1
|
Sokolowski I, Kucharska-Lusina A, Miller E, Poplawski T, Majsterek I. Exploring the Gene Expression and Plasma Protein Levels of HSP90, HSP60, and GDNF in Multiple Sclerosis Patients and Healthy Controls. Curr Issues Mol Biol 2024; 46:11668-11680. [PMID: 39451573 PMCID: PMC11505768 DOI: 10.3390/cimb46100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by immune-mediated inflammation and neurodegeneration in the central nervous system (CNS). In this study; we aimed to investigate the gene expression and plasma protein levels of three neuroprotective genes-heat shock proteins (HSP90 and HSP60) and glial cell line-derived neurotrophic factor (GDNF)-in MS patients compared to healthy controls. Forty patients with relapsing-remitting MS and 40 healthy volunteers participated in this study. Gene expression was measured using reverse transcription quantitative real-time PCR, and protein levels were assessed via ELISA. The results showed a significant increase in HSP90 (1.7-fold) and HSP60 (2-fold) gene expression in MS patients compared to controls, along with corresponding increases in protein levels (1.5-fold for both HSP90 and HSP60). In contrast, GDNF gene expression and protein levels were significantly reduced in MS patients, with a 7-fold decrease in gene expression and a 1.6-fold reduction in protein levels. Notably, a non-linear relationship between GDNF gene expression and protein concentration was observed in MS patients, suggesting complex regulatory mechanisms influencing GDNF in the disease. The upregulation of HSP90 and HSP60 in MS highlights their roles in immune regulation and stress responses, while the reduction in GDNF indicates impaired neuroprotection. These findings suggest that HSP90, HSP60, and GDNF could serve as biomarkers for disease progression and as potential therapeutic targets in MS, offering promising avenues for future research and treatment development.
Collapse
Affiliation(s)
- Igor Sokolowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Tomasz Poplawski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| |
Collapse
|
2
|
Gao Y, Huang D, Liu Y, Qiu Y, Lu S. Periodontitis and thyroid function: A bidirectional Mendelian randomization study. J Periodontal Res 2024; 59:491-499. [PMID: 38193661 DOI: 10.1111/jre.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Previous studies suggest interaction between periodontitis and thyroid function, while the causality has not yet been established. We applied the Mendelian randomization (MR) method to assess bidirectional causal association between periodontitis and thyroid-related traits, including free thyroxine (FT4), thyroid stimulating hormone (TSH), hypothyroidism, hyperthyroidism and autoimmune thyroid disease (AITD). METHODS Genetic instruments were extracted from large-scale genome-wide association studies on normal-range FT4 (N = 49 269) and TSH (N = 54 288) levels, TSH in full range (N = 119 715); hypothyroidism (discovery/replication cohorts: N = 53 423/334 316), hyperthyroidism (discovery/replication cohorts: N = 51 823/257 552), AITD (N = 755 406) and periodontitis (N = 45 563). Here, the inverse variance weighted (IVW) method was applied as the primary analysis, and robustness of results were assessed by several pleiotropic-robust methods. Results were adjusted for Bonferroni correction thresholds with significant p < .004 (0.05/13) and suggestive p between .004 and .05. RESULTS The IVW analysis revealed a suggestively causal linkage between genetic predisposition to periodontitis and the increased risk of hypothyroidism (discovery cohort: odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.05-1.46, p = .012; replication cohort: OR = 1.06, 95% CI = 1.01-1.11, p = .011). No evidence was found for supporting the impact of periodontitis on hyperthyroidism and AITD risks (associated p ≥ .209), as well as thyroid-related traits on periodontitis risk (associated p ≥ .105). These findings were robust and consistent through sensitivity analysis with other MR models. CONCLUSION This bidirectional MR reveals periodontitis should not be attributed to variations in thyroid function but it has potential causal effect on hypothyroidism risk, which provides a better understanding of the relationship between periodontitis and thyroid function, and potential evidence for the clinical intervention of hypothyroidism. Further investigations are warranted to elucidate the nature and underlying mechanisms of this finding.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - Donghai Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Shanhong Lu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| |
Collapse
|
3
|
Singh MK, Shin Y, Han S, Ha J, Tiwari PK, Kim SS, Kang I. Molecular Chaperonin HSP60: Current Understanding and Future Prospects. Int J Mol Sci 2024; 25:5483. [PMID: 38791521 PMCID: PMC11121636 DOI: 10.3390/ijms25105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle's proteome integrity and homeostasis. The HSP60 family, encompassing Cpn60, plays diverse roles in cellular processes, including protein folding, cell signaling, and managing high-temperature stress. In prokaryotes, HSP60 is well understood as a GroEL/GroES complex, which forms a double-ring cavity and aids in protein folding. In eukaryotes, HSP60 is implicated in numerous biological functions, like facilitating the folding of native proteins and influencing disease and development processes. Notably, research highlights its critical involvement in sustaining oxidative stress and preserving mitochondrial integrity. HSP60 perturbation results in the loss of the mitochondria integrity and activates apoptosis. Currently, numerous clinical investigations are in progress to explore targeting HSP60 both in vivo and in vitro across various disease models. These studies aim to enhance our comprehension of disease mechanisms and potentially harness HSP60 as a therapeutic target for various conditions, including cancer, inflammatory disorders, and neurodegenerative diseases. This review delves into the diverse functions of HSP60 in regulating proteo-homeostasis, oxidative stress, ROS, apoptosis, and its implications in diseases like cancer and neurodegeneration.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pramod K. Tiwari
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Alshamrani S, Mashraqi MM, Alzamami A, Alturki NA, Almasoudi HH, Alshahrani MA, Basharat Z. Mining Autoimmune-Disorder-Linked Molecular-Mimicry Candidates in Clostridioides difficile and Prospects of Mimic-Based Vaccine Design: An In Silico Approach. Microorganisms 2023; 11:2300. [PMID: 37764144 PMCID: PMC10536613 DOI: 10.3390/microorganisms11092300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular mimicry, a phenomenon in which microbial or environmental antigens resemble host antigens, has been proposed as a potential trigger for autoimmune responses. In this study, we employed a bioinformatics approach to investigate the role of molecular mimicry in Clostridioides difficile-caused infections and the induction of autoimmune disorders due to this phenomenon. Comparing proteomes of host and pathogen, we identified 23 proteins that exhibited significant sequence homology and were linked to autoimmune disorders. The disorders included rheumatoid arthritis, psoriasis, Alzheimer's disease, etc., while infections included viral and bacterial infections like HIV, HCV, and tuberculosis. The structure of the homologous proteins was superposed, and RMSD was calculated to find the maximum deviation, while accounting for rigid and flexible regions. Two sequence mimics (antigenic, non-allergenic, and immunogenic) of ≥10 amino acids from these proteins were used to design a vaccine construct to explore the possibility of eliciting an immune response. Docking analysis of the top vaccine construct C2 showed favorable interactions with HLA and TLR-4 receptor, indicating potential efficacy. The B-cell and T-helper cell activity was also simulated, showing promising results for effective immunization against C. difficile infections. This study highlights the potential of C. difficile to trigger autoimmunity through molecular mimicry and vaccine design based on sequence mimics that trigger a defensive response.
Collapse
Affiliation(s)
- Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia;
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Hassan H. Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | | |
Collapse
|
5
|
Domínguez-Horta MDC, Serrano-Díaz A, Hernández-Cedeño M, Martínez-Donato G, Guillén-Nieto G. A peptide derived from HSP60 reduces proinflammatory cytokines and soluble mediators: a therapeutic approach to inflammation. Front Immunol 2023; 14:1162739. [PMID: 37187739 PMCID: PMC10179499 DOI: 10.3389/fimmu.2023.1162739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Cytokines are secretion proteins that mediate and regulate immunity and inflammation. They are crucial in the progress of acute inflammatory diseases and autoimmunity. In fact, the inhibition of proinflammatory cytokines has been widely tested in the treatment of rheumatoid arthritis (RA). Some of these inhibitors have been used in the treatment of COVID-19 patients to improve survival rates. However, controlling the extent of inflammation with cytokine inhibitors is still a challenge because these molecules are redundant and pleiotropic. Here we review a novel therapeutic approach based on the use of the HSP60-derived Altered Peptide Ligand (APL) designed for RA and repositioned for the treatment of COVID-19 patients with hyperinflammation. HSP60 is a molecular chaperone found in all cells. It is involved in a wide diversity of cellular events including protein folding and trafficking. HSP60 concentration increases during cellular stress, for example inflammation. This protein has a dual role in immunity. Some HSP60-derived soluble epitopes induce inflammation, while others are immunoregulatory. Our HSP60-derived APL decreases the concentration of cytokines and induces the increase of FOXP3+ regulatory T cells (Treg) in various experimental systems. Furthermore, it decreases several cytokines and soluble mediators that are raised in RA, as well as decreases the excessive inflammatory response induced by SARS-CoV-2. This approach can be extended to other inflammatory diseases.
Collapse
Affiliation(s)
- Maria del Carmen Domínguez-Horta
- Autoimmunity Project, Pharmaceutical Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Physiology Department, Latin American School of Medicine, Havana, Cuba
- *Correspondence: Maria del Carmen Domínguez-Horta,
| | - Anabel Serrano-Díaz
- Autoimmunity Project, Pharmaceutical Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mabel Hernández-Cedeño
- Autoimmunity Project, Pharmaceutical Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gillian Martínez-Donato
- Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- Physiology Department, Latin American School of Medicine, Havana, Cuba
- Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
6
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
7
|
Scalia F, Barone R, Rappa F, Marino Gammazza A, Lo Celso F, Lo Bosco G, Barone G, Antona V, Vadalà M, Vitale AM, Mangano GD, Amato D, Sentiero G, Macaluso F, Myburgh KH, Conway de Macario E, Macario AJL, Giuffrè M, Cappello F. Muscle Histopathological Abnormalities in a Patient With a CCT5 Mutation Predicted to Affect the Apical Domain of the Chaperonin Subunit. Front Mol Biosci 2022; 9:887336. [PMID: 35720129 PMCID: PMC9201415 DOI: 10.3389/fmolb.2022.887336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Recognition of diseases associated with mutations of the chaperone system genes, e.g., chaperonopathies, is on the rise. Hereditary and clinical aspects are established, but the impact of the mutation on the chaperone molecule and the mechanisms underpinning the tissue abnormalities are not. Here, histological features of skeletal muscle from a patient with a severe, early onset, distal motor neuropathy, carrying a mutation on the CCT5 subunit (MUT) were examined in comparison with normal muscle (CTR). The MUT muscle was considerably modified; atrophy of fibers and disruption of the tissue architecture were prominent, with many fibers in apoptosis. CCT5 was diversely present in the sarcolemma, cytoplasm, and nuclei in MUT and in CTR and was also in the extracellular space; it colocalized with CCT1. In MUT, the signal of myosin appeared slightly increased, and actin slightly decreased as compared with CTR. Desmin was considerably delocalized in MUT, appearing with abnormal patterns and in precipitates. Alpha-B-crystallin and Hsp90 occurred at lower signals in MUT than in CTR muscle, appearing also in precipitates with desmin. The abnormal features in MUT may be the consequence of inactivity, malnutrition, denervation, and failure of protein homeostasis. The latter could be at least in part caused by malfunction of the CCT complex with the mutant CCT5 subunit. This is suggested by the results of the in silico analyses of the mutant CCT5 molecule, which revealed various abnormalities when compared with the wild-type counterpart, mostly affecting the apical domain and potentially impairing chaperoning functions. Thus, analysis of mutated CCT5 in vitro and in vivo is anticipated to provide additional insights on subunit involvement in neuromuscular disorders.
Collapse
Affiliation(s)
- Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
- Ionic Liquids Laboratory, Institute of Structure of Matter, Italian National Research Council (ISM-CNR), Rome, Italy
| | - Giosuè Lo Bosco
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Vadalà
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giuseppe Donato Mangano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Domenico Amato
- Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy
| | - Giusy Sentiero
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Filippo Macaluso
- SMART Engineering Solutions & Technologies (SMARTEST) Research Center, eCampus University, Palermo, Italy
| | - Kathryn H. Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- *Correspondence: Francesco Cappello, @hotmail.com
| |
Collapse
|
8
|
Ou G, Zhu M, Huang Y, Luo W, Zhao J, Zhang W, Xia H, Wang S, He R, Xiao Q, Deng Y, Qiu R. HSP60 regulates the cigarette smoke-induced activation of TLR4-NF-κB-MyD88 signalling pathway and NLRP3 inflammasome. Int Immunopharmacol 2022; 103:108445. [PMID: 34998273 DOI: 10.1016/j.intimp.2021.108445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by increased cellular stress and inflammation. Heat shock protein 60 (HSP60) is a highly conserved stress protein that acts as a cellular "danger" signal for immune reactions. In this study, we investigated the role of HSP60 in COPD and explored the underlying mechanisms. Expression levels of HSP60 in patients with acute exacerbation of COPD (AECOPD), stable COPD, and healthy people were detected by Western blotting and enzyme-linked immunosorbent assay (ELISA). Moreover, the effect and molecular mechanism of HSP60 in COPD were studied in cigarette smoke (CS)-treated C57BL/6 mice and macrophages. The results showed significant upregulation of HSP60 expression in the peripheral blood mononuclear cells (PBMCs) and sera of patients with AECOPD compared to those with stable COPD or healthy people. CS induced the expression of HSP60 in the COPD mouse model, accelerated the activation of toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3) signalling pathways, promoted the increase of inflammatory cells in alveolar lavage fluid and serum inflammatory factors, and induced destruction of lung tissue structure. Furthermore, HSP60 knockdown affected TLR4 and MyD88 expression, IκBα degradation, and nuclear localization of NF-κB and NLRP3 inflammasome activity. Our study revealed that CS stimulates the expression of HSP60, activating the TLR4-MyD88-NF-κB signalling pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Guochun Ou
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Mingmei Zhu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Yufang Huang
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Wen Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Wenbo Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hangbiao Xia
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Shuhong Wang
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qing Xiao
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Rong Qiu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| |
Collapse
|
9
|
Xiao H, Liang J, Liu S, Zhang Q, Xie F, Kong X, Guo S, Wang R, Fu R, Ye Z, Li Y, Zhang S, Zhang L, Kaudimba KK, Wang R, Kong X, Zhao B, Zheng X, Liu T. Proteomics and Organoid Culture Reveal the Underlying Pathogenesis of Hashimoto's Thyroiditis. Front Immunol 2021; 12:784975. [PMID: 34925365 PMCID: PMC8674930 DOI: 10.3389/fimmu.2021.784975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Hashimoto’s thyroiditis (HT) is an autoimmune disease, and its incidence continues to rise. Although scientists have studied this disease for many years and discovered the potential effects of various proteins in it, the specific pathogenesis is still not fully comprehended. To understand HT and translate this knowledge to clinical applications, we took the mass spectrometric analysis on thyroid tissue fine-needle puncture from HT patients and healthy people in an attempt to make a further understanding of the pathogenesis of HT. A total of 44 proteins with differential expression were identified in HT patients, and these proteins play vital roles in cell adhesion, cell metabolism, and thyroxine synthesis. Combining patient clinical trial sample information, we further compared the transient changes of gene expression regulation in HT and papillary thyroid carcinoma (PTC) samples. More importantly, we developed patient-derived HT and PTC organoids as a promising new preclinical model to verify these potential markers. Our data revealed a marked characteristic of HT organoid in upregulating chemokines that include C-C motif chemokine ligand (CCL) 2 and CCL3, which play a key role in the pathogenesis of HT. Overall, our research has enriched everyone’s understanding of the pathogenesis of HT and provides a certain reference for the treatment of the disease.
Collapse
Affiliation(s)
- Hui Xiao
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jianqing Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sunqiang Liu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiongyue Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingyu Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanshan Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruwen Wang
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Rong Fu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqi Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Kinesiology, Harbin Sport University, Harbin, China
| | - Li Zhang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Keneilwe Kenny Kaudimba
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqin Zheng
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiemin Liu
- Human Phenome Institute, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Zou J, Peng H, Liu Y. The Roles of Exosomes in Immunoregulation and Autoimmune Thyroid Diseases. Front Immunol 2021; 12:757674. [PMID: 34867996 PMCID: PMC8634671 DOI: 10.3389/fimmu.2021.757674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular microvesicles (30-150 nm) released from cells that contain proteins, lipids, RNA and DNA. They can deliver bioactive molecules and serve as carriers facilitating cell-cell communication, such as antigen presentation, inflammatory activation, autoimmune diseases (AIDs) and tumor metastasis. Recently, much attention has been attracted to the biology and functions of exosomes in immune regulation and AIDs, including autoimmune thyroid diseases (AITDs). Some studies have shown that exosomes are involved in the occurrence and development of AITDs, but they are still in the preliminary stage of exploration. This review mainly introduces the association of exosomes with immune regulation and emphasizes the potential role of exosomes in AITDs, aiming to provide new research strategies and directions for the pathogenesis and early diagnosis of AITDs.
Collapse
Affiliation(s)
- Junli Zou
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| |
Collapse
|
11
|
Caruso Bavisotto C, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F. Extracellular heat shock proteins in cancer: From early diagnosis to new therapeutic approach. Semin Cancer Biol 2021; 86:36-45. [PMID: 34563652 DOI: 10.1016/j.semcancer.2021.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
In cancer, human cells lose the ability to properly control the series of events that occur constantly during cell growth and division, including protein expression, stability, and dynamics. Heat shock proteins (Hsps) are key molecules in these events, constitutively expressed at high levels and could furthermore be induced by the response to cancer-induced stress. In tumor cells, Hsps have been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis; in some cases, they can be overexpressed and dysregulated, representing important cancer hallmarks. In the past few years, it has been demonstrated that Hsps can be released by tumor cells through several secreting pathways, including the extracellular vesicles (EVs), thus modulating the tumor microenvironment as well as long-distance intercellular communication and metastatization. In this review, we discuss the role of extracellular Hsps in cancer, with a particular interest in Hsps in EVs. We would also like to highlight the importance of fully understanding of the role of extracellular Hsps released by EVs and encourage further research in this field the use of Hsps as early cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Claudia Campanella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.
| |
Collapse
|
12
|
Cerda Reyes E, González-Navarro EA, Magaz M, Muñoz-Sánchez G, Diaz A, Silva-Junior G, Triguero A, Lafoz E, Campreciós G, Orts L, Perez-Campuzano V, Seijo S, Rubio L, Turon F, Baiges A, Hernández-Gea V, Álvarez-Larran A, Juan M, Garcia-Pagan JC. Autoimmune biomarkers in porto-sinusoidal vascular disease: Potential role in its diagnosis and pathophysiology. Liver Int 2021; 41:2171-2178. [PMID: 34173316 DOI: 10.1111/liv.14997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Porto-sinusoidal vascular disease (PSVD) is a rare disease that requires excluding cirrhosis and other causes of portal hypertension for its diagnosis because it lacks a specific diagnostical test. Although it has been occasionally associated with autoimmune diseases, the pathophysiology of PSVD remains unknown. The aim of this study was to evaluate the potential role of autoimmunity in the pathophysiology and diagnosis of PSVD. METHODS Thirty-seven consecutive patients with PSVD and 39 with cirrhosis matched by gender, signs of portal hypertension and liver function were included (training set). By using Indirect Immunofluorescence, ELISA and slot-blot methods data 22 autoantibodies were identified in patients with PSVD and cirrhosis. Presence of anti-endothelial cells antibodies (AECA) was assayed by a cell-based ELISA. Thirty-one PSVD, 40 cirrhosis patients, 15 patients with splenomegaly associated with haematological disease and 14 healthy donors were included in a validation set. FINDINGS The proportion of patients with at least one positive antibody was statistically significantly higher in patients with PSVD compared with cirrhosis (92% vs 56%; P < .01). Specifically, AECA were significantly more frequent in PSVD than in cirrhosis (38% vs 15%; P = .013). Results were confirmed in the validation set. In the overall population, presence of AECA had a 63% positive predictive value for diagnosing PSVD and a 71% negative predictive value, with a specificity of 94% when the 1/16 level is used as cut-off. AECA positive serum samples react with a 68-72 kDa protein of human liver endothelial sinusoidal cells.
Collapse
Affiliation(s)
- Eira Cerda Reyes
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Europa Azucena González-Navarro
- Immunology Service, Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Magaz
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | | | - Alba Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Gilberto Silva-Junior
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ana Triguero
- Hematology Service, Hospital Clínic, Barcelona, Spain
| | - Erica Lafoz
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Genís Campreciós
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Lara Orts
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Valeria Perez-Campuzano
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Susana Seijo
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Laura Rubio
- Immunology Service, Hospital Clinic, Barcelona, Spain
| | - Fanny Turon
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Anna Baiges
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Virginia Hernández-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Alberto Álvarez-Larran
- Hematology Service, Hospital Clínic, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Immunology Service, Hospital Clinic, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Juan Carlos Garcia-Pagan
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
HSP60 Regulates Monosodium Urate Crystal-Induced Inflammation by Activating the TLR4-NF- κB-MyD88 Signaling Pathway and Disrupting Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8706898. [PMID: 33488933 PMCID: PMC7791970 DOI: 10.1155/2020/8706898] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023]
Abstract
Acute gout is an inflammatory response induced by monosodium urate (MSU) crystals. HSP60 is a highly conserved stress protein that acts as a cellular "danger" signal for immune reactions. In this study, we aimed to investigate the role and molecular mechanism of HSP60 in gout. HSP60 expression was detected in peripheral blood mononuclear cells (PBMCs) and plasma of gout patients. The effect and molecular mechanism of HSP60 in gout were studied in MSU crystals treatment macrophages and C57BL/6 mice. JC-1 probe and MitoSOX Red were used to measure the mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (mtROS). HSP60 expression was significantly upregulated in the PBMCs and sera of patients with acute gout (AG) compared to those with intercritical gout (IG) or healthy controls (HCs). MSU crystals induced the expression and secretion of HSP60 in the macrophages. HSP60 knockdown or overexpression affects TLR4 and MyD88 expression, IκBα degradation, and the nuclear localization of NF-κB in MSU crystal-stimulated inflammation. Further, HSP60 facilitates MMP collapse and mtROS production and activates the NLRP3 inflammasome in MSU crystal-stimulated macrophages. In MSU crystal-induced arthritis mouse models pretreated with HSP60 vivo-morpholino, paw swelling, myeloperoxidase (MPO) activity, and inflammatory cell infiltration significantly decreased. Our study reveals that MSU crystal stimulates the expression of HSP60, which accelerates the TLR4-MyD88-NF-κB signaling pathway and exacerbates mitochondrial dysfunction.
Collapse
|
14
|
D’Anneo A, Bavisotto CC, Gammazza AM, Paladino L, Carlisi D, Cappello F, de Macario EC, Macario AJL, Lauricella M. Lipid chaperones and associated diseases: a group of chaperonopathies defining a new nosological entity with implications for medical research and practice. Cell Stress Chaperones 2020; 25:805-820. [PMID: 32856199 PMCID: PMC7591661 DOI: 10.1007/s12192-020-01153-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are lipid chaperones assisting in the trafficking of long-chain fatty acids with functions in various cell compartments, including oxidation, signaling, gene-transcription regulation, and storage. The various known FABP isoforms display distinctive tissue distribution, but some are active in more than one tissue. Quantitative and/or qualitative changes of FABPs are associated with pathological conditions. Increased circulating levels of FABPs are biomarkers of disorders such as obesity, insulin resistance, cardiovascular disease, and cancer. Deregulated expression and malfunction of FABPs can result from genetic alterations or posttranslational modifications and can be pathogenic. We have assembled the disorders with abnormal FABPs as chaperonopathies in a distinct nosological entity. This entity is similar but separate from that encompassing the chaperonopathies pertaining to protein chaperones. In this review, we discuss the role of FABPs in the pathogenesis of metabolic syndrome, cancer, and neurological diseases. We highlight the opportunities for improving diagnosis and treatment that open by encompassing all these pathological conditions within of a coherent nosological group, focusing on abnormal lipid chaperones as biomarkers of disease and etiological-pathogenic factors.
Collapse
Affiliation(s)
- Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202 USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202 USA
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
15
|
Kharrazian D, Herbert M, Vojdani A. Cross-Reactivity between Chemical Antibodies Formed to Serum Proteins and Thyroid Axis Target Sites. Int J Mol Sci 2020; 21:ijms21197324. [PMID: 33023043 PMCID: PMC7583776 DOI: 10.3390/ijms21197324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
In some instances, when chemicals bind to proteins, they have the potential to induce a conformational change in the macromolecule that may misfold in such a way that makes it similar to the various target sites or act as a neoantigen without conformational change. Cross-reactivity then can occur if epitopes of the protein share surface topology to similar binding sites. Alteration of peptides that share topological equivalence with alternating side chains can lead to the formation of binding surfaces that may mimic the antigenic structure of a variant peptide or protein. We investigated how antibodies made against thyroid target sites may bind to various chemical–albumin compounds where binding of the chemical has induced human serum albumin (HSA) misfolding. We found that specific monoclonal or polyclonal antibodies developed against thyroid-stimulating hormone (TSH) receptor, 5′-deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin (TBG), thyroxine (T4), and triiodothyronine (T3) bound to various chemical HSA compounds. Our study identified a new mechanism through which chemicals bound to circulating serum proteins lead to structural protein misfolding that creates neoantigens, resulting in the development of antibodies that bind to key target proteins of the thyroid axis through protein misfolding. For demonstration of specificity of thyroid antibody binding to various haptenic chemicals bound to HSA, both serial dilution and inhibition studies were performed and proportioned to the dilution. A significant decline in these reactions was observed. This laboratory analysis of immune reactivity between thyroid target sites and chemicals bound to HSA antibodies identifies a new mechanism by which chemicals can disrupt thyroid function.
Collapse
Affiliation(s)
- Datis Kharrazian
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA;
- Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA;
- Correspondence:
| | - Martha Herbert
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA;
- Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Aristo Vojdani
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA;
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| |
Collapse
|
16
|
Cappello F, Marino Gammazza A, Dieli F, Conway de Macario E, Macario AJL. Does SARS-CoV-2 Trigger Stress-InducedAutoimmunity by Molecular Mimicry? A Hypothesis. J Clin Med 2020; 9:jcm9072038. [PMID: 32610587 PMCID: PMC7408943 DOI: 10.3390/jcm9072038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
Viruses can generate molecular mimicry phenomena within their hosts. Why should severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) not be considered one of these? Information in this short review suggests that it might be so and, thus, encourages research aiming at testing this possibility. We propose, as a working hypothesis, that the virus induces antibodies and that some of them crossreact with host’s antigens, thus eliciting autoimmune phenomena with devasting consequences in various tissues and organs. If confirmed, by in vitro and in vivo tests, this could drive researchers to find effective treatments against the virus.
Collapse
Affiliation(s)
- Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (A.M.G.); (F.D.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90141 Palermo, Italy;
- Correspondence: (F.C.); (A.J.L.M.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (A.M.G.); (F.D.)
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (A.M.G.); (F.D.)
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90141 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto JL Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90141 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Correspondence: (F.C.); (A.J.L.M.)
| |
Collapse
|
17
|
Caruso Bavisotto C, Alberti G, Vitale AM, Paladino L, Campanella C, Rappa F, Gorska M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Hsp60 Post-translational Modifications: Functional and Pathological Consequences. Front Mol Biosci 2020; 7:95. [PMID: 32582761 PMCID: PMC7289027 DOI: 10.3389/fmolb.2020.00095] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The question is by what mechanism this protein can become multifaceted. Likely, one factor contributing to this diversity is post-translational modification (PTM). The amino acid sequence of Hsp60 contains many potential phosphorylation sites, and other PTMs are possible such as O-GlcNAcylation, nitration, acetylation, S-nitrosylation, citrullination, oxidation, and ubiquitination. The effect of some of these PTMs on Hsp60 functions have been examined, for instance phosphorylation has been implicated in sperm capacitation, docking of H2B and microtubule-associated proteins, mitochondrial dysfunction, tumor invasiveness, and delay or facilitation of apoptosis. Nitration was found to affect the stability of the mitochondrial permeability transition pore, to inhibit folding ability, and to perturb insulin secretion. Hyperacetylation was associated with mitochondrial failure; S-nitrosylation has an impact on mitochondrial stability and endothelial integrity; citrullination can be pro-apoptotic; oxidation has a role in the response to cellular injury and in cell migration; and ubiquitination regulates interaction with the ubiquitin-proteasome system. Future research ought to determine which PTM causes which variations in the Hsp60 molecular properties and functions, and which of them are pathogenic, causing chaperonopathies. This is an important topic considering the number of acquired Hsp60 chaperonopathies already cataloged, many of which are serious diseases without efficacious treatment.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giusi Alberti
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Claudia Campanella
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
18
|
Dhamad AE, Greene E, Sales M, Nguyen P, Beer L, Liyanage R, Dridi S. 75-kDa glucose-regulated protein (GRP75) is a novel molecular signature for heat stress response in avian species. Am J Physiol Cell Physiol 2020; 318:C289-C303. [DOI: 10.1152/ajpcell.00334.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-regulated protein 75 (GRP75) was first characterized in mammals as a heat shock protein-70 (HSP70) family stress chaperone based on its sequence homology. Extensive studies in mammals showed that GRP75 is induced by various stressors such as glucose deprivation, oxidative stress, and hypoxia, although it remained unresponsive to the heat shock. Such investigations are scarce in avian (nonmammalian) species. We here identified chicken GRP75 by using immunoprecipitation assay integrated with LC-MS/MS, and found that its amino acid sequence is conserved with high homology (52.5%) to the HSP70 family. Bioinformatics and 3D-structure prediction indicate that, like most HSPs, chicken GRP75 has two principal domains (the NH2-terminal ATPase and COOH-terminal region). Immunofluorescence staining shows that GRP75 is localized predominantly in the avian myoblast and hepatocyte mitochondria. Heat stress exposure upregulates GRP75 expression in a species-, genotype-, and tissue-specific manner. Overexpression of GRP75 reduces avian cell viability, and blockade of GRP75 by its small molecular inhibitor MKT-077 rescues avian cell viability during heat stress. Taken together, this is the first evidence showing that chicken GRP75, unlike its mammalian ortholog, is responsive to heat shock and plays a key role in cell survival/death pathways. Since modern avian species have high metabolic rates and are sensitive to high environmental temperature, GRP75 could open new vistas in mechanistic understanding of heat stress responses and thermotolerance in avian species.
Collapse
Affiliation(s)
- Ahmed Edan Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Marites Sales
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Phuong Nguyen
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Rohana Liyanage
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
19
|
Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21020661. [PMID: 31963896 PMCID: PMC7013437 DOI: 10.3390/ijms21020661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial–mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated, in particular, with cancer development and progression, and for this reason, we investigated the ability of curcumin to affect HSP60 expression, localization, and post-translational modifications using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 µM of curcumin for 24 h, and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent manner with a higher percentage of apoptotic cells at 25 µM. This dose of curcumin-induced a decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 µM of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its folding activity and the secretion in the media led to the supposition that curcumin might interfere with cancer progression with a protective mechanism involving the chaperonin.
Collapse
|
20
|
Macario AJ, de Macario EC. Molecular mechanisms in chaperonopathies: clues to understanding the histopathological abnormalities and developing novel therapies. J Pathol 2019; 250:9-18. [PMID: 31579936 DOI: 10.1002/path.5349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Molecular chaperones, many of which are heat shock proteins (Hsps), are components of the chaperoning system and when defective can cause disease, the chaperonopathies. Chaperone-gene variants cause genetic chaperonopathies, whereas in the acquired chaperonopathies the genes are normal, but their protein products are not, due to aberrant post-transcriptional mechanisms, e.g. post-translational modifications (PTMs). Since the chaperoning system is widespread in the body, chaperonopathies affect various tissues and organs, making these diseases of interest to a wide range of medical specialties. Genetic chaperonopathies are uncommon but the acquired ones are frequent, encompassing various types of cancer, and inflammatory and autoimmune disorders. The clinical picture of chaperonopathies is known. Much less is known on the impact that pathogenic mutations and PTMs have on the properties and functions of chaperone molecules. Elucidation of these molecular alterations is necessary for understanding the mechanisms underpinning the tissue and organ abnormalities occurring in patients. To illustrate this issue, we discuss structural-functional alterations caused by mutation in the chaperones CCT5 and HSPA9, and PTM effects on Hsp60. The data provide insights into what may happen when CCT5 and HSPA9 malfunction in patients, e.g. accumulation of cytotoxic protein aggregates with tissue destruction; or for Hsp60 with aberrant PTM, degradation and/or secretion of the chaperonin with mitochondrial damage. These and other possibilities are now open for investigation. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alberto Jl Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| |
Collapse
|
21
|
Vocka M, Langer D, Fryba V, Petrtyl J, Hanus T, Kalousova M, Zima T, Petruzelka L. Novel serum markers HSP60, CHI3L1, and IGFBP-2 in metastatic colorectal cancer. Oncol Lett 2019; 18:6284-6292. [PMID: 31788106 DOI: 10.3892/ol.2019.10925] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading tumor diagnosis in women and men in the Czech Republic. Patient outcome depends on tumor stage at the time of diagnosis and, in metastatic disease, on the localization and extent of distant metastases. The early detection of metastatic liver disease is an important indication for liver surgery. Therefore, novel biomarkers are urgently required. Serum samples were collected from 97 patients with histologically confirmed metastatic CRC at the time of diagnosis or at the time of progression during palliative treatment, and 79 samples from healthy controls. All patients exhibited adequate liver and renal function and signed informed consent was obtained from all patients included in the current study. The serum levels of Heat shock protein 60 (HSP60), Chitinase-3-like protein 1 (CHI3L1) and Insulin-like growth factor binding protein 2 (IGFBP-2) were measured using immunochemistry. The serum levels of HSP60, CHI3L1 and IGFBP-2 were significantly higher in patients with CRC compared with healthy controls. When compared with carcinoembryonic antigen (CEA), HSP60 exhibited the same sensitivity and specificity, while CHI3L1 and IGFBP-2 exhibited decreased sensitivity. Additionally, the serum levels of HSP60 and IGFBP-2 were indicated to be correlated with the presence of liver metastases, which is in contrast to CEA and Cancer antigen 19-9 (CA19-9). Patients with higher HSP60 and IGFBP-2 levels exhibited a significantly worse survival (P<0.001 and 0.007, respectively). The results of the current study indicate HSP60 to be an effective biomarker in patients with metastatic CRC, with it exhibiting an equal sensitivity to CEA. Additionally, HSP60 and IGFBP-2 levels also strongly correlated with extension of liver metastases and exhibited a prognostic value that contrasted that of CEA.
Collapse
Affiliation(s)
- Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, 128 08 Prague 2, Czech Republic
| | - Daniel Langer
- Surgery Department, Second Faculty of Medicine, Charles University, and Military University Hospital in Prague, 169 02 Prague 6, Czech Republic
| | - Vladimir Fryba
- First Department of Surgery, Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, 128 08 Prague 2, Czech Republic
| | - Jaromir Petrtyl
- Fourth Department of Internal Medicine, Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, 128 08 Prague 2, Czech Republic
| | - Tomas Hanus
- Department of Urology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, 128 08 Prague 2, Czech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, 128 08 Prague 2, Czech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, 128 08 Prague 2, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, 128 08 Prague 2, Czech Republic
| |
Collapse
|
22
|
Godlewska M, Banga PJ. Thyroid peroxidase as a dual active site enzyme: Focus on biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. Biochimie 2019; 160:34-45. [DOI: 10.1016/j.biochi.2019.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
|
23
|
Pavan Kumar T, Priyadharshini R, Sujatha S, Rakesh N, Shwetha V. Association of OLP and thyroid disorder: Case report and review of literature. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2019; 120:588-590. [PMID: 30677565 DOI: 10.1016/j.jormas.2019.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/15/2022]
Abstract
Oral lichen planus is a chronic T cell mediated inflammatory condition with multifactorial etiology. Being autoimmune mediated condition, it has been associated with other autoimmune disorders. This case report discusses the possible presentation of oral lichen planus in hypothyroid patients as a marker of severity of the thyroid deficient status and the possible pathogenetic link between both the conditions.
Collapse
Affiliation(s)
- T Pavan Kumar
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India.
| | - R Priyadharshini
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India.
| | - S Sujatha
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India.
| | - N Rakesh
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India.
| | - V Shwetha
- Department of Oral Medicine, Radiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, India
| |
Collapse
|
24
|
Fais S, Logozzi M, Alberti G, Campanella C. Exosomal Hsp60: A Tumor Biomarker? HEAT SHOCK PROTEIN 60 IN HUMAN DISEASES AND DISORDERS 2019. [DOI: 10.1007/978-3-030-23154-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Cappello F, Mazzola M, Jurjus A, Zeenny MN, Jurjus R, Carini F, Leone A, Bonaventura G, Tomasello G, Bucchieri F, Conway de Macario E, Macario AJL. Hsp60 as a Novel Target in IBD Management: A Prospect. Front Pharmacol 2019; 10:26. [PMID: 30800066 PMCID: PMC6376446 DOI: 10.3389/fphar.2019.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) encompasses various pathological conditions similar but distinct that share a multifactorial etiology, including involvement of the intestinal barrier function, the immune system, and intestinal microorganisms. Hsp60 is a chaperonin component of the chaperoning system, present in all cells and tissues, including the intestine. It plays important roles in cell physiology outside and inside mitochondria, its canonical place of residence. However, Hsp60 can also be pathogenic in many conditions, the Hsp60 chaperonopathies, possibly including IBD. The various clinico-pathological types of IBD have a complicated mix of causative factors, among which Hsp60 can be considered a putatively important driver of events and could play an etiopathogenic role. This possibility is discussed in this review. We also indicate that Hsp60 can be a biomarker useful in disease diagnosing and monitoring and, if found active in pathogenesis, should become a target for developing new therapies. The latter are particularly needed to alleviate patient suffering and to prevent complications, including colon cancer.
Collapse
Affiliation(s)
- Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- *Correspondence: Francesco Cappello,
| | - Margherita Mazzola
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Marie-Noel Zeenny
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy and Cell Biology, Faculty Development Associate for Education Research, Center for Faculty Excellence, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Francesco Carini
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Angelo Leone
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Giuseppe Bonaventura
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Giovanni Tomasello
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore – Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore – Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| |
Collapse
|
26
|
Marino Gammazza A, Restivo V, Baschi R, Caruso Bavisotto C, Cefalù AB, Accardi G, Conway de Macario E, Macario AJ, Cappello F, Monastero R. Circulating Molecular Chaperones in Subjects with Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Data from the Zabùt Aging Project. J Alzheimers Dis 2018; 87:161-172. [PMID: 30584145 PMCID: PMC9277667 DOI: 10.3233/jad-180825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and advanced Diagnostic, University of Palermo, Palermo, Italy
- Euro Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Vincenzo Restivo
- Department of Science for Health Promotion and Mother Science Health “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Roberta Baschi
- Department of Biomedicine, Neuroscience and advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and advanced Diagnostic, University of Palermo, Palermo, Italy
- Euro Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Institute of Biophysics, Section of Palermo, National Research Council, Palermo, Italy
| | - Angelo B. Cefalù
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Department of Biomedicine, Neuroscience and advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, USA
| | - Alberto J.L. Macario
- Euro Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Microbiology and Immunology, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, USA
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and advanced Diagnostic, University of Palermo, Palermo, Italy
- Euro Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Roberto Monastero
- Department of Biomedicine, Neuroscience and advanced Diagnostic, University of Palermo, Palermo, Italy
| |
Collapse
|
27
|
Heat Shock Proteins as Immunomodulants. Molecules 2018; 23:molecules23112846. [PMID: 30388847 PMCID: PMC6278532 DOI: 10.3390/molecules23112846] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (Hsps) are conserved molecules whose main role is to facilitate folding of other proteins. Most Hsps are generally stress-inducible as they play a particularly important cytoprotective role in cells exposed to stressful conditions. Initially, Hsps were generally thought to occur intracellulary. However, recent work has shown that some Hsps are secreted to the cell exterior particularly in response to stress. For this reason, they are generally regarded as danger signaling biomarkers. In this way, they prompt the immune system to react to prevailing adverse cellular conditions. For example, their enhanced secretion by cancer cells facilitate targeting of these cells by natural killer cells. Notably, Hsps are implicated in both pro-inflammatory and anti-inflammatory responses. Their effects on immune cells depends on a number of aspects such as concentration of the respective Hsp species. In addition, various Hsp species exert unique effects on immune cells. Because of their conservation, Hsps are implicated in auto-immune diseases. Here we discuss the various metabolic pathways in which various Hsps manifest immune modulation. In addition, we discuss possible experimental variations that may account for contradictory reports on the immunomodulatory function of some Hsps.
Collapse
|
28
|
Sinha AA, Sajda T. The Evolving Story of Autoantibodies in Pemphigus Vulgaris: Development of the "Super Compensation Hypothesis". Front Med (Lausanne) 2018; 5:218. [PMID: 30155465 PMCID: PMC6102394 DOI: 10.3389/fmed.2018.00218] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Emerging data and innovative technologies are re-shaping our understanding of the scope and specificity of the autoimmune response in Pemphigus vulgaris (PV), a prototypical humorally mediated autoimmune skin blistering disorder. Seminal studies identified the desmosomal proteins Desmoglein 3 and 1 (Dsg3 and Dsg1), cadherin family proteins which function to maintain cell adhesion, as the primary targets of pathogenic autoAbs. Consequently, pathogenesis in PV has primarily considered to be the result of anti-Dsg autoAbs alone. However, accumulating data suggesting that anti-Dsg autoAbs by themselves cannot adequately explain the loss of cell-cell adhesion seen in PV, nor account for the disease heterogeneity exhibited across PV patients has spurred the notion that additional autoAb specificities may contribute to disease. To investigate the role of non-Dsg autoAbs in PV, an increasing number of studies have attempted to characterize additional targets of PV autoAbs. The recent advent of protein microarray technology, which allows for the rapid, highly sensitive, and multiplexed assessment of autoAb specificity has facilitated the comprehensive classification of the scope and specificity of the autoAb response in PV. Such detailed deconstruction of the autoimmune response in PV, beyond simply tracking anti-Dsg autoAbs, has provided invaluable new insights concerning disease mechanisms and enhanced disease classification which could directly translate into superior tools for prognostics and clinical management, as well as the development of novel, disease specific treatments.
Collapse
Affiliation(s)
- Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, United States
| | - Thomas Sajda
- Department of Dermatology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
29
|
Meng Q, Li BX, Xiao X. Toward Developing Chemical Modulators of Hsp60 as Potential Therapeutics. Front Mol Biosci 2018; 5:35. [PMID: 29732373 PMCID: PMC5920047 DOI: 10.3389/fmolb.2018.00035] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
The 60 kDa heat shock protein (Hsp60) is classically known as a mitochondrial chaperonin protein working together with co-chaperonin 10 kDa heat shock protein (Hsp10). This chaperonin complex is essential for folding proteins newly imported into mitochondria. However, Hsp60, and/or Hsp10 have also been shown to reside in other subcellular compartments including extracellular space, cytosol, and nucleus. The proteins in these extra-mitochondrial compartments may possess a wide range of functions dependent or independent of its chaperoning activity. But the mechanistic details remain unknown. Mutations in Hsp60 gene have been shown to be associated with neurodegenerative disorders. Abnormality in expression level and/or subcellular localization have also been detected from different diseased tissues including inflammatory diseases and various cancers. Therefore, there is a strong interest in developing small molecule modulators of Hsp60. Most of the reported inhibitors were discovered through various chemoproteomics strategies. In this review, we will describe the recent progress in this area with reported inhibitors from both natural products and synthetic compounds. The former includes mizoribine, epolactaene, myrtucommulone, stephacidin B, and avrainvillamide while the latter includes o-carboranylphenoxyacetanilides and gold (III) porphyrins. The potencies of the known inhibitors range from low micromolar to millimolar concentrations. The potential applications of these inhibitors include anti-cancer, anti-inflammatory diseases, and anti-autoimmune diseases.
Collapse
Affiliation(s)
- Qianli Meng
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, United States
| | - Bingbing X Li
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, United States
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
30
|
Cappello F, Conway de Macario E, Rappa F, Zummo G, Macario AJL. Immunohistochemistry of Human Hsp60 in Health and Disease: From Autoimmunity to Cancer. Methods Mol Biol 2018; 1709:293-305. [PMID: 29177667 DOI: 10.1007/978-1-4939-7477-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hsp60 (also called Cpn60) is a chaperonin with essential functions for cell physiology and survival. Additionally, its involvement in the pathogenesis of a variety of diseases (e.g., some autoimmune disorders and cancer) is becoming evident with new research. For example, the distribution and levels of Hsp60 in cells and tissues have been found altered in many pathologic conditions, and the significance of these alterations is being investigated in a number of laboratories. The aim of this ongoing research is to determine the meaning of these Hsp60 alterations with regard to pathogenetic mechanisms, diagnosis, classification of lesions, and assessing prognosis and response to treatment.Hsp60 occurs in the mitochondria, i.e., its typical residence according to classic knowledge, and also in other locales, such as the cytosol, the cell membrane, the intercellular space, and biological fluids (e.g., blood and cerebrospinal fluid). Detection and quantitative determinations in all these locations are becoming essential components of laboratory pathology in clinics and research. Consequently, immunohistochemistry targeting Hsp60 is also becoming essential for pathologists and researchers interested in disorders involving this chaperonin.In this chapter, we summarize some recent discoveries on the participation of Hsp60 in the pathogenesis of human diseases, and describe in detail how to perform immunohistochemical reactions for detecting the chaperonin, determining its location, and measuring its quantitative levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and IMET; Columbus Center, 701 East Pratt Street, Baltimore, MD, 21202, USA
| | - Francesca Rappa
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giovanni Zummo
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and IMET; Columbus Center, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
31
|
Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins. J Thyroid Res 2017; 2017:4354723. [PMID: 28894619 PMCID: PMC5574310 DOI: 10.1155/2017/4354723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH) receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease.
Collapse
|
32
|
Caruso Bavisotto C, Cappello F, Macario AJL, Conway de Macario E, Logozzi M, Fais S, Campanella C. Exosomal HSP60: a potentially useful biomarker for diagnosis, assessing prognosis, and monitoring response to treatment. Expert Rev Mol Diagn 2017; 17:815-822. [PMID: 28718351 DOI: 10.1080/14737159.2017.1356230] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cell-to-cell communication is imperative for life and it is mediated by sending and receiving information via the secretion and subsequent receptor-mediated detection of biological molecules. Exosomes (EXs) secreted from cells to the extracellular environment play an important role in intercellular communication in normal and pathological conditions. Areas covered: New evidence indicates that tumor cells-derived EXs contribute to cancer progression through the modulation of tumor microenvironment. The exosomal heat shock protein 60 (HSP60) is very likely a key player in intercellular cross-talk, particularly during the progress of diseases, such as cancer. Many studies have focused on the extracellular roles played by HSP60 that pertain to cancer development and immune system stimulation. Our experimental data in vitro and in vivo demonstrated that HSP60 occurs on the surface of EXs secreted by tumour cells. Expert commentary: Exosomal HSP60 has great potential for clinical applications, as a 'liquid biopsy', including its use as biomarker for diagnostics, assessing prognosis, and monitoring disease progression and response to treatment, particularly in cancer.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- a Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy , University of Palermo , Palermo , Italy.,b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | - Francesco Cappello
- a Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy , University of Palermo , Palermo , Italy.,b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | - Alberto J L Macario
- b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy.,c Department of Microbiology and Immunology, School of Medicine , University of Maryland at Baltimore; and IMET , Baltimore , MD , USA
| | - Everly Conway de Macario
- b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy.,c Department of Microbiology and Immunology, School of Medicine , University of Maryland at Baltimore; and IMET , Baltimore , MD , USA
| | - Mariantonia Logozzi
- d Department of Therapeutic Research and Medicines Evaluation , National Institute of Health , Rome , Italy
| | - Stefano Fais
- b Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy.,d Department of Therapeutic Research and Medicines Evaluation , National Institute of Health , Rome , Italy
| | - Claudia Campanella
- a Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy , University of Palermo , Palermo , Italy
| |
Collapse
|
33
|
Jakic B, Buszko M, Cappellano G, Wick G. Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLoS One 2017; 12:e0179383. [PMID: 28604836 PMCID: PMC5467851 DOI: 10.1371/journal.pone.0179383] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/28/2017] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is the leading cause of death in the world. We have previously shown that expression of heat shock protein 60 (HSP60) on the surface of endothelial cells is the main cause of initiating the disease as it acts as a T cell auto-antigen and can be triggered by classical atherosclerosis risk factors, such as infection (e.g. Chlamydia pneumoniae), chemical stress (smoking, oxygen radicals, drugs), physical insult (heat, shear blood flow) and inflammation (inflammatory cytokines, lipopolysaccharide, oxidized low density lipoprotein, advanced glycation end products). In the present study, we show that increasing levels of sodium chloride can also induce an increase in intracellular and surface expression of HSP60 protein in human umbilical vein endothelial cells. In addition, we found that elevated sodium induces apoptosis.
Collapse
Affiliation(s)
- Bojana Jakic
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Maja Buszko
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Caruso Bavisotto C, Nikolic D, Marino Gammazza A, Barone R, Lo Cascio F, Mocciaro E, Zummo G, Conway de Macario E, Macario AJL, Cappello F, Giacalone V, Pace A, Barone G, Palumbo Piccionello A, Campanella C. The dissociation of the Hsp60/pro-Caspase-3 complex by bis(pyridyl)oxadiazole copper complex ( CubipyOXA ) leads to cell death in NCI-H292 cancer cells. J Inorg Biochem 2017; 170:8-16. [DOI: 10.1016/j.jinorgbio.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
|
35
|
Lerner A, Jeremias P, Matthias T. Gut-thyroid axis and celiac disease. Endocr Connect 2017; 6:R52-R58. [PMID: 28381563 PMCID: PMC5435852 DOI: 10.1530/ec-17-0021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
Autoimmune thyroiditis has an increased prevalence in patients with celiac disease and vice versa. The objective of the current review is to highlight the epidemiological, clinical, serological, pathological, pathophysiological, hormonal, genetic and immunological factors shared between the two entities. They might represent the two ends of the gut-thyroid axis where the cross-talks' pathways are still unravelled. New observations are reviewed, highlighting some gut-thyroid interrelated pathways that potentially might lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of MedicineTechnion-Israel Institute of Technology, Haifa, Israel
- AESKU.KIPP InstituteWendelsheim, Germany
| | | | | |
Collapse
|
36
|
Zaghlol RY, Haghighi A, Alkhayyat MM, Theyab OF, Owaydah AM, Massad MM, Atari MA, Zayed AA. Consanguinity and the Risk of Hashimoto's Thyroiditis. Thyroid 2017; 27:390-395. [PMID: 28061551 DOI: 10.1089/thy.2016.0495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is the most common autoimmune thyroid disease that may lead to hypothyroidism due to progressive destruction of the thyroid. The etiology of HT is unclear. However, it is associated with multiple genetic predispositions. Consanguinity has been associated with an increased susceptibility to different inherited conditions. This study investigated the association between consanguinity and risk of HT for the first time. METHODS Using a case-control study design, 298 HT patients were compared with two subject groups: (i) 299 participants with non-HT hypothyroidism, and (ii) 298 healthy control participants. The three groups were age and sex matched. Presence of consanguinity among the parents was compared in these groups, and odds ratios (OR) were calculated to establish a correlation. RESULTS Consanguinity significantly increased the risk of HT (compared with healthy subjects; OR = 3.3; p < 0.0001). In addition, consanguinity was a significant risk factor for HT compared with non-HT hypothyroidism patients (OR = 2.8; p < 0.0001). However, the prevalence of consanguinity was not significantly different in non-HT hypothyroidism patients and healthy subjects. CONCLUSIONS The results suggest that the risk for HT is increased in consanguineous unions, but no significant increase in the risk of non-HT hypothyroidism was observed. However, for more precise risk estimates, larger studies that include different populations may be helpful. These findings highlight the health impact of consanguinity and have applications in empiric risk estimations in genetic counseling, particularly in countries with high rates of consanguineous marriages.
Collapse
Affiliation(s)
- Raja Y Zaghlol
- 1 Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, School of Medicine, The University of Jordan, Jordan University Hospital , Amman, Jordan
| | - Alireza Haghighi
- 2 Department of Genetics, Harvard Medical School , Boston, Massachusetts
- 3 Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
- 4 Howard Hughes Medical Institute , Chevy Chase, Maryland
- 5 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
- 6 Broad Institute of MIT and Harvard , Cambridge, Massachusetts
| | - Motasem M Alkhayyat
- 7 Department of Internal Medicine, Prince Hamza Hospital , The Ministry of Health, Amman, Jordan
| | - Othman F Theyab
- 1 Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, School of Medicine, The University of Jordan, Jordan University Hospital , Amman, Jordan
| | - Amal M Owaydah
- 1 Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, School of Medicine, The University of Jordan, Jordan University Hospital , Amman, Jordan
| | - Mu'taz M Massad
- 1 Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, School of Medicine, The University of Jordan, Jordan University Hospital , Amman, Jordan
| | - Mohammad A Atari
- 1 Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, School of Medicine, The University of Jordan, Jordan University Hospital , Amman, Jordan
| | - Ayman A Zayed
- 1 Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, School of Medicine, The University of Jordan, Jordan University Hospital , Amman, Jordan
| |
Collapse
|
37
|
Hammerstad SS, Stefan M, Blackard J, Owen RP, Lee HJ, Concepcion E, Yi Z, Zhang W, Tomer Y. Hepatitis C Virus E2 Protein Induces Upregulation of IL-8 Pathways and Production of Heat Shock Proteins in Human Thyroid Cells. J Clin Endocrinol Metab 2017; 102:689-697. [PMID: 27860532 PMCID: PMC5413166 DOI: 10.1210/jc.2016-3403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/17/2016] [Indexed: 12/17/2022]
Abstract
CONTEXT Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. SETTING Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. RESULTS HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. CONCLUSION Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms.
Collapse
Affiliation(s)
- Sara Salehi Hammerstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Aker, 0586 Oslo, Norway;
- Department of Pediatrics, Oslo University Hospital, Ullevål, 0450 Oslo, Norway;
| | - Mihaela Stefan
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461;
| | - Jason Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267;
| | | | - Hanna J. Lee
- Department of Medicine, Division of Endocrinology, and
| | - Erlinda Concepcion
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461;
| | - Zhengzi Yi
- Department of Medicine Bioinformatics Core, Mount Sinai Hospital, Icahn School of Medicine, New York, New York 10029
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Mount Sinai Hospital, Icahn School of Medicine, New York, New York 10029
| | - Yaron Tomer
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461;
| |
Collapse
|
38
|
Peng S, Li C, Wang X, Liu X, Han C, Jin T, Liu S, Zhang X, Zhang H, He X, Xie X, Yu X, Wang C, Shan L, Fan C, Shan Z, Teng W. Increased Toll-Like Receptors Activity and TLR Ligands in Patients with Autoimmune Thyroid Diseases. Front Immunol 2016; 7:578. [PMID: 28018345 PMCID: PMC5145898 DOI: 10.3389/fimmu.2016.00578] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/24/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Autoimmune thyroid disease (AITD) is an organ-specific disorder due to the interplay between environmental and genetic factors. Toll-like receptors (TLRs) are pattern recognition receptors expressed abundantly on monocytes. There is a paucity of data on TLR expression in AITD. The aim of this study was to examine TLR expression, activation, ligands, and downstream signaling adaptors in peripheral blood mononuclear cells (PBMCs) extracted from untreated AITD patients and healthy controls. METHOD We isolated PBMC of 30 healthy controls, 36 patients with untreated Hashimoto's thyroiditis, and 30 patients with newly onset Graves' disease. TLR mRNA, protein expression, TLR ligands, and TLR adaptor molecules were measured using real-time PCR, Western blot, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). PBMC was simulated with TLR agonists. The effects of TLR agonists on the viability of human PBMC were evaluated using the MTT assay. The supernatants of cell cultures were measured for the pro-inflammatory cytokines, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), and IL-10 by ELISA. RESULTS TLR2, TLR3, TLR9, and TLR10 mRNA were significantly increased in AITD patients compared with controls. TLR2, TLR3, TLR9, high mobility group box 1 (HMGB1), and RAGE expression on monocytes was higher in patients than control at baseline and TLR agonists' stimulation. The release of TNF-α and IL-6 was significantly increased in PBMCs from AITD patients with TLR agonists, while IL-10 was significantly decreased. Downstream targets of TLR, myeloid differentiation factor 88 (MyD88), and myeloid toll/IL-1 receptor-domain containing adaptor-inducing interferon-β were significantly elevated in AITD patients. Levels of TLR2 ligands, HMGB1, and heat shock protein 60 were significantly elevated in AITD patients compared with those in controls and positively correlated with TgAb and TPOAb, while sRAGE concentration was significantly decreased in AITD patients. CONCLUSION This work is the first to show that TLR2, TLR3, and TLR9 expression and activation are elevated in the PBMCs of patients with AITD and TLRs may participate in the pathogenesis of AITD.
Collapse
Affiliation(s)
- Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Chenyan Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
| | - Xinyi Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xin Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Intensive Care Unit, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng Han
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Ting Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Endocrinology, Sir Run Run Shaw Hospital, Affiliated to School of Medicine, Zhejiang University, Hangzhou, China
| | - Shanshan Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Emergency, People’s Liberation Army No.202 Hospital, Shenyang, China
| | - Xiaowen Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Hanyi Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Xue He
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Xiaochen Xie
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Xiaohui Yu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
| | - Chuyuan Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
| | - Ling Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China,Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Marino Gammazza A, Campanella C, Barone R, Caruso Bavisotto C, Gorska M, Wozniak M, Carini F, Cappello F, D'Anneo A, Lauricella M, Zummo G, Conway de Macario E, Macario AJL, Di Felice V. Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of replicative senescence. Cancer Lett 2016; 385:75-86. [PMID: 27836734 DOI: 10.1016/j.canlet.2016.10.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
The chaperone Hsp60 is pro-carcinogenic in certain tumor types by interfering with apoptosis and with tumor cell death. In these tumors, it is not yet known whether doxorubicin anti-tumor effects include a blockage of the pro-carcinogenic action of Hsp60. We found a doxorubicin dose-dependent viability reduction in a human lung mucoepidermoid cell line that was paralleled by the appearance of cell senescence markers. Concomitantly, intracellular Hsp60 levels decreased while its acetylation levels increased. The data suggest that Hsp60 acetylation interferes with the formation of the Hsp60/p53 complex and/or promote its dissociation, both causing an increase in the levels of free p53, which can then activate the p53-dependent pathway toward cell senescence. On the other hand, acetylated Hsp60 is ubiquitinated and degraded and, thus, the anti-apoptotic effect of the chaperonin is abolished with subsequent tumor cell death. Our findings could help in the elucidation of the molecular mechanisms by which doxorubicin counteracts carcinogenesis and, consequently, it would open new roads for the development of cancer treatment protocols targeting Hsp60.
Collapse
Affiliation(s)
- Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Francesco Carini
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Antonella D'Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, Palermo, Italy
| | - Marianna Lauricella
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, Palermo, Italy
| | - Giovanni Zummo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA; IMET, Columbus Center, Baltimore, MD, USA
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy; Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA; IMET, Columbus Center, Baltimore, MD, USA
| | - Valentina Di Felice
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
40
|
Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep 2016; 6:19781. [PMID: 26812922 PMCID: PMC4728392 DOI: 10.1038/srep19781] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/17/2015] [Indexed: 11/26/2022] Open
Abstract
Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activation of the expression levels of PGC1α isoforms. The levels of Hsp60 protein were fibre-type specific in the posterior muscles and endurance training increased its content in type I muscle fibers. Concomitantly with the increased levels of Hsp60 released in the blood stream of trained mice, mitochondrial copy number and the expression of three isoforms of PGC1α increased. Overexpressing hsp60 in cultured myoblasts induced only the expression of PGC1 1α, suggesting a correlation between Hsp60 overexpression and PGC1 1 α activation.
Collapse
|
41
|
Alcoholic Liver Disease: A Mouse Model Reveals Protection by Lactobacillus fermentum. Clin Transl Gastroenterol 2016; 7:e138. [PMID: 26795070 PMCID: PMC4737872 DOI: 10.1038/ctg.2015.66] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/04/2015] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Alcoholism is one of the most devastating diseases with high incidence, but knowledge of its pathology and treatment is still plagued with gaps mostly because of the inherent limitations of research with patients. We developed an animal model for studying liver histopathology, Hsp (heat-shock protein)-chaperones involvement, and response to treatment. METHODS The system was standardized using mice to which ethanol was orally administered alone or in combination with Lactobacillus fermentum following a precise schedule over time and applying, at predetermined intervals, a battery of techniques (histology, immunohistochemistry, western blotting, real-time PCR, immunoprecipitation, 3-nitrotyrosine labeling) to assess liver pathology (e.g., steatosis, fibrosis), and Hsp60 and iNOS (inducible form of nitric oxide synthase) gene expression and protein levels, and post-translational modifications. RESULTS Typical ethanol-induced liver pathology occurred and the effect of the probiotic could be reliably monitored. Steatosis score, iNOS levels, and nitrated proteins (e.g., Hsp60) decreased after probiotic intake. CONCLUSIONS We describe a mouse model useful for studying liver disease induced by chronic ethanol intake and for testing pertinent therapeutic agents, e.g., probiotics. We tested L. fermentum, which reduced considerably ethanol-induced tissue damage and deleterious post-translational modifications of the chaperone Hsp60. The model is available to test other agents and probiotics with therapeutic potential in alcoholic liver disease.
Collapse
|
42
|
Campanella C, Rappa F, Sciumè C, Marino Gammazza A, Barone R, Bucchieri F, David S, Curcurù G, Caruso Bavisotto C, Pitruzzella A, Geraci G, Modica G, Farina F, Zummo G, Fais S, Conway de Macario E, Macario AJL, Cappello F. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer 2015; 121:3230-3239. [PMID: 26060090 DOI: 10.1002/cncr.29499] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Heat shock protein 60 (Hsp60) is a chaperonin involved in tumorigenesis, but its participation in tumor development and progression is not well understood and its value as a tumor biomarker has not been fully elucidated. In the current study, the authors presented evidence supporting the theory that Hsp60 has potential as a biomarker as well as a therapeutic target in patients with large bowel cancer. METHODS The authors studied a population of 97 subjects, including patients and controls. Immunomorphology, Western blot analysis, and quantitative real-time polymerase chain reaction were performed on tissue specimens. Exosomes were isolated from blood and characterized by electron microscopy, biochemical tests, and Western blot analysis. RESULTS Hsp60 was found to be increased in cancerous tissue, in which it was localized in the tumor cell plasma membrane, and in the interstitium associated with cells of the immune system, in which it was associated with exosomes liberated by tumor cells and, as such, circulated in the blood. An interesting finding was that these parameters returned to normal shortly after tumor removal. CONCLUSIONS The data from the current study suggested that Hsp60 is a good candidate for theranostics applied to patients with large bowel carcinoma and encourage similar research among patients with other tumors in which Hsp60 has been implicated.
Collapse
Affiliation(s)
- Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Francesca Rappa
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Legal Science, Society and Sports, University of Palermo, Palermo, Italy
| | - Carmelo Sciumè
- Department of Oncological Surgery, University of Palermo, Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Sabrina David
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Giuseppe Curcurù
- Department of Chemical, Management, Informatics and Mechanical Engineering, University of Palermo, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Alessandro Pitruzzella
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Girolamo Geraci
- Department of Oncological Surgery, University of Palermo, Palermo, Italy
| | - Giuseppe Modica
- Department of Oncological Surgery, University of Palermo, Palermo, Italy
| | - Felicia Farina
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Giovanni Zummo
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Rome, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
- Institute of Marine and Environmental Technology, Baltimore, Maryland
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
- Institute of Marine and Environmental Technology, Baltimore, Maryland
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
43
|
Cappello F, Macario AJL, Di Stefano A. Hsp27 and Hsp70 in chronic obstructive pulmonary disease: certainties vs doubts. Cell Stress Chaperones 2015; 20:721-3. [PMID: 26194322 PMCID: PMC4529859 DOI: 10.1007/s12192-015-0617-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/03/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Francesco Cappello
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Anatomia Umana, Università degli Studi di Palermo, Palermo, Italy,
| | | | | |
Collapse
|
44
|
Gammazza AM, Colangeli R, Orban G, Pierucci M, Di Gennaro G, Bello ML, D'Aniello A, Bucchieri F, Pomara C, Valentino M, Muscat R, Benigno A, Zummo G, de Macario EC, Cappello F, Di Giovanni G, Macario AJL. Hsp60 response in experimental and human temporal lobe epilepsy. Sci Rep 2015; 5:9434. [PMID: 25801186 PMCID: PMC4371150 DOI: 10.1038/srep09434] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/20/2015] [Indexed: 01/01/2023] Open
Abstract
The mitochondrial chaperonin Hsp60 is a ubiquitous molecule with multiple roles, constitutively expressed and inducible by oxidative stress. In the brain, Hsp60 is widely distributed and has been implicated in neurological disorders, including epilepsy. A role for mitochondria and oxidative stress has been proposed in epileptogenesis of temporal lobe epilepsy (TLE). Here, we investigated the involvement of Hsp60 in TLE using animal and human samples. Hsp60 immunoreactivity in the hippocampus, measured by Western blotting and immunohistochemistry, was increased in a rat model of TLE. Hsp60 was also increased in the hippocampal dentate gyrus neurons somata and neuropil and hippocampus proper (CA3, CA1) of the epileptic rats. We also determined the circulating levels of Hsp60 in epileptic animals and TLE patients using ELISA. The epileptic rats showed circulating levels of Hsp60 higher than controls. Likewise, plasma post-seizure Hsp60 levels in patients were higher than before the seizure and those of controls. These results demonstrate that Hsp60 is increased in both animals and patients with TLE in affected tissues, and in plasma in response to epileptic seizures, and point to it as biomarker of hippocampal stress potentially useful for diagnosis and patient management.
Collapse
Affiliation(s)
- Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Roberto Colangeli
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Gergely Orban
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Massimo Pierucci
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Margherita Lo Bello
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | | | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Cristoforo Pomara
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Forensic Pathology, University of Foggia, Foggia, Italy
| | - Mario Valentino
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Richard Muscat
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Arcangelo Benigno
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giovanni Zummo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore; and IMET, Columbus Center, Baltimore, MD, USA
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Institute “Paolo Sotgiu” for Research in Quantitative and Quantum Psychiatry and Cardiology, University of Human Sciences and Technology (LUDES), Lugano, Switzerland
| | - Giuseppe Di Giovanni
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore; and IMET, Columbus Center, Baltimore, MD, USA
| |
Collapse
|
45
|
Tonello L, Conway de Macario E, Marino Gammazza A, Cocchi M, Gabrielli F, Zummo G, Cappello F, Macario AJL. Data mining-based statistical analysis of biological data uncovers hidden significance: clustering Hashimoto's thyroiditis patients based on the response of their PBMC with IL-2 and IFN-γ secretion to stimulation with Hsp60. Cell Stress Chaperones 2015; 20:391-5. [PMID: 25408301 PMCID: PMC4326379 DOI: 10.1007/s12192-014-0555-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 01/22/2023] Open
Abstract
The pathogenesis of Hashimoto's thyroiditis includes autoimmunity involving thyroid antigens, autoantibodies, and possibly cytokines. It is unclear what role plays Hsp60, but our recent data indicate that it may contribute to pathogenesis as an autoantigen. Its role in the induction of cytokine production, pro- or anti-inflammatory, was not elucidated, except that we found that peripheral blood mononucleated cells (PBMC) from patients or from healthy controls did not respond with cytokine production upon stimulation by Hsp60 in vitro with patterns that would differentiate patients from controls with statistical significance. This "negative" outcome appeared when the data were pooled and analyzed with conventional statistical methods. We re-analyzed our data with non-conventional statistical methods based on data mining using the classification and regression tree learning algorithm and clustering methodology. The results indicate that by focusing on IFN-γ and IL-2 levels before and after Hsp60 stimulation of PBMC in each patient, it is possible to differentiate patients from controls. A major general conclusion is that when trying to identify disease markers such as levels of cytokines and Hsp60, reference to standards obtained from pooled data from many patients may be misleading. The chosen biomarker, e.g., production of IFN-γ and IL-2 by PBMC upon stimulation with Hsp60, must be assessed before and after stimulation and the results compared within each patient and analyzed with conventional and data mining statistical methods.
Collapse
Affiliation(s)
- Lucio Tonello
- />University of Human Sciences and Technology (LUdeS University), Lugano, Switzerland
| | - Everly Conway de Macario
- />Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore; and Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD 21202 USA
| | - Antonella Marino Gammazza
- />Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy
- />Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Massimo Cocchi
- />University of Human Sciences and Technology (LUdeS University), Lugano, Switzerland
- />Department of Veterinary Sciences, University of Bologna, Ozzano dell’Emilia, BO Italy
| | - Fabio Gabrielli
- />University of Human Sciences and Technology (LUdeS University), Lugano, Switzerland
| | - Giovanni Zummo
- />Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Cappello
- />University of Human Sciences and Technology (LUdeS University), Lugano, Switzerland
- />Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy
- />Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Alberto J. L. Macario
- />Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore; and Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD 21202 USA
- />Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy
| |
Collapse
|
46
|
Thyroid autoimmunity as a window to autoimmunity: An explanation for sex differences in the prevalence of thyroid autoimmunity. J Theor Biol 2015; 375:95-100. [PMID: 25576242 DOI: 10.1016/j.jtbi.2014.12.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 01/08/2023]
Abstract
Autoimmune thyroid diseases (AITDs), predominately Graves׳ disease and Hashimoto׳s thyroiditis, comprise the most common autoimmune diseases in humans. Both have the production of anti-thyroid antibody as an important aspect and both are much more prevalent in females, being at least 10 times more common than in males. Using these two clues, a hypothesis for the initiation of thyroid autoimmunity is proposed that helps to make the case that the thyroid is one of the most sensitive sites for autoimmunity and helps account for the prevalence and the observed sex differences in AITDs and associated diseases, such as type 1 diabetes and Latent Autoimmune Diabetes in Adults (LADA). The primary mechanisms proposed involve the underlying state of inflammation as a result of the adipokines, especially leptin, TNF-α, and IL-6, and the receptors able to recognize pathogen-associated molecular patterns (PAMP׳s) and damage-associated molecular patterns (DAMP׳s) through Toll-like receptors (TLR) and others receptors present on thyrocytes. The adipokines are produced by adipose tissue, but have hormone-like and immune modulating properties. As the levels of leptin are significantly higher in females, an explanation for the sex difference in thyroid autoimmunity emerges. The ability of the thyrocytes to participate in innate immunity through the TLR provides an adjuvant-like signal and allows for the action of other agents, such as environmental factors, viruses, bacteria, and even stress to provide the initiation step to break tolerance to thyroid self-antigens. Seeing the thyroid as one of the most sensitive sites for autoimmunity, means that for many autoimmune disorders, if autoimmunity is present, it is likely to also be present in the thyroid - and that that condition in the thyroid was probably earlier. The evidence is seen in multiple autoimmune syndrome.
Collapse
|
47
|
|