1
|
Chen Y, Wei Y, Liu J, Zhu T, Zhou C, Zhang D. Spatial transcriptomics combined with single-nucleus RNA sequencing reveals glial cell heterogeneity in the human spinal cord. Neural Regen Res 2025; 20:3302-3316. [PMID: 38934400 PMCID: PMC11881709 DOI: 10.4103/nrr.nrr-d-23-01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00032/figure1/v/2024-12-20T164640Z/r/image-tiff Glial cells play crucial roles in regulating physiological and pathological functions, including sensation, the response to infection and acute injury, and chronic neurodegenerative disorders. Glial cells include astrocytes, microglia, and oligodendrocytes in the central nervous system, and satellite glial cells and Schwann cells in the peripheral nervous system. Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models, few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord. Here, we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes, microglia, and oligodendrocytes in the human spinal cord. To explore the conservation and divergence across species, we compared these findings with those from mice. In the human spinal cord, astrocytes, microglia, and oligodendrocytes were each divided into six distinct transcriptomic subclusters. In the mouse spinal cord, astrocytes, microglia, and oligodendrocytes were divided into five, four, and five distinct transcriptomic subclusters, respectively. The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice. Additionally, we detected sex differences in gene expression in human spinal cord glial cells. Specifically, in all astrocyte subtypes, the levels of NEAT1 and CHI3L1 were higher in males than in females, whereas the levels of CST3 were lower in males than in females. In all microglial subtypes, all differentially expressed genes were located on the sex chromosomes. In addition to sex-specific gene differences, the levels of MT-ND4 , MT2A , MT-ATP6 , MT-CO3 , MT-ND2 , MT-ND3 , and MT-CO2 in all spinal cord oligodendrocyte subtypes were higher in females than in males. Collectively, the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cord-related illnesses, including chronic pain, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Harvey ME, Shi M, Oh Y, Mitchell DA, Slayden OD, MacLean JA, Hayashi K. Multiple lesion inductions intensify central sensitization driven by neuroinflammation in a mouse model of endometriosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634555. [PMID: 39896574 PMCID: PMC11785222 DOI: 10.1101/2025.01.23.634555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Introduction Endometriosis is an inflammatory disease associated with chronic pelvic pain (CPP). Growing evidence indicates that endometriotic lesions are not the sole source of pain. Instead, central nervous system (CNS) dysfunction created by prolonged peripheral and central sensitization plays a role in developing endometriosis-associated CPP. This study investigated how CPP is established using a multiple lesion induction mouse model of endometriosis, as repeated retrograde menstruation is considered underlying endometriosis pathogenesis. Methods We generated endometriosis-like lesions by injecting endometrial tissue fragments into the peritoneal cavity in mice. The mice received a single (1x) or multiple inductions (6x) to simulate recurrent retrograde menstruation. Lesion development, hyperalgesia by behavioral testing, signs of peripheral sensitization, chronic inflammation, and neuroinflammation were examined with lesions, peritoneal fluids, dorsal root ganglia (DRG), spinal codes, and brain. Results Multiple lesion inductions increased lesion numbers and elevated abdominal and hind paw hypersensitivity compared to single induction mice. Elevated persistent glial cell activation across several brain regions and/or spinal cords was found in the multiple induction mice. Specifically, IBA1+ microglial soma size was increased in the hippocampus and thalamus. IBA1+ cells were abundant in the cortex, hippocampus, thalamus, and hypothalamus of the multiple induction mice. GFAP+ astrocytes were mainly elevated in the hippocampus. Elevated TRPV1, SP, and CGRP expressions in the DRG were persistent in the multiple induction mice. Furthermore, multiple inductions induced the severe disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased proinflammatory TIM4lo MHCIIhi macrophages in the peritoneal cavity. The single and multiple inductions elevated secreted TNFα, IL-1β, and IL-6 levels in the peritoneal cavity at 2 weeks. Elevated cytokine levels returned to the pre-induction levels in the single induction mice at 6 weeks; however, they remained elevated in the multiple induction mice. Conclusions Our results indicate that the repeatedly occurring lesion inductions (=mimic retrograde menstruation) can be a peripheral stimulus that induces nociceptive pain and creates composite chronic inflammatory stimuli to cause neuroinflammation and sensitize the CNS. The circuits of neuroplasticity and stimulation of peripheral organs via a feedback loop of neuroinflammation may mediate widespread endometriosis-associated CPP.
Collapse
Affiliation(s)
- Madeleine E. Harvey
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Mingxin Shi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Yeongseok Oh
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Debra A. Mitchell
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Ov D. Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - James A. MacLean
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| |
Collapse
|
3
|
Borgonetti V, Morozzi M, Galeotti N. Neuroinflammation evoked mechanisms for neuropathic itch in the spared nerve injury mouse model of neuropathic pain. Neuropharmacology 2024; 259:110120. [PMID: 39159835 DOI: 10.1016/j.neuropharm.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
A large portion of neuropathic pain suffering patients may also concurrently experience neuropathic itch, with a negative impact on the quality of life. The limited understanding of neuropathic itch and the low efficacy of current anti-itch therapies dictate the urgent need of a better comprehension of molecular mechanisms involved and development of relevant animal models. This study was aimed to characterize the itching phenotype in a model of trauma-induced peripheral neuropathy, the spared nerve injury (SNI), and the molecular events underlying the overlap with the nociceptive behavior. SNI mice developed hyperknesis and spontaneous itch 7-14 days after surgery that was prevented by gabapentin treatment. Itch was associated with pain hypersensitivity, loss of intraepidermal nerve fiber (IENF) density and increased epidermal thickness. In coincidence with the peak of scratching behavior, SNI mice showed a spinal overexpression of IBA1 and GFAP, microglia and astrocyte markers respectively. An increase of the itch neuropeptide B-type natriuretic peptide (BNP) in NeuN+ cells, of its downstream effector interleukin 17 (IL17) along with increased pERK1/2 levels occurred in the spinal cord dorsal horn and DRG. A raise in BNP and IL17 was also detected at skin level. Stimulation of HaCat cells with conditioned medium from BV2-stimulated SH-SY5Y cells produced a dramatic reduction of HaCat cell viability. This study showed that SNI mice might represent a model for neuropathic itch and pain. Collectively, our finding suggest that neuropathic itch might initiate at spinal level, then affecting skin epidermis events, through a glia-mediated neuroinflammation-evoked BNP/IL17 mechanism.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Martina Morozzi
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Florence, Viale G. Pieraccini 6, Florence, Italy.
| |
Collapse
|
4
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Iwata K, Hayashi Y, Hitomi S, Tsuboi Y, Shinoda M. Non-neuronal cells act as crucial players in neuropathic orofacial pain. J Oral Biosci 2024; 66:491-495. [PMID: 39032826 DOI: 10.1016/j.job.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Following peripheral nerve damage, various non-neuronal cells are activated, triggering accumulation in the peripheral and central nervous systems, and communicate with neurons. Evidence suggest that neuronal and non-neuronal cell communication is a critical mechanism of neuropathic pain; however, its detailed mechanisms in contributing to neuropathic orofacial pain development remain unclear. HIGHLIGHT Neuronal and non-neuronal cell communication in the trigeminal ganglion (TG) is believed to cause neuronal hyperactivation following trigeminal nerve damage, resulting in neuropathic orofacial pain. Trigeminal nerve damage activates and accumulates non-neuronal cells, such as satellite cells and macrophages in the TG and microglia, astrocytes, and oligodendrocytes in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). These non-neuronal cells release various molecules, contributing to the hyperactivation of TG, Vc, and C1-C2 nociceptive neurons. These hyperactive nociceptive neurons release molecules that enhance non-neuronal cell activation. This neuron and non-neuronal cell crosstalk causes hyperactivation of nociceptive neurons in the TG, Vc, and C1-C2. Here, we addressed previous and recent data on the contribution of neuronal and non-neuronal cell communication and its involvement in neuropathic orofacial pain development. CONCLUSION Previous and recent data suggest that neuronal and non-neuronal cell communication in the TG, Vc, and C1-C2 is a key mechanism that causes neuropathic orofacial pain associated with trigeminal nerve damage.
Collapse
Affiliation(s)
- Koichi Iwata
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Yoshinori Hayashi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Suzuro Hitomi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Tsuboi
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Departments of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
6
|
Wang C, Yang X, Gao T, Zhao Y, Yang Y, Li X, Yang Y, Yi T, Wang Y, Mi W. Astroglial morphological changes in periaqueductal grey in different pain and itch mice models. Behav Brain Res 2024; 471:115075. [PMID: 38815698 DOI: 10.1016/j.bbr.2024.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The periaqueductal gray (PAG) plays a well-established pivotal role in the descending pain modulatory circuit. The objective of this study was to investigate morphological changes in the astroglia in models that are commonly used in pain and itch studies. METHODS Five different mouse models of pain, as well as two models of chronic itch, were established using complete Freund's adjuvant (CFA), spared nerve injury (SNI), bone cancer pain (BCP), cisplatin (CIS), and paclitaxel (PTX) for pain, and diphenylcyclopropenone (DCP) and acetone and diethyl ether followed by water (AEW) for chronic itch. von Frey tests and video recordings were employed to assess pain and itching behaviors. The immunofluorescence of S100β, pSTAT3, and glial fibrillary acidic protein (GFAP) was examined. Two- and three-dimensional studies were used to evaluate changes in astrocyte morphology. RESULTS Significant scratching was caused by DCP and AEW, whereas the administration of CFA, SNI, BCP, CIS, and PTX produced clear mechanical allodynia. The expression of GFAP in the lPAG/vlPAG was upregulated in CFA, SNI, BCP, CIS, PTX, and DCP mice but decreased in AEW mice. According to Sholl analysis, CFA, SNI, PTX, and BCP mice showed substantially higher astrocyte intersections in the vlPAG, whereas CFA, SNI, BCP, CIS, and DCP mice presented longer peak lengths. In three-dimensional analysis, CFA, SNI, PTX, and DCP mice showed increased astrocyte surface areas, while CIS and AEW mice showed both reduced surface areas and/or volumes of astrocytes. CONCLUSION The findings showed that different pain and itching conditions have different astrocyte morphologies, and these variations in morphological changes help to explain the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Xiaotong Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuyu Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaochen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Yi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Coluzzi F, Scerpa MS, Loffredo C, Borro M, Pergolizzi JV, LeQuang JA, Alessandri E, Simmaco M, Rocco M. Opioid Use and Gut Dysbiosis in Cancer Pain Patients. Int J Mol Sci 2024; 25:7999. [PMID: 39063241 PMCID: PMC11276997 DOI: 10.3390/ijms25147999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Scerpa
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Chiara Loffredo
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Elisa Alessandri
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Monica Rocco
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
8
|
Wan Y, Zhou J, Zhang P, Lin X, Li H. Inhibition of spinal Rac1 attenuates chronic inflammatory pain by regulating the activation of astrocytes. Cell Signal 2024; 114:110972. [PMID: 37984604 DOI: 10.1016/j.cellsig.2023.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Spinal astrocyte-mediated neuroinflammation is an important mechanism for the maintenance of chronic inflammatory pain. Previous studies have investigated that Ras-related C3 botulinum toxin substrate 1 (Rac1) is closely related to astrocyte activation after central nervous system injury. However, the role of Rac1 in astrocyte activation in chronic inflammatory pain has not been reported. METHODS Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model and LPS-stimulated astrocytes were used to investigate the role of Rac1 in astrocyte activation and the underlying mechanism. Rac1-interfering adeno-associated virus (AAV) targeting astrocytes was delivered to spinal astrocytes by intrathecal administration and a Rac1 specific inhibitor, NSC23766, was used to block cultured astrocytes. The glial fibrillary acidic protein (GFAP), proinflammatory cytokines, p-NF-κB, and nod-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome were detected by RT-qPCR, Western blotting, and immunofluorescence to investigate the activation of astrocytes. RESULTS CFA induced spinal astrocyte activation and increased the expression of active Rac1 in spinal astrocytes. Knockdown of astrocyte Rac1 alleviated chronic inflammatory pain and inhibited astrocyte activation. Inhibition of Rac1 activation in cultured astrocytes decreased the expression of GFAP and proinflammatory cytokines. Knockdown of Rac1 inhibited the increase of expression of NLRP3 inflammasome and phosphorylation of NF-κB in the spinal lumbar enlargement after CFA injection. Similarly, the inhibition of Rac1 suppressed the increase of NLRP3 inflammasome and p-NF-κB protein level after LPS stimulation. CONCLUSION Knockdown of astrocyte Rac1 attenuated CFA-induced hyperalgesia and astrocyte activation possibly by blocking the expression of NLRP3 inflammasome and phosphorylation of NF-κB.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jieshu Zhou
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Panpan Zhang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Xuemei Lin
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| | - Hao Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Song S, Wang Q, Qu Y, Gao W, Li D, Xu X, Yue S. Pregabalin inhibits purinergic P2Y 2 receptor and TRPV4 to suppress astrocyte activation and to relieve neuropathic pain. Eur J Pharmacol 2023; 960:176140. [PMID: 37925132 DOI: 10.1016/j.ejphar.2023.176140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUNDS Transient receptor potential vanilloid 4 (TRPV4)-mediated astrocyte activation is critical to neuropathic pain. Pregabalin, a widely used drug to treat chronic pain, is reported to lower the intracellular calcium level. However, the molecular mechanism by which pregabalin decreases the intracellular calcium level remains unknown. Purinergic P2Y2 receptor-a member of the G protein-coupled receptor (GPCR) family-regulates calcium-related signal transduction in astrocyte activation. We investigated whether P2Y2 receptor is involved in the pharmacological effects of pregabalin on neuropathic pain. METHODS Neuropathic pain was induced by chronic compression of the dorsal root ganglion (CCD) in rats. Paw withdrawal mechanical threshold (PWMT) was used for behavioral testing. Intracellular calcium concentration was measured using a fluorescent calcium indicator (Fluo-4 AM). RESULTS We found that P2Y2 receptor protein was upregulated and astrocytes were activated in the experimental rats after CCD surgery. Lipopolysaccharide (LPS) increased the intracellular calcium concentration and induced astrocyte activation in cultured astrocytes but was prevented via P2Y2 receptor inhibitor AR-C118925 or pregabalin. Furthermore, plasmid-mediated P2Y2 receptor overexpression induced an elevation of the intracellular calcium levels and inflammation in astrocytes, which was abolished by the TRPV4 inhibitor HC-067047. AR-C118925, HC-067047, and pregabalin relieved neuropathic pain and inflammation in rats after CCD surgery. Finally, plasmid-mediated P2Y2 receptor overexpression induced neuropathic pain in rats, which was abolished by pregabalin administration. CONCLUSIONS Pathophysiological variables that upregulated the P2Y2 receptor/TRPV4/calcium axis contribute to astrocyte activation in neuropathic pain. Pregabalin exerts an analgesic effect by inhibiting this pathway.
Collapse
Affiliation(s)
- Shasha Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qianwen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yujuan Qu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuang Gao
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Estera LA, Walsh SP, Headen JA, Williamson RE, Kalinski AL. Neuroinflammation: Breaking barriers and bridging gaps. Neurosci Res 2023; 197:9-17. [PMID: 34748905 DOI: 10.1016/j.neures.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Neurons are the cells of the nervous system and are responsible for every thought, movement and perception. Immune cells are the cells of the immune system, constantly protecting from foreign pathogens. Understanding the interaction between the two systems is especially important in disease states such as autoimmune or neurodegenerative disease. Unfortunately, this interaction is typically detrimental to the host. However, recent efforts have focused on how neurons and immune cells interact, either directly or indirectly, following traumatic injury to the nervous system. The outcome of this interaction can be beneficial - leading to successful neural repair, or detrimental - leading to functional deficits, depending on where the injury occurs. This review will discuss our understanding of neuron-immune cell interactions after traumatic injury to both the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lora A Estera
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Sam P Walsh
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Jordan A Headen
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | - Ashley L Kalinski
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
11
|
Mogilski S, Kubacka M, Świerczek A, Wyska E, Szczepańska K, Sapa J, Kieć-Kononowicz K, Łażewska D. Efficacy of the Multi-Target Compound E153 in Relieving Pain and Pruritus of Different Origins. Pharmaceuticals (Basel) 2023; 16:1481. [PMID: 37895952 PMCID: PMC10609854 DOI: 10.3390/ph16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Itch and pain are closely related but distinct sensations that share largely overlapping mediators and receptors. We hypothesized that the novel, multi-target compound E153 has the potential to attenuate pain and pruritus of different origins. After the evaluation of sigma receptor affinity and pharmacokinetic studies, we tested the compound using different procedures and models of pain and pruritus. Additionally, we used pharmacological tools, such as PRE-084, RAMH, JNJ 5207852, and S1RA, to precisely determine the role of histamine H3 and sigma 1 receptors in the analgesic and antipruritic effects of the compound. In vitro studies revealed that the test compound had potent affinity for sigma 1 and sigma 2 receptors, moderate affinity for opioid kappa receptors, and no affinity for delta or μ receptors. Pharmacokinetic studies showed that after intraperitoneal administration, the compound was present at high concentrations in both the peripheral tissues and the central nervous system. The blood-brain barrier-penetrating properties indicate its ability to act centrally at the levels of the brain and spinal cord. Furthermore, the test compound attenuated different types of pain, including acute, inflammatory, and neuropathic. It also showed a broad spectrum of antipruritic activity, attenuating histamine-dependent and histamine-independent itching. Finally, we proved that antagonism of both sigma 1 and histamine H3 receptors is involved in the analgesic activity of the compound, while the antipruritic effect to a greater extent depends on sigma 1 antagonism.
Collapse
Affiliation(s)
- Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.Ś.); (E.W.)
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.Ś.); (E.W.)
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.); (J.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (K.S.); (K.K.-K.); (D.Ł.)
| |
Collapse
|
12
|
Xie K, Cheng X, Zhu T, Zhang D. Single-cell transcriptomic profiling of dorsal root ganglion: an overview. Front Neuroanat 2023; 17:1162049. [PMID: 37405309 PMCID: PMC10315536 DOI: 10.3389/fnana.2023.1162049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
The somatosensory neurons in the dorsal root ganglion (DRG) are responsible to detect peripheral physical and noxious stimuli, and then transmit these inputs into the central nervous system. DRG neurons are composed of various subpopulations, which are suggested to respond to different stimuli, such as mechanical, thermal, and cold perception. For a long time, DRG neurons were classified based on anatomical criteria. Recently, single-cell (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq) has advanced our understanding of the composition and functional heterogeneity of both human and rodent DRG neurons at single-cell resolution. In this review, we summarized the current literature regarding single-cell transcriptomic profiling of DRG to provide an integral understanding in the molecular transcriptomes, cell types, and functional annotations of DRG neurons in humans and rodents.
Collapse
Affiliation(s)
- Keyu Xie
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Chengdu Second People’s Hospital, Chengdu, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Furutani K, Chen O, McGinnis A, Wang Y, Serhan CN, Hansen TV, Ji RR. Novel proresolving lipid mediator mimetic 3-oxa-PD1n-3 docosapentaenoic acid reduces acute and chronic itch by modulating excitatory and inhibitory synaptic transmission and astroglial secretion of lipocalin-2 in mice. Pain 2023; 164:1340-1354. [PMID: 36378290 PMCID: PMC10182233 DOI: 10.1097/j.pain.0000000000002824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Specialized proresolving mediators (SPMs) have demonstrated potent analgesic actions in animal models of pathological pain. The actions of SPMs in acute and chronic itch are currently unknown. Recently, n-3 docosapentaenoic acid (DPA) was found to be a substrate for the biosynthesis of several novel families of SPMs and 3-oxa-PD1 n-3 DPA (3-oxa-PD1) is an oxidation-resistant metabolic stable analogue of the n-3 DPA-derived protectin D1 (PD1). In this article, we demonstrate that 3-oxa-PD1 effectively reduces both acute and chronic itch in mouse models. Intrathecal injection of 3-oxa-PD1 (100 ng) reduced acute itch induced by histamine, chloroquine, or morphine. Furthermore, intrathecal 3-oxa-PD1 effectively reduced chronic itch, induced by cutaneous T-cell lymphoma (CTCL), allergic contact dermatitis with dinitrofluorobenzene, and psoriasis by imiquimod. Intratumoral injection of 3-oxa-PD1 also suppressed CTCL-induced chronic itch. Strikingly, the antipruritic effect lasted for several weeks after 1-week intrathecal 3-oxa-PD1 treatment. Whole-cell recordings revealed significant increase in excitatory postsynaptic currents in spinal dorsal horn (SDH) neurons of CTCL mice, but this increase was blocked by 3-oxa-PD1. 3-oxa-PD1 further increased inhibitory postsynaptic currents in SDH neurons of CTCL mice. Cutaneous T-cell lymphoma increased the spinal levels of lipocalin-2 (LCN2), an itch mediator produced by astrocytes. 3-oxa-PD1 suppressed LCN2 production in CTCL mice and LCN2 secretion in astrocytes. Finally, CTCL-induced anxiety was alleviated by intrathecal 3-oxa-PD1. Our findings suggest that 3-oxa-PD1 potently inhibits acute and chronic itch through the regulation of excitatory or inhibitory synaptic transmission and astroglial LCN2 production. Therefore, stable SPM analogs such as 3-oxa-PD1 could be useful to treat pruritus associated with different skin injuries.
Collapse
Affiliation(s)
- Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Yuqing Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
14
|
Li YZ, Zhu YB, Ge AN, Gao M, Wang KL, Zeng XR, Li J, Li Y, Xu JY, Bai HH, Wu SJ. Reduced expression of APLP2 in spinal GABAergic inhibitory neurons contributed to nerve injury-induced microglial activation and pain sensitization. Neuropharmacology 2023; 224:109334. [PMID: 36442651 DOI: 10.1016/j.neuropharm.2022.109334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
The amyloid precursor protein (APP) is critical for the pathogenesis of Alzheimer's disease (AD). The AD patients usually have lower pain sensitivity in addition to cognitive impairments. However, considerably less is known as yet about the role of APP and its two mammalian homologues, amyloid precursor-like protein 1 and 2 (APLP1, APLP2), in spinal processing of nociceptive information. Here we found that all APP family members were present in spinal cord dorsal horn of adult male C57BL/6J mice. Peripheral nerve injury specifically reduced the expression of spinal APLP2 that correlated with neuropathic mechanical allodynia. The loss of APLP2 was confined to inhibitory GABAergic interneurons. Targeted knockdown of APLP2 in GABAergic interneurons of GAD2-Cre mice evoked pain hypersensitivity by means of microglia activation. Our data showed that GABAergic terminals expressed APLP2, a putative cell adhesion protein that interacted with microglia-specific integrin molecule CD11b. Knocking down APLP2 in GAD2-positive neurons to disrupt the trans-cellular interaction led to microglia-dependent pain sensitization. Our data thus revealed an important role of APLP2 for GABAergic interneurons to control microglial activity and pain sensitivity.
Collapse
Affiliation(s)
- Yu-Zhe Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yue-Bin Zhu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - An-Na Ge
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Min Gao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Kang-Li Wang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiang-Ru Zeng
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jing Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yuan Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jia-Yu Xu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Hu-Hu Bai
- School of Life Science, Lanzhou University, Gansu, 730000, PR China.
| | - Shu-Jin Wu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| |
Collapse
|
15
|
Astrocytes in Chronic Pain: Cellular and Molecular Mechanisms. Neurosci Bull 2022; 39:425-439. [PMID: 36376699 PMCID: PMC10043112 DOI: 10.1007/s12264-022-00961-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractChronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron–glia and glia–glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.
Collapse
|
16
|
Lassmann Ł, Pollis M, Żółtowska A, Manfredini D. Gut Bless Your Pain—Roles of the Gut Microbiota, Sleep, and Melatonin in Chronic Orofacial Pain and Depression. Biomedicines 2022; 10:biomedicines10071528. [PMID: 35884835 PMCID: PMC9313154 DOI: 10.3390/biomedicines10071528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Increased attention has been paid to the gut–brain axis recently, but little is known so far regarding how this translates into pain susceptibility. Aim. The aim of this review is to determine whether gastroenterological disorders and sleep disorders (directly or indirectly) contribute to an increased susceptibility to depression and chronic orofacial pain. Method. A search was performed in the U.S. National Library of Medicine (PubMed) database in order to find studies published before 19 December 2021. We used the following terms: gut microbiome, OR sleep quality, OR melatonin, OR GERD, OR IBS, AND: depression OR chronic pain, in different configurations. Only papers in English were selected. Given the large number of papers retrieved in the search, their findings were described and organized narratively. Results. A link exists between sleep disorders and gastroenterological disorders, which, by adversely affecting the psyche and increasing inflammation, disturb the metabolism of tryptophan and cause excessive microglial activation, leading to increased susceptibility to pain sensation and depression. Conclusions. Pain therapists should pay close attention to sleep and gastrointestinal disorders in patients with chronic pain and depression.
Collapse
Affiliation(s)
- Łukasz Lassmann
- Dental Sense Medicover, 80-283 Gdańsk, Poland
- Correspondence:
| | - Matteo Pollis
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| | - Agata Żółtowska
- Department of Conservative Dentistry, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Daniele Manfredini
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| |
Collapse
|
17
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
18
|
Satellite Glial Cells and Neurons in Trigeminal Ganglia Are Altered in an Itch Model in Mice. Cells 2022; 11:cells11050886. [PMID: 35269508 PMCID: PMC8909456 DOI: 10.3390/cells11050886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Itch (pruritus) is a common chronic condition with a lifetime prevalence of over 20%. The mechanisms underlying itch are poorly understood, and its therapy is difficult. There is recent evidence that following nerve injury or inflammation, intercellular communications in sensory ganglia are augmented, which may lead to abnormal neuronal activity, and hence to pain, but there is no information whether such changes take place in an itch model. We studied changes in neurons and satellite glial cells (SGCs) in trigeminal ganglia in an itch model in mice using repeated applications of 2,4,6-trinitro-1-chlorobenzene (TNCB) to the external ear over a period of 11 days. Treated mice showed augmented scratching behavior as compared with controls during the application period and for several days afterwards. Immunostaining for the activation marker glial fibrillary acidic protein in SGCs was greater by about 35% after TNCB application, and gap junction-mediated coupling between neurons increased from about 2% to 13%. The injection of gap junction blockers reduced scratching behavior, suggesting that gap junctions contribute to itch. Calcium imaging studies showed increased responses of SGCs to the pain (and presumed itch) mediator ATP. We conclude that changes in both neurons and SGCs in sensory ganglia may play a role in itch.
Collapse
|
19
|
Fei W, Wu J, Gao M, Wang Q, Zhao YY, Shan C, Shen Y, Chen G. Multilineage-differentiating stress-enduring cells alleviate atopic dermatitis-associated behaviors in mice. Stem Cell Res Ther 2021; 12:606. [PMID: 34930455 PMCID: PMC8686553 DOI: 10.1186/s13287-021-02671-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pruritus is a recurring, long-lasting skin disease with few effective treatments. Many patients have unsatisfactory responses to currently available antipruritic treatments, and effective therapeutics are urgently needed to relieve symptoms. A previous study reported that mesenchymal stem cell (MSC)-mediated immune regulation could be used to treat skin inflammatory diseases. Multilineage-differentiating stress-enduring (Muse) cells are a new type of pluripotent stem cell that may also have the potential to treat inflammatory skin diseases. METHODS Muse cells were isolated from human bone marrow-derived MSCs (BMSCs) via the 8-h longterm trypsin incubation (LTT) method. Repeated use of 2,4-dinitrofluorobenzene (DNFB) induced atopic dermatitis (AD) in a mouse model. Immunofluorescence, behavior recording, and image analysis were used to evaluate the therapeutic effect of subcutaneous Muse cell injection. Real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of inflammatory factors. In vitro, wound healing and cell proliferation experiments were used to examine the effect of Muse cell supernatant on keratinocytes. RESULTS Our results showed that subcutaneous injection of Muse cells after AD model induction significantly alleviated scratching behavior in mice. The evaluation of dermatitis and photos of damaged skin on the back of the neck revealed that Muse cells reduced dermatitis, playing an active role in healing the damaged skin. The activation of spinal glial cells and scratching behavior were also reduced by Muse cell injection. In addition, we also showed that the expression levels of the inflammatory factors interleukin (IL)-6, IL-17α, and IL-33 in both the spinal cord and skin were suppressed by Muse cells. Furthermore, Muse cells not only exerted anti-inflammatory effects on lipopolysaccharide (LPS)-induced human HaCat cells but also promoted wound healing and keratinocyte proliferation. CONCLUSIONS In vivo, Muse cells could alleviate scratching symptoms, reduce epidermal inflammation, and promote wound healing. In vitro, Muse cells could also promote the migration and proliferation of keratinocytes. In summary, Muse cells may become a new therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- WenDi Fei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - JunLin Wu
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - MengDie Gao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ya Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - ChunLi Shan
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yu Shen
- Department of Dermatology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China. .,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China. .,Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
20
|
Sunagawa M, Takayama Y, Kato M, Tanaka M, Fukuoka S, Okumo T, Tsukada M, Yamaguchi K. Kampo Formulae for the Treatment of Neuropathic Pain ∼ Especially the Mechanism of Action of Yokukansan ∼. Front Mol Neurosci 2021; 14:705023. [PMID: 34970116 PMCID: PMC8712661 DOI: 10.3389/fnmol.2021.705023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Kampo medicine has been practiced as traditional medicine (TM) in Japan. Kampo medicine uses Kampo formulae that are composed of multiple crude drugs to make Kampo formulae. In Japan, Kampo formulae are commonly used instead of or combined with Western medicines. If drug therapy that follows the guidelines for neuropathic pain does not work or cannot be taken due to side effects, various Kampo formulae are considered as the next line of treatment. Since Kampo formulae are composed of two or more kinds of natural crude drugs, and their extracts contain many ingredients with pharmacological effects, one Kampo formula usually has multiple effects. Therefore, when selecting a formula, we consider symptoms other than pain. This review outlines the Kampo formulae that are frequently used for pain treatment and their crude drugs and the basic usage of each component. In recent years, Yokukansan (YKS) has become one of the most used Kampo formulae for pain treatment with an increasing body of baseline research available. We outline the known and possible mechanisms by which YKS exerts its pharmacologic benefits as an example of Kampo formulae's potency and holistic healing properties.
Collapse
Affiliation(s)
- Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yasunori Takayama
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Tanaka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Seiya Fukuoka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Showa University, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Kojiro Yamaguchi
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
21
|
Common and discrete mechanisms underlying chronic pain and itch: peripheral and central sensitization. Pflugers Arch 2021; 473:1603-1615. [PMID: 34245379 DOI: 10.1007/s00424-021-02599-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
Normally, an obvious antagonism exists between pain and itch. In normal conditions, painful stimuli suppress itch sensation, whereas pain killers often generate itch. Although pain and itch are mediated by separate pathways under normal conditions, most chemicals are not highly specific to one sensation in chronic pathologic conditions. Notably, in patients with neuropathic pain, histamine primarily induces pain rather than itch, while in patients with atopic dermatitis, bradykinin triggers itch rather than pain. Accordingly, repetitive scratching even enhances itch sensation in chronic itch conditions. Physicians often prescribe pain relievers to patients with chronic itch, suggesting common mechanisms underlying chronic pain and itch, especially peripheral and central sensitization. Rather than separating itch and pain, studies should investigate chronic itch and pain including neuropathic and inflammatory conditions. Here, we reviewed chronic sensitization leading to chronic pain and itch at both peripheral and central levels. Studies investigating the connection between pain and itch facilitate the development of new therapeutics against both chronic dysesthesias based on the underlying pathophysiology.
Collapse
|
22
|
Kawanabe R, Yoshihara K, Hatada I, Tsuda M. Activation of spinal dorsal horn astrocytes by noxious stimuli involves descending noradrenergic signaling. Mol Brain 2021; 14:79. [PMID: 33971918 PMCID: PMC8108464 DOI: 10.1186/s13041-021-00788-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
Astrocytes are critical regulators of neuronal function in the central nervous system (CNS). We have previously shown that astrocytes in the spinal dorsal horn (SDH) have increased intracellular Ca2+ levels following intraplantar injection of the noxious irritant, formalin. However, the underlying mechanisms remain unknown. We investigated these mechanisms by focusing on the role of descending noradrenergic (NAergic) signaling because our recent study revealed the essential role of the astrocytic Ca2+ responses evoked by intraplantar capsaicin. Using in vivo SDH imaging, we found that the Ca2+ level increase in SDH astrocytes induced by intraplantar formalin injection was suppressed by ablation of SDH-projecting locus coeruleus (LC)-NAergic neurons. Furthermore, the formalin-induced Ca2+ response was dramatically decreased by the loss of α1A-adrenaline receptors (ARs) in astrocytes located in the superficial laminae of the SDH. Moreover, similar inhibition was observed in mice pretreated intrathecally with an α1A-AR-specific antagonist. Therefore, activation of α1A-ARs via descending LC-NAergic signals may be a common mechanism underlying astrocytic Ca2+ responses in the SDH evoked by noxious stimuli, including chemical irritants.
Collapse
Affiliation(s)
- Riku Kawanabe
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
23
|
Yuan Q, Liu X, Zhang Y, Xian YF, Zou J, Zhang X, Huang P, Song YQ, Lin ZX. Established Beta Amyloid Pathology Is Unaffected by TREM2 Elevation in Reactive Microglia in an Alzheimer's Disease Mouse Model. Molecules 2021; 26:molecules26092685. [PMID: 34064330 PMCID: PMC8125360 DOI: 10.3390/molecules26092685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Several genetic studies have identified a rare variant of triggering receptor expressed on myeloid cells 2 (TREM2) as a risk factor for Alzheimer's disease (AD). However, findings on the effects of TREM2 on Aβ deposition are quite inconsistent in animal studies, requiring further investigation. In this study, we investigated whether elevation of TREM2 mitigates Aβ pathology in TgCRND8 mice. We found that peripheral nerve injury resulted in a robust elevation of TREM2 exclusively in reactive microglia in the ipsilateral spinal cord of aged TgCRND8 mice at the age of 20 months. TREM2 expression appeared on day 1 post-injury and the upregulation was maintained for at least 28 days. Compared to the contralateral side, neither amyloid beta plaque load nor soluble Aβ40 and Aβ42 levels were attenuated upon TREM2 induction. We further showed direct evidence that TREM2 elevation in reactive microglia did not affect amyloid-β pathology in plaque-bearing TgCRND8 mice by applying anti-TREM2 neutralizing antibody to selectively block TREM2. Our results question the ability of TREM2 to ameliorate established Aβ pathology, discouraging future development of disease-modifying pharmacological treatments targeting TREM2 in the late stage of AD.
Collapse
Affiliation(s)
- Qiuju Yuan
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; (Y.-F.X.); (J.Z.); (X.Z.); (P.H.)
- Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Correspondence: (Q.Y.); (Z.-X.L.)
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong;
| | - Yi Zhang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; (Y.Z.); (Y.-Q.S.)
| | - Yan-Fang Xian
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; (Y.-F.X.); (J.Z.); (X.Z.); (P.H.)
- Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Juntao Zou
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; (Y.-F.X.); (J.Z.); (X.Z.); (P.H.)
| | - Xie Zhang
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; (Y.-F.X.); (J.Z.); (X.Z.); (P.H.)
| | - Pengyun Huang
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; (Y.-F.X.); (J.Z.); (X.Z.); (P.H.)
| | - You-Qiang Song
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; (Y.Z.); (Y.-Q.S.)
| | - Zhi-Xiu Lin
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; (Y.-F.X.); (J.Z.); (X.Z.); (P.H.)
- Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Correspondence: (Q.Y.); (Z.-X.L.)
| |
Collapse
|
24
|
Joshi HP, Jo HJ, Kim YH, An SB, Park CK, Han I. Stem Cell Therapy for Modulating Neuroinflammation in Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22094853. [PMID: 34063721 PMCID: PMC8124149 DOI: 10.3390/ijms22094853] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is a complex, debilitating, chronic pain state, heterogeneous in nature and caused by a lesion or disease affecting the somatosensory system. Its pathogenesis involves a wide range of molecular pathways. NP treatment is extremely challenging, due to its complex underlying disease mechanisms. Current pharmacological and nonpharmacological approaches can provide long-lasting pain relief to a limited percentage of patients and lack safe and effective treatment options. Therefore, scientists are focusing on the introduction of novel treatment approaches, such as stem cell therapy. A growing number of reports have highlighted the potential of stem cells for treating NP. In this review, we briefly introduce NP, current pharmacological and nonpharmacological treatments, and preclinical studies of stem cells to treat NP. In addition, we summarize stem cell mechanisms—including neuromodulation in treating NP. Literature searches were conducted using PubMed to provide an overview of the neuroprotective effects of stem cells with particular emphasis on recent translational research regarding stem cell-based treatment of NP, highlighting its potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hari Prasad Joshi
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Spinal Cord Research Centre, Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Hyun-Jung Jo
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Yong-Ho Kim
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Seong-Bae An
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
- Correspondence: (C.-K.P.); (I.H.)
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Correspondence: (C.-K.P.); (I.H.)
| |
Collapse
|
25
|
Lu HJ, Fu YY, Wei QQ, Zhang ZJ. Neuroinflammation in HIV-Related Neuropathic Pain. Front Pharmacol 2021; 12:653852. [PMID: 33959022 PMCID: PMC8093869 DOI: 10.3389/fphar.2021.653852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
In the management of human immunodeficiency virus (HIV) infection around the world, chronic complications are becoming a new problem along with the prolonged life expectancy. Chronic pain is widespread in HIV infected patients and even affects those with a low viral load undergoing long-term treatment with antiviral drugs, negatively influencing the adherence to disease management and quality of life. A large proportion of chronic pain is neuropathic pain, which defined as chronic pain caused by nervous system lesions or diseases, presenting a series of nervous system symptoms including both positive and negative signs. Injury caused by HIV protein, central and peripheral sensitization, and side effects of antiretroviral therapy lead to neuroinflammation, which is regarded as a maladaptive mechanism originally serving to promote regeneration and healing, constituting the main mechanism of HIV-related neuropathic pain. Gp120, as HIV envelope protein, has been found to be the major toxin that induces neuropathic pain. Particularly, the microglia, releasing numerous pro-inflammatory substances (such as TNFα, IL-1β, and IL-6), not only sensitize the neurons but also are the center part of the crosstalk bridging the astrocytes and oligodendrocytes together forming the central sensitization during HIV infection, which is not discussed detailly in recent reviews. In the meantime, some NRTIs and PIs exacerbate the neuroinflammation response. In this review, we highlight the importance of clarifying the mechanism of HIV-related neuropathic pain, and discuss about the limitation of the related studies as future research directions.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Yuan-Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
26
|
Wang L, Long M, Wang M, Peng S, Chen G, Zhou J, Ou C. Trigeminal neuralgia causes neurodegeneration in rats associated with upregulation of the CD95/CD95L pathway. Mol Pain 2021; 16:1744806920908092. [PMID: 32013712 PMCID: PMC7054737 DOI: 10.1177/1744806920908092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objectives To explore the effects of trigeminal neuralgia on neurodegeneration
in rats and the underlining mechanism. Methods Sixty adult male Sprague Dawley rats were divided randomly into
Chronic Constriction Injury of the Rat’s Infraorbital Nerve
(ION-CCI) group and sham group (n = 30). Right
suborbital nerve was ligated in ION-CCI group to establish a
trigeminal neuralgia model. In sham group, suborbital nerve was
exposed without ligation. Pain thresholds were measured before
surgery and 1, 7, 15, and 30 days after surgery
(n = 10). Morris water maze tests
(n = 10) were conducted at 1, 15, and
30 days after surgery to evaluate the changes in learning and
memory ability of rats. At 5, 19, and 34 days after surgery,
serum S100β protein concentration and hippocampal Aβ1-42 protein
expression were detected by enzyme-linked immunosorbent assay;
total tau protein expression was detected by Western blotting;
changes of neurons in hippocampus were observed by Nissl
staining; and the expression of ser404p-tau, cluster
of differentiation (CD)95, CD95L, and cleaved caspase-3 proteins
was detected by immunofluorescence and Western blotting. Results Hyperalgesia occurred in ION-CCI group, and mechanical pain
threshold decreased significantly
(P < 0.05). On the 15th and 30th days after
surgery, ION-CCI group showed lower learning and memory ability
than sham group (P < 0.05). Serum S100β
protein concentration, hippocampal A β1-42, and
ser404p-tau protein expression increased in the
ION-CCI group 19 and 34 days after surgery
(P < 0.05), hippocampal CD95 expression
increased in the ION-CCI group after surgery
(P < 0.05), hippocampal CD95L expression
increased at 19 and 34 days after surgery
(P < 0.05), and cleaved caspase-3 expression
increased at 5 and 19 days after surgery
(P < 0.05). Nissl bodies in ION-CCI group
decreased significantly at 15 days after surgery. The expression
of cleaved caspase-3 protein in ION-CCI group was positively
correlated with the expression of CD95 and CD95L
(P < 0.05). Conclusions Trigeminal neuralgia may lead to neuronal inflammation and neuronal
apoptosis associated with upregulation of CD95/CD95L expression,
thus causing neurodegeneration.
Collapse
Affiliation(s)
- Lu Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China.,Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Menghong Long
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China.,Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Shuangchun Peng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China.,Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Guangxiang Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Cehua Ou
- Pain Department, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| |
Collapse
|
27
|
Wu YJ, Wang L, Ji CF, Gu SF, Yin Q, Zuo J. The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells. Inflammation 2021; 44:821-834. [PMID: 33405021 DOI: 10.1007/s10753-020-01396-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.
Collapse
Affiliation(s)
- Yi-Jin Wu
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
| | - Li Wang
- Department of Pharmacy, Wuhu Medicine and Health School, Wuhu, 241000, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
- Research Center of Integrated Traditional and Western Medicine, Wannan Medical College, 241000, Wuhu, China.
| |
Collapse
|
28
|
Stem Cells in the Treatment of Neuropathic Pain: Research Progress of Mechanism. Stem Cells Int 2020; 2020:8861251. [PMID: 33456473 PMCID: PMC7785341 DOI: 10.1155/2020/8861251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain (NP) is pain caused by somatosensory nervous system injury or disease. Its prominent symptoms are spontaneous pain, hyperalgesia, and allodynia, and the sense of pain is extremely strong. Owing to the complex mechanism, conventional painkillers lack effectiveness. Recently, research on the treatment of NP by stem cells is increasing and promising results have been achieved in preclinical research. In this review, we briefly introduce the neuropathic pain, the current treatment strategy, and the development of stem cell therapy, and we collected the experimental and clinical trial articles of many kinds of stem cells in the treatment of neuropathic pain from the past ten years. We analyzed and summarized the general efficacy and mechanism of stem cells in the treatment of neuropathic pain. We found that the multiple-mechanism approach was different from the single mechanism of routine clinical drugs; stem cells play a role in peripheral mechanism, central mechanism, and disinhibition of spinal cord level that lead to neuropathic pain, so they are more effective in analgesia and treatment of neuropathic pain.
Collapse
|
29
|
Granot M, Yakov S, Ramon M. Enhanced Itch Intensity Is Associated with Less Efficient Descending Inhibition Processing for Itch But Not Pain Attenuation in Chronic Dermatology Patients. PAIN MEDICINE 2020; 21:2538-2545. [DOI: 10.1093/pm/pnz263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
The study aims were 1) to investigate the direction of mutual inhibitory pathways on itch intensity by utilizing conditioned pain modulation paradigms for pain and itch attenuation and 2) to explore whether itch severity is affected by the individual pain sensitivity profile, as well as pain scores reported during the tests and the past week.
Design
Cross-sectional.
Setting
Testing was conducted at the Department of Dermatology, Rambam Health Care Campus.
Subjects
Forty patients suffering from chronic skin disorders associated with itch and treated in the Dermatology Clinic at Rambam Health Care Campus participated in the study.
Methods
Efficacy of descending inhibition was evaluated by two conditioned pain modulation (CPM) paradigms: by pruriception (CPMItch) induced by cold and heat as counterstimuli to inhibit itch intensity and by nociception (CPMPain). Severity and interference of clinical pain were assessed using the Brief Pain Inventory (BPI).
Results
Robust CPMItch responses were obtained following the various noxious stimulations. No associations were observed between CPMPain and CPMItch, itch severity, skin disease severity, and clinical pain symptoms. According to the linear regression model, itch severity was independently associated with less efficient CPMItch (B = –0.750, P < 0.001) and more efficient CPMPain (B = 0.031, P = 0.016), which affects itch in opposing manners.
Conclusions
Findings indicate that the intrinsic capacity to inhibit pain and itch by exposure to exogenous noxious stimuli autonomously affects itch intensity in an opposing manner. These findings may shed new light on the mutual mechanistic similarity and dissimilarity between pain and itch and their hierarchy.
Collapse
Affiliation(s)
- Michal Granot
- The Laboratory of Clinical Neurophysiology, the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- The Faculty of Social Welfare and Health Studies, University of Haifa, Haifa, Israel
| | - Sarit Yakov
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Michal Ramon
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
30
|
Luo H, Liu HZ, Zhang WW, Matsuda M, Lv N, Chen G, Xu ZZ, Zhang YQ. Interleukin-17 Regulates Neuron-Glial Communications, Synaptic Transmission, and Neuropathic Pain after Chemotherapy. Cell Rep 2020; 29:2384-2397.e5. [PMID: 31747607 DOI: 10.1016/j.celrep.2019.10.085] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/14/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023] Open
Abstract
The proinflammatory cytokine interleukin-17 (IL-17) is implicated in pain regulation. However, the synaptic mechanisms by which IL-17 regulates pain transmission are unknown. Here, we report that glia-produced IL-17 suppresses inhibitory synaptic transmission in the spinal cord pain circuit and drives chemotherapy-induced neuropathic pain. We find that IL-17 not only enhances excitatory postsynaptic currents (EPSCs) but also suppresses inhibitory postsynaptic synaptic currents (IPSCs) and GABA-induced currents in lamina IIo somatostatin-expressing neurons in mouse spinal cord slices. IL-17 mainly expresses in spinal cord astrocytes, and its receptor IL-17R is detected in somatostatin-expressing neurons. Selective knockdown of IL-17R in spinal somatostatin-expressing interneurons reduces paclitaxel-induced hypersensitivity. Overexpression of IL-17 in spinal astrocytes is sufficient to induce mechanical allodynia in naive animals. In dorsal root ganglia, IL-17R expression in nociceptive sensory neurons is sufficient and required for inducing neuronal hyperexcitability after paclitaxel. Together, our data show that IL-17/IL-17R mediate neuron-glial interactions and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Hui-Zhu Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Wen-Wen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Megumi Matsuda
- Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ning Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhen-Zhong Xu
- Department of Physiology, Center of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
31
|
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci Bull 2020; 36:1327-1343. [PMID: 32889635 DOI: 10.1007/s12264-020-00570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.
Collapse
|
32
|
Shu B, He SQ, Guan Y. Spinal Cord Stimulation Enhances Microglial Activation in the Spinal Cord of Nerve-Injured Rats. Neurosci Bull 2020; 36:1441-1453. [PMID: 32889636 DOI: 10.1007/s12264-020-00568-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia can modulate spinal nociceptive transmission. Yet, their role in spinal cord stimulation (SCS)-induced pain inhibition is unclear. Here, we examined how SCS affects microglial activation in the lumbar cord of rats with chronic constriction injury (CCI) of the sciatic nerve. Male rats received conventional SCS (50 Hz, 80% motor threshold, 180 min, 2 sessions/day) or sham stimulation on days 18-20 post-CCI. SCS transiently attenuated the mechanical hypersensitivity in the ipsilateral hind paw and increased OX-42 immunoreactivity in the bilateral dorsal horns. SCS also upregulated the mRNAs of M1-like markers, but not M2-like markers. Inducible NOS protein expression was increased, but brain-derived neurotrophic factor was decreased after SCS. Intrathecal minocycline (1 μg-100 μg), which inhibits microglial activation, dose-dependently attenuated the mechanical hypersensitivity. Pretreatment with low-dose minocycline (1 μg, 30 min) prolonged the SCS-induced pain inhibition. These findings suggest that conventional SCS may paradoxically increase spinal M1-like microglial activity and thereby compromise its own ability to inhibit pain.
Collapse
Affiliation(s)
- Bin Shu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
33
|
Differential expression of Na +/K +/Cl - cotransporter 1 in neurons and glial cells within the superficial spinal dorsal horn of rodents. Sci Rep 2020; 10:11715. [PMID: 32678166 PMCID: PMC7367302 DOI: 10.1038/s41598-020-68638-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Although convincing experimental evidence indicates that Na+/K+/Cl- cotransporter 1 (NKCC1) is involved in spinal nociceptive information processing and in the generation of hyperalgesia and allodynia in chronic pain states, the cellular distribution of NKCC1 in the superficial spinal dorsal horn is still poorly understood. Because this important piece of knowledge is missing, the effect of NKCC1 on pain processing is still open to conflicting interpretations. In this study, to provide the missing experimental data, we investigated the cellular distribution of NKCC1 in the superficial spinal dorsal horn by immunohistochemical methods. We demonstrated for the first time that almost all spinal axon terminals of peptidergic nociceptive primary afferents express NKCC1. In contrast, virtually all spinal axon terminals of nonpeptidergic nociceptive primary afferents were negative for NKCC1. Data on the colocalization of NKCC1 with axonal and glial markers indicated that it is almost exclusively expressed by axon terminals and glial cells in laminae I-IIo. In lamina IIi, however, we observed a strong immunostaining for NKCC1 also in the dendrites and cell bodies of PV-containing inhibitory neurons and a weak staining in PKCγ-containing excitatory neurons. Our results facilitate further thinking about the role of NKCC1 in spinal pain processing.
Collapse
|
34
|
Cevikbas F, Lerner EA. Physiology and Pathophysiology of Itch. Physiol Rev 2020; 100:945-982. [PMID: 31869278 PMCID: PMC7474262 DOI: 10.1152/physrev.00017.2019] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.
Collapse
Affiliation(s)
- Ferda Cevikbas
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ethan A Lerner
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
35
|
Meng XL, Fu P, Wang L, Yang X, Hong G, Zhao X, Lao J. Increased EZH2 Levels in Anterior Cingulate Cortex Microglia Aggravate Neuropathic Pain by Inhibiting Autophagy Following Brachial Plexus Avulsion in Rats. Neurosci Bull 2020; 36:793-805. [PMID: 32346844 DOI: 10.1007/s12264-020-00502-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
After brachial plexus avulsion (BPA), microglia induce inflammation, initiating and maintaining neuropathic pain. EZH2 (enhancer of zeste homolog 2) has been implicated in inflammation and neuropathic pain, but the mechanisms by which it regulates neuropathic pain remain unclear. Here, we found that EZH2 levels were markedly upregulated during BPA-induced neuropathic pain in vivo and in vitro, stimulating pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) secretion in vivo. In rats with BPA-induced neuropathic pain, mechanical and cold hypersensitivities were induced by EZH2 upregulation and inhibited by EZH2 downregulation in the anterior cingulate cortex. Microglial autophagy was also significantly inhibited, with EZH2 inhibition activating autophagy and reducing neuroinflammation in vivo. However, this effect was impaired by inhibiting autophagy with 3-methyladenine, suggesting that the MTOR signaling pathway is a functional target of EZH2. These data suggest that EZH2 regulates neuroinflammation and neuropathic pain via a novel MTOR-mediated autophagy signaling pathway, providing a promising approach for managing neuropathic pain.
Collapse
Affiliation(s)
- Xiang-Lei Meng
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lin Wang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Xun Yang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Guanghui Hong
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Xin Zhao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Jie Lao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China.
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China.
| |
Collapse
|
36
|
Overexpression of Purinergic P2X4 Receptors in Hippocampus Rescues Memory Impairment in Rats with Type 2 Diabetes. Neurosci Bull 2020; 36:719-732. [PMID: 32198702 PMCID: PMC7340685 DOI: 10.1007/s12264-020-00478-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
Purinergic receptors have been reported to be involved in brain disorders. In this study, we explored their roles and mechanisms underlying the memory impairment in rats with type 2 diabetes mellitus (T2DM). T2DM rats exhibited a worse performance in the T-maze and Morris water maze (MWM) than controls. Microglia positive for P2X purinoceptor 4 (P2X4R) in the hippocampus were reduced and activated microglia were increased in T2DM rats. Long Amplicon PCR (LA-PCR) showed that DNA amplification of the p2x4r gene in the hippocampus was lower in T2DM rats. Minocycline significantly reduced the number of activated microglia and the mean distance traveled by T2DM rats in the MWM. Most importantly, P2X4R overexpression suppressed the activated microglia and rescued the memory impairment of T2DM rats. Overall, T2DM led to excessive activation of microglia in the hippocampus, partly through the DNA damage-mediated downregulation of P2X4Rs, thus contributing to memory impairment.
Collapse
|
37
|
Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br J Anaesth 2019; 123:637-654. [PMID: 31551115 DOI: 10.1016/j.bja.2019.07.026] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
The relationship between gut microbiota and neurological diseases, including chronic pain, has received increasing attention. The gut microbiome is a crucial modulator of visceral pain, whereas recent evidence suggests that gut microbiota may also play a critical role in many other types of chronic pain, including inflammatory pain, headache, neuropathic pain, and opioid tolerance. We present a narrative review of the current understanding on the role of gut microbiota in pain regulation and discuss the possibility of targeting gut microbiota for the management of chronic pain. Numerous signalling molecules derived from gut microbiota, such as by-products of microbiota, metabolites, neurotransmitters, and neuromodulators, act on their receptors and remarkably regulate the peripheral and central sensitisation, which in turn mediate the development of chronic pain. Gut microbiota-derived mediators serve as critical modulators for the induction of peripheral sensitisation, directly or indirectly regulating the excitability of primary nociceptive neurones. In the central nervous system, gut microbiota-derived mediators may regulate neuroinflammation, which involves the activation of cells in the blood-brain barrier, microglia, and infiltrating immune cells, to modulate induction and maintenance of central sensitisation. Thus, we propose that gut microbiota regulates pain in the peripheral and central nervous system, and targeting gut microbiota by diet and pharmabiotic intervention may represent a new therapeutic strategy for the management of chronic pain.
Collapse
|
38
|
Abstract
Astrocytes are critical for maintaining the homeostasis of the CNS. Increasing evidence suggests that a number of neurological and neuropsychiatric disorders, including chronic pain, may result from astrocyte 'gliopathy'. Indeed, in recent years there has been substantial progress in our understanding of how astrocytes can regulate nociceptive synaptic transmission via neuronal-glial and glial-glial cell interactions, as well as the involvement of spinal and supraspinal astrocytes in the modulation of pain signalling and the maintenance of neuropathic pain. A role of astrocytes in the pathogenesis of chronic itch is also emerging. These developments suggest that targeting the specific pathways that are responsible for astrogliopathy may represent a novel approach to develop therapies for chronic pain and chronic itch.
Collapse
|
39
|
Chen Y, Shi Y, Wang G, Li Y, Cheng L, Wang Y. Memantine selectively prevented the induction of dynamic allodynia by blocking Kir2.1 channel and inhibiting the activation of microglia in spinal dorsal horn of mice in spared nerve injury model. Mol Pain 2019; 15:1744806919838947. [PMID: 30845882 PMCID: PMC6487752 DOI: 10.1177/1744806919838947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Memantine is one of the important clinical medications in treating moderate to severe Alzheimer disease. The effect of memantine on preventing or treating punctate allodynia has been thoroughly studied but not on the induction of dynamic allodynia. The aim of this study is to investigate whether memantine could prevent the induction of dynamic allodynia and its underlying spinal mechanisms. Results (1) In in vivo spared nerve injury pain model, pretreatment with memantine at a lower dose (10 nmol, intrathecal; memantine-10) selectively prevented the induction of dynamic allodynia but not the punctate allodynia. (2) Pretreatment with either MK801-10 (MK801-10 nmol, intrathecal) or higher dose of memantine (30 nmol, intrathecal; memantine-30) prevented the induction of both dynamic and punctate allodynia. (3) Memantine-10 showed significant effect on the inhibition of the spared nerve injury-induced overactivation of microglia in spinal dorsal horn. (4) In contrast, in complete freund′s adjuvant (CFA) model, memantine-10 neither affected the CFA injection-induced activation of microglia in spinal dorsal horn nor the induction of dynamic allodynia. (5) Immunohistological studies showed Kir2.1 channel distributed widely and co-localized with microglia in the spinal dorsal horn of mice. (6) Pretreatment with either minocycline, a microglia inhibitor, or ML133, a Kir2.1 inhibitor, both selectively prevented the overactivation of microglia in spinal dorsal horn and the induction of dynamic allodynia following spared nerve injury. Conclusion The selective inhibitory effect on the induction of dynamic allodynia in spared nerve injury model by low dose of the memantine (memantine-10) was tightly correlated with the blockade of microglia Kir2.1 channel to suppress the microglia activation.
Collapse
Affiliation(s)
- Yangyang Chen
- 1 Neurology Department, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqian Shi
- 1 Neurology Department, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoxiang Wang
- 1 Neurology Department, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yimei Li
- 1 Neurology Department, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Longzhen Cheng
- 1 Neurology Department, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Wang
- 1 Neurology Department, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Sierra S, Gupta A, Gomes I, Fowkes M, Ram A, Bobeck EN, Devi LA. Targeting Cannabinoid 1 and Delta Opioid Receptor Heteromers Alleviates Chemotherapy-Induced Neuropathic Pain. ACS Pharmacol Transl Sci 2019; 2:219-229. [PMID: 31565698 PMCID: PMC6764458 DOI: 10.1021/acsptsci.9b00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Cannabinoid 1 (CB1R) and delta opioid receptors (DOR) associate to form heteromers that exhibit distinct pharmacological properties. Not much is known about CB1R-DOR heteromer location or signaling along the pain circuit in either animal models or patients with chemotherapy-induced peripheral neuropathy (CIPN). Here, we use paclitaxel to induce CIPN in mice and confirm the development of mechanical allodynia. Under these conditions, we find significant increases in CB1R-DOR heteromers in the dorsal spinal cord of mice with CIPN as well as in postmortem spinal cords from human subjects with CIPN compared to controls. Next, we investigated receptor signaling in spinal cords of mice with CIPN and found that treatment with a combination of low signaling doses of CB1R and DOR ligands leads to significant enhancement in G-protein activity that could be selectively blocked by the CB1R-DOR antibody. Consistent with this, administration of subthreshold doses of a combination of ligands (CB1R agonist, Hu-210, and DOR agonist, SNC80) leads to significant attenuation of allodynia in mice with CIPN that is not seen with the administration of individual ligands, and this could be blocked by the CB1R-DOR antibody. Together, these results imply that CB1R-DOR heteromers upregulated during CIPN-associated mechanical allodynia could serve as a potential target for treatment of neuropathic pain including CIPN.
Collapse
Affiliation(s)
- Salvador Sierra
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Achla Gupta
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ivone Gomes
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Mary Fowkes
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Akila Ram
- Department
of Biology, Utah State University, Logan, Utah 84322, United States
| | - Erin N. Bobeck
- Department
of Biology, Utah State University, Logan, Utah 84322, United States
| | - Lakshmi A. Devi
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
41
|
González SL, Meyer L, Raggio MC, Taleb O, Coronel MF, Patte-Mensah C, Mensah-Nyagan AG. Allopregnanolone and Progesterone in Experimental Neuropathic Pain: Former and New Insights with a Translational Perspective. Cell Mol Neurobiol 2019; 39:523-537. [PMID: 30187261 PMCID: PMC11469882 DOI: 10.1007/s10571-018-0618-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
In the last decades, an active and stimulating area of research has been devoted to explore the role of neuroactive steroids in pain modulation. Despite challenges, these studies have clearly contributed to unravel the multiple and complex actions and potential mechanisms underlying steroid effects in several experimental conditions that mimic human chronic pain states. Based on the available data, this review focuses mainly on progesterone and its reduced derivative allopregnanolone (also called 3α,5α-tetrahydroprogesterone) which have been shown to prevent or even reverse the complex maladaptive changes and pain behaviors that arise in the nervous system after injury or disease. Because the characterization of new related molecules with improved specificity and enhanced pharmacological profiles may represent a crucial step to develop more efficient steroid-based therapies, we have also discussed the potential of novel synthetic analogs of allopregnanolone as valuable molecules for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Susana Laura González
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| | - Laurence Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - María Celeste Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - María Florencia Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - Ayikoe Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France.
| |
Collapse
|
42
|
Liu ZY, Song ZW, Guo SW, He JS, Wang SY, Zhu JG, Yang HL, Liu JB. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci Ther 2019; 25:922-936. [PMID: 30955244 PMCID: PMC6698967 DOI: 10.1111/cns.13128] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Previous studies have demonstrated that the CXCL12/CXCR4 signaling axis is involved in the regulation of neuropathic pain (NP). Here, we performed experiments to test whether the CXCL12/CXCR4 signaling pathway contributes to the pathogenesis of neuropathic pain after spinal nerve ligation (SNL) via central sensitization mechanisms. Methods Neuropathic pain was induced and assessed in a SNL rat model. The expression and distribution of CXCL12 or CXCR4 were examined by immunofluorescence staining and western blot. The effects of CXCL12 rat peptide, CXCL12 neutralizing antibody, CXCR4 antagonist, and astrocyte metabolic inhibitor on pain hypersensitivity were explored by behavioral tests in naive or SNL rats. We measured the expression level of c‐Fos and CGRP to evaluate the sensitization of neurons by RT‐PCR. The activation of astrocyte and microglia was analyzed by measuring the level of GFAP and iba‐1. The mRNA levels of the pro‐inflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 and Connexin 30, Connexin 43, EAAT 1, EAAT 2 were also detected by RT‐PCR. Results First, we found that the expression of CXCL12 and CXCR4 was upregulated after SNL. CXCL12 was mainly expressed in the neurons while CXCR4 was expressed both in astrocytes and neurons in the spinal dorsal horn after SNL. Moreover, intrathecal administration of rat peptide, CXCL12, induced hypersensitivity in naive rats, which was partly reversed by fluorocitrate. In addition, the CXCL12 rat peptide increased mRNA levels of c‐Fos, GFAP, and iba‐1. A single intrathecal injection of CXCL12 neutralizing antibody transiently reversed neuropathic pain in the SNL rat model. Consecutive use of CXCL12 neutralizing antibody led to significant delay in the induction of neuropathic pain, and reduced the expression of GFAP and iba‐1 in the spinal dorsal horn. Finally, repeated intrathecal administration of the CXCR4 antagonist, AMD3100, significantly suppressed the initiation and duration of neuropathic pain. The mRNA levels of c‐Fos, CGRP, GFAP, iba‐1, and pro‐inflammatory cytokines, also including Connexin 30 and Connexin 43 were decreased after injection of AMD3100, while EAAT 1 and EAAT 2 mRNAs were increased. Conclusion We demonstrate that the CXCL12/CXCR4 signaling pathway contributes to the development and maintenance of neuropathic pain via central sensitization mechanisms. Importantly, intervening with CXCL12/CXCR4 presents an effective therapeutic approach to treat the neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Yuan Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
| | - Zhi-Wen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shi-Wu Guo
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun-Sheng He
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shen-Yu Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Guo Zhu
- Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
| | - Hui-Lin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Bo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
43
|
Wang ZH, Liu T. MicroRNA21 Meets Neuronal TLR8: Non-canonical Functions of MicroRNA in Neuropathic Pain. Neurosci Bull 2019; 35:949-952. [PMID: 30887247 DOI: 10.1007/s12264-019-00366-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/05/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Tong Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215021, China. .,College of Life Sciences, Yanan University, Yanan, 716000, China.
| |
Collapse
|
44
|
Xu Y, Jiang Y, Wang L, Huang J, Wen J, Lv H, Wu X, Wan C, Yu C, Zhang W, Zhao J, Zhou Y, Chen Y. Thymosin Alpha-1 Inhibits Complete Freund's Adjuvant-Induced Pain and Production of Microglia-Mediated Pro-inflammatory Cytokines in Spinal Cord. Neurosci Bull 2019; 35:637-648. [PMID: 30790216 DOI: 10.1007/s12264-019-00346-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023] Open
Abstract
Activation of inflammatory responses regulates the transmission of pain pathways through an integrated network in the peripheral and central nervous systems. The immunopotentiator thymosin alpha-1 (Tα1) has recently been reported to have anti-inflammatory and neuroprotective functions in rodents. However, how Tα1 affects inflammatory pain remains unclear. In the present study, intraperitoneal injection of Tα1 attenuated complete Freund's adjuvant (CFA)-induced pain hypersensitivity, and decreased the up-regulation of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in inflamed skin and the spinal cord. We found that CFA-induced peripheral inflammation evoked strong microglial activation, but the effect was reversed by Tα1. Notably, Tα1 reversed the CFA-induced up-regulation of vesicular glutamate transporter (VGLUT) and down-regulated the vesicular γ-aminobutyric acid transporter (VGAT) in the spinal cord. Taken together, these results suggest that Tα1 plays a therapeutic role in inflammatory pain and in the modulation of microglia-induced pro-inflammatory cytokine production in addition to mediation of VGLUT and VGAT expression in the spinal cord.
Collapse
Affiliation(s)
- Yunlong Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yanjun Jiang
- College of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiahua Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Junmao Wen
- Graduate College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hang Lv
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoli Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chaofan Wan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuanxin Yu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenjie Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiaying Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yinqi Zhou
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
45
|
MicroRNA-1224 Splicing CircularRNA-Filip1l in an Ago2-Dependent Manner Regulates Chronic Inflammatory Pain via Targeting Ubr5. J Neurosci 2019; 39:2125-2143. [PMID: 30651325 DOI: 10.1523/jneurosci.1631-18.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.
Collapse
|
46
|
Robering JW, Gebhardt L, Wolf K, Kühn H, Kremer AE, Fischer MJM. Lysophosphatidic acid activates satellite glia cells and Schwann cells. Glia 2019; 67:999-1012. [PMID: 30637823 DOI: 10.1002/glia.23585] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
Abstract
Pruritus is a common and disabling symptom in patients with hepatobiliary disorders, particularly in those with cholestatic features. Serum levels of lysophosphatidic acid (LPA) and its forming enzyme autotaxin were increased in patients suffering from hepatic pruritus, correlated with itch severity and response to treatment. Here we show that in a culture of dorsal root ganglia LPA 18:1 surprisingly activated a large fraction of satellite glia cells, and responses to LPA 18:1 correlated inversely with responses to neuronal expressed transient receptor potential channels. LPA 18:1 caused only a marginal activation of heterologously expressed TRPV1, and responses in dorsal root ganglion cultures from TRPV1-deficient mice were similar to controls. LPA 18:1 desensitized subsequent responsiveness to chloroquine and TGR5 agonist INT-777. The LPA 18:1-induced increase in cytoplasmatic calcium stems from the endoplasmatic reticulum. LPA receptor expression in dorsal root ganglia and Schwann cells, LPAR1 immunohistochemistry, and pharmacological results indicate a signaling pathway through LPA receptor 1. Peripheral rat Schwann cells, which are of glial lineage as the satellite glia cells, were also responsive to LPA 18:1. Summarizing, LPA 18:1 primarily activates rather glial cells than neurons, which may subsequently modulate neuronal responsiveness and sensory sensations such as itch and pain.
Collapse
Affiliation(s)
- Jan W Robering
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gebhardt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.,Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.,Center for Physiology and Pharmacology, University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
McGaraughty S, Chu KL, Xu J. Characterization and pharmacological modulation of noci-responsive deep dorsal horn neurons across diverse rat models of pathological pain. J Neurophysiol 2018; 120:1893-1905. [DOI: 10.1152/jn.00325.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This overview compares the activity of wide dynamic range (WDR) and nociceptive specific (NS) neurons located in the deep dorsal horn across different rat models of pathological pain and following modulation by diverse pharmacology. The data were collected by our group under the same experimental conditions over numerous studies to facilitate comparison. Spontaneous firing of WDR neurons was significantly elevated (>3.7 Hz) in models of neuropathic, inflammation, and osteoarthritic pain compared with naive animals (1.9 Hz) but was very low (<0.5 Hz) and remained unchanged in NS neurons. WDR responses to low-intensity mechanical stimulation were elevated in neuropathic and inflammation models. WDR responses to high-intensity stimuli were enhanced in inflammatory (heat) and osteoarthritis (mechanical) models. NS responses to high-intensity stimulation did not change relative to control in any model examined. Several therapeutic agents reduced both evoked and spontaneous firing of WDR neurons (e.g., TRPV1, TRPV3, Nav1.7, Nav1.8, P2X7, P2X3, H3), other targets affected neither evoked nor spontaneous firing of WDR neurons (e.g., H4, TRPM8, KCNQ2/3), and some only modulated evoked (e.g, ASIC1a, Cav3.2) whereas others decreased evoked but affected spontaneous activity only in specific models (e.g., TRPA1, CB2). Spontaneous firing of WDR neurons was not altered by any peripherally restricted compound or by direct administration of compounds to peripheral sites, although the same compounds decreased evoked activity. Compounds acting centrally were effective against this endpoint. The diversity of incoming/modulating inputs to the deep dorsal horn positions this group of neurons as an important intersection within the pain system to validate novel therapeutics. NEW & NOTEWORTHY Data from multiple individual experiments were combined to show firing properties of wide dynamic range and nociceptive specific spinal dorsal horn neurons across varied pathological pain models. This high-powered analysis describes the sensitization following different forms of injury. Effects of diverse pharmacology on these neurons is also summarized from published and unpublished data all recorded under the same conditions to facilitate comparison. This comprehensive overview describes the function and utility of these neurons.
Collapse
Affiliation(s)
| | | | - Jun Xu
- AbbVie Discovery, North Chicago, Illinois
| |
Collapse
|
48
|
Cataldo G, Lunzer MM, Olson JK, Akgün E, Belcher JD, Vercellotti GM, Portoghese PS, Simone DA. Bivalent ligand MCC22 potently attenuates nociception in a murine model of sickle cell disease. Pain 2018; 159:1382-1391. [PMID: 29578946 PMCID: PMC6008209 DOI: 10.1097/j.pain.0000000000001225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sickle cell disease (SCD) is a chronic inflammatory disorder accompanied by chronic pain. In addition to ongoing pain and hyperalgesia, vaso-occlusive crises-induced pain can be chronic or episodic. Because analgesics typically used to treat pain are not very effective in SCD, opioids, including morphine, are a primary treatment for managing pain in SCD but are associated with many serious side effects, including constipation, tolerance, addiction, and respiratory depression. Thus, there is a need for the development of novel treatments for pain in SCD. In this study, we used the Townes transgenic mouse model of SCD to investigate the antinociceptive efficacy of the bivalent ligand, MCC22, and compared its effectiveness with morphine. MCC22 consists of a mu-opioid receptor agonist and a chemokine receptor-5 (CCR5) antagonist that are linked through a 22-atom spacer. Our results show that intraperitoneal administration of MCC22 produced exceptionally potent dose-dependent antihyperalgesia as compared to morphine, dramatically decreased evoked responses of nociceptive dorsal horn neurons, and decreased expression of proinflammatory cytokines in the spinal cord. Moreover, tolerance did not develop to its analgesic effects after repeated administration. In view of the extraordinary potency of MCC22 without tolerance, MCC22 and similar compounds may vastly improve the management of pain associated with SCD.
Collapse
Affiliation(s)
- Giuseppe Cataldo
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Julie K. Olson
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - John D. Belcher
- Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Gregory M. Vercellotti
- Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Donald A. Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| |
Collapse
|
49
|
Städele C, DeMaegd ML, Stein W. State-Dependent Modification of Sensory Sensitivity via Modulation of Backpropagating Action Potentials. eNeuro 2018; 5:ENEURO.0283-18.2018. [PMID: 30225349 PMCID: PMC6140111 DOI: 10.1523/eneuro.0283-18.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Neuromodulators play a critical role in sensorimotor processing via various actions, including pre- and postsynaptic signal modulation and direct modulation of signal encoding in peripheral dendrites. Here, we present a new mechanism that allows state-dependent modulation of signal encoding in sensory dendrites by neuromodulatory projection neurons. We studied the impact of antidromic action potentials (APs) on stimulus encoding using the anterior gastric receptor (AGR) neuron in the heavily modulated crustacean stomatogastric ganglion (STG). We found that ectopic AP initiation in AGR's axon trunk is under direct neuromodulatory control by the inferior ventricular (IV) neurons, a pair of descending projection neurons. IV neuron activation elicited a long-lasting decrease in AGR ectopic activity. This modulation was specific to the site of AP initiation and could be mimicked by focal application of the IV neuron co-transmitter histamine. IV neuron actions were diminished after blocking H2 receptors in AGR's axon trunk, suggesting a direct axonal modulation. This local modulation did not affect the propagation dynamics of en passant APs. However, decreases in ectopic AP frequency prolonged sensory bursts elicited distantly near AGR's dendrites. This frequency-dependent effect was mediated via the reduction of antidromic APs, and the diminishment of backpropagation into the sensory dendrites. Computational models suggest that invading antidromic APs interact with local ionic conductances, the rate constants of which determine the sign and strength of the frequency-dependent change in sensory sensitivity. Antidromic APs therefore provide descending projection neurons with a means to influence sensory encoding without affecting AP propagation or stimulus transduction.
Collapse
Affiliation(s)
- Carola Städele
- Institute of Neurobiology, Ulm University, Ulm 89069, Germany
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | | | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| |
Collapse
|
50
|
Zhang L, Terrando N, Xu ZZ, Bang S, Jordt SE, Maixner W, Serhan CN, Ji RR. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice. Front Pharmacol 2018; 9:412. [PMID: 29765320 PMCID: PMC5938385 DOI: 10.3389/fphar.2018.00412] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs), derived from fish oil docosahexaenoic acid (DHA), promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP). Intravenous perioperative treatment with DHA (500 μg), resolvin D1 (RvD1, 500 ng) and maresin 1 (MaR1, 500 ng), 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia). In contrast, post-operative intrathecal (IT) administration of DHA (500 μg) 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng) with neuroprotectin D1 (NPD1), MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1) perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2) post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Zhen-Zhong Xu
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States.,Department of Physiology, Center of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Sangsu Bang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Sven-Eric Jordt
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States.,Department of Neurology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|