, in the Perspective, we propose such a reclassification of NUT carcinoma as an SCC and discuss the supporting evidence.
Collapse
Affiliation(s)
- Jia Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Glenn J Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward B Stelow
- Department of Pathology, University of Virginia Medical Center, Charlottesville, VA, USA
| | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Skovgaard AC, Nejad AM, Beck HC, Tan Q, Soerensen M. Epigenomics and transcriptomics association study of blood pressure and incident diagnosis of hypertension in twins. Hypertens Res 2025; 48:1599-1612. [PMID: 39972178 PMCID: PMC11972964 DOI: 10.1038/s41440-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Hypertension is the most frequent health-related condition worldwide and is a primary risk factor for renal and cardiovascular diseases. However, the underlying molecular mechanisms are still poorly understood. To uncover these mechanisms, multi-omics studies have significant potential, but such studies are challenged by genetic and environmental confounding - an issue that can be effectively reduced by studying intra-pair differences in twins. Here, we coupled data on hypertension diagnoses from the nationwide Danish Patient Registry to a study population of 740 twins for whom genome-wide DNA methylation and gene expression data were available together with measurements of systolic and diastolic blood pressure. We investigated five phenotypes: incident hypertension cases, systolic blood pressure, diastolic blood pressure, hypertension (140/90 mmHg), and hypertension (130/80 mmHg). Statistical analyses were performed using Cox (incident cases) or linear (remaining) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) at both levels and in both types of biological data were investigated by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. Overall, most of the identified pathways related to the immune system, particularly inflammation, and biology of vascular smooth muscle cell. Of specific genes, lysine methyltransferase 2 A (KMT2A) was found to be central for incident hypertension, ataxia-telangiectasia mutated (ATM) for systolic blood pressure, and beta-actin (ACTB) for diastolic blood pressure. Noteworthy, lysine methyltransferase 2A (KMT2A) was also identified in the systolic and diastolic blood pressure analyses. Here, we present novel biomarkers for hypertension. This study design is surprisingly rare in the field of hypertension. We identified biological pathways related to vascular smooth muscle cells and the immune system, particular inflammation, to be associated with hypertension and blood pressure. Of specific genes, we identified KMT2A (lysine methyltransferase 2A) to be central for blood pressure and hypertension development. ACTB beta-actin, ATM ataxiatelangiectasia mutated, BP blood pressure, EWAS epigenome-wide association studies, KMT2A lysine methyltransferase 2A, LMER linear mixed effect regression, LR linear regression, TWAS transcriptome-wide association studies.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Afsaneh M Nejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
Nair PR, Danilova L, Gómez-de-Mariscal E, Kim D, Fan R, Muñoz-Barrutia A, Fertig EJ, Wirtz D. MLL1 regulates cytokine-driven cell migration and metastasis. SCIENCE ADVANCES 2024; 10:eadk0785. [PMID: 38478601 PMCID: PMC10936879 DOI: 10.1126/sciadv.adk0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Cell migration is a critical contributor to metastasis. Cytokine production and its role in cancer cell migration have been traditionally associated with immune cells. We find that the histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) controls 3D cell migration via cytokines, IL-6, IL-8, and TGF-β1, secreted by the cancer cells themselves. MLL1, with its scaffold protein Menin, controls actin filament assembly via the IL-6/8/pSTAT3/Arp3 axis and myosin contractility via the TGF-β1/Gli2/ROCK1/2/pMLC2 axis, which together regulate dynamic protrusion generation and 3D cell migration. MLL1 also regulates cell proliferation via mitosis-based and cell cycle-related pathways. Mice bearing orthotopic MLL1-depleted tumors exhibit decreased lung metastatic burden and longer survival. MLL1 depletion leads to lower metastatic burden even when controlling for the difference in primary tumor growth rates. Combining MLL1-Menin inhibitor with paclitaxel abrogates tumor growth and metastasis, including preexistent metastasis. These results establish MLL1 as a potent regulator of cell migration and highlight the potential of targeting MLL1 in patients with metastatic disease.
Collapse
Affiliation(s)
- Praful R. Nair
- Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ludmila Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Estibaliz Gómez-de-Mariscal
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Optical Cell Biology Group, Instituto Gulbenkian de Ciência, R. Q.ta Grande 6 2780, 2780-156 Oeiras, Portugal
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Arrate Muñoz-Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Elana J. Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
5
|
Ghanbari M, Khosroshahi NS, Alamdar M, Abdi A, Aghazadeh A, Feizi MAH, Haghi M. An Updated Review on the Significance of DNA and Protein Methyltransferases and De-methylases in Human Diseases: From Molecular Mechanism to Novel Therapeutic Approaches. Curr Med Chem 2024; 31:3550-3587. [PMID: 37287285 DOI: 10.2174/0929867330666230607124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms are crucial in regulating gene expression. These mechanisms include DNA methylation and histone modifications, like methylation, acetylation, and phosphorylation. DNA methylation is associated with gene expression suppression; however, histone methylation can stimulate or repress gene expression depending on the methylation pattern of lysine or arginine residues on histones. These modifications are key factors in mediating the environmental effect on gene expression regulation. Therefore, their aberrant activity is associated with the development of various diseases. The current study aimed to review the significance of DNA and histone methyltransferases and demethylases in developing various conditions, like cardiovascular diseases, myopathies, diabetes, obesity, osteoporosis, cancer, aging, and central nervous system conditions. A better understanding of the epigenetic roles in developing diseases can pave the way for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Alamdar
- Department of Genetics Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
7
|
Sugimoto E, Li J, Hayashi Y, Iida K, Asada S, Fukushima T, Tamura M, Shikata S, Zhang W, Yamamoto K, Kawabata KC, Kawase T, Saito T, Yoshida T, Yamazaki S, Kaito Y, Imai Y, Denda T, Ota Y, Fukuyama T, Tanaka Y, Enomoto Y, Kitamura T, Goyama S. Hyperactive Natural Killer cells in Rag2 knockout mice inhibit the development of acute myeloid leukemia. Commun Biol 2023; 6:1294. [PMID: 38129572 PMCID: PMC10739813 DOI: 10.1038/s42003-023-05606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Immunotherapy has attracted considerable attention as a therapeutic strategy for cancers including acute myeloid leukemia (AML). In this study, we found that the development of several aggressive subtypes of AML is slower in Rag2-/- mice despite the lack of B and T lymphocytes, even compared to the immunologically normal C57BL/6 mice. Furthermore, an orally active p53-activating drug shows stronger antileukemia effect on AML in Rag2-/- mice than C57BL/6 mice. Intriguingly, Natural Killer (NK) cells in Rag2-/- mice are increased in number, highly express activation markers, and show increased cytotoxicity to leukemia cells in a coculture assay. B2m depletion that triggers missing-self recognition of NK cells impairs the growth of AML cells in vivo. In contrast, NK cell depletion accelerates AML progression in Rag2-/- mice. Interestingly, immunogenicity of AML keeps changing during tumor evolution, showing a trend that the aggressive AMLs generate through serial transplantations are susceptible to NK cell-mediated tumor suppression in Rag2-/- mice. Thus, we show the critical role of NK cells in suppressing the development of certain subtypes of AML using Rag2-/- mice, which lack functional lymphocytes but have hyperactive NK cells.
Collapse
Affiliation(s)
- Emi Sugimoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jingmei Li
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kohei Iida
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Moe Tamura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Shikata
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kimihito Cojin Kawabata
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Kawase
- Drug Discovery Research, Astellas Pharma, Ibaraki, Japan
| | - Takeshi Saito
- Clinical Pharmacology Exploratory Development, Astellas Pharma, Westborough, MA, USA
| | - Taku Yoshida
- Drug Discovery Research, Astellas Pharma, Ibaraki, Japan
| | - Satoshi Yamazaki
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuta Kaito
- Department of Hematology/Oncology, IMSUT Hospital, The University of Tokyo, Tokyo, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - Tamami Denda
- Department of Pathology, The Institute of Medical Science Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, The Institute of Medical Science Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Schneider P, Wander P, Arentsen-Peters STCJM, Vrenken KS, Rockx-Brouwer D, Adriaanse FRS, Hoeve V, Paassen I, Drost J, Pieters R, Stam RW. CRISPR-Cas9 Library Screening Identifies Novel Molecular Vulnerabilities in KMT2A-Rearranged Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:13207. [PMID: 37686014 PMCID: PMC10487613 DOI: 10.3390/ijms241713207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
In acute lymphoblastic leukemia (ALL), chromosomal translocations involving the KMT2A gene represent highly unfavorable prognostic factors and most commonly occur in patients less than 1 year of age. Rearrangements of the KMT2A gene drive epigenetic changes that lead to aberrant gene expression profiles that strongly favor leukemia development. Apart from this genetic lesion, the mutational landscape of KMT2A-rearranged ALL is remarkably silent, providing limited insights for the development of targeted therapy. Consequently, identifying potential therapeutic targets often relies on differential gene expression, yet the inhibition of these genes has rarely translated into successful therapeutic strategies. Therefore, we performed CRISPR-Cas9 knock-out screens to search for genetic dependencies in KMT2A-rearranged ALL. We utilized small-guide RNA libraries directed against the entire human epigenome and kinome in various KMT2A-rearranged ALL, as well as wild-type KMT2A ALL cell line models. This screening approach led to the discovery of the epigenetic regulators ARID4B and MBD3, as well as the receptor kinase BMPR2 as novel molecular vulnerabilities and attractive therapeutic targets in KMT2A-rearranged ALL.
Collapse
Affiliation(s)
- Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Kirsten S. Vrenken
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | | | - Veerle Hoeve
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
9
|
Mao P, Huang C, Li Y, Zhao Y, Zhou S, Zhao Z, Mu Y, Wang L, Li F, Zhao AZ. Pharmacological targeting of type phosphodiesterase 4 inhibits the development of acute myeloid leukemia by impairing mitochondrial function through the Wnt/β-catenin pathway. Biomed Pharmacother 2023; 157:114027. [PMID: 36436494 DOI: 10.1016/j.biopha.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is prone to drug-resistant relapse with a low 5-year survival rate. New therapeutic modalities are sorely needed to provide hope for AML relapse patients. Herein, we demonstrated a specific inhibitor of type 4 phosphodiesterase (PDE4), Zl-n-91, could significantly reduce the proliferation of AML cells, block DNA replication process, and increase AML cell death. Zl-n-91 also impeded the growth of subcutaneous xenograft and prolonged the survival of the MLL-AF9-driven AML model. Bioinformatic analysis revealed that elevated mitochondrial gene signatures inversely correlate with the survival of AML patients; and importantly, Zl-n-91 strongly suppressed the function of mitochondria. In addition, this PDE4 inhibitor induced alterations in multiple signaling pathways, including the reduction of β-catenin activity. Stimulation of the Wnt/β-catenin pathway could attenuate the inhibitory effect of Zl-n-91 on AML cell proliferation as well as mitochondrial function. Taken together, we revealed for the first time that targeting PDE4 activity could attenuate mitochondrial function through a Wnt/β-catenin pathway, which in turn would block the growth of AML cells. Specific PDE4 inhibitors can potentially serve as a new treatment modality for AML patients.
Collapse
Affiliation(s)
- Ping Mao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Changhao Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yuyu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yuanyi Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Lina Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China.
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Xiaoguwei Street, Panyu District, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
10
|
Sezaki M, Huang G. Repurposing immunosuppressants for antileukemia therapy. EMBO Mol Med 2022; 15:e17042. [PMID: 36453114 PMCID: PMC9832814 DOI: 10.15252/emmm.202217042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Drug repurposing, the strategy to identify new therapeutic use for clinically approved drugs has attracted much attention in recent years. This strategy offers various advantages over traditional approaches to develop new drugs, including shorter development timelines, low cost, and reduced risk of failure. In this issue of EMBO Molecular Medicine, Liu et al show that inosine monophosphate dehydrogenase (IMPDH) inhibitors, the well-known immunosuppressants have a potent therapeutic effect on the aggressive blood cancer, acute myeloid leukemia with MLL rearrangements. Intriguingly, the antileukemia effect of IMPDH inhibitors is mediated, at least in part through the overactivation of TLR signaling and Vcam1 upregulation. The robust antileukemia effect of IMPDH inhibitors, both in vitro and in vivo, together with their mechanistic findings provides a rational basis for repurposing IMPDH inhibitors for antileukemia therapy.
Collapse
Affiliation(s)
- Maiko Sezaki
- Department of Cell Systems and AnatomyUT Health San AntonioJoe R. & Teresa Lozano Long School of MedicineSan AntonioTXUSA
| | - Gang Huang
- Department of Cell Systems and AnatomyUT Health San AntonioJoe R. & Teresa Lozano Long School of MedicineSan AntonioTXUSA,Department of Pathology and Laboratory MedicineUT Health San AntonioJoe R. & Teresa Lozano Long School of MedicineSan AntonioTXUSA,Mays Cancer Center at UT Health San AntonioSan AntonioTXUSA
| |
Collapse
|
11
|
Liu X, Sato N, Yabushita T, Li J, Jia Y, Tamura M, Asada S, Fujino T, Fukushima T, Yonezawa T, Tanaka Y, Fukuyama T, Tsuchiya A, Shikata S, Iwamura H, Kinouchi C, Komatsu K, Yamasaki S, Shibata T, Sasaki AT, Schibler J, Wunderlich M, O'Brien E, Mizukawa B, Mulloy JC, Sugiura Y, Takizawa H, Shibata T, Miyake K, Kitamura T, Goyama S. IMPDH inhibition activates TLR-VCAM1 pathway and suppresses the development of MLL-fusion leukemia. EMBO Mol Med 2022; 15:e15631. [PMID: 36453131 PMCID: PMC9832838 DOI: 10.15252/emmm.202115631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in de novo guanine nucleotide synthesis pathway. Although IMPDH inhibitors are widely used as effective immunosuppressants, their antitumor effects have not been proven in the clinical setting. Here, we found that acute myeloid leukemias (AMLs) with MLL-fusions are susceptible to IMPDH inhibitors in vitro. We also showed that alternate-day administration of IMPDH inhibitors suppressed the development of MLL-AF9-driven AML in vivo without having a devastating effect on immune function. Mechanistically, IMPDH inhibition induced overactivation of Toll-like receptor (TLR)-TRAF6-NF-κB signaling and upregulation of an adhesion molecule VCAM1, which contribute to the antileukemia effect of IMPDH inhibitors. Consequently, combined treatment with IMPDH inhibitors and the TLR1/2 agonist effectively inhibited the development of MLL-fusion AML. These findings provide a rational basis for clinical testing of IMPDH inhibitors against MLL-fusion AMLs and potentially other aggressive tumors with active TLR signaling.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Naru Sato
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tomohiro Yabushita
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Jingmei Li
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Yuhan Jia
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Moe Tamura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan,The Institute of Laboratory Animals, Tokyo Women's Medical UniversityTokyoJapan
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Taishi Yonezawa
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Shiori Shikata
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Hiroyuki Iwamura
- FUJIFILM Corporation: Pharmaceutical Products DivisionTokyoJapan
| | - Chieko Kinouchi
- FUJIFILM Corporation: Bio Science & Engineering LaboratoriesKanagawaJapan
| | - Kensuke Komatsu
- FUJIFILM Corporation: Bio Science & Engineering LaboratoriesKanagawaJapan
| | - Satoshi Yamasaki
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal MedicineUniversity of CincinnatiCincinnatiOHUSA
| | - Janet Schibler
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Eric O'Brien
- Division of Oncology, Department of Pediatrics, University of CincinnatiCincinnatiOHUSA
| | - Benjamin Mizukawa
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Yuki Sugiura
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
12
|
Lewis AH, Bridges CS, Moorshead DN, Chen TJ, Du W, Zorman B, Sumazin P, Puppi M, Lacorazza HD. Krüppel-like Factor 4 Supports the Expansion of Leukemia Stem Cells in MLL-AF9-driven Acute Myeloid Leukemia. Stem Cells 2022; 40:736-750. [PMID: 35535819 PMCID: PMC9406610 DOI: 10.1093/stmcls/sxac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow with 5-year overall survival of less than 10% in patients over the age of 65. Limited progress has been made in the patient outcome because of the inability to selectively eradicate the leukemic stem cells (LSC) driving the refractory and relapsed disease. Herein, we investigated the role of the reprogramming factor KLF4 in AML because of its critical role in the self-renewal and stemness of embryonic and cancer stem cells. Using a conditional Cre-lox Klf4 deletion system and the MLL-AF9 retroviral mouse model, we demonstrated that loss-of-KLF4 does not significantly affect the induction of leukemia but markedly decreased the frequency of LSCs evaluated in limiting-dose transplantation studies. Loss of KLF4 in leukemic granulocyte-macrophage progenitors (L-GMP), a population enriched for AML LSCs, showed lessened clonogenicity and percentage in the G2/M phase of the cell cycle. RNAseq analysis of purified L-GMPs revealed decreased expression of stemness genes and MLL-target genes and upregulation of the RNA sensing helicase DDX58. However, silencing of DDX58 in KLF4 knockout leukemia indicated that DDX58 is not mediating this phenotype. CRISPR/Cas9 deletion of KLF4 in MOLM13 cell line and AML patient-derived xenograft cells showed impaired expansion in vitro and in vivo associated with a defective G2/M checkpoint. Collectively, our data suggest a mechanism in which KLF4 promotes leukemia progression by establishing a gene expression profile in AML LSCs supporting cell division and stemness.
Collapse
Affiliation(s)
- Andrew Henry Lewis
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Cory Seth Bridges
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - David Neal Moorshead
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Taylor J Chen
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Wa Du
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Present address: Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Monica Puppi
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - H Daniel Lacorazza
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
13
|
Amrein P, Ballen K, Stevenson K, Brunner A, Hobbs G, Hock H, McAfee S, Moran J, Bergeron M, Foster J, Bertoli C, McGreggor K, Macrea M, Burke M, Behnam T, Som T, Ramos A, Vartanian M, Lombardi Story J, Connolly C, Blonquist T, Neuberg D, Fathi A. Ixazomib in addition to chemotherapy for the treatment of acute lymphoblastic leukemia in older adults. Leuk Lymphoma 2022; 63:1428-1435. [PMID: 35075985 DOI: 10.1080/10428194.2021.2018582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We sought to assess the safety of adding ixazomib, an oral proteasome inhibitor, to a multi-agent treatment regimen for older adults with acute lymphoblastic leukemia (ALL). Patients 51 to 75 years of age with newly diagnosed ALL were screened. Induction consisted of prednisone (P), vincristine (V), and doxorubicin (D). For BCR-ABL1+ patients, dasatinib was added. On Days 1, 8, 15 of induction, ixazomib was given orally. After induction patients received 1 cycle of consolidation in which ixazomib was given on Days 1, 8, 15. After consolidation, patients in remission (CR) were offered stem cell transplantation. Among the 19 patients treated, 15 (79%) [90% CI, 58-92%] achieved CR or CRi. At 2 years, the overall survival was 47% [95%CI, 29-72%]. In this study the dose of 2.3 mg of ixazomib in combination was the MTD for older patients with ALL and is the recommended dose for future phase 2 studies.
Collapse
Affiliation(s)
- Philip Amrein
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Karen Ballen
- Division of Hematology-Oncology, University of Virginia School of Medicine, Charlottsville, VA
| | | | - Andrew Brunner
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Gabriela Hobbs
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Hanno Hock
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Steven McAfee
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Jenna Moran
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Meghan Bergeron
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Julia Foster
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Christina Bertoli
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Kristin McGreggor
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Molly Macrea
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Meghan Burke
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Tanya Behnam
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Tina Som
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Aura Ramos
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | - Megan Vartanian
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | | | - Christine Connolly
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | | | - Donna Neuberg
- Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Amir Fathi
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
14
|
Torres-Montaner A. The telomere complex and the origin of the cancer stem cell. Biomark Res 2021; 9:81. [PMID: 34736527 PMCID: PMC8567692 DOI: 10.1186/s40364-021-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022] Open
Abstract
Exquisite regulation of telomere length is essential for the preservation of the lifetime function and self-renewal of stem cells. However, multiple oncogenic pathways converge on induction of telomere attrition or telomerase overexpression and these events can by themselves trigger malignant transformation. Activation of NFκB, the outcome of telomere complex damage, is present in leukemia stem cells but absent in normal stem cells and can activate DOT1L which has been linked to MLL-fusion leukemias. Tumors that arise from cells of early and late developmental stages appear to follow two different oncogenic routes in which the role of telomere and telomerase signaling might be differentially involved. In contrast, direct malignant transformation of stem cells appears to be extremely rare. This suggests an inherent resistance of stem cells to cancer transformation which could be linked to a stem cell’specific mechanism of telomere maintenance. However, tumor protection of normal stem cells could also be conferred by cell extrinsic mechanisms.
Collapse
Affiliation(s)
- A Torres-Montaner
- Department of Pathology, Queen's Hospital, Rom Valley Way, London, Romford, RM7 OAG, UK. .,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
15
|
Kato S, Kubota Y, Sekiguchi M, Watanabe K, Shinozaki-Ushiku A, Takita J, Hiwatari M. KMT2A-rearranged diffuse large B-cell lymphoma in a child: a case report and molecular characterization. Pediatr Hematol Oncol 2021; 38:281-289. [PMID: 33150819 DOI: 10.1080/08880018.2020.1838013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
KMT2A-rearranged diffuse large B-cell lymphoma (DLBCL) is rare in both the adult and pediatric populations, and its biological features are unclear. We here report the case of a 19-month-old female with a right temporal bone tumor that was ultimately diagnosed as DLBCL by tumor biopsy. There was no morphological evidence of bone marrow infiltration at diagnosis. The tumor nearly completely dissolved after scheduled chemotherapy for mature B-cell lymphoma; however, leukemic conversion occurred 2 months after completion of chemotherapy. Additional chemotherapy including hematopoietic cell transplantation in a non-remission state was unsuccessful, and disease progression ultimately resulted in the death of the patient 18 months after the diagnosis. We detected the KMT2A-MLLT3 fused transcript in the bone marrow of the patient with primary and recurrent cancer. RNA-sequencing of the bone marrow with recurrent cancer confirmed the KMT2A-MLLT3 fusion gene, although fusion genes involving BCL6, BCL2, or were not detected. Moreover, RNA-sequencing revealed overexpression of MEIS1 and MEF2C, which are highly expressed in KMT2A-rearranged leukemia, whereas the HOXA gene cluster was not overexpressed. The current case formed part of the KMT2A-rearranged acute lymphoblastic leukemia cluster in a T-distributed stochastic neighbor embedding plot. The aggressive clinical course and RNA-sequencing results of the present case suggest that KMT2A-rearranged DLBCL shares biological features with KMT2A-rearranged leukemia.
Collapse
Affiliation(s)
- Shota Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Kubota
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Watanabe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
16
|
Yamamoto K, Yakushijin K, Mizutani Y, Okuni-Watanabe M, Goto H, Higashime A, Miyata Y, Kitao A, Matsumoto H, Saegusa J, Matsuoka H, Minami H. Expression of a novel type of KMT2A/EPS15 fusion transcript in FLT3 mutation-positive B-lymphoblastic leukemia with t(1;11)(p32;q23). Cancer Genet 2021; 254-255:92-97. [PMID: 33647817 DOI: 10.1016/j.cancergen.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/07/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
The t(1;11)(p32;q23) translocation is a rare but recurrent cytogenetic aberration in acute myeloid leukemia (AML) and B-cell acute lymphoblastic leukemia (B-ALL). This translocation was initially shown to form a fusion gene between KMT2A exon 8 at 11q23 and EPS15 exon 2 at 1p32 in AML. Activating mutations of FLT3 are frequently found in AML but are very rare in ALL. Here, we describe a 75-year-old woman who was diagnosed with B-ALL since her bone marrow was made up of 98.2% lymphoblasts. These blasts were positive for CD19, CD22, CD79a, CD13, and CD33 but negative for CD10 and myeloperoxidase. The karyotype by G-banding and spectral karyotyping was 46,XX,t(1;11)(p32;q23). Expression of KMT2A/EPS15 and reciprocal EPS15/KMT2A fusion transcripts were shown: KMT2A exon 8 was in-frame fused to EPS15 exon 12, indicating that this fusion transcript was a novel type. Considering three reported B-ALL cases, EPS15 breakpoints were markedly different between AML (exon 2) and B-ALL (exons 10-12). Furthermore, an uncommon type of FLT3 mutation in the juxtamembrane domain was detected: in-frame 4-bp deletion and 10-bp insertion. Accordingly, our results indicate that the novel type of KMT2A/EPS15 fusion transcript and FLT3 mutation may cooperate in the pathogenesis of adult B-ALL as class II and class I mutations, respectively.
Collapse
Affiliation(s)
- Katsuya Yamamoto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yu Mizutani
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Marika Okuni-Watanabe
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hideaki Goto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ako Higashime
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiharu Miyata
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Akihito Kitao
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hisayuki Matsumoto
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Jun Saegusa
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
17
|
Zerkalenkova E, Mikhaylova E, Lebedeva S, Illarionova O, Baidun L, Kashpor S, Osipova E, Maschan M, Maschan A, Novichkova G, Olshanskaya Y, Popov A. Quantification of
NG2
‐positivity for the precise prediction of
KMT2A
gene rearrangements in childhood acute leukemia. Genes Chromosomes Cancer 2020; 60:88-99. [DOI: 10.1002/gcc.22915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Ekaterina Mikhaylova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Svetlana Lebedeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Olga Illarionova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | | | - Svetlana Kashpor
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Elena Osipova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow Russia
| |
Collapse
|
18
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Britten O, Ragusa D, Tosi S, Kamel YM. MLL-Rearranged Acute Leukemia with t(4;11)(q21;q23)-Current Treatment Options. Is There a Role for CAR-T Cell Therapy? Cells 2019; 8:cells8111341. [PMID: 31671855 PMCID: PMC6912830 DOI: 10.3390/cells8111341] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
The MLL (mixed-lineage leukemia) gene, located on chromosome 11q23, is involved in chromosomal translocations in a subtype of acute leukemia, which represents approximately 10% of acute lymphoblastic leukemia and 2.8% of acute myeloid leukemia cases. These translocations form fusions with various genes, of which more than 80 partner genes for MLL have been identified. The most recurrent fusion partner in MLL rearrangements (MLL-r) is AF4, mapping at chromosome 4q21, accounting for approximately 36% of MLL-r leukemia and particularly prevalent in MLL-r acute lymphoblastic leukemia (ALL) cases (57%). MLL-r leukemia is associated with a sudden onset, aggressive progression, and notoriously poor prognosis in comparison to non-MLL-r leukemias. Despite modern chemotherapeutic interventions and the use of hematopoietic stem cell transplantations, infants, children, and adults with MLL-r leukemia generally have poor prognosis and response to these treatments. Based on the frequency of patients who relapse, do not achieve complete remission, or have brief event-free survival, there is a clear clinical need for a new effective therapy. In this review, we outline the current therapy options for MLL-r patients and the potential application of CAR-T therapy.
Collapse
MESH Headings
- Adult
- Child
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 4/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Immunotherapy, Adoptive/methods
- Infant
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Oliver Britten
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Yasser Mostafa Kamel
- ASYS Pharmaceutical Consultants-APC Inc. 2, Bedford, Nova Scotia B4A 4L2, Canada.
| |
Collapse
|
20
|
Hayashi Y, Goyama S, Liu X, Tamura M, Asada S, Tanaka Y, Fukuyama T, Wunderlich M, O'Brien E, Mizukawa B, Yamazaki S, Matsumoto A, Yamasaki S, Shibata T, Matsuda K, Sashida G, Takizawa H, Kitamura T. Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia. Nat Commun 2019; 10:4869. [PMID: 31653912 PMCID: PMC6814808 DOI: 10.1038/s41467-019-12555-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 09/04/2019] [Indexed: 12/28/2022] Open
Abstract
The negative regulator of p53, MDM2, is frequently overexpressed in acute myeloid leukemia (AML) that retains wild-type TP53 alleles. Targeting of p53-MDM2 interaction to reactivate p53 function is therefore an attractive therapeutic approach for AML. Here we show that an orally active inhibitor of p53-MDM2 interaction, DS-5272, causes dramatic tumor regressions of MLL-AF9-driven AML in vivo with a tolerable toxicity. However, the antileukemia effect of DS-5272 is markedly attenuated in immunodeficient mice, indicating the critical impact of systemic immune responses that drive p53-mediated leukemia suppression. In relation to this, DS-5272 triggers immune-inflammatory responses in MLL-AF9 cells including upregulation of Hif1α and PD-L1, and inhibition of the Hif1α-PD-L1 axis sensitizes AML cells to p53 activation. We also found that NK cells are important mediators of antileukemia immunity. Our study showed the potent activity of a p53-activating drug against AML, which is further augmented by antitumor immunity.
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/drug effects
- B7-H1 Antigen/immunology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/immunology
- Imidazoles/pharmacology
- Immunotherapy
- Inflammation
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/immunology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Transplantation
- Proto-Oncogene Proteins c-mdm2/drug effects
- Proto-Oncogene Proteins c-mdm2/metabolism
- Thiazoles/pharmacology
- Tumor Suppressor Protein p53/drug effects
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Yasutaka Hayashi
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - XiaoXiao Liu
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Moe Tamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mark Wunderlich
- Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric O'Brien
- Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Benjamin Mizukawa
- Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Matsumoto
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Yamasaki
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational biology and medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Ye J, Zha J, Shi Y, Li Y, Yuan D, Chen Q, Lin F, Fang Z, Yu Y, Dai Y, Xu B. Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair. Clin Epigenetics 2019; 11:137. [PMID: 31590682 PMCID: PMC6781368 DOI: 10.1186/s13148-019-0723-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
While the aberrant translocation of the mixed-lineage leukemia (MLL) gene drives pathogenesis of acute myeloid leukemia (AML), it represents an independent predictor for poor prognosis of adult AML patients. Thus, small molecule inhibitors targeting menin-MLL fusion protein interaction have been emerging for the treatment of MLL-rearranged AML. As both inhibitors of histone deacetylase (HDAC) and menin-MLL interaction target the transcription-regulatory machinery involving epigenetic regulation of chromatin remodeling that governs the expression of genes involved in tumorigenesis, we hypothesized that these two classes of agents might interact to kill MLL-rearranged (MLL-r) AML cells. Here, we report that the combination treatment with subtoxic doses of the HDAC inhibitor chidamide and the menin-MLL interaction inhibitor MI-3 displayed a highly synergistic anti-tumor activity against human MLL-r AML cells in vitro and in vivo, but not those without this genetic aberration. Mechanistically, co-exposure to chidamide and MI-3 led to robust apoptosis in MLL-r AML cells, in association with loss of mitochondrial membrane potential and a sharp increase in ROS generation. Combined treatment also disrupted DNA damage checkpoint at the level of CHK1 and CHK2 kinases, rather than their upstream kinases (ATR and ATM), as well as DNA repair likely via homologous recombination (HR), but not non-homologous end joining (NHEJ). Genome-wide RNAseq revealed gene expression alterations involving several potential signaling pathways (e.g., cell cycle, DNA repair, MAPK, NF-κB) that might account for or contribute to the mechanisms of action underlying anti-leukemia activity of chidamide and MI-3 as a single agent and particularly in combination in MLL-r AML. Collectively, these findings provide a preclinical basis for further clinical investigation of this novel targeted strategy combining HDAC and Menin-MLL interaction inhibitors to improve therapeutic outcomes in a subset of patients with poor-prognostic MLL-r leukemia.
Collapse
MESH Headings
- Aminopyridines/administration & dosage
- Aminopyridines/pharmacology
- Animals
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Benzamides/administration & dosage
- Benzamides/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- DNA Repair/drug effects
- Drug Synergism
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins/genetics
- Small Molecule Libraries/administration & dosage
- Small Molecule Libraries/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jing Ye
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Delin Yuan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Fusheng Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
22
|
Tamura M, Yonezawa T, Liu X, Asada S, Hayashi Y, Fukuyama T, Tanaka Y, Kitamura T, Goyama S. Opposing effects of acute versus chronic inhibition of p53 on decitabine's efficacy in myeloid neoplasms. Sci Rep 2019; 9:8171. [PMID: 31160638 PMCID: PMC6547685 DOI: 10.1038/s41598-019-44496-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Decitabine is a DNA methyltransferase inhibitor and is considered a promising drug to treat myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) with p53 mutations. However, whether loss of p53 in fact increases the response of MDS/AML cells to decitabine remains unclear. In this study, we assessed the role of p53 in MDS and AML cells treated with decitabine using mouse models for MLL-AF9-driven AML and mutant ASXL1-driven MDS/AML. CRISPR/Cas9-mediated depletion of p53 in MDS/AML cells did not increase, but rather decreased their sensitivity to decitabine. Forced expression of a dominant-negative p53 fragment (p53DD) in these cells also decreased their responses to decitabine, confirming that acute inhibition of p53 conferred resistance to decitabine in AML and MDS/AML cells. In contrast, MLL-AF9-expressing AML cells generated from bone marrow progenitors of Trp53-deficient mice were more sensitive to decitabine in vivo than their wild-type counterparts, suggesting that long-term chronic p53 deficiency increases decitabine sensitivity in AML cells. Taken together, these data revealed a multifaceted role for p53 to regulate responses of myeloid neoplasms to decitabine treatment.
Collapse
Affiliation(s)
- Moe Tamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Xiaoxiao Liu
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan.
| |
Collapse
|
23
|
Nomani L, Cook JR, Rogers HJ. Very rare lineage switch from acute myeloid leukemia to mixed phenotype acute leukemia, B/Myeloid, during chemotherapy with no clonal evolution. Int J Lab Hematol 2019; 41:e86-e88. [DOI: 10.1111/ijlh.12977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Laila Nomani
- Department of Laboratory Medicine; Cleveland Clinic; Cleveland Ohio
| | - James R. Cook
- Department of Laboratory Medicine; Cleveland Clinic; Cleveland Ohio
| | - Heesun J. Rogers
- Department of Laboratory Medicine; Cleveland Clinic; Cleveland Ohio
| |
Collapse
|
24
|
Yang L, Ding L, Liang J, Chen J, Tang Y, Xue H, Gu L, Shen S, Li B, Chen J. Relatively favorable prognosis for MLL-rearranged childhood acute leukemia with reciprocal translocations. Pediatr Blood Cancer 2018; 65:e27266. [PMID: 29943896 DOI: 10.1002/pbc.27266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mixed-lineage leukemia (MLL) with multifarious partner genes leads to aggressive leukemia with dismal outcomes. METHODS Using panel-based targeted sequencing, we examined 90 cases with MLL-rearranged (MLL-r) childhood acute leukemia, including 55 with acute lymphoblastic leukemia (ALL) and 35 with acute myeloid leukemia (AML). RESULTS MLL breakpoints and complete rearrangements were identified. A total of 37.8% (34/90) of patients displayed a single direct MLL fusion gene, 15.6% (14/90) carried a single reciprocal fusion, and 27.8% (25/90) had both reciprocal MLL fusion alleles. The remaining 17 MLL-r cases exhibited complex translocations with homozygous disruptions on chromosome 11 or two breakpoints on the same MLL allele with a deletion of functional regions. A total of 77 patients (45 ALL and 32 AML) received chemotherapy with a median follow-up of 2.5 years. Unexpectedly, we identified children with reciprocal MLL fusions who exhibited relatively favorable outcomes compared with those in children with complex translocations or a single direct MLL fusion allele (66.1% vs. 24.6% and 27.6%, P = 0.001). Reciprocal MLL fusion may be functionally rescued by a partially truncated MLL protein. CONCLUSION Comprehensive MLL-r analysis by targeted next-generation sequencing can provide detailed molecular information and is helpful for precise stratified treatment and clinical prognosis determination.
Collapse
Affiliation(s)
- Liu Yang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Liang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YanJing Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiliang Xue
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longjun Gu
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Shen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Grey W, Ivey A, Milne TA, Haferlach T, Grimwade D, Uhlmann F, Voisset E, Yu V. The Cks1/Cks2 axis fine-tunes Mll1 expression and is crucial for MLL-rearranged leukaemia cell viability. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:105-116. [PMID: 28939057 PMCID: PMC5701546 DOI: 10.1016/j.bbamcr.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.
Collapse
Affiliation(s)
- William Grey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK.
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, UK
| | | | - David Grimwade
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Edwige Voisset
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK.
| | - Veronica Yu
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| |
Collapse
|
26
|
Wang ZH, Li DD, Chen WL, You QD, Guo XK. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy. Bioorg Med Chem 2017; 26:356-365. [PMID: 29254892 DOI: 10.1016/j.bmc.2017.11.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed.
Collapse
Affiliation(s)
- Zhi-Hui Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Dong-Dong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Lin Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao-Ke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Reemergence of translocation t(11;19)(q23;p13.1) in the absence of clinically overt leukemia. Int J Hematol 2017; 106:847-851. [PMID: 28669059 DOI: 10.1007/s12185-017-2289-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
We report the case of a 10-year-old female with acute myeloid leukemia (AML) FAB M0 carrying a novel t(11;19)(q23;p13.1) MLL-ELL variant, in which intron 8 of MLL is fused to exon 6 of ELL. Complete remission, judged by morphology and cytogenetic analysis, was achieved after the conventional chemotherapy. Eight months after completion of therapy, the level of WT-1 in peripheral blood and the number of cells with the MLL-ELL fusion transcript resurged. However, the patient remained overtly healthy and the morphology in the bone-marrow smear was innocuous, with no sign of relapse or secondary leukemia. Without any evidence of relapse, the patient has been closely observed without any therapeutic intervention. For approximately 2 years after the completion of therapy, despite clonal proliferation of pre-leukemic cells with an MLL-ELL fusion gene, she has maintained complete remission. In this case, the rare variant form of MLL-ELL fusion that has been identified may be related to diminished leukemogenic capacity, resulting in the persistence of pre-leukemic status; an additional genetic abnormality may thus be necessary for full transformation of pre-leukemic cells.
Collapse
|
28
|
Menu E, Beaufils N, Usseglio F, Balducci E, Lafage Pochitaloff M, Costello R, Gabert J. First case of B ALL with KMT2A-MAML2 rearrangement: a case report. BMC Cancer 2017; 17:363. [PMID: 28535805 PMCID: PMC5442694 DOI: 10.1186/s12885-017-3368-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Background A large number of chromosomal translocations of the human KMT2A gene, better known as the MLL gene, have so far been characterized. Genetic rearrangements involving KMT2A gene are frequently involved in lymphoid, myeloid and mixed lineage leukemia. One of its rare fusion partners, the mastermind like 2 (MAML2) gene has been reported in four cases of myeloid neoplasms after chemotherapy so far: two acute myeloid leukemias (AML) and two myelodysplasic syndrome (MDS), and two cases of secondary T-cell acute lymphoblastic leukemia (T-ALL). Case presentation Here we report the case of a KMT2A - MAML2 fusion discovered by Next-Generation Sequencing (NGS) analysis in front of an inv11 (q21q23) present in a 47-year-old female previously treated for a sarcoma in 2014, who had a B acute lymphoid leukemia (B ALL). Conclusion It is, to our knowledge, the first case of B acute lymphoblastic leukemia with this fusion gene. At the molecular level, two rearrangements were detected using RNA sequencing juxtaposing exon 7 to exon 2 and exon 9 to intron 1–2 of the KMT2A and MAML2 genes respectively, and one rearrangement using Sanger sequencing juxtaposing exon 8 and exon 2.
Collapse
Affiliation(s)
- Estelle Menu
- Department of Biochemistry & Molecular Biology, University Hospital Nord, Marseille, France.
| | - Nathalie Beaufils
- Department of Biochemistry & Molecular Biology, University Hospital Nord, Marseille, France
| | - Fabrice Usseglio
- Department of Biochemistry & Molecular Biology, University Hospital Nord, Marseille, France.,U1072 INSERM, Université de la Méditerranée, Marseille, France
| | | | | | - Regis Costello
- Department of clinical onco-hematology, University Hospital of La Conception, Marseille, France
| | - Jean Gabert
- Department of Biochemistry & Molecular Biology, University Hospital Nord, Marseille, France.,U1072 INSERM, Université de la Méditerranée, Marseille, France
| |
Collapse
|
29
|
Goyama S, Kitamura T. Epigenetics in normal and malignant hematopoiesis: An overview and update 2017. Cancer Sci 2017; 108:553-562. [PMID: 28100030 PMCID: PMC5406607 DOI: 10.1111/cas.13168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Epigenetic regulation in hematopoiesis has been a field of rapid expansion. Genome‐wide analyses have revealed, and will continue to identify genetic alterations in epigenetic genes that are present in various types of hematopoietic neoplasms. Development of new mouse models for individual epigenetic modifiers has revealed their novel, sometimes unexpected, functions. In this review, we provide an overview of genetic alterations within epigenetic genes in various types of hematopoietic neoplasms. We then summarize the physiologic roles of these epigenetic modifiers during hematopoiesis, and describe therapeutic approaches targeting the epigenetic modifications. Interestingly, the mutational spectrum of epigenetic genes indicates that myeloid neoplasms are similar to T‐cell neoplasms, whereas B‐cell lymphomas have distinct features. Furthermore, it appears that the epigenetic mutations related to active transcription are more associated with myeloid/T‐cell neoplasms, whereas those that repress transcription are associated with B‐cell lymphomas. These observations may imply that the global low‐level or high‐level transcriptional activity underlies the development of myeloid/T‐cell tumors or B‐cell tumors, respectively.
Collapse
Affiliation(s)
- Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Ehrlich L, Hall C, Venter J, Dostal D, Bernuzzi F, Invernizzi P, Meng F, Trzeciakowski JP, Zhou T, Standeford H, Alpini G, Lairmore TC, Glaser S. miR-24 Inhibition Increases Menin Expression and Decreases Cholangiocarcinoma Proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:570-580. [PMID: 28087162 DOI: 10.1016/j.ajpath.2016.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
Menin (MEN1) is a tumor-suppressor protein in neuroendocrine tissue. Therefore, we tested the novel hypothesis that menin regulates cholangiocarcinoma proliferation. Menin and miR-24 expression levels were measured in the following intrahepatic and extrahepatic cholangiocarcinoma (CCA) cell lines, Mz-ChA-1, TFK-1, SG231, CCLP, HuCCT-1, and HuH-28, as well as the nonmalignant human intrahepatic biliary line, H69. miR-24 miRNA and menin protein levels were manipulated in vitro in Mz-ChA-1 cell lines. Markers of proliferation and angiogenesis (Ki-67, vascular endothelial growth factors A/C, vascular endothelial growth factor receptors 2/3, angiopoietin 1/2, and angiopoietin receptors 1/2) were evaluated. Mz-ChA-1 cells were injected into the flanks of nude mice and treated with miR-24 inhibitor or inhibitor scramble. Menin expression was decreased in advanced CCA specimens, whereas miR-24 expression was increased in CCA. Menin overexpression decreased proliferation, angiogenesis, migration, and invasion. Inhibition of miR-24 increased menin protein expression while decreasing proliferation, angiogenesis, migration, and invasion. miR-24 was shown to negatively regulate menin expression by luciferase assay. Tumor burden and expression of proliferative and angiogenic markers was decreased in the miR-24 inhibited tumor group compared to controls. Interestingly, treated tumors were more fibrotic than the control group. miR-24-dependent expression of menin may be important in the regulation of nonmalignant and CCA proliferation and may be an additional therapeutic tool for managing CCA progression.
Collapse
Affiliation(s)
- Laurent Ehrlich
- Department of Medicine, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas; Division of Gastroenterology and Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Chad Hall
- Division of Surgery, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Julie Venter
- Department of Medicine, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - David Dostal
- Division of Gastroenterology and Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Francesca Bernuzzi
- Department of Medicine and Surgery, Program for Autoimmune Liver Diseases, International Center for Digestive Diseases, University of Milan-Bicocca, Milan, Italy; Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Pietro Invernizzi
- Department of Medicine and Surgery, Program for Autoimmune Liver Diseases, International Center for Digestive Diseases, University of Milan-Bicocca, Milan, Italy; Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Fanyin Meng
- Department of Medicine, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas; Division of Gastroenterology and Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas; Research Section, Central Texas Veterans Health Care System, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Jerome P Trzeciakowski
- Division of Gastroenterology and Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Tianhao Zhou
- Department of Medicine, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Holly Standeford
- Research Section, Central Texas Veterans Health Care System, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Medicine, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas; Research Section, Central Texas Veterans Health Care System, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Terry C Lairmore
- Division of Surgery, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas
| | - Shannon Glaser
- Department of Medicine, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas; Research Section, Central Texas Veterans Health Care System, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White and Texas A&M University Health Science Center, Temple, Texas.
| |
Collapse
|
31
|
Yokoyama A. Transcriptional activation by MLL fusion proteins in leukemogenesis. Exp Hematol 2016; 46:21-30. [PMID: 27865805 DOI: 10.1016/j.exphem.2016.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/14/2016] [Accepted: 10/29/2016] [Indexed: 12/16/2022]
Abstract
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause aggressive leukemia. Fusion proteins of MLL and a component of the AF4 family/ENL family/P-TEFb complex (AEP) are responsible for two-thirds of MLL-associated leukemia cases. MLL-AEP fusion proteins trigger aberrant self-renewal of hematopoietic progenitors by constitutively activating self-renewal-related genes. MLL-AEP fusion proteins activate transcription initiation by loading the TATA-binding protein (TBP) to the TATA element via selectivity factor 1. Although AEP retains transcription elongation and mediator recruiting activities, the rate-limiting step activated by MLL-AEP fusion proteins appears to be the TBP-loading step. This is contrary to prevailing views, in which the recruitment of transcription elongation activities are emphasized. Here, I review recent advances towards elucidating the mechanisms underlying gene activation by MLL-AEP fusion proteins in leukemogenesis.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
32
|
Cermakova K, Weydert C, Christ F, De Rijck J, Debyser Z. Lessons Learned: HIV Points the Way Towards Precision Treatment of Mixed-Lineage Leukemia. Trends Pharmacol Sci 2016; 37:660-671. [PMID: 27290878 DOI: 10.1016/j.tips.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022]
Abstract
Protein-protein interactions are involved in most if not all pathogenic and pathophysiological processes and represent attractive therapeutic targets. Extensive biological and clinical research efforts have led to the identification and validation of several cellular hubs that are crucially involved in disease pathogenesis. An interesting example of such a hub is the lens epithelium-derived growth factor (LEDGF/p75), a protein that tethers multiple unrelated proteins and protein complexes to the chromatin. Its chromatin-tethering ability is linked to at least two unrelated diseases-HIV infection and MLL-rearranged acute leukemia. In this review we discuss recent progress in our understanding of the interaction of LEDGF/p75 with its binding partners and focus on the first steps towards therapies targeting protein-protein interactions of LEDGF/p75.
Collapse
Affiliation(s)
- Katerina Cermakova
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium; Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic (ASCR), v.v.i, Laboratory of Structural Biology, Prague, Czech Republic
| | - Caroline Weydert
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Frauke Christ
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Jan De Rijck
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Zeger Debyser
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.
| |
Collapse
|
33
|
Sarashina T, Iwabuchi H, Miyagawa N, Sekimizu M, Yokosuka T, Fukuda K, Hamanoue S, Iwasaki F, Goto S, Shiomi M, Imai C, Goto H. Hematopoietic stem cell transplantation for pediatric mature B-cell acute lymphoblastic leukemia with non-L3 morphology and MLL-AF9 gene fusion: three case reports and review of the literature. Int J Hematol 2016; 104:139-43. [PMID: 27084248 DOI: 10.1007/s12185-016-1971-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/26/2022]
Abstract
Mature B-cell acute lymphoblastic leukemia (B-ALL) is typically associated with French-American-British (FAB)-L3 morphology and MYC gene rearrangement. However, rare cases of mature B-ALL with non-L3 morphology and MLL-AF9 fusion have been reported, and such cases are characterized by a rapid and aggressive clinical course. We here report three such cases of pediatric mature B-ALL in female patients respectively aged 15 months, 4 years, and 4 months. Bone marrow smears at diagnosis showed FAB-L1 morphology in all patients. Immunophenotypically, they were positive for cluster of differentiation (CD)10, CD19, CD20 (or CD22), Human Leukocyte Antigen-DR, and surface immunoglobulin λ. No evidence of MYC rearrangement was detected in any of the cases by fluorescent in situ hybridization (FISH) analysis. However, MLL rearrangement was detected by FISH, and MLL-AF9 fusion was confirmed by reverse transcriptase-polymerase chain reaction. All patients achieved complete remission after conventional chemotherapy and subsequently underwent hematopoietic stem cell transplantation as high-risk ALL; patient 3 for infantile ALL with MLL rearrangement and the others for ALL with MLL rearrangement and hyperleukocytosis (white blood cell count at diagnosis >50 × 10(9)/L). At the latest follow-up for each case (12-98 months post-transplantation), complete remission was maintained. Moreover, we discuss the clinical, genetic, and immunophenotypic features of this rare disease.
Collapse
Affiliation(s)
- Takeo Sarashina
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan.
- Department of Pediatrics, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
| | - Haruko Iwabuchi
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoyuki Miyagawa
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masahiro Sekimizu
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tomoko Yokosuka
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kunio Fukuda
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Satoshi Hamanoue
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Fuminori Iwasaki
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Shoko Goto
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masae Shiomi
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Chihaya Imai
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroaki Goto
- Division of Hemato-Oncology/Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
34
|
Davie JR, Xu W, Delcuve GP. Histone H3K4 trimethylation: dynamic interplay with pre-mRNA splicing. Biochem Cell Biol 2016; 94:1-11. [DOI: 10.1139/bcb-2015-0065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally active promoters. However, closer study of the positioning of H3K4me3 shows the mark locating primarily after the first exon at the 5′ splice site and overlapping with a CpG island in mammalian cells. There are several enzyme complexes that are involved in the placement of the H3K4me3 mark, including multiple protein complexes containing SETD1A, SETD1B, and MLL1 enzymes (writers). CXXC1, which is associated with SETD1A and SETD1B, target these enzymes to unmethylated CpG islands. Lysine demethylases (KDM5 family members, erasers) demethylate H3K4me3. The H3K4me3 mark is recognized by several proteins (readers), including lysine acetyltransferase complexes, chromatin remodelers, and RNA bound proteins involved in pre-mRNA splicing. Interestingly, attenuation of H3K4me3 impacts pre-mRNA splicing, and inhibition of pre-mRNA splicing attenuates H3K4me3.
Collapse
Affiliation(s)
- James R. Davie
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Wayne Xu
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Genevieve P. Delcuve
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
35
|
Laszlo GS, Alonzo TA, Gudgeon CJ, Harrington KH, Kentsis A, Gerbing RB, Wang YC, Ries RE, Raimondi SC, Hirsch BA, Gamis AS, Meshinchi S, Walter RB. High expression of myocyte enhancer factor 2C (MEF2C) is associated with adverse-risk features and poor outcome in pediatric acute myeloid leukemia: a report from the Children's Oncology Group. J Hematol Oncol 2015; 8:115. [PMID: 26487643 PMCID: PMC4618184 DOI: 10.1186/s13045-015-0215-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background Recent studies have identified myocyte enhancer factor 2C (MEF2C) as cooperating oncogene in acute myeloid leukemia (AML) and suggested a contribution to the aggressive nature of at least some subtypes of AML, raising the possibility that MEF2C could serve as marker of poor-risk AML and, therefore, have prognostic significance. Methods To test this hypothesis, we retrospectively quantified MEF2C expression in pretreatment bone marrow specimens in participants of the AAML0531 trial by reverse-transcriptase polymerase chain reaction and correlated expression levels with disease characteristics and clinical outcome. Results In all 751 available patient specimens, MEF2C messenger RNA (mRNA) was detectable and varied >3000-fold relative to β-glucuronidase. Patients with the highest relative MEF2C expression (4th quartile) less likely achieved a complete remission after one course of chemotherapy than the other patients (67 vs. 78 %, P = 0.005). They also had an inferior overall survival (P = 0.014; at 5 years 55 ± 8 vs. 67 ± 4 %), inferior event-free survival (P < 0.001; at 5 years 38 ± 7 vs. 54 ± 4 %), and higher relapse risk than patients within the lower 3 quartiles of MEF2C expression (P < 0.001; at 5 years 53 ± 9 vs. 35 ± 5 %). These differences were accounted for by lower prevalence of cytogenetically/molecularly defined low-risk disease (16 vs. 46 %, P < 0.001) and higher prevalence of standard-risk disease (68 vs. 42 %, P < 0.001) in patients with high MEF2C expression, suggesting that MEF2C cooperates with additional pathogenic abnormalities. Conclusions High MEF2C expression identifies a subset of AML patients with adverse-risk disease features and poor outcome. With confirmation that high MEF2C mRNA expression leads to overexpression of MEF2C protein, these findings provide the rationale for therapeutic targeting of MEF2C transcriptional activation in AML.
Collapse
Affiliation(s)
- George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA
| | - Todd A Alonzo
- Department of Biostatistics, University of Southern California, Los Angeles, CA, USA.,Children's Oncology Group, Monrovia, CA, USA
| | - Chelsea J Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA
| | - Kimberly H Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA
| | - Alex Kentsis
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Medical College of Cornell University, New York, NY, USA
| | | | | | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA
| | - Susana C Raimondi
- Children's Oncology Group, Monrovia, CA, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Betsy A Hirsch
- Children's Oncology Group, Monrovia, CA, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | - Alan S Gamis
- Children's Oncology Group, Monrovia, CA, USA.,Division of Hematology-Oncology, Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA.,Children's Oncology Group, Monrovia, CA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-190, Seattle, WA, 98109-1024, USA. .,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA. .,Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
36
|
Chase J, Grembecka J, Maillard I. Trithorax group genes in hematopoiesis. Oncotarget 2015; 6:17855-6. [PMID: 26257003 PMCID: PMC4627213 DOI: 10.18632/oncotarget.4882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jennifer Chase
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Ivan Maillard
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Tamura T. Guest editorial: Transcriptional control in myeloid cell development and related diseases. Int J Hematol 2015; 101:317-8. [PMID: 25753224 DOI: 10.1007/s12185-015-1770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan,
| |
Collapse
|