1
|
Shalaby AM, Elshamy AM, Albakkosh AM, Alnasser SM, Alorini M, Jaber FA, Alabiad MA, Hanafy SM, Soliman N, Tawfeek SE. Allicin protects against pancreatic damage induced by zearalenone in rats by inhibiting endoplasmic reticulum stress. Tissue Cell 2025; 94:102802. [PMID: 39986130 DOI: 10.1016/j.tice.2025.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Zearalenone (ZEL) is a mycotoxin generated by Fusarium fungus. Ingestion of ZEL-contaminated foods by humans or animals can cause major health concerns. This work assessed the protective role of allicin in mitigating pancreatic damage caused by ZEL in rats. The experimental rats were allocated into control, Allicin (45 mg/kg /day), ZEL (20 mg/kg/ day), and Allicin-ZEL groups. The agents were administered orally for six weeks. ZEL enhanced the serum levels of amylase and lipase, oxidative stress parameters, and endoplasmic reticulum (ER) stress biomarkers, along with a marked decrease in the serum level of insulin. The disturbed architecture of pancreatic acini was demonstrated in the form of vacuolation of acini, degenerated acini with pyknotic nuclei, and infiltration around dilated congested blood vessels, in addition to the presence of dilated intralobular ducts with retained secretions. Also, the islet of Langerhans cells showed vacuolation and darkly stained nuclei. Immunohistochemically, a marked rise in the expression of heat shock protein 70 (HSP70) and P53 and a marked decline in insulin expression were demonstrated. Ultrastructurally, the pancreatic acinar cells and islets of Langerhans cells displayed shrunken irregular nuclei with dilated perinuclear cisternae and dilated rER. Interestingly, co-administration of allicin and ZEL greatly mitigated these detrimental effects. In summary, allicin inhibited pancreatic injury induced by ZEL by decreasing oxidative stress, ER stress, and apoptosis.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Amira Mostafa Elshamy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah 51911, Saudi Arabia
| | - Fatima A Jaber
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Pathology Department, General Medicine Practice program, Batterjee Medical College, Aseer 61961, Saudi Arabia.
| | - Sabah Mohamed Hanafy
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory Medicine Department, Applied Medical Science, Al Baha University, Al Baha, Saudi Arabia
| | - Nema Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Center of Excellence in Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Shereen Elsayed Tawfeek
- Anatomy Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Eleyan M, Zughbur MR, Hussien M, Ayesh BM, Ibrahim KA. Carvacrol modulates antioxidant enzymes, DNA integrity, and apoptotic markers in zearalenone-exposed fetal rat liver. Drug Chem Toxicol 2024:1-10. [PMID: 39538112 DOI: 10.1080/01480545.2024.2425984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Maternal exposure to zearalenone (ZEA), a mycotoxin, can impact fetal liver development. This study investigated the protective effects of carvacrol (CRV) against ZEA-induced fetal liver damage. Thirty-two pregnant rats were allocated to four groups (eight rats/group); control, CRV (75 mg/kg), ZEA (5 mg/kg), and co-treated group (ZEA + CRV). The animals were given their doses during the gestation period. Maternal exposure to ZEA revealed a significant increase in the malondialdehyde (MDA) level in the fetal liver. In contrast, glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities, besides glutathione (GSH) levels, were decreased in ZEA-intoxicated rats. Additionally, ZEA increased the expression of pro-apoptotic genes (P53, Bax, and caspase-9), elevated the immunoreactivity of caspase-3, decreased anti-apoptotic Bcl-2, and induced severe fatty degeneration, congestion, and necrosis in the fetal liver. The comet assays revealed significant DNA damage, as evidenced by reduced head DNA content and increased tail DNA content and tail moment in the ZEA-exposed rats. Surprisingly, co-treatment with CRV significantly mitigated fetal hepatic lipid peroxidation, antioxidant disturbance, apoptosis, and DNA damage after maternal exposure to ZEA. These findings highlight the potential of CRV as a promising approach to mitigate ZEA-associated developmental hepatotoxicity.
Collapse
Affiliation(s)
- Mohammed Eleyan
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
- Faculty of Medicine, Al Azhar University Gaza, Gaza, Palestine
| | | | - Mohamed Hussien
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Pesticide Formulation Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| | - Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
3
|
Wang H, She F, Chen F, Li K, Qin S. Selenium-Chitosan Protects Porcine Endometrial Epithelial Cells from Zearalenone-induced Apoptosis via the JNK/SAPK Signaling Pathway. Biol Trace Elem Res 2024; 202:2075-2084. [PMID: 37610602 DOI: 10.1007/s12011-023-03816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
This study was designed to assess whether selenium-chitosan (Se-CTS) can protect porcine endometrial epithelial cells (PEECs) against damage and apoptosis induced by zearalenone (ZEA) via modulating the JNK/SAPK signaling pathway. The cell cycle, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and apoptosis rates of porcine endometrial epithelial cells were determined, as well as the expression levels of genes related to the SAPK/JNK signaling pathway. The results showed that 3.0 µmol/L Se-CTS decreased the percentage of ZEA-induced G1 phase in PEECs (P < 0.01), whereas 1.5 and 3.0 µmol/L Se-CTS increased the percentage of ZEA-induced percentage of G2 phase of PEECs (P < 0.01). Further, Se-CTS at 1.5 and 3.0 µmol/L improved the ZEA-induced decrease in MMP (P < 0.01), whereas Se-CTS at 0.5, 1.5, and 3.0 µmol/L reduced the increase in ROS levels and apoptosis rate induced by ZEA in PEECs (P < 0.01 or P < 0.05). Furthermore, 3.0 µmol/L Se-CTS ameliorated the increase in the expression of c-Jun N-terminal kinase (JNK), apoptosis signal-regulated kinase (ASK1), and c-Jun induced by ZEA (P < 0.01) and the reduction in mitogen-activated protein kinase kinase 4 (MKK4) and protein 53 (p53) expression (P < 0.01), while 1.5 µmol/L Se-CTS improved the expression of ASK1 and c-Jun induced by ZEA (P < 0.05). The results proved that Se-CTS alleviates ZEA-induced cell cycle stagnation, cell mitochondrial damage, and cell apoptosis via decreasing ZEA-produced ROS and modulating the JNK/SAPK signaling pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Chengyang District, No 700 Changcheng Road, Qingdao, 266109, China.
| | - Kun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China.
- Department of Agricultural Science and Technology, Hotan Vocational and Technical College, 10 Jinghuai Avenue, Beijing Industrial Zone, Hotan, 848000, China.
| |
Collapse
|
4
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
5
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Ambwani S, Dolma R, Sharma R, Kaur A, Singh H, Ruj A, Ambwani TK. Modulation of inflammatory and oxidative stress biomarkers due to dexamethasone exposure in chicken splenocytes. Vet Immunol Immunopathol 2023; 262:110632. [PMID: 37517103 DOI: 10.1016/j.vetimm.2023.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Dexamethasone (DEXA) is a potent corticosteroid, commonly used for treating inflammatory, hypersensitive and allergic conditions. It is administered to birds with tumours. Many studies were conducted on its immunosuppressive effects; however none of the similar study is available employing chicken splenocytes culture system. The present study was conducted to assess DEXA induced alterations in inflammatory and oxidative stress biomarkers in chicken splenocytes due to its in vitro exposure. The maximum non-cytotoxic dose (MNCD) was evaluated and was further used for conducting lymphocytes proliferation assay (LPA), antioxidant assays (lipid peroxidation, GSH, superoxide dismutase and nitric oxide assays) and assessment of mRNA levels of various genes (IL-1β, IL-6, IL-10, LITAF, iNOS, NF-κB1, Nrf-2, Caspase-3 and -9) through qPCR. The MNCD was determined to be 30 ng/ml in chicken splenocytes culture system. DEXA caused reduction in B and T lymphocytes proliferation indicating its immunosuppressive effects, however improved the antioxidant status of the exposed splenocytes. The expression levels of IL-1β, IL-6, iNOS, LITAF and NF-κB1 were significantly reduced while IL-10 was enhanced, which signify potent anti-inflammatory potential of DEXA. NF-κB is a major transcription factor that regulates genes responsible for both, innate and adaptive immune responses and elicits inflammation. The nuclear factor erythroid 2-related factor 2 (Nrf-2) level was found to be up-regulated. Nrf-2 plays important role in combating the oxidant stress and its increased expression could be the reason of improved antioxidant status of DEXA exposed cells. Present findings indicated that DEXA exhibited modulation in anti-inflammatory, immunomodulatory and antioxidant mediators in chicken splenocytes.
Collapse
Affiliation(s)
- Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Rigzin Dolma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Raunak Sharma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Amandip Kaur
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Himani Singh
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Anamitra Ruj
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Tanuj Kumar Ambwani
- Department of Veterinary Physiology and Biochemistry, C.V.A.S., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
7
|
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel) 2023; 13:ani13081386. [PMID: 37106949 PMCID: PMC10135100 DOI: 10.3390/ani13081386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Wang M, Wang Y, Wang S, Hou L, Cui Z, Li Q, Huang H. Selenium alleviates cadmium-induced oxidative stress, endoplasmic reticulum stress and programmed necrosis in chicken testes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160601. [PMID: 36528095 DOI: 10.1016/j.scitotenv.2022.160601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is a common heavy metal pollutant, and one of the important target organs of its toxicity is the testis. Selenium (Se) has the ability to antagonize the toxicity of Cd. However, the mechanism of the alleviating effects of Se on Cd in chicken testis injury through oxidative stress, endoplasmic reticulum stress (ERS), and programmed necrosis remained unclear. To explore this, 80 7-day-old chickens were divided into the Control group, the Se group (1.00 mg/kg Se), the Cd group (150.00 mg/kg Cd), and the CdSe group. On the 30th and 60th days, serum and chicken testis tissue samples were collected for testing. The results showed that Cd exposure resulted in swelling and deformation of seminiferous tubules, and thinning of the seminiferous epithelium. The ROS and MDA increased, and the SOD, CAT, GSH, GSH-Px decreased. The expression of GRP78, PERK, IRE1, ATF6, CHOP, and JNK in the Cd group increased. The expression of TNF-α, TNFR1, RIP1, RIP3, MLKL, and PARP1 increased, while the expression of Caspase-8 decreased. Histopathological changes, oxidative stress, ERS, and programmed necrosis were improved after CdSe treatment. In conclusion, Se antagonized the toxicity of Cd, and Se could alleviate Cd-induced oxidative stress, ERS, and programmed necrosis in chicken testis.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yueyue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Size Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lulu Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zilin Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
9
|
Wu K, Jia S, Xue D, Rajput SA, Liu M, Qi D, Wang S. Dual effects of zearalenone on aflatoxin B1-induced liver and mammary gland toxicity in pregnant and lactating rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114115. [PMID: 36179448 DOI: 10.1016/j.ecoenv.2022.114115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Food and feed are frequently co-contaminated with aflatoxin B1 (AFB1) and zearalenone (ZEN). This study investigated the effects of ZEN on the AFB1-induced liver and mammary gland toxicity in pregnant and lactating rats. AFB1 and ZEN co-exposure inhibited the growth of rats and caused oxidative stress and inflammatory responses in the liver and mammary gland. Compared with the AFB1-only group, damage was aggravated in the AFB1 + 10 mg/kg ZEN group, and the AFB1 + 1 mg/kg ZEN group showed a reduction in some metrics. The metabolomic results of the mammary gland showed that metabolite changes were mainly in lipid, amino acid, and glucose metabolism. Compared with the AFB1 + 0 mg/kg ZEN group, the AFB1 + 1 mg/kg ZEN group had the most metabolite changes. Moreover, AFB1 and ZEN co-exposure reduced the levels of sex hormones and RNA m6A methylation in the mammary gland. We speculate that ZEN affects the toxicity of AFB1 to the liver and mammary gland by interfering with the function of sex hormones, regulating cell proliferation and metabolic processes.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sifan Jia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Minjie Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Qin S, She F, Zhao F, Li L, Chen F. Selenium-chitosan alleviates the toxic effects of Zearalenone on antioxidant and immune function in mice. Front Vet Sci 2022; 9:1036104. [PMID: 36277059 PMCID: PMC9582340 DOI: 10.3389/fvets.2022.1036104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
This study assessed the protective effects of selenium-chitosan (SC) against antioxidant and immune function-related damage induced by zearalenone (ZEN) in mice. In total, 150 female mice were allotted to five groups for a 30-day study. Control mice were fed a basal diet. Mice in the ZEN, ZEN-Se1, ZEN-Se2 and ZEN-Se3 groups were fed the basal diet supplemented with same dose of ZEN (2 mg/kg) and different doses of SC, 0.0, 0.2, 0.4 and 0.6 mg/kg, respectively (calculated by selenium). After 30 days, the total antioxidant capacity (T-AOC) level, glutathione peroxidase (GSH-Px) activity, total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) content in plasma and liver, as well as Con A-induced splenocyte proliferation, plasma interleukins concentrations and liver interleukin mRNA expression levels were determined. The plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, interleukin (IL) contents and mRNA expression levels in the ZEN group were significantly lower than in the control group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN group were significantly higher than in the control group (P < 0.01 or P < 0.05). Additionally, plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, IL-1β, IL-17A, IL-2 and IL-6 contents and mRNA expression levels in ZEN+Se2 and ZEN+Se3 groups were significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN+Se2 and ZEN+Se3 groups were significantly lower than in the ZEN group (P < 0.01 or P < 0.05). The plasma and liver GSH-Px activities, Con A-induced splenocyte proliferation, IL-1β and IL-6 contents, IL-2 and IL-17A mRNA expression levels in the ZEN+Se1 group were also significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas the plasma MDA content in the ZEN+Se1 group was also significantly lower than in the ZEN group (P < 0.01). Thus, SC may alleviate antioxidant function-related damage and immunosuppression induced by ZEN in mice.
Collapse
Affiliation(s)
- Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fanghong Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,*Correspondence: Fu Chen
| |
Collapse
|
11
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Fang M, Hu W, Liu B. Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022; 9:956814. [PMID: 35982930 PMCID: PMC9378959 DOI: 10.3389/fvets.2022.956814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
- *Correspondence: Manxin Fang
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
13
|
Ma Y, Cheng B, Li Y, Wang Z, Li X, Ren A, Wu Q, Zhu D, Ren B. Protective Effect of Nanoselenium on Renal Oxidative Damage Induced by Mercury in Laying Hens. Biol Trace Elem Res 2022; 200:3785-3797. [PMID: 34642862 DOI: 10.1007/s12011-021-02956-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
This study investigated the effects of dietary nanoselenium (nano-Se) supplementation protecting from renal oxidative damages induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se. A total of 576 40-week-old Hyline-White laying hens were randomly allocated to 4 groups with 6 pens per group and 24 hens per pen. The experimental groups were as follows: control (basal diet), control + 27.0 mg/kg Hg, control + 5.0 mg/kg nano-Se, and Hg27.0 + 5.0 mg/kg nano-Se. The results revealed that dietary Hg exposure significantly reduced laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se supplementation partially reversed the reductions. Besides, dietary Hg exposure could induce histopathology damages and apoptosis in kidney, whereas nano-Se addition could alleviate these toxicities effectively. After Hg exposure, the activities and gene expressions of superoxidative dismutase (SOD) (P < 0.05), catalase (CAT) (P < 0.01), glutathione reductase (GR) (P < 0.05) and glutathione peroxidase (GSH-Px) (P < 0.05), and glutathione (GSH) content (P < 0.05) were significantly decreased, while the malondialdehyde (MDA) level was significantly increased (P < 0.05) in kidney. However, nano-Se supplementation partially reversed the levels and gene expressions of these antioxidant biomarkers in kidney. Furthermore, dietary Hg exposure significantly increased the gene expressions of PERK (P < 0.05), ATF4 (P < 0.05), CHOP (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), ASK1 (P < 0.05), Caspase-9 (P < 0.05), Caspase-8 (P < 0.05), Caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se supplementation partially reversed these increases of gene expressions. In summary, this study provides evidence that dietary Hg exposure can induce renal oxidative damages, and elucidates an important role of ER stress pathway in nano-Se alleviating renal apoptosis in laying hens.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Binyao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yumeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhuosi Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiang Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Ao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Doudou Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bingbing Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
14
|
Zhu F, Wang Y. Fumonisin B1 Induces Immunotoxicity and Apoptosis of Chicken Splenic Lymphocytes. Front Vet Sci 2022; 9:898121. [PMID: 35685341 PMCID: PMC9171430 DOI: 10.3389/fvets.2022.898121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Fumonisin B1 (FB1), produced by Fusarium, is among the most abundant and toxic mycotoxin contaminations in feed, causing damages to the health of livestock. However, the mechanisms of FB1 toxicity in chickens are less understood. As splenic lymphocytes play important roles in the immune system, the aim of this study was to investigate the immunotoxic effects and mechanisms of FB1 on chicken splenic lymphocytes. In the present study, the chicken primary splenic lymphocytes were harvested and treated with 0, 2.5, 5, 10, 20 and 40 μg/mL FB1. Then, the cell proliferation, damage, ultrastructure, inflammation and apoptosis were evaluated. Results showed that the proliferation rate of splenic lymphocytes was decreased by FB1 treatments. The activity of lactate dehydrogenase (LDH) was increased by FB1 treatments in a dose-dependent manner, implying the induction of cell damage. Consistently, the ultrastructure of splenic lymphocytes showed that FB1 at all the tested concentrations caused cell structure alterations, including nuclear vacuolation, mitochondrial swelling and mitochondrial crest fracture. Besides, immunosuppressive effects of FB1 were observed by the decreased concentrations of interleukin-2 (IL-2), IL-4, IL-12 and interferon-γ (IFN-γ) in the cell culture supernatant. Furthermore, apoptosis was observed in FB1-treated cells by flow cytometry. The mRNA expressions of apoptosis-related genes showed that the expression of Bcl-2 was decreased, while the expressions of the P53, Bax, Bak-1, and Caspase-3 were increased with FB1 treatment. Similar results were found in the concentrations of apoptosis-related proteins in the cell supernatant by ELISA assay. Moreover, regression analysis indicated that increasing FB1 concentration increased LDH activity, concentrations of Bax, Bak-1 and mRNA expression of Bak-1 linearly, increased M1 area percentage quadratically, decreased concentration of IFN-γ, mRNA expression of Bcl-2 linearly, and decreased concentrations of IL-2 and IL-4 quadratically. Besides, regression analysis also showed reciprocal relationships between IL-12 concentration, Caspase-3 mRNA expression and increasing FB1 concentration. The increasing FB1 concentration could decrease IL-12 concentration and increase Caspase-3 mRNA expression. Altogether, this study reported that FB1 induced the immunotoxicity of chicken splenic lymphocytes and caused splenic lymphocytes apoptosis by the Bcl-2 family-mediated mitochondrial pathway of caspase activation.
Collapse
|
15
|
Sodium selenite attenuates zearalenone-induced apoptosis through inhibition of endoplasmic reticulum stress in goat trophoblast cells. Biometals 2022; 35:699-710. [PMID: 35513732 DOI: 10.1007/s10534-022-00394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/19/2022] [Indexed: 11/02/2022]
Abstract
Zearalenone (ZEL)-induced apoptosis in different cells is mediated by various molecular mechanisms, including endoplasmic reticulum (ER) stress. Selenium, an inorganic micronutrient, has several cytoprotective properties, but its potential protective action against ZEL-induced apoptosis in trophoblast cells and the precise mechanisms remain unclear. In this study, we investigated the effects of sodium selenite, a predominant chemical form of selenium, on cell viability, apoptosis, and progesterone (P4) production in ZEL-treated goat trophoblast cell line and explored the underlying molecular mechanisms. ZEL treatment repressed cell viability and promoted apoptosis, which was accompanied by an enhancement of the activity of caspase 3, a key executioner of apoptosis. ZEL treatment was involved in the upregulation of malonaldehyde (MDA) levels and was implicated in the reduction of the protein expression of selenoprotein S (SELS), thereby triggering protein expression of ER stress biomarkers (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)). However, sodium selenite attenuates these adverse effects, including increases in apoptotic rate, caspase 3 activity, MDA, GRP78, and CHOP expression and decreases in SELS expression in cells treated with ZEL or Thapsigargin (Tg, an ER stress agonist). Simultaneously, 4-phenylbutyric acid (4-PBA, an ER stress antagonist) treatment significantly alleviated the ZEL-induced deleterious effects on cells in response to ZEL, similarly to sodium selenite. In addition, sodium selenite supplementation effectively rescued the ZEL-induced decrease in P4 production in ZEL-treated cells. In summary, these findings suggest that ZEL triggers apoptosis in goat trophoblast cells by downregulating SELS expression and activating the ER stress signaling pathway and that sodium selenite protects against these detrimental effects. This study provides novel insights into the benefits of using selenium against ZEL-induced apoptosis and cellular damage.
Collapse
|
16
|
Jia H, Zhang T, Liu N, Si X, Bai J, Yang Y, Chen Z, Wu Z. 4-Phenylbutyric acid alleviated 3-acetyldeoxynivalenol-induced immune cells response by inhibiting endoplasmic reticulum stress in mouse spleen. Food Chem Toxicol 2022; 164:113002. [PMID: 35413383 DOI: 10.1016/j.fct.2022.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
3-Acetyldeoxynivalenol (3-Ac-DON), an acetylated derivative of deoxynivalenol (DON), has contaminated grains and grain-based products in general and been harmful to human and animal health. However, the damage effects and regulatory mechanisms to the host immune system have not been well explored. In the present study, our results revealed that 3-Ac-DON significantly decreased spleen index, elevated MPO activity, upregulated mRNA and protein levels of IL-1α, IL-1β, IL-6, IL-17A, TNF-α, M-CSF, G-CSF, CCL2, IFN-β, and IL-10 in the spleen and serum. Interestingly, 4-phenylbutyric acid (4-PBA), an inhibitor of endoplasmic reticulum (ER) stress, largely abolished the above adverse effects. Importantly, 3-Ac-DON enhanced the mRNA abundances of ER stress-related indicators, such as BIP, IRE1A, ATF6, XBP-1, EIF2A, ATF4, and CHOP, which were abolished by 4-PBA, indicating the inhibiting effects of ER stress by 4-PBA in the spleen. Furthermore, 3-Ac-DON reshaped the populations of innate immune cells (neutrophils, macrophages, dendritic cells, natural killer cells) and adaptive immune cells (T lymphocytes, helper T cells, suppressor T cells, and B lymphocytes) in the peripheral blood and spleen lymphocytes. In conclusion, our studies demonstrated that the adverse effects of 3-Ac-DON on immune cells response could be implemented by ER stress and the ameliorative effect of 4-PBA.
Collapse
Affiliation(s)
- Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Tongkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Zhu W, Ge M, Li X, Wang J, Wang P, Tai T, Wang Y, Sun J, Shi G. Hyperoside Attenuates Zearalenone-induced spleen injury by suppressing oxidative stress and inhibiting apoptosis in mice. Int Immunopharmacol 2021; 102:108408. [PMID: 34920313 DOI: 10.1016/j.intimp.2021.108408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA) is a ubiquitous mycotoxin contaminant that causes immune toxicity, apoptosis, and oxidative stress in animals. Hyperoside (Hyp) is a flavonol glycoside compound with antioxidant and anti-apoptotic properties. However, the potential of Hyp to prevent ZEA-induced spleen injury remains unknown. To evaluate the chemoprotective effect of Hyp against ZEA-induced spleen injury, 60 male Kunming mice were randomly assigned into five groups. The first two groups were orally treated with ZEA (40 mg/kg) for 30 days, and combined with Hyp (0, 100 mg/kg) treatment. The other three groups are orally treated with normal saline, olive oil, or Hyp (100 mg/kg) for 30 days. Hyperoside had an inhibitory effect against ZEA-induced spleen lesions. In addition, Hyp significantly increased the activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT)], the total antioxidant capacity (T-AOC), and significantly reduced the malondialdehyde (MDA) content reducing ZEA-induced oxidative stress in the spleen. Moreover, the translation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target genes (CAT, NQO1, SOD1, GSS, GCLM, and GCLC) were ameliorated using co-therapy with Hyp before treatment with ZEA. Hyperoside also significantly inhibited the translation and expression of apoptotic genes (caspase3, casepase9, Bax, Bcl-2) and the production of apoptotic bodies induced by ZEA in the spleen. In conclusion, the findings revealed that Hyp inhibited ZEA-induced spleen injury through its antioxidant and anti-apoptotic effects. Thus, it provides a new treatment option for immune system diseases caused by ZEA.
Collapse
Affiliation(s)
- Weifeng Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jiangfeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - PanPan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yuxi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jianxu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Cao L, Zhao J, Xu J, Zhu L, Rahman SU, Feng S, Li Y, Wu J, Wang X. N-acetylcysteine ameliorate cytotoxic injury in piglets sertoli cells induced by zearalenone and deoxynivalenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60276-60289. [PMID: 34156614 DOI: 10.1007/s11356-021-14052-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) and Deoxynivalenol (DON) are two mycotoxins highly detected in agricultural products and feed. Both mycotoxins produce reproductive toxicity and pose a serious threat to human and animal health, among which pigs are the most sensitive animals. Sertoli cells (SCs) play an important role in spermatogenesis; however, the combined toxicity of ZEA and DON and the screening of effective protective agents remains to be determined. By studying the effects of N-acetylcysteine (NAC) on the cells exposed to 20 μM of ZEA and 0.6 μM of DON, we explored the protective mechanism of NAC (4 mM) on the cytotoxic injury of piglets SCs induced by both mycotoxins. The results showed that the combination of ZEA and DON destroy organelles and SCs structures, NAC significantly alleviates the damage caused by ZEA and DON. NAC also significantly increased the expression and distribution of zonula occludens 1 (ZO-1), decreased the relative mRNA and protein expression levels of Bax, Bid, caspase-3, and caspase-9, and increased Bcl-2 expression level and inhibited the decrease of mitochondrial membrane potential. Further, NAC also eases the cell cycle arrest and oxidative stress caused by ZEA and DON. In summary, our results show that NAC could alleviate SCs injury via reducing the oxidative damage and apoptosis caused by ZEA and DON.
Collapse
Affiliation(s)
- Li Cao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Jingru Xu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Lei Zhu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| |
Collapse
|
19
|
The role of pumpkin pulp extract carotenoids against mycotoxin damage in the blood brain barrier in vitro. ACTA ACUST UNITED AC 2021; 72:173-181. [PMID: 34587668 PMCID: PMC8576748 DOI: 10.2478/aiht-2021-72-3541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/01/2021] [Indexed: 12/30/2022]
Abstract
Some mycotoxins such as beauvericin (BEA), ochratoxin A (OTA), and zearalenone (ZEA) can cross the blood brain barrier, which is why we tested the anti-inflammatory action of a pumpkin carotenoid extract (from the pulp) against these mycotoxins and their combinations (OTA+ZEA and OTA+ZEA+BEA) on a blood brain barrier model with co-cultured ECV304 and C6 cells using an untargeted metabolomic approach. The cells were added with mycotoxins at a concentration of 100 nmol/L per mycotoxin and pumpkin carotenoid extract at 500 nmol/L. For control we used only vehicle solvent (cell control) or vehicle solvent with pumpkin extract (extract control). After two hours of exposure, samples were analysed with HPLC-ESI-QTOF-MS. Metabolites were identified against the Metlin database. The proinflammatory arachidonic acid metabolite eoxin (14,15-LTE4) showed lower abundance in ZEA and BEA+OTA+ZEA-treated cultures that also received the pumpkin extract than in cultures that were not treated with the extract. Another marker of inflammation, prostaglandin D2-glycerol ester, was only found in cultures treated with OTA+ZEA and BEA+OTA+ZEA but not in the ones that were also treated with the pumpkin extract. Furthermore, the concentration of the pumpkin extract metabolite dihydromorelloflavone significantly decreased in the presence of mycotoxins. In conclusion, the pumpkin extract showed protective activity against cellular inflammation triggered by mycotoxins thanks to the properties pertinent to flavonoids contained in the pulp.
Collapse
|
20
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Huang CW, Liao WR, How CM, Yen PL, Wei CC. Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117233. [PMID: 33940230 DOI: 10.1016/j.envpol.2021.117233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Zearalenone (ZEN), a mycotoxin with endocrine disruptive activity and oxidative stress generating ability, has been a worldwide environmental concern for its prevalence and persistency. However, the long-term effect of ZEN on aging process is not fully elucidated. Thus, the present study applied the Caenorhabditis elegans model to investigate the aging-related toxic effect and possible underlying mechanisms under prolonged and chronic ZEN exposure. Our results showed that locomotive behaviors significantly decreased in ZEN (0.3, 1.25, 5, 10, 50 μM) treated C. elegans. In addition, lifespan and aging markers including pharyngeal pumping and lipofuscin were also adversely affected by ZEN (50 μM). Furthermore, ZEN (50 μM) increased ROS level and downregulated antioxidant genes resulted from inhibition of nuclear DAF-16 translocation in aged C. elegans, which was further confirmed by more significant aging-related defects observed in ZEN treated daf-16 mutant. In conclusion, our findings suggest that the aging process and aging-related decline were induced by long-term exposure of ZEN in C. elegans, which is associated with oxidative stress, inhibition of antioxidant defense, and transcription factor DAF-16/FOXO.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Wan-Ru Liao
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
| |
Collapse
|
22
|
Li S, Sun W, Zhang K, Zhu J, Jia X, Guo X, Zhao Q, Tang C, Yin J, Zhang J. Selenium deficiency induces spleen pathological changes in pigs by decreasing selenoprotein expression, evoking oxidative stress, and activating inflammation and apoptosis. J Anim Sci Biotechnol 2021; 12:65. [PMID: 33993883 PMCID: PMC8127211 DOI: 10.1186/s40104-021-00587-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background The immune system is one aspect of health that is affected by dietary selenium (Se) levels and selenoprotein expression. Spleen is an important immune organ of the body, which is directly involved in cellular immunity. However, there are limited reports on Se levels and spleen health. Therefore, this study established a Se-deficient pig model to investigate the mechanism of Se deficiency-induced splenic pathogenesis. Methods Twenty-four pure line castrated male Yorkshire pigs (45 days old, 12.50 ± 1.32 kg, 12 full-sibling pairs) were divided into two equal groups and fed Se-deficient diet (0.007 mg Se/kg) or Se-adequate diet (0.3 mg Se/kg) for 16 weeks. At the end of the trial, blood and spleen were collected to assay for erythroid parameters, the osmotic fragility of erythrocytes, the spleen index, histology, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining, Se concentrations, the selenogenome, redox status, and signaling related inflammation and apoptosis. Results Dietary Se deficiency decreased the erythroid parameters and increased the number of osmotically fragile erythrocytes (P < 0.05). The spleen index did not change, but hematoxylin and eosin and TUNEL staining indicated that the white pulp decreased, the red pulp increased, and splenocyte apoptosis occurred in the Se deficient group. Se deficiency decreased the Se concentration and selenoprotein expression in the spleen (P < 0.05), blocked the glutathione and thioredoxin antioxidant systems, and led to redox imbalance. Se deficiency activated the NF-κB and HIF-1α transcription factors, thus increasing pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-17, and TNF-α), decreasing anti-inflammatory cytokines (IL-10, IL-13, and TGF-β) and increasing expression of the downstream genes COX-2 and iNOS (P < 0.05), which in turn induced inflammation. In addition, Se-deficiency induced apoptosis through the mitochondrial pathway, upregulated apoptotic genes (Caspase3, Caspase8, and Bak), and downregulated antiapoptotic genes (Bcl-2) (P < 0.05) at the mRNA level, thus verifying the results of TUNEL staining. Conclusions These results indicated that Se deficiency induces spleen injury through the regulation of selenoproteins, oxidative stress, inflammation and apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00587-x.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiawei Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueting Jia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
23
|
Wu K, Ren C, Gong Y, Gao X, Rajput SA, Qi D, Wang S. The insensitive mechanism of poultry to zearalenone: A review. ACTA ACUST UNITED AC 2021; 7:587-594. [PMID: 34377845 PMCID: PMC8327487 DOI: 10.1016/j.aninu.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
Zearalenone (ZEN) is one of the most common contaminating mycotoxins and is mainly produced by Fusarium graminearum. ZEN and its metabolites can interfere with estrogen function and affect animals' reproductive ability. Pigs are most susceptible to ZEN, and ZEN is less harmful to poultry than to pigs. The exact mechanism for the difference in susceptibility remains unclear. In this review, we summarized some possible reasons for the relative insensitivity of poultry to ZEN, such as the lower total amount of α-zearalenol (α-ZOL) and the α-ZOL-to-β-ZOL ratio which reduce the toxicity of ZEN to poultry. The faster hepatic and enteric circulation, and excretion capacity in poultry can excrete more ZEN and its metabolites. There are other possible factors such as the transformation of intestinal microorganisms, differences in hydroxysteroid dehydrogenases' activity, high estrogen levels, and low estrogen receptors affinity which can also cause poultry to be relatively insensitive to ZEN. In this review, we summarized the hazards, pollution status, metabolic pathways, and some measures to mitigate ZEN's harmfulness. Specifically, we discussed the possible mechanisms of low reproductive toxicity by ZEN in poultry.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxi Ren
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangfan Gong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Gao
- Cargill Animal Nutrition Technology Application Center, Bazhou, 065000, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
24
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
25
|
Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In Vivo Studies. Int J Mol Sci 2020; 22:ijms22010217. [PMID: 33379332 PMCID: PMC7794799 DOI: 10.3390/ijms22010217] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, kaempferol (KFL) shows hepatoprotective activity against zearalenone (ZEA)-induced oxidative stress and its underlying mechanisms in in vitro and in vivo models were investigated. Oxidative stress plays a critical role in the pathophysiology of various hepatic ailments and is normally regulated by reactive oxygen species (ROS). ZEA is a mycotoxin known to exert toxicity via inflammation and ROS accumulation. This study aims to explore the protective role of KFL against ZEA-triggered hepatic injury via the PI3K/Akt-regulated Nrf2 pathway. KFL augmented the phosphorylation of PI3K and Akt, which may stimulate antioxidative and antiapoptotic signaling in hepatic cells. KFL upregulated Nrf2 phosphorylation and the expression of antioxidant genes HO-1 and NQO-1 in a dose-dependent manner under ZEA-induced oxidative stress. Nrf2 knockdown via small-interfering RNA (siRNA) inhibited the KFL-mediated defence against ZEA-induced hepatotoxicity. In vivo studies showed that KFL decreased inflammation and lipid peroxidation and increased H2O2 scavenging and biochemical marker enzyme expression. KFL was able to normalize the expression of liver antioxidant enzymes SOD, CAT and GSH and showed a protective effect against ZEA-induced pathophysiology in the livers of mice. These outcomes demonstrate that KFL possesses notable hepatoprotective roles against ZEA-induced damage in vivo and in vitro. These protective properties of KFL may occur through the stimulation of Nrf2/HO-1 cascades and PI3K/Akt signaling.
Collapse
|
26
|
Shalihat A, Hasanah AN, Mutakin, Lesmana R, Budiman A, Gozali D. The role of selenium in cell survival and its correlation with protective effects against cardiovascular disease: A literature review. Biomed Pharmacother 2020; 134:111125. [PMID: 33341057 DOI: 10.1016/j.biopha.2020.111125] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium is a trace element that provides protection against cellular damage and death. Previous research using several types of cells identified anti-oxidant, anti-inflammatory, and anti-apoptotic effects for selenium. One of the diseases related to selenium is cardiovascular disease, as low selenium intake has been linked to cardiomyopathy. However, the mechanism of the cardioprotective effects of selenium is not thoroughly understood. Several studies supported the possible effects of selenium on heart cell survival. In this review, we analyzed recent research (2015-2020) on the roles and mechanism of action of selenium in cell survival and its cardioprotective effects. Furthermore, the prevention of apoptosis through both intrinsic and extrinsic pathways is discussed in this review. Signalling pathways that regulate cell survival such as the p-AMPK, poly (ADP-ribose) polymerase-1, nuclear factor-erythroid 2-related factor-2, AKT/PI3K, and STAT pathways are involved in the protective effects of selenium. In addition, signaling pathways that affect heart cell survival include the AKT and STAT pathways. It also affects autophagy through the PPAR-γ pathway. These findings should facilitate further research on the cardioprotective effects of selenium.
Collapse
Affiliation(s)
- Ayu Shalihat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia; Departement of Pharmacy, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Jl. Soekarno - Hatta No. 752, Cipadung Kidul, Panyileukan, Bandung, 40614, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia.
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia; Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
27
|
Zhang J, Zheng S, Wang S, Liu Q, Xu S. Cadmium-induced oxidative stress promotes apoptosis and necrosis through the regulation of the miR-216a-PI3K/AKT axis in common carp lymphocytes and antagonized by selenium. CHEMOSPHERE 2020; 258:127341. [PMID: 32563067 DOI: 10.1016/j.chemosphere.2020.127341] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a primary environmental pollutant which causes the immune dysfunction of aquatic animals. MicroRNAs (miRNAs) play a key role in programmed necrosis and apoptosis of immune organs. Selenium (Se), known as an important element, can antagonize Cd toxicity in birds, but the impact of Se on common carps (Cyprinus carpio) has not been reported. To investigate the Cd-induced immunotoxicity mechanism mediated by miR-216a in splenic lymphocytes of common carp and antagonized by Se, we extracted lymphocytes from the spleen and divided them into control group, Se group (10-6 mol/L of Na2SeO3), Se + Cd group and Cd group (4 × 10-5 mol/L of CdCl2). After 6 h of incubation, AO/EB staining, Flow cytometry, qPCR and Western blot were performed. The results showed that Cd exposure caused the apoptosis (BAX, Bcl-2, Caspase 3, Caspase 9) and programmed necrosis (RIP, RIP3, MLKL) in lymphocytes, increased the expression of CYP enzymes, glycometabolism-related enzymes and production of ROS, while irritated the oxidative stress (MDA, SOD, CAT and GSH-PX), upregulated the expression of miR-216a which attenuated the levels of PI3K. However, those variations were apparently mitigated in the Se + Cd group. In short, we have proven that Cd activates oxidative stress and miR-216a-PI3K/AKT axis disorder, thus promoting apoptosis and necrosis in lymphocytes. Moreover, Se can antagonize Cd-triggered apoptosis and necrosis in lymphocytes.
Collapse
Affiliation(s)
- Jiaqi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
28
|
Liu TH, Tu WQ, Tao WC, Liang QE, Xiao Y, Chen LG. Verification of Resveratrol Inhibits Intestinal Aging by Downregulating ATF4/Chop/Bcl-2/Bax Signaling Pathway: Based on Network Pharmacology and Animal Experiment. Front Pharmacol 2020; 11:1064. [PMID: 32754039 PMCID: PMC7366860 DOI: 10.3389/fphar.2020.01064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is one of the most well-known drugs used in the treatment of aging. However, the potential mechanisms of resveratrol on intestinal aging have not yet been fully investigated. Herein, we aimed to further explore the pharmacological mechanisms of resveratrol as a therapy for intestinal aging. We performed network construction and enrichment analysis via network pharmacology. Then a further animal experimental validation containing 20 female C57BL/6J (wild type, WT) and 16 female ATF4+/- (knock down, KD) naturally aging mice and oral supplementary resveratrol (44 mg/kg/day) for 30 days were conducted. The expression of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), linear alkylethoxylate (AE), and malondialdehyde (MDA) were measured by ELISA, the observation of pathological changes and apoptosis in intestinal tissue were performed by HE, PAS, and TUNEL staining, the ATF4/Chop/Bcl-2/Bax signaling pathway-related proteins and mRNAs expression were measured by western blotting and real-time PCR. The network pharmacology showed 132 targets of resveratrol on aging. The enrichment analysis showed resveratrol antiaging involved mainly included protein heterodimerization activity, apoptosis, etc. Then ATF4/Chop/Bcl-2/Bax signaling pathway in biological process of apoptosis was selected to verify the potential mechanisms. Animal studies showed resveratrol upregulated the relative expression of SOD, GSH-Px, CAT, AE, whereas it downregulated the relative expression of MDA in intestine compared with the control group. There was also higher relative expression of SOD, GSH-Px, CAT, AE, and lower relative expression of MDA in KD mice than that in WT mice. Moreover, there was higher relative expression of SOD, GSH-Px, CAT, AE, and lower relative expression of MDA in KD mice than that in WT mice after resveratrol treatment. Decreased ATF4, Chop, Bax but increased Bcl-2 proteins and mRNAs expression were determined after resveratrol treatment compared with the control group; lower ATF4, Chop, Bax but higher Bcl-2 proteins and mRNAs expression were found in KD mice than that in WT mice. Additionally, lower relative proteins and mRNAs expression of ATF4, Chop, Bax and higher relative expression of Bcl-2 in KD mice than that in WT mice after resveratrol treatment. These findings demonstrated that resveratrol substantially inhibited intestinal aging via downregulating ATF4/Chop/Bcl-2/Bax signaling pathway.
Collapse
Affiliation(s)
- Tian-Hao Liu
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Wan-Qing Tu
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Wen-Cong Tao
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Qiu-Er Liang
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Ya Xiao
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-Guo Chen
- College of Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Güner A. Toxic and irritant effects induced by zearalenone: prevention by taurine. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1777432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Adem Güner
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
30
|
Yoon JE, Lee KY, Seok JS, Cheng WN, Kwon HC, Jeong CH, Han SG. Zearalenone Induces Endoplasmic Reticulum Stress and Modulates the Expression of Phase I/II Enzymes in Human Liver Cells. Toxins (Basel) 2019; 12:E2. [PMID: 31861425 PMCID: PMC7020402 DOI: 10.3390/toxins12010002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by Fusarium species; however, its mechanisms of action in human livers have not been fully elucidated. Thus, we investigated the toxic mechanisms of ZEN in human liver cells. HepG2 cells were treated with ZEN (0-40 μg/mL) for up to 24 h. A significant decrease in cell viability was observed after treatment with 20 and 40 μg/mL of ZEN, including a significant increase in apoptosis and reactive oxygen species production. ZEN increased GRP78 and CHOP, and eIF2α phosphorylation, indicating ER stress; elevated transcription of the autophagy-associated genes, beclin1 and LC3, and translation of LC3; and increased phase I metabolism by increasing PXR and CYP3A4. The protein expression level of CYP3A4 was higher with ZEN treatment up to 20 μg/mL, but remained at the control level after treatment with 40 μg/mL ZEN. In phase II metabolism, Nrf2 activation and UGT1A expression were increased with ZEN treatment up to 20 μg/mL. Treating cells with an ER stress inhibitor alleviated ZEN-induced cell death and autophagy, and inhibited the expression of phase I/II enzymes. Overall, high ZEN concentrations can modulate the expression of phase I/II enzymes via ER stress and reduced protein levels in human liver cells.
Collapse
Affiliation(s)
- Jee Eun Yoon
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (J.E.Y.); (J.S.S.); (W.N.C.); (H.C.K.); (C.H.J.)
| | - Kwang Yong Lee
- R & D department, Morningbio Co., Ltd., Cheonan 31111, Korea;
| | - Jin Sil Seok
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (J.E.Y.); (J.S.S.); (W.N.C.); (H.C.K.); (C.H.J.)
| | - Wei Nee Cheng
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (J.E.Y.); (J.S.S.); (W.N.C.); (H.C.K.); (C.H.J.)
| | - Hyuk Cheol Kwon
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (J.E.Y.); (J.S.S.); (W.N.C.); (H.C.K.); (C.H.J.)
| | - Chang Hee Jeong
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (J.E.Y.); (J.S.S.); (W.N.C.); (H.C.K.); (C.H.J.)
| | - Sung Gu Han
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (J.E.Y.); (J.S.S.); (W.N.C.); (H.C.K.); (C.H.J.)
| |
Collapse
|
31
|
Zheng W, Fan W, Feng N, Lu N, Zou H, Gu J, Yuan Y, Liu X, Bai J, Bian J, Liu Z. T he Role of miRNAs in Zearalenone-Promotion of TM3 Cell Proliferation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091517. [PMID: 31035709 PMCID: PMC6540048 DOI: 10.3390/ijerph16091517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin produced by several Gibberella and Fusarium species. Accumulating evidence has indicated that ZEA strongly stimulates cell proliferation. However the detailed molecular and cellular mechanisms of ZEA-mediated induction of cell proliferation have not yet been completely explained. The aim of this study was to detect the role of miRNAs in ZEA-mediated induction of cell proliferation. The effects of ZEA on cell proliferation were assessed using a cell counting kit assay and xCELLigence system. Micro-RNA sequencing was performed after treatment of TM3 cells with ZEA (0.01 μmol/L) for different time periods (0, 2, 6 and 18 h). Cell function and pathway analysis of the miRNA target genes were performed by Ingenuity Pathway Analysis (IPA). We found that ZEA promotes TM3 cell proliferation at low concentrations. miRNA sequenceing revealed 66 differentially expressed miRNAs in ZEA-treated cells in comparison to the untreated control ( p < 0.05). The miRNA sequencing indicated that compared to control group, there were 66 miRNAs significant change (p < 0.05) in ZEA-treated groups. IPA analysis showed that the predicated miRNAs target gene involved in cell Bio-functions including cell cycle, growth and proliferation, and in signaling pathways including MAPK and RAS-RAF-MEK-ERK pathways. Results from flow cytometry and Western Blot analysis validated the predictions that ZEA can affect cell cycle, and the MAPK signaling pathway. Taking these together, the cell proliferation induced ZEA is regulated by miRNAs. The results shed light on the molecular and cellular mechanisms for the mediation of ZEA to induce proliferation.
Collapse
Affiliation(s)
- Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Wentong Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
32
|
Moslehi A, Komeili-movahed T, Moslehi M. Antioxidant effects of amygdalin on tunicamycin-induced endoplasmic reticulum stress in the mice liver: Cross talk between endoplasmic reticulum stress and oxidative stress. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2019. [DOI: 10.4103/jrptps.jrptps_35_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|