1
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024; 88:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Li H, Qin Y, Huang Y, Wang J, Ren B. SPAG5, the upstream protein of Wnt and the target of curcumin, inhibits hepatocellular carcinoma. Oncol Rep 2023; 50:172. [PMID: 37539742 PMCID: PMC10433440 DOI: 10.3892/or.2023.8609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/22/2023] [Indexed: 08/05/2023] Open
Abstract
The inhibitory role of curcumin on sperm-associated antigen 5 (SPAG5) and its effects on the cancer‑related Wnt classical signaling pathway has been previously demonstrated. Nevertheless, research on the modulatory role of curcumin on the Wnt signaling pathway by acting on SPAG5 has yet to be reported. The activation of the Wnt/β‑catenin pathway is frequently observed in patients suffering from hepatocellular carcinoma (HCC), suggesting that small molecular drugs that target Wnt could present a promising therapeutic strategy. However, these drugs often result in substantial side effects. In the present study, the presence of SPAG5 in the cancer tissues of patients with HCC and cell lines was validated using immunohistochemistry, cellular immunofluorescence, reverse transcription‑quantitative polymerase chain reaction, and western blot analyses. Subsequently, the effect of SPAG5 and the regulatory role of curcumin on SPAG5 and the Wnt/β‑catenin pathway were examined using cell function tests, flow cytometry, and western blotting. Techniques of gene knockout and overexpression were employed. The findings revealed a significant overexpression of SPAG5 in the cancer tissues of patients with HCC. Both the mRNA and protein levels of SPAG5 in Huh7 and HCCLM3 cell lines were markedly elevated. Treatment with curcumin led to a decrease in SPAG5 expression, while also inhibiting cell migration and promoting apoptosis. Additionally, suppression of SPAG5 expression resulted in the decreased expression of β‑catenin. Furthermore, curcumin was observed to reduce the expression of cyclin D1 in SPAG5‑overexpressing cell lines. However, the degree of inhibition was diminished once SPAG5 expression was silenced. These initial findings indicate that SPAG5 may function as an upstream regulatory protein of the Wnt/β‑catenin pathway, hence offering a potential alternative target for HCC. Moreover, as curcumin has the capacity to inhibit Wnt via suppressing SPAG5, it could potentially serve as a natural drug component for early intervention and treatment of HCC.
Collapse
Affiliation(s)
- Huiyang Li
- Clinical Medical College of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Yanfei Qin
- Clinical Medical College of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Yiran Huang
- Clinical Medical College of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Jinquan Wang
- Clinical Medical College of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Biqiong Ren
- Clinical Medical College of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
3
|
Han J, Jang KL. All- trans Retinoic Acid Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation. Viruses 2023; 15:1456. [PMID: 37515144 PMCID: PMC10386411 DOI: 10.3390/v15071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to abolish the potential of HBx to downregulate the levels of p14, p16, and p21 and to stimulate cell growth during hepatitis B virus (HBV) infection, contributing to its chemopreventive and therapeutic effects against HBV-associated hepatocellular carcinoma. Here, we demonstrated that ATRA antagonizes HBx to inhibit HBV replication. For this effect, ATRA individually or in combination with HBx upregulated p53 levels, resulting in upregulation of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induces ubiquitination and proteasomal degradation of HBx in the presence of ATRA. The ability of ATRA to induce Siah-1-mediated HBx degradation and the subsequent inhibition of HBV replication was proven in an in vitro HBV replication model. The effects of ATRA became invalid when either p53 or Siah-1 was knocked down by a specific shRNA, providing direct evidence for the role of p53 and Siah-1 in the negative regulation of HBV replication by ATRA.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Liu C, Zhao K, Chen Y, Yao Y, Tang J, Wang J, Xu C, Yang Q, Zheng Y, Yuan Y, Sun H, Zhang Y, Zhou Y, Chen J, Wang Y, Wu C, Pei R, Chen X. Mitochondrial Glycerol-3-Phosphate Dehydrogenase Restricts HBV Replication via the TRIM28-Mediated Degradation of HBx. J Virol 2023; 97:e0058023. [PMID: 37166302 PMCID: PMC10231258 DOI: 10.1128/jvi.00580-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
Hepatitis B virus (HBV) infection affects hepatic metabolism. Serum metabolomics studies have suggested that HBV possibly hijacks the glycerol-3-phosphate (G3P) shuttle. In this study, the two glycerol-3-phosphate dehydrogenases (GPD1 and GPD2) in the G3P shuttle were analyzed for determining their role in HBV replication and the findings revealed that GPD2 and not GPD1 inhibited HBV replication. The knockdown of GPD2 expression upregulated HBV replication, while GPD2 overexpression reduced HBV replication. Moreover, the overexpression of GPD2 significantly reduced HBV replication in hydrodynamic injection-based mouse models. Mechanistically, this inhibitory effect is related to the GPD2-mediated degradation of HBx protein by recruiting the E3 ubiquitin ligase TRIM28 and not to the alterations in G3P metabolism. In conclusion, this study revealed GPD2, a key enzyme in the G3P shuttle, as a host restriction factor in HBV replication. IMPORTANCE The glycerol-3-phosphate (G3P) shuttle is important for the delivery of cytosolic reducing equivalents into mitochondria for oxidative phosphorylation. The study analyzed two key components of the G3P shuttle and identified GPD2 as a restriction factor in HBV replication. The findings revealed a novel mechanism of GPD2-mediated inhibition of HBV replication via the recruitment of TRIM28 for degrading HBx, and the HBx-GPD2 interaction could be another potential therapeutic target for anti-HBV drug development.
Collapse
Affiliation(s)
- Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxuan Yao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Jielin Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Guangzhou Laboratory, Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yi Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | | | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Guangzhou Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zhao K, Guo F, Wang J, Zhong Y, Yi J, Teng Y, Xu Z, Zhao L, Li A, Wang Z, Chen X, Cheng X, Xia Y. Limited disassembly of cytoplasmic hepatitis B virus nucleocapsids restricts viral infection in murine hepatic cells. Hepatology 2023; 77:1366-1381. [PMID: 35718932 DOI: 10.1002/hep.32622] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Murine hepatic cells cannot support hepatitis B virus (HBV) infection even with supplemental expression of viral receptor, human sodium taurocholate cotransporting polypeptide (hNTCP). However, the specific restricted step remains elusive. In this study, we aimed to dissect HBV infection process in murine hepatic cells. APPROACH AND RESULTS Cells expressing hNTCP were inoculated with HBV or hepatitis delta virus (HDV). HBV pregenomic RNA (pgRNA), covalently closed circular DNA (cccDNA), and different relaxed circular DNA (rcDNA) intermediates were produced in vitro . The repair process from rcDNA to cccDNA was assayed by in vitro repair experiments and in mouse with hydrodynamic injection. Southern blotting and in situ hybridization were used to detect HBV DNA. HBV, but not its satellite virus HDV, was restricted from productive infection in murine hepatic cells expressing hNTCP. Transfection of HBV pgRNA could establish HBV replication in human, but not in murine, hepatic cells. HBV replication-competent plasmid, cccDNA, and recombinant cccDNA could support HBV transcription in murine hepatic cells. Different rcDNA intermediates could be repaired to form cccDNA both in vitro and in vivo . In addition, rcDNA could be detected in the nucleus of murine hepatic cells, but cccDNA could not be formed. Interestingly, nuclease sensitivity assay showed that the protein-linked rcDNA isolated from cytoplasm was completely nuclease resistant in murine, but not in human, hepatic cells. CONCLUSIONS Our results imply that the disassembly of cytoplasmic HBV nucleocapsids is restricted in murine hepatic cells. Overcoming this limitation may help to establish an HBV infection mouse model.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Fangteng Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Youquan Zhong
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Junzhu Yi
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Li Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Aixin Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Zichen Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Xinwen Chen
- State Key Laboratory of Virology , Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan , China
- Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , Guangzhou , China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
- Wuhan University Center for Pathology and Molecular Diagnostics , Zhongnan Hospital of Wuhan University , Wuhan , China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases , Wuhan , China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| |
Collapse
|
6
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
7
|
Yoon H, Han J, Jang KL. Hepatitis B Virus X Protein Stimulates Hepatitis C Virus (HCV) Replication by Protecting HCV Core Protein from E6AP-Mediated Proteasomal Degradation. Microbiol Spectr 2022; 10:e0143222. [PMID: 36374094 PMCID: PMC9784765 DOI: 10.1128/spectrum.01432-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the underlying mechanism remains unclear. In this study, we found that the HBV X protein (HBx) upregulates the levels of the HCV core protein to stimulate HCV replication during coinfection in human hepatoma cells. For this purpose, HBx upregulated both the protein levels and enzyme activities of cellular DNA methyltransferase 1 (DNMT1) and DNMT3b, and this subsequently reduced the expression levels of the E6-associated protein (E6AP), an E3 ligase of the HCV core protein, via DNA methylation. The ubiquitin-dependent proteasomal degradation of the HCV core protein was severely impaired in the presence of HBx, whereas this effect was not observed when E6AP was either ectopically expressed or restored by treatment with 5-aza-2'dC or DNMT1 knockdown. The effect of HBx on the HCV core protein was accurately reproduced in HBV/HCV coinfection systems, which were established by either monoinfection by HCV in Huh7D cells transfected with a 1.2-mer HBV replicon or coinfection by HBV and HCV in Huh7D-Na+-taurocholate cotransporting polypeptide cells, providing evidence for the stimulation of HCV replication by HBx. The present study may provide insights into understanding HCV dominance during HBV/HCV coinfection in patients. IMPORTANCE Hepatitis B virus (HBV) and hepatitis C virus (HCV) are major human pathogens that cause a substantial proportion of liver diseases worldwide. As the two hepatotropic viruses have the same modes of transmission, coinfection is often observed, especially in areas and populations where HBV is endemic. High-risk populations include people who inject drugs. Both clinical and experimental studies have shown that HCV is more dominant than HBV during coinfection, but the underlying mechanism remains unclear. In this study, we show that HBV X protein (HBx) stimulates HCV replication by inhibiting the expression of E6-associated protein (E6AP) via DNA methylation, thereby protecting the HCV core protein from proteasomal degradation, which can contribute to HCV dominance during HBV/HCV coinfection.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Yoon H, Jang KL. Hepatitis B virus X protein and hepatitis C virus core protein cooperate to repress E-cadherin expression via DNA methylation. Heliyon 2022; 8:e09881. [PMID: 35832344 PMCID: PMC9272347 DOI: 10.1016/j.heliyon.2022.e09881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
|
9
|
Song Y, Shou S, Guo H, Gao Z, Liu N, Yang Y, Wang F, Deng Q, Liu J, Xie Y. Establishment and Characterization of a New Cell Culture System for Hepatitis B Virus Replication and Infection. Virol Sin 2022; 37:558-568. [PMID: 35568375 PMCID: PMC9437612 DOI: 10.1016/j.virs.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis B virus (HBV) is a primary cause of chronic liver diseases in humans. HBV infection exhibits strict host and tissue tropism. HBV core promoter (Cp) drives transcription of pregenomic RNA (pgRNA) and plays a key role in the viral life cycle. Hepatocyte nuclear factor 4α (HNF4α) acts as a major transcriptional factor that stimulates Cp. In this work, we reported that BEL7404 cell line displayed a high efficiency of DNA transfection and high levels of HBV antigen expression after transfection of HBV replicons without prominent viral replication. The introduction of exogenous HNF4α and human sodium taurocholate cotransporting polypeptide (hNTCP) expression into BEL7404 made it permissive for HBV replication and susceptible to HBV infection. BEL7404-derived cell lines with induced HBV permissiveness and susceptibility were constructed by stable co-transfection of hNTCP and Tet-inducible HNF4α followed by limiting dilution cloning. HBV replication in such cells was sensitive to inhibition by nucleotide analog tenofovir, while the infection was inhibited by HBV entry inhibitors. This cell culture system provides a new and additional tool for the study of HBV replication and infection as well as the characterization of antiviral agents. BEL7404 cells are characterized by a high transfection efficiency, but do not support canonical HBV replication. BEL7404 cells lack endogenous HNF4α expression, and exogenous HNF4α rescues canonical HBV replication. BEL7404 cells with stable hNTCP and inducible HNF4α expression support HBV infection and inducible replication. BEL7404-derived cell lines supporting HBV infection retain high transfection efficiencies and allow testing of antivirals.
Collapse
Affiliation(s)
- Yingying Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shuyu Shou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huimin Guo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Children's Hospital, Fudan University, Shanghai 201102, China.
| |
Collapse
|
10
|
Enhanced host immune responses in presence of HCV facilitate HBV clearance in coinfection. Virol Sin 2022; 37:408-417. [PMID: 35523417 PMCID: PMC9243674 DOI: 10.1016/j.virs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/21/2022] [Indexed: 01/21/2023] Open
Abstract
Hepatitis B virus (HBV)/Hepatitis C virus (HCV) coinfection is frequently observed because of the common infection routine. Despite the reciprocal inhibition exerted by HBV and HCV genomes, the coinfection of HBV and HCV is associated with more severe forms of liver diseases. However, the complexity of viral interference and underlying pathological mechanism is still unclarified. With the demonstration of absence of direct viral interplay, some in vitro studies suggest the indirect effects of viral-host interaction on viral dominance outcome. Here, we comprehensively investigated the viral replication and host immune responses which might mediate the interference between viruses in HBV/HCV coinfected Huh7-NTCP cells and immunocompetent HCV human receptors transgenic ICR mice. We found that presence of HCV significantly inhibited HBV replication in vitro and in vivo irrespective of the coinfection order, while HBV did not affect HCV replication. Pathological alteration was coincidently reproduced in coinfected mice. In addition to the participation of innate immune response, an involvement of HCV in up-regulating HBV-specific immune responses was described to facilitate HBV clearance. Our systems partially recapitulate HBV/HCV coinfection and unveil the uncharacterized adaptive anti-viral immune responses during coinfection, which renews the knowledge on the nature of indirect viral interaction during HBV/HCV coinfection. HCV inhibited HBV replication in Huh7-NTCP cells. HCV suppressed HBV in immunocompetent mice. Induced innate immune response by HCV limited HBV replication. Presence of HCV enhanced HBV specific immune response. Moderate and acute live injure was caused by HBV/HCV coinfection.
Collapse
|
11
|
Yao Y, Yang B, Chen Y, Huang D, Liu C, Sun H, Hu X, Zhou Y, Wang Y, Chen J, Pei R, Wen Z, Chen X. RNA-Binding motif protein 38 (RBM38) mediates HBV pgRNA packaging into the nucleocapsid. Antiviral Res 2022; 198:105249. [PMID: 35041910 DOI: 10.1016/j.antiviral.2022.105249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/10/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
The binding of HBV polymerase (Pol) and the epsilon stem loop (ε) on the 5' terminal region of pgRNA is required for pgRNA packaging and HBV replication. Previous research has demonstrated that RNA binding motif protein 24 (RBM24) is involved in pgRNA packaging by mediating the interaction between HBV polymerase (Pol) and the ε element. Here, we demonstrate that RBM38 interacts with ε, pol, RBM24 and HBV core which mediate pgRNA packaging. RBM38 directly binds to the lower bulge of ε via RNA recognition submotifs (RNPs) and interacts with HBV Pol in an RNA-independent manner. RBM38 interacts with RBM24 and forms heterogeneous oligomers, which mediate Pol-ε binding and the formation of the Pol-RBM38/RBM24-ε complex. More important, RBM38 also binds to the HBV core via the C-terminal region (ARD domain), which facilitates the combination of Pol-ε with the HBV core protein. In conclusion, RBM38 facilitates the Pol-ε interaction and mediates Pol-ε in combining with the HBV core, triggering pgRNA packaging for reverse transcription and DNA synthesis. This study provides new insights into pgRNA encapsidation.
Collapse
Affiliation(s)
- Yongxuan Yao
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Yang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhe Wen
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
12
|
Lee S, Yoon H, Han J, Jang KL. Hepatitis C virus core protein inhibits hepatitis B virus replication by downregulating HBx levels via Siah-1-mediated proteasomal degradation during coinfection. J Gen Virol 2021; 102. [PMID: 34882535 DOI: 10.1099/jgv.0.001701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the mechanism remains unclear. Here, we found that HCV core protein inhibits HBV replication by downregulating HBx levels during coinfection in human hepatoma cells. For this effect, HCV core protein increased reactive oxygen species levels in the mitochondria and activated the ataxia telangiectasia mutated-checkpoint kinase two pathway in the nucleus, resulting in an upregulation of p53 levels. Accordingly, HCV core protein induced p53-dependent activation of seven in absentia homolog one expression, an E3 ligase of HBx, resulting in the ubiquitination and proteasomal degradation of HBx. The effect of the HCV core protein on HBx levels was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, providing evidence for the inhibition of HBV replication by HCV core protein. The present study may provide insights into the mechanism of HCV dominance in HBV- and HCV-coinfected patients.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea.,Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Song J, Ou G, Lai X, Tian X, Wang L, Zhang K, Wang L, Zhang X, Zhao C, Zhuang H, Xiang K, Li T. The enhancement role of Matrigel on HBV infection in HepG2-NTCP cells. J Virol Methods 2021; 299:114345. [PMID: 34728272 DOI: 10.1016/j.jviromet.2021.114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
The hepatoma cell lines stably expressing sodium taurocholate cotransporting polypeptide (NTCP), the receptor of hepatitis B virus (HBV) infection, serve as important infection models for studying viral biology and drug discovery. However, the efficiency of infection greatly varies. In this study, we studied the effects and potential mechanisms of Matrigel® hESC-qualified (M-hq), a biological basement membrane matrix commonly used in cell culture, on promotion HBV in vitro infection in HepG2-NTCP cells. For the first time, our findings demonstrate that M-hq could enhance the infection efficiency of cell culture-derived HBV with no impact on the cell viability, the HBV transcription and response to antiviral treatments. The infection enhancement is reproducible and is suggested to occur at HBV attachment step. Our study suggests that this novel system is applicable for studying HBV biology and new drugs.
Collapse
Affiliation(s)
- Ji Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guomin Ou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinyuan Lai
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xing Tian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luwei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, Beijing, 100045, China
| | - Kai Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuechao Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chengyu Zhao
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
14
|
Li Y, Luo G. Human low-density lipoprotein receptor plays an important role in hepatitis B virus infection. PLoS Pathog 2021; 17:e1009722. [PMID: 34293069 PMCID: PMC8345860 DOI: 10.1371/journal.ppat.1009722] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/06/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects more than 240 million people worldwide, resulting in chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HBV vaccine is effective to prevent new HBV infection but does not offer therapeutic benefit to hepatitis B patients. Neither are current antiviral drugs curative of chronic hepatitis B. A more thorough understanding of HBV infection and replication holds a great promise for identification of novel antiviral drugs and design of optimal strategies towards the ultimate elimination of chronic hepatitis B. Recently, we have developed a robust HBV cell culture system and discovered that human apolipoprotein E (apoE) is enriched on the HBV envelope and promotes HBV infection and production. In the present study, we have determined the role of the low-density lipoprotein receptor (LDLR) in HBV infection. A LDLR-blocking monoclonal antibody potently inhibited HBV infection in HepG2 cells expressing the sodium taurocholate cotransporting polypeptide (NTCP) as well as in primary human hepatocytes. More importantly, small interfering RNAs (siRNAs)-mediated knockdown of LDLR expression and the CRISPR/Cas9-induced knockout of the LDLR gene markedly reduced HBV infection. A recombinant LDLR protein could block heparin-mediated apoE pulldown, suggesting that LDLR may act as an HBV cell attachment receptor via binding to the HBV-associated apoE. Collectively, these findings demonstrate that LDLR plays an important role in HBV infection probably by serving as a virus attachment receptor. Requirement of multiple cell surface receptors and co-receptors for efficient virus infection is exemplified by human immunodeficient virus (HIV) and hepatitis C virus (HCV). In the case of HBV, expression of the NTCP receptor alone in human and murine hepatocytes converted HBV susceptibility albeit at low levels. Recent identification of the glypican 5 (GPC5) and epidermal growth factor receptor (EGFR) as HBV infection-promoting factors suggests that efficient HBV infection requires multiple cell surface molecules as virus attachment and post-attachment receptors. Here, we provide substantial evidence demonstrating that another cell surface receptor LDLR plays an important role in HBV infection. Downregulation of LDLR expression significantly lowered HBV infection, whereas its upregulation promoted HBV infection. The levels of LDLR expression correlated with HBV cell attachment, suggesting that it serves as an HBV cell attachment receptor. The inhibition of heparin-mediated apoE pulldown by a purified LDLR suggested that LDLR promotes HBV infection probably through its binding to HBV-associated apoE. It is warranted to further determine whether other LDLR family members also play a role in HBV infection.
Collapse
Affiliation(s)
- Yingying Li
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Department of Microbiology, Peking University Health Science Center School of Basic Medical Sciences, Beijing, China
| | - Guangxiang Luo
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
15
|
In Vitro Infection with Hepatitis B Virus Using Differentiated Human Serum Culture of Huh7.5-NTCP Cells without Requiring Dimethyl Sulfoxide. Viruses 2021; 13:v13010097. [PMID: 33445753 PMCID: PMC7828204 DOI: 10.3390/v13010097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
An estimated two billion people worldwide have been infected with hepatitis B virus (HBV). Despite the high infectivity of HBV in vivo, a lack of easily infectable in vitro culture systems hinders studies of HBV. Overexpression of the sodium taurocholate co-transporting polypeptide (NTCP) bile acid transporter in hepatoma cells improved infection efficiency. We report here a hepatoma cell culture system that does not require dimethyl sulfoxide (DMSO) for HBV infection. We overexpressed NTCP in Huh7.5 cells and allowed these cells to differentiate in a medium supplemented with human serum (HS) instead of fetal bovine serum (FBS). We show that human serum culture enhanced HBV infection in Huh7.5-NTCP cells, e.g., in HS cultures, HBV pgRNA levels were increased by as much as 200-fold in comparison with FBS cultures and 19-fold in comparison with FBS+DMSO cultures. Human serum culture increased levels of hepatocyte differentiation markers, such as albumin secretion, in Huh7.5-NTCP cells to similar levels found in primary human hepatocytes. N-glycosylation of NTCP induced by culture in human serum may contribute to viral entry. Our study demonstrates an in vitro HBV infection of Huh7.5-NTCP cells without the use of potentially toxic DMSO.
Collapse
|
16
|
Liu L, Yang M, Xu Q, Zhou M, Cheng Y, Xu H, Qin Y, Liu B. Killing efficiency affected by mutually modulated PD-1 and PD-L1 expression via NKT-hepatoma cell interactions. Immunotherapy 2020; 13:113-123. [PMID: 33076728 DOI: 10.2217/imt-2020-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the expression of programmed death-1 (PD-1) or programmed death ligand 1 (PD-L1), natural killer T (NKT) and hepatoma cells in coculture system, and the influence of abolishing PD-1 on antitumor efficiency. Materials & methods: CRISPR/Cas9 technology, flow cytometry, ELISA, CCK-8 assay and mouse models were performed to investigate the interactions between PD-1/PD-L1 expression on NKT and hepatoma cells, respectively. Results: The NKT and hepatoma cells mutually affected the expression of PD-1/PD-L1. The killing effect was positively correlated with NKT-mediated PD-L1 expression on hepatoma cells. Conclusion: Hepatoma cells in different genetic background responded differently to NKT-induced PD-L1 stimulation, and those cells with lower PD-L1 expression fail to PD-1 blocking intervention. Additionally, the killing effect was more time-efficient with PD-1 knockout than with monoclonal antibody blockade.
Collapse
Affiliation(s)
- Liwei Liu
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei City, Anhui Province, 230032, P.R. China
| | - Mingya Yang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei City, Anhui Province, 230000, China
| | - Qia Xu
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei City, Anhui Province, 230032, P.R. China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei City, Anhui Province 230001, P.R. China
| | - Yan Cheng
- Infectious Disease Department of The 901th Hospital of Joint Logistics Support Force of PLA, No.424 of Changjiang West Road, Hefei City, Anhui Province, 230031, China
| | - Heming Xu
- Infectious Disease Department of The 901th Hospital of Joint Logistics Support Force of PLA, No.424 of Changjiang West Road, Hefei City, Anhui Province, 230031, China
| | - Yide Qin
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei City, Anhui Province, 230032, P.R. China
| | - Bo Liu
- Infectious Disease Department of The 901th Hospital of Joint Logistics Support Force of PLA, No.424 of Changjiang West Road, Hefei City, Anhui Province, 230031, China
| |
Collapse
|
17
|
Xiao Y, Liu C, Tang W, Zhang H, Chen X. Evans Blue Inhibits HBV Replication Through a Dual Antiviral Mechanism by Targeting Virus Binding and Capsid Assembly. Front Microbiol 2019; 10:2638. [PMID: 31798562 PMCID: PMC6868041 DOI: 10.3389/fmicb.2019.02638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B (CHB) is a global health problem caused by human hepatitis B virus (HBV). Current treatment with interferons and nucleos(t)ide analogs (NAs) can cause population tolerance and drug resistance. Therefore, new antiviral drugs, especially those targeting host factors, are urgently needed. Here, we identified Evans blue as a new HBV inhibitor by screening an FDA drug library using Huh7DhNTCP cells and confirmed the antiviral activity in primary human hepatocytes and human sodium taurocholate cotransporting polypeptide (hNTCP)-transfected porcine primary hepatocytes. Our efficacy study showed that Evans blue has an IC50 of 2 μM against HBV infection in Huh7DhNTCP cells, and no apparent toxicity at up to 1000 μM. The IC50 of Evans blue against HBV in primary human hepatocytes was approximately 5 μM. Mechanism studies revealed that Evans blue has a dual anti-HBV effect. It inhibits both the binding of viral preS1 to host cells through the host factor NTCP and the virus capsid assembly by targeting the host factor BK channel. The KD of the direct interaction between Evans blue and NTCP is 8.82E-8 M. Evans blue can suppress capsid assembly at micromolar concentrations by reducing the cytosolic calcium ion concentration. Since the antiviral effects on HBV binding and assembly are both achieved through targeting host factors, Evans blue inhibits the infection of nucleos(t)ide analog drug-resistant HBV strains in Huh7DhNTCP cells. Taken together, our results suggest that Evans blue may be a promising anti-HBV drug candidate in the classes of both entry and assembly inhibitors.
Collapse
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Yuan Y, Zhao K, Yao Y, Liu C, Chen Y, Li J, Wang Y, Pei R, Chen J, Hu X, Zhou Y, Wu C, Chen X. HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. Antiviral Res 2019; 172:104619. [PMID: 31600533 DOI: 10.1016/j.antiviral.2019.104619] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection remains an important public health problem worldwide. Covalently closed circular DNA (cccDNA) exhibits as an individual minichromosome and is the molecular basis of HBV infection persistence and antiviral treatment failure. In the current study, we demonstrated that histone deacetylase 11 (HDAC11) inhibits HBV transcription and replication in HBV-transfected Huh7 cells. By using an HBV in vitro infection system, HDAC11 was found to affect the transcriptional activity of cccDNA but did not affect cccDNA production. Chromatin immunoprecipitation (ChIP) assays were utilized to analyze the epigenetic modifications of cccDNA. The results show that HDAC11 specifically reduced the acetylation level of cccDNA-bound histone H3 but did not affect that of histone H4. Furthermore, HDAC11 overexpression decreased the levels of cccDNA-bound acetylated H3K9 (H3K9ac) and H3K27 (H3K27ac). In conclusion, HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. These findings reveal the novel role of HDAC11 in HBV infection, further broadening our knowledge regarding the functions of HDAC11 and the roles of HDACs in the epigenetic regulation of HBV cccDNA.
Collapse
Affiliation(s)
- Yifei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kaitao Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yongxuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; School of Pharmacy, Nankai University, Tianjin, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
19
|
Zhou M, Qin B, Deng XS, Zeng XL, Lu Y, Huang ZG, Wu CC, Mou LS. hNTCP‑expressing primary pig hepatocytes are a valuable tool for investigating hepatitis B virus infection and antiviral drugs. Mol Med Rep 2019; 20:3820-3828. [PMID: 31485670 PMCID: PMC6755163 DOI: 10.3892/mmr.2019.10628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Primary human hepatocytes (PHHs) are the 'gold standard' for investigating hepatitis B virus (HBV) infection and antiviral drugs. However, poor availability, variation between batches and ethical issues regarding PHHs limit their applications. The discovery of human sodium taurocholate co‑transporting polypeptide (hNTCP) as a functional HBV receptor has enabled the development of a surrogate model to supplement the use of PHHs. In the present study, the evolutionary distance of seven species was assessed based on single‑copy homologous genes. Based on the evolutionary distance and availability, PHHs and primary rabbit hepatocytes (PRHs) were isolated and infected with hNTCP‑recombinant lentivirus, and susceptibility to HBV infection in the two cell types was tested and compared. In addition, HBV infection efficiency of hNTCP‑expressing PPHs with pooled HBV‑positive serum and purified particles was determined. The potential use of HBV‑infected hNTCP‑expressing PPHs for drug screening was assessed. The results demonstrated that pigs and rabbits are closer to humans in the divergence tree compared with mice and rats, indicating that pigs and rabbits were more likely to facilitate the HBV post‑entry lifecycle. Following hNTCP complementation and HBV infection, PPHs and Huh7D human hepatocellular carcinoma cells, but not PRHs, exhibited increased hepatitis B surface antigen and hepatitis B e‑antigen secretion, covalently closed circular DNA formation and infectious particle secretion. hNTCP‑expressing PPHs were susceptible to infection with HBV particles purified from pooled HBV‑positive sera, but were poisoned by raw HBV‑positive sera. The use of HBV‑infected hNTCP‑expressing PPHs for viral entry inhibitor screening was revealed to be applicable and reproducible. In conclusion, hNTCP‑expressing PPHs may be valuable tool for investigating HBV infection and antiviral drugs.
Collapse
Affiliation(s)
- Ming Zhou
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Bo Qin
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xue-Song Deng
- Department of Hepatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Xiao-Li Zeng
- Department of Internal Medicine, The Second People's Hospital of Futian District, Shenzhen, Guangdong 518049, P.R. China
| | - Ying Lu
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Zi-Gang Huang
- Liver‑Biotechnology (Shenzhen) Co., Ltd., Shenzhen, Guangdong 518110, P.R. China
| | - Chun-Chen Wu
- Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, P.R. China
| | - Li-Sha Mou
- Shenzhen Xenotransplantation Research and Development Center, Institute of Translational Medicine, Health Science Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
20
|
Qiao L, Luo GG. Human apolipoprotein E promotes hepatitis B virus infection and production. PLoS Pathog 2019; 15:e1007874. [PMID: 31393946 PMCID: PMC6687101 DOI: 10.1371/journal.ppat.1007874] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) is a common cause of liver diseases, including chronic hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HBV chronically infects about 240 million people worldwide, posing a major global health problem. The current standard antiviral therapy effectively inhibits HBV replication but does not eliminate the virus unlike direct-acting antivirals (DAA) for curing hepatitis C. Our previous studies have demonstrated that human apolipoprotein E (apoE) plays important roles in hepatitis C virus infection and morphogenesis. In the present study, we have found that apoE is also associated with HBV and is required for efficient HBV infection. An apoE-specific monoclonal antibody was able to capture HBV similar to anti-HBs. More importantly, apoE monoclonal antibody could effectively block HBV infection, resulting in a greater than 90% reduction of HBV infectivity. Likewise, silencing of apoE expression or knockout of apoE gene by CRISPR/Cas9 resulted in a greater than 90% reduction of HBV infection and more than 80% decrease of HBV production, which could be fully restored by ectopic apoE expression. However, apoE silencing or knockout did not significantly affect HBV DNA replication or the production of nonenveloped (naked) nucleocapsids. These findings demonstrate that human apoE promotes HBV infection and production. We speculate that apoE may also play a role in persistent HBV infection by evading host immune response similar to its role in the HCV life cycle and pathogenesis. Inhibitors interfering with apoE biogenesis, secretion, and/or binding to receptors may serve as antivirals for elimination of chronic HBV infection.
Collapse
Affiliation(s)
- Luhua Qiao
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Guangxiang George Luo
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| |
Collapse
|
21
|
Evripioti AA, Ortega-Prieto AM, Skelton JK, Bazot Q, Dorner M. Phosphodiesterase-induced cAMP degradation restricts hepatitis B virus infection. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180292. [PMID: 30955495 PMCID: PMC6501904 DOI: 10.1098/rstb.2018.0292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) entry into hepatocytes is mediated via a high-affinity interaction between the preS1 glycoprotein and sodium/bile acid cotransporting polypeptide (NTCP). To date, in vitro model systems rely on high multiplicities of infection to achieve infection of cell lines overexpressing human NTCP. This study investigates a novel regulatory pathway for NTCP trafficking to the cell surface, induced by DMSO-mediated cellular differentiation. DMSO rapidly induces high cell surface expression of NTCP and results in increased susceptibility of cells to HBV infection. Additionally, DMSO treatment induces actin, as well as Tubulin reshaping within the cells. We show that direct disruption of the actin and Tubulin network directly enhances NTCP expression and the subsequent susceptibility of cells to HBV infection. DMSO induces these changes via alterations in the levels of cyclic (c)AMP, which participates in the observed actin rearrangements. Blocking of phosphodiesterases (PDEs), which degrade accumulated cAMP, had the same effect as DMSO differentiation and demonstrates that DMSO prevents phosphodiesterase-mediated cAMP degradation. This identifies adenylate cyclase as a novel target for blocking the entry of HBV via targeting the cell surface accumulation of NTCP. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
|
22
|
RNA-Binding Motif Protein 24 (RBM24) Is Involved in Pregenomic RNA Packaging by Mediating Interaction between Hepatitis B Virus Polymerase and the Epsilon Element. J Virol 2019; 93:JVI.02161-18. [PMID: 30626666 DOI: 10.1128/jvi.02161-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Encapsidation of pregenomic RNA (pgRNA) is a crucial step in hepatitis B virus (HBV) replication. Binding by viral polymerase (Pol) to the epsilon stem-loop (ε) on the 5'-terminal region (TR) of pgRNA is required for pgRNA packaging. However, the detailed mechanism is not well understood. RNA-binding motif protein 24 (RBM24) inhibits core translation by binding to the 5'-TR of pgRNA. Here, we demonstrate that RBM24 is also involved in pgRNA packaging. RBM24 directly binds to the lower bulge of ε via RNA recognition submotifs (RNPs). RBM24 also interacts with Pol in an RNA-independent manner. The alanine-rich domain (ARD) of RBM24 and the reverse transcriptase (RT) domain of Pol are essential for binding between RBM24 and Pol. In addition, overexpression of RBM24 increases Pol-ε interaction, whereas RBM24 knockdown decreases the interaction. RBM24 was able to rescue binding between ε and mutant Pol lacking ε-binding activity, further showing that RBM24 mediates the interaction between Pol and ε by forming a Pol-RBM24-ε complex. Finally, RBM24 significantly promotes the packaging efficiency of pgRNA. In conclusion, RBM24 mediates Pol-ε interaction and formation of a Pol-RBM24-ε complex, which inhibits translation of pgRNA and results in pgRNA packing into capsids/virions for reverse transcription and DNA synthesis.IMPORTANCE Hepatitis B virus (HBV) is a ubiquitous human pathogen, and HBV infection is a major global health burden. Chronic HBV infection is associated with the development of liver diseases, including fulminant hepatitis, hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. A currently approved vaccine can prevent HBV infection, and medications are able to reduce viral loads and prevent liver disease progression. However, current treatments rarely achieve a cure for chronic infection. Thus, it is important to gain insight into the mechanisms of HBV replication. In this study, we found that the host factor RBM24 is involved in pregenomic RNA (pgRNA) packaging and regulates HBV replication. These findings highlight a potential target for antiviral therapeutics of HBV infection.
Collapse
|
23
|
Zhao K, Liu S, Chen Y, Yao Y, Zhou M, Yuan Y, Wang Y, Pei R, Chen J, Hu X, Zhou Y, Zhao H, Lu M, Wu C, Chen X. Upregulation of HBV transcription by sodium taurocholate cotransporting polypeptide at the postentry step is inhibited by the entry inhibitor Myrcludex B. Emerg Microbes Infect 2018; 7:186. [PMID: 30459339 PMCID: PMC6246608 DOI: 10.1038/s41426-018-0189-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for hepatitis B virus (HBV) entry. However, little is known regarding whether NTCP is involved in regulating the postentry steps of the HBV life cycle. Here, we found that NTCP expression upregulated HBV transcription at the postentry step and that the NTCP-targeting entry inhibitor Myrcludex B (MyrB) effectively suppressed HBV transcription both in an HBV in vitro infection system and in mice hydrodynamically injected with an HBV expression plasmid. Mechanistically, NTCP upregulated HBV transcription via farnesoid X receptor α (FxRα)-mediated activation of the HBV EN2/core promoter at the postentry step in a manner that was dependent on the bile acid (BA)-transport function of NTCP, which was blocked by MyrB. Our findings uncover a novel role for NTCP in the HBV life cycle and provide a reference for the use of novel NTCP-targeting entry inhibitors to suppress HBV infection and replication.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuhui Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongxuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Zhou
- Shenzhen Xenotransplantation Research and Development Center, State and Local Joint Cancer Genome Clinical Application of Key Technology Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518035, Shenzhen, China
| | - Yifei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - He Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, 45147, Essen, Germany
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
24
|
Robust Human and Murine Hepatocyte Culture Models of Hepatitis B Virus Infection and Replication. J Virol 2018; 92:JVI.01255-18. [PMID: 30232184 DOI: 10.1128/jvi.01255-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/15/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic liver diseases, including hepatitis, cirrhosis, and hepatocellular carcinoma. HBV research has been hampered by the lack of robust cell culture and small animal models of HBV infection. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor has been a landmark advance in HBV research in recent years. Ectopic expression of NTCP in nonpermissive HepG2, Huh7, and AML12 cell lines confers HBV susceptibility. However, HBV replication in these human and murine hepatocyte cell lines appeared suboptimal. In the present study, we constructed stable NTCP-expressing HepG2 and AML12 cell lines and found that HBV permissiveness is correlated with NTCP expression. More significantly, we developed robust HBV cell culture models by treating the HBV-infected cells with dimethyl sulfoxide (DMSO) and hydrocortisone, which significantly promoted HBV replication and production. Mechanistic studies suggested that hydrocortisone significantly enhanced the transcription and expression of PGC1α and HNF4α, which are known to promote HBV transcription and replication. These new human and murine hepatocyte culture systems of HBV infection and replication will accelerate the determination of molecular aspects underlying HBV infection, replication, and morphogenesis in human and murine hepatocytes. We anticipate that our HBV cell culture models will also facilitate the discovery and development of antiviral drugs towards the ultimate eradication of chronic hepatitis B virus infection.IMPORTANCE HBV research has been greatly hampered by the lack of robust cell culture and small animal models of HBV infection and propagation. The discovery of NTCP as an HBV receptor has greatly impacted the field of HBV research. Although HBV infection of NTCP-expressing human and murine hepatocyte cell lines has been demonstrated, its replication in cell culture appeared inefficient. To further improve cell culture systems of HBV infection and replication, we constructed NTCP-expressing HepG2 and AML12 cell lines that are highly permissive to HBV infection. More significantly, we found that DMSO and hydrocortisone markedly enhanced HBV transcription and replication in human and murine hepatocytes when added to the cell culture medium. These new cell culture models of HBV infection and replication will facilitate HBV research and antiviral drug discovery towards the ultimate elimination of chronic hepatitis B virus infection.
Collapse
|
25
|
Yu Y, Li S, Liang W. Bona fide receptor for hepatitis B and D viral infections: Mechanism, research models and molecular drug targets. Emerg Microbes Infect 2018; 7:134. [PMID: 30050063 PMCID: PMC6062556 DOI: 10.1038/s41426-018-0137-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B infections have become a serious public health issue globally, and the current first-line antiviral treatment for this disease is not a true cure. Recently, sodium taurocholate cotransporting polypeptide (NTCP), a liver-specific bile acid transporter, was identified as a bona fide receptor for hepatitis B virus (HBV) and its satellite virus, hepatitis delta virus (HDV). Identification of the HBV receptor has led to the development of robust cell cultures and provides a potential target for new treatments. This review summarizes the process by which NTCP was discovered and describes its clinical significance as the receptor for HBV and HDV entry.
Collapse
Affiliation(s)
- Yueran Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, 312400, China
| | - Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Weifeng Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, 312400, China.
| |
Collapse
|
26
|
Yao Y, Yang B, Cao H, Zhao K, Yuan Y, Chen Y, Zhang Z, Wang Y, Pei R, Chen J, Hu X, Zhou Y, Lu M, Wu C, Chen X. RBM24 stabilizes hepatitis B virus pregenomic RNA but inhibits core protein translation by targeting the terminal redundancy sequence. Emerg Microbes Infect 2018; 7:86. [PMID: 29760415 PMCID: PMC5951808 DOI: 10.1038/s41426-018-0091-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
The terminal redundancy (TR) sequence of the 3.5-kb hepatitis B virus (HBV) RNA contains sites that govern many crucial functions in the viral life cycle, including polyadenylation, translation, RNA packaging, and DNA synthesis. In the present study, RNA-binding motif protein 24 (RBM24) is shown to be involved in the modulation of HBV replication by targeting the TR of HBV RNA. In HBV-transfected hepatoma cell lines, both knockdown and overexpression of RBM24 led to decreased HBV replication and transcription. Ectopic expression of RBM24 inhibited HBV replication, which was partly restored by knockdown of RBM24, indicating that a proper level of RBM24 was required for HBV replication. The regulation of RBM24 of HBV replication and translation was achieved by the interaction between the RNA-binding domains of RBM24 and both the 5' and 3' TR of 3.5-kb RNA. RBM24 interacted with the 5' TR of HBV pregenomic RNA (pgRNA) to block 80S ribosome assembly on HBV pgRNA and thus inhibited core protein translation, whereas the interaction between RBM24 and the 3' TR enhanced the stability of HBV RNA. Finally, the regulatory function of RBM24 on HBV replication was further confirmed in a HBV infection model. In conclusion, the present study demonstrates the dual functions of RBM24 by interacting with different TRs of viral RNA and reveals that RBM24 is an important host gene for HBV replication.
Collapse
Affiliation(s)
- Yongxuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huang Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaitao Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
- School of Pharmacy, Anhui Medical University, Hefei, 230022, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|