1
|
Ma H, Wang Z, Yu M, Zhai Y, Yan J. Aberrations in peripheral B lymphocytes and B lymphocyte subsets levels in Parkinson disease: a systematic review. Front Immunol 2025; 16:1526095. [PMID: 40230858 PMCID: PMC11994702 DOI: 10.3389/fimmu.2025.1526095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Objective The association of B lymphocytes and B lymphocyte subsets and Parkinson's disease (PD) is increasingly acknowledged. However, there is inconsistence in the alterations of B lymphocytes or B lymphocyte subsets in peripheral blood of PD patients. To comprehensively understand its changes in PD patients,it is necessary to conduct a systematic review on this subject. Methods PubMed, Cochrane Library, and MEDLINE databases were searched until 3rd February 2024. Results We included 20 studies (n=2658) to conduct this systematic review. We conducted a qualitative analysis to assess the alterations of B lymphocytes and B lymphocyte subsets in the peripheral blood of individuals with PD. And studies reviewed demonstrated a significant decrease in the number of B cells, as well as immune dysregulation in the B lymphocyte subsets of these patients' peripheral blood. Conclusion Studies reviewed demonstrated that PD is linked to abnormalities in B lymphocytes and/or B lymphocytes subsets in peripheral blood. This study provides a novel perspective into the pathogenesis of PD, and future investigations into the B lymphocytes and/or B lymphocyte subsets as biomarkers and therapeutic targets for PD is warranted.
Collapse
Affiliation(s)
- Hongxia Ma
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ziyuan Wang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Miao Yu
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yibo Zhai
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Key laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Cheng YK, Chiang HS. The interrelationship between intestinal immune cells and enteric α-synuclein in the progression of Parkinson's disease. Neurol Sci 2025:10.1007/s10072-025-08114-w. [PMID: 40085320 DOI: 10.1007/s10072-025-08114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by motor impairment, resulting from the accumulation of α-synuclein and neuronal cell death in the substantia nigra of the midbrain. Emerging evidence suggests that α-synuclein aggregation may originate in the enteric nervous system (ENS) and subsequently propagate to the brain via the vagus nerve. Clinical observations, such as prodromal gastrointestinal dysfunction in PD patients and the increased incidence of PD among individuals with inflammatory bowel disease, support the hypothesis that abnormal intestinal inflammation may contribute to the onset of motor dysfunction and neuropathology in PD. This review examines recent findings on the interplay between intestinal immune cells and α-synuclein aggregation within the framework of gut-originated PD pathogenesis. It begins by discussing evidence linking dysbiosis and intestinal inflammation to α-synuclein aggregation in the ENS. Additionally, it explores the potential role of intestinal immune cells in influencing enteric neurons and α-synuclein aggregation, furthering the understanding of PD development.
Collapse
Affiliation(s)
- Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Idova GV, Zhanaeva SY, Alperina EL, Dzemidovich SS, Gevorgyan MM, Kulikova KI, Aftanas LI. Peripheral Immune-Inflammatory Parameters in Parkinson's Disease. Dependence on the Stage of Progression. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:364-373. [PMID: 40367079 DOI: 10.1134/s0006297925600334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 05/16/2025]
Abstract
According to the modern concepts, neuroinflammation and peripheral immune dysfunction play key roles in the onset and progression of Parkinson's disease (PD), one of the most common and severe neurodegenerative diseases. However, changes in the cellular and molecular immune parameters during the development of PD are still poorly understood. This work is devoted to analysis of the immune cell populations (monocytes, T- and B-cells and their subtypes), expression of Toll-like receptors (TLR), and spontaneous and mitogen-induced production of pro- and anti-inflammatory cytokines in the peripheral blood of the patients at different stages of idiopathic PD and healthy individuals. It was shown that the stage II of PD is characterized by the decrease in amount of the CD3+ T-cells, increase in the TLR2 expression on CD4+CD25+ Tregs, as well as increase in the spontaneous production of proinflammatory cytokines IFNγ and IL-17A. The stage III of PD is associated with the decrease in production of mitogen-induced IFNγ. Relative number of the CD19+CD25+ Breg cells in the patients with PD increased regardless of the disease stage. Thus, the obtained results indicate differences in the cellular and molecular immune parameters in the patients with PD and in the healthy individuals, which are dependent on the stage of the disease. These data are important for understanding molecular basis of PD development and prognosis of its course, and may be useful in identifying biomarkers of the disease severity and developing new treatment approaches depending on the stage of the disease.
Collapse
Affiliation(s)
- Galina V Idova
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
| | - Svetlana Ya Zhanaeva
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
| | - Elizaveta L Alperina
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| | - Sergei S Dzemidovich
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| | - Margarita M Gevorgyan
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| | - Kseniya I Kulikova
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| | - Lyubomir I Aftanas
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
4
|
Goldeck D, Oettinger L, Fülöp T, Schulte C, Hamprecht K, Berg D, Maetzler W, Pawelec G. Frequencies of Circulating Immune Cells in Patients with Parkinson's Disease: Correlation with MDS-UPDRS Scores. J Integr Neurosci 2025; 24:26393. [PMID: 40018777 DOI: 10.31083/jin26393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Parkinson's Disease (PD) is associated with dysregulated/chronic inflammation. The immune system has multiple roles including beneficial effects such as clearing alpha synuclein aggregates. However, peripheral immune cells entering the brain may also contribute to inflammation and neurodegeneration. To identify which cells might have a negative impact and could be potential therapeutic targets, we compared immune signatures of patients and healthy controls. METHODS Multicolor flow cytometry was used to determine the frequencies of major immune cell subsets in peripheral blood mononuclear cells (PBMCs) of PD patients and controls. Because of the major impact of Cytomegalovirus (CMV) infection on the distribution of immune cell subsets, particularly cluster of differentiation (CD)8+ T-cells, all participants were tested for CMV seropositivity. RESULTS Although the cohort of 35 PD patients exhibited the well-established T-cell differentiation signature driven by CMV infection, there were no differences in the frequencies of differentiated or pro-inflammatory T-cells, B-cells or natural killer cells (NK-cells) attributable to the disease. However, percentages of myeloid-derived suppressor cells (MDSCs) were higher in PD patients than controls. Moreover, percentages of CD14+CD16+ (intermediate) monocytes expressing the C-C chemokine receptor type 5 (CCR5) correlated with disease severity assessed by the Movement Disorder Society's revised version of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) score and disease duration. CONCLUSIONS A comprehensive evaluation of the major subsets of circulating immune cells in PD patients revealed differences in myeloid cells between PD and healthy controls and some correlation of monocyte abundance with disease severity.
Collapse
Affiliation(s)
| | - Lilly Oettinger
- Department of Psychiatry and Psychotherapy, Section for Dementia Research, University of Tübingen, 72076 Tübingen, Germany
| | - Tamas Fülöp
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC H3A 0B8, Canada
| | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tübingen and German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Klaus Hamprecht
- Institute of Medical Virology and Epidemiology of Viral Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University, 24118 Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, Kiel University, 24118 Kiel, Germany
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, ON P3E 3B7, Canada
| |
Collapse
|
5
|
Jiang Z, Huang H, Chen Y, Xie H, Lu Y, Ge Y, Yao R, Wang L, Wu Z, Bu Y, Chen G, Yang D. The role of the immune system in Parkinson's disease pathogenesis: A focus on Th17 cells - A systematic review and meta-analysis. J Neuroimmunol 2025; 398:578484. [PMID: 39577101 DOI: 10.1016/j.jneuroim.2024.578484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Parkinson's disease (PD) has been linked to T helper 17 (Th17) cells in prior investigations, but the evidence remains inconclusive. To gain a deeper understanding of this potential connection, we conducted a systematic review and meta-analysis. METHODS A comprehensive search for relevant studies published up to July 8, 2023, was performed across PubMed, EMBASE, and Cochrane Library databases. A random-effect model was employed to synthesize effect sizes and their corresponding 95 % confidence intervals (CIs). Leave-one-out sensitivity analysis and funnel plots with trim-and-fill were utilized to assess the combined results' robustness. RESULTS Thirteen studies were ultimately included in the meta-analysis. Pooled effect sizes indicated a significantly higher percentage of Th17 cells in PD patients (Standardized Mean Difference [SMD] = 1.00, 95 % CI 0.30-1.71). Notably, Th17 cell levels were more elevated in Asian PD patients (SMD = 1.33, 95 % CI 0.31-2.35). Additionally, the percentage of Th17 cells positively correlated with Movement Disorder Society Unified Parkinson's Disease Rating Scale-III (UPDRS-III) scores (r = 0.22, 95 % CI 0.01-0.41), indicating a link to motor dysfunction. Conversely, a negative correlation was observed with Cognitive function scale scores (r = - 0.27, 95 % CI -0.47--0.04), suggesting a potential association with cognitive decline. CONCLUSIONS This study revealed a positive association between Th17 cells and PD, with PD patients exhibiting elevated Th17 levels. Furthermore, the percentage of Th17 cells correlated with motor and cognitive impairments in PD patients.
Collapse
Affiliation(s)
- Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaoyin Ge
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Ruotong Yao
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Lingsheng Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zihao Wu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yiran Bu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Manganaro JE, Emanuel K, Lamberty BG, George JW, Stauch KL. Pink1/Parkin deficiency alters circulating lymphocyte populations and increases platelet-T cell aggregates in rats. Sci Rep 2024; 14:23861. [PMID: 39394439 PMCID: PMC11470019 DOI: 10.1038/s41598-024-74775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk suggesting targeting the Pink1/Parkin pathway in the periphery might have therapeutic potential.
Collapse
Affiliation(s)
- Jane E Manganaro
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katy Emanuel
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin G Lamberty
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph W George
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly L Stauch
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Vega-Benedetti AF, Porcedda C, Ercoli T, Fusco G, Burgaletto C, Pillai R, Palmas F, Cantone AF, Angius F, Solla P, De Simone A, Cantarella G, Giallongo C, Sogos V, Defazio G, Carta AR. Immune responses to oligomeric α-synuclein in Parkinson's disease peripheral blood mononuclear cells. J Neurol 2024; 271:5916-5929. [PMID: 38985290 PMCID: PMC11377674 DOI: 10.1007/s00415-024-12554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Parkinson's disease displays clinical heterogeneity, presenting with motor and non-motor symptoms. Heterogeneous phenotypes, named brain-first and body-first, may reflect distinct α-synuclein pathology starting either in the central nervous system or in the periphery. The immune system plays a prominent role in the central and peripheral pathology, with misfolded α-synuclein being placed at the intersection between neurodegeneration and inflammation. Here, we characterized the inflammatory profile and immune-phenotype of peripheral blood mononuclear cells (PBMCs) from Parkinson's disease patients upon stimulation with α-synuclein monomer or oligomer, and investigated relationships of immune parameters with clinical scores of motor and non-motor symptoms. Freshly isolated PBMCs from 21 Parkinson's disease patients and 18 healthy subjects were exposed in vitro to α-synuclein species. Cytokine/chemokine release was measured in the culture supernatant by Multiplex Elisa. The immune-phenotype was studied by FACS-flow cytometry. Correlation analysis was computed between immune parameters and parkinsonian motor and non-motor scales. We found that Parkinson's disease patients exhibited a dysregulated PBMC-cytokine profile, which remained unaltered after exposure to α-synuclein species and correlated with both motor and non-motor severity, with a strong correlation observed with olfactory impairment. Exposure of PBMCs from healthy controls to α-synuclein monomer/oligomer increased the cytokine/chemokine release up to patient's values. Moreover, the PBMCs immune phenotype differed between patients and controls and revealed a prominent association of the Mos profile with olfactory impairment, and of NK profile with constipation. Results suggest that a deranged PBMC-immune profile may reflect distinct clinical subtypes and would fit with the recent classification of Parkinson's disease into peripheral-first versus brain-first phenotype.
Collapse
Affiliation(s)
| | - Clara Porcedda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tommaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rita Pillai
- Center for Research University Services-CeSAR, University of Cagliari, Cagliari, Italy
| | - Francesca Palmas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabrizio Angius
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Department of Translational Biomedicine and Neuroscience, Aldo Moro University of Bari, Bari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
8
|
Baridjavadi Z, Mahmoudi M, Abdollahi N, Ebadpour N, Mollazadeh S, Haghmorad D, Esmaeili SA. The humoral immune landscape in Parkinson's disease: Unraveling antibody and B cell changes. Cell Biochem Funct 2024; 42:e4109. [PMID: 39189398 DOI: 10.1002/cbf.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) in the brain and progressive loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Although the role of neuroinflammation and cellular immunity in PD has been extensively studied, the involvement of humoral immunity mediated by antibodies and B cells has received less attention. This article provides a comprehensive review of the current understanding of humoral immunity in PD. Here, we discuss alterations in B cells in PD, including changes in their number and phenotype. Evidence mostly indicates a decrease in the quantity of B cells in PD, accompanied by a shift in the population from naïve to memory cells. Furthermore, the existence of autoantibodies that target several antigens in PD has been investigated (i.e., anti-α-syn autoantibodies, anti-glial-derived antigen antibodies, anti-Tau antibodies, antineuromelanin antibodies, and antibodies against the renin-angiotensin system). Several autoantibodies are generated in PD, which may either provide protection or have harmful effects on disease progression. Furthermore, we have reviewed studies focusing on the utilization of antibodies as a potential treatment for PD, both in animal and clinical trials. This review sheds light on the intricate interplay between antibodies and the pathological processes in PD, including complement system activation.
Collapse
Affiliation(s)
- Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Phongpreecha T, Mathi K, Cholerton B, Fox EJ, Sigal N, Espinosa C, Reincke M, Chung P, Hwang LJ, Gajera CR, Berson E, Perna A, Xie F, Shu CH, Hazra D, Channappa D, Dunn JE, Kipp LB, Poston KL, Montine KS, Maecker HT, Aghaeepour N, Montine TJ. Single-cell peripheral immunoprofiling of lewy body and Parkinson's disease in a multi-site cohort. Mol Neurodegener 2024; 19:59. [PMID: 39090623 PMCID: PMC11295553 DOI: 10.1186/s13024-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Multiple lines of evidence support peripheral organs in the initiation or progression of Lewy body disease (LBD), a spectrum of neurodegenerative diagnoses that include Parkinson's Disease (PD) without or with dementia (PDD) and dementia with Lewy bodies (DLB). However, the potential contribution of the peripheral immune response to LBD remains unclear. This study aims to characterize peripheral immune responses unique to participants with LBD at single-cell resolution to highlight potential biomarkers and increase mechanistic understanding of LBD pathogenesis in humans. METHODS In a case-control study, peripheral mononuclear cell (PBMC) samples from research participants were randomly sampled from multiple sites across the United States. The diagnosis groups comprise healthy controls (HC, n = 159), LBD (n = 110), Alzheimer's disease dementia (ADD, n = 97), other neurodegenerative disease controls (NDC, n = 19), and immune disease controls (IDC, n = 14). PBMCs were activated with three stimulants (LPS, IL-6, and IFNa) or remained at basal state, stained by 13 surface markers and 7 intracellular signal markers, and analyzed by flow cytometry, which generated 1,184 immune features after gating. RESULTS The model classified LBD from HC with an AUROC of 0.87 ± 0.06 and AUPRC of 0.80 ± 0.06. Without retraining, the same model was able to distinguish LBD from ADD, NDC, and IDC. Model predictions were driven by pPLCγ2, p38, and pSTAT5 signals from specific cell populations under specific activation. The immune responses characteristic for LBD were not associated with other common medical conditions related to the risk of LBD or dementia, such as sleep disorders, hypertension, or diabetes. CONCLUSIONS AND RELEVANCE Quantification of PBMC immune response from multisite research participants yielded a unique pattern for LBD compared to HC, multiple related neurodegenerative diseases, and autoimmune diseases thereby highlighting potential biomarkers and mechanisms of disease.
Collapse
Affiliation(s)
- Thanaphong Phongpreecha
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Kavita Mathi
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | | | - Eddie J Fox
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Natalia Sigal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Momsen Reincke
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Philip Chung
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Ling-Jen Hwang
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - Eloise Berson
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Amalia Perna
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Feng Xie
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Chi-Hung Shu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Debapriya Hazra
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Jeffrey E Dunn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lucas B Kipp
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Chen Z, Li W, Meng B, Xu C, Huang Y, Li G, Wen Z, Liu J, Mao Z. Neuronal-enriched small extracellular vesicles trigger a PD-L1-mediated broad suppression of T cells in Parkinson's disease. iScience 2024; 27:110243. [PMID: 39006478 PMCID: PMC11246066 DOI: 10.1016/j.isci.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Many clinical studies indicate a significant decrease of peripheral T cells in Parkinson's disease (PD). There is currently no mechanistic explanation for this important observation. Here, we found that small extracellular vesicles (sEVs) derived from in vitro and in vivo PD models suppressed IL-4 and INF-γ production from both purified CD4+ and CD8+ T cells and inhibited their activation and proliferation. Furthermore, neuronal-enriched sEVs (NEEVs) isolated from plasma of A53T-syn mice and culture media of human dopaminergic neurons carrying A53T-syn mutation also suppressed Th1 and Th2 differentiation of naive CD4+ T cells. Mechanistically, the suppressed phenotype induced by NEEVs was associated with altered programmed death ligand 1 (PD-L1) level in T cells. Blocking PD-L1 with an anti-PD-L1 antibody or a small molecule inhibitor BMS-1166 reversed T cell suppression. Our study provides the basis for exploring peripheral T cells in PD pathogenesis and as biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Wenming Li
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bo Meng
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Departments of Psychiatry and Behavioral Sciences and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yiqi Huang
- The Graduate Program in Neuroscience, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixu Mao
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Zheng Y, Li Y, Cai H, Kou W, Yang C, Li S, Wang J, Zhang N, Feng T. Alterations of Peripheral Lymphocyte Subsets in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2024; 39:1179-1189. [PMID: 38529776 DOI: 10.1002/mds.29798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Adaptive immune dysfunction may play a crucial role in Parkinson's disease (PD) development. Isolated rapid eye movement sleep behavior disorder (iRBD) represents the prodromal stage of synucleinopathies, including PD. Elucidating the peripheral adaptive immune system is crucial in iRBD, but current knowledge remains limited. OBJECTIVE This study aimed to characterize peripheral lymphocyte profiles in iRBD patients compared with healthy control subjects (HCs). METHODS This cross-sectional study recruited polysomnography-confirmed iRBD patients and age- and sex-matched HCs. Venous blood was collected from each participant. Flow cytometry was used to evaluate surface markers and intracellular cytokine production in peripheral blood mononuclear cells. RESULTS Forty-four iRBD patients and 36 HCs were included. Compared with HCs, patients with iRBD exhibited significant decreases in absolute counts of total lymphocytes and CD3+ T cells. In terms of T cell subsets, iRBD patients showed higher frequencies and counts of proinflammatory T helper 1 cells and INF-γ+ CD8+ T cells, along with lower frequencies and counts of anti-inflammatory T helper 2 cells. A significant increase in the frequency of central memory T cells in CD8+ T cells was also observed in iRBD. Regarding B cells, iRBD patients demonstrated reduced frequencies and counts of double-negative memory B cells compared with control subjects. CONCLUSIONS This study demonstrated alterations in the peripheral adaptive immune system in iRBD, specifically in CD4+ and INF-γ+ CD8+ T cell subsets. An overall shift toward a proinflammatory state of adaptive immunity was already evident in iRBD. These observations might provide insights into the optimal timing for initiating immune interventions in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yatong Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
12
|
Manganaro JE, Emanuel K, Lamberty BG, George JW, Stauch KL. Pink1/Parkin deficiency alters circulating lymphocyte populations and increases platelet-T cell aggregates in rats. RESEARCH SQUARE 2024:rs.3.rs-4431604. [PMID: 38854001 PMCID: PMC11160909 DOI: 10.21203/rs.3.rs-4431604/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk, and venous thrombosis is a cause of sudden death in PD, suggesting targeting the Pink1/Parkin pathway in the periphery has therapeutic potential.
Collapse
|
13
|
Song Z, Li W, Han Y, Xu Y, Ding H, Wang Y. Association of immune cell traits with Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1340110. [PMID: 38455666 PMCID: PMC10917892 DOI: 10.3389/fnagi.2024.1340110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Background Immunity and neuroinflammation play crucial roles in the pathogenesis of Parkinson's disease (PD). Nonetheless, prior investigations into the correlation between immune inflammation and PD have produced varying results. Identifying specific immune cell phenotypes that are truly associated with PD is challenging, and the causal relationship between immune cells and PD remains elusive. Methods This study conducted a comprehensive two-sample Mendelian randomization (MR) analysis, employing five distinct analytical approaches, to clarify the causal connection between immune cell characteristics and the risk of PD. Utilizing GWAS data, we investigated the causal relationship between 731 immune cell traits and PD. These immune cell phenotypes encompass absolute cell (AC) counts, median fluorescence intensity (MFI), and relative cell (RC) counts for B cells, cDCs, mature stage T cells, monocytes, myeloid cells, TBNK (T cells, B cells, and natural killer cells), and Tregs, as well as the logistic parameter (MP) for cDCs and TBNK. Results The inverse variance weighted (IVW) analysis indicated that Myeloid DCs (p = 0.004), HVEM expression on CD45RA- CD4+ T cells (p = 0.007), CD62L- CD86+ Myeloid DCs (p = 0.015), and HLA DR expression on monocytes (p = 0.019) were associated with a reduced risk of PD. CD14+ CD16+ monocytes (p = 0.005), HLA DR+ NK cells within CD3- lymphocytes (p = 0.023), and CD28 expression on activated & secreting Tregs (p = 0.032) were associated with an increased risk of PD. Conclusion This study establishes a causal link between immune cell phenotype and the pathogenesis of PD, identifying several specific immune cell characteristics associated with PD. This could inspire researchers to delve into the pathogenesis of PD at the cellular subtype level, and aid in the identification of potential pharmacological protein targets for PD.
Collapse
Affiliation(s)
- Zhiwei Song
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Wangyu Li
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yupeng Han
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiya Xu
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yinzhou Wang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Weber S, Menees KB, Park J, Agin-Liebes J, Lin CC, Alcalay RN, Lee JK. Distinctive CD56 dim NK subset profiles and increased NKG2D expression in blood NK cells of Parkinson's disease patients. NPJ Parkinsons Dis 2024; 10:36. [PMID: 38360903 PMCID: PMC10869354 DOI: 10.1038/s41531-024-00652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Mounting data suggest an important role for the immune system in Parkinson's disease (PD). Previous evidence of increased natural killer (NK) cell populations in PD suggests a potential role of NK cells in the pathogenesis of the disease. Previous studies have analyzed NK cell populations using aggregation by variable expression of CD56 and CD16. It remains unknown what differences may exist between NK cell subpopulations when stratified using more nuanced classification. Here, we profile NK cell subpopulations and elucidate the expressions of activating, NKG2D, inhibitory, NKG2A, and homing, CX3CR1, receptors on NK cell subpopulations in PD and healthy controls (HC). We analyzed cryopreserved PMBC samples using a 10-color flow cytometry panel to evaluate NK cell subpopulations in 31 individuals with sporadic PD and 27 HC participants. Here we identified significant differences in the CD56dim NK subset that changes with disease severity in PD. Furthermore, the expressions of NKG2D in all three NK cell subsets were significantly elevated in PD patients compared to HC. Notably, NKG2A expression in the CD56bright NK subset increased in PD patients with longer disease duration but there were no changes in CX3CR1. In summary, our data suggests that changes in NK cells may be influenced by the clinical severity and duration of PD.
Collapse
Affiliation(s)
- Stephen Weber
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jieun Park
- Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Julian Agin-Liebes
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA.
| |
Collapse
|
15
|
Pike SC, Havrda M, Gilli F, Zhang Z, Salas LA. Immunological shifts during early-stage Parkinson's disease identified with DNA methylation data on longitudinally collected blood samples. NPJ Parkinsons Dis 2024; 10:21. [PMID: 38212355 PMCID: PMC10784484 DOI: 10.1038/s41531-023-00626-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the United States. Decades before motor symptoms manifest, non-motor symptoms such as hyposmia and rapid eye movement (REM) sleep behavior disorder are highly predictive of PD. Previous immune profiling studies have identified alterations to the proportions of immune cells in the blood of clinically defined PD patients. However, it remains unclear if these phenotypes manifest before the clinical diagnosis of PD. We utilized longitudinal DNA methylation (DNAm) microarray data from the Parkinson's Progression Marker's Initiative (PPMI) to perform immune profiling in clinically defined PD and prodromal PD patients (Prod). We identified previously reported changes in neutrophil, monocyte, and T cell numbers in PD patients. Additionally, we noted previously unrecognized decreases in the naive B cell compartment in the defined PD and Prod patient group. Over time, we observed the proportion of innate immune cells in PD blood increased, but the proportion of adaptive immune cells decreased. We identified decreases in T and B cell subsets associated with REM sleep disturbances and early cognitive decline. Lastly, we identified increases in B memory cells associated with both genetic (LRRK2 genotype) and infectious (cytomegalovirus seropositivity) risk factors of PD. Our analysis shows that the peripheral immune system is dynamic as the disease progresses. The study provides a platform to understand how and when peripheral immune alterations occur in PD and whether intervention at particular stages may be therapeutically advantageous.
Collapse
Affiliation(s)
- Steven C Pike
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA.
- Department of Neurology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA.
| | - Matthew Havrda
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Francesca Gilli
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA
- Department of Neurology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Lucas A Salas
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA.
| |
Collapse
|
16
|
Zhang Z, Xie X, Cai Y, Liu P, Liu S, Chen R, Wang J, Wang Y, Zhao Y, Zhu Z, Zhang X, Wu J. Abnormal immune function of B lymphocyte in peripheral blood of Parkinson's disease. Parkinsonism Relat Disord 2023; 116:105890. [PMID: 37839276 DOI: 10.1016/j.parkreldis.2023.105890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is associated with peripheral inflammation and abnormal peripheral blood lymphocyte immune responses. Peripheral blood B-lymphocyte subset distributions and whether they are associated with PD are unclear. METHODS Sixty-one PD patients and sixty-one one-to-one paired healthy controls (HCs) were enrolled. We used flow cytometry to perform immunophenotyping of peripheral B-lymphocyte, in vitro stimulation and measured serum cytokine. The relationship between variables and PD were assessed. RESULTS The percentage of naive B cells in blood of PD patients was decreased, whereas the percentages of regulatory B cells (Bregs), plasma blast cells (PBCs), and double-negative (DN) B cells were increased. The absolute counts of B-lymphocyte and naive B cells in blood of PD patients were decreased. Regression analysis revealed that alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells were associated with PD. After stimulation, the percentages of Bregs, PBCs, and switched memory (SwM) B cells increased in PD patients. Additionally, increases in GM-CSF-producing B-cell, IFN-γ-producing B-cell, and TNF-α-producing B-cell percentages were noted in PD. Serum levels of a proliferation-inducing ligand (APRIL), B-cell activating factor (BAFF) and soluble CD40 ligand (sCD40L) were elevated in PD and correlated negatively with the UPDRS III score. CONCLUSIONS Abnormal B-lymphocyte immune responses in peripheral blood may contribute to PD development. Alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells are associated with PD. Furthermore, APRIL, BAFF, and sCD40L could be potential targets for intervention in PD.
Collapse
Affiliation(s)
- Zhuo Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xin Xie
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Shoufeng Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Rongjie Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yanan Zhao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jialing Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
17
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
18
|
Holbrook J, Patel B, Camacho M, Kahanawita L, Greenland J, Williams-Gray CH. Natural killer cells have an activated profile in early Parkinson's disease. J Neuroimmunol 2023; 382:578154. [PMID: 37549558 DOI: 10.1016/j.jneuroim.2023.578154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Immune dysregulation is heavily implicated in Parkinson's disease (PD) but the role of Natural Killer (NK) cells has not been well characterised. Accumulating evidence indicates the immune response peaks early in the disease, hence this study focused on characterising NK cells in recently diagnosed PD. PBMCs were obtained from PD cases (< 2 years duration) and age-matched controls and immunophenotyped using flow cytometry. We found an increased proportion and number of NK cells (CD3-CD56+), mature cytotoxic NK cells (CD3-CD16 + CD56dim), and NK cells expressing the activation marker, NKG2D. This implies NK cells are activated in the earliest stages of PD.
Collapse
Affiliation(s)
- J Holbrook
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| | - B Patel
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - M Camacho
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - L Kahanawita
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - J Greenland
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - C H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| |
Collapse
|
19
|
Qi C, Liu Q. Natural killer cells in aging and age-related diseases. Neurobiol Dis 2023; 183:106156. [PMID: 37209924 DOI: 10.1016/j.nbd.2023.106156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Aging leads to escalated systemic inflammation. As the sentinel of immune system, natural killer (NK) cells are early responders that sense cues and signals from target organs and swiftly orchestrate local inflammation upon their arrival. Emerging evidence indicates a profound role of NK cells in the initiation and evolution of neuroinflammation in aging and age-related diseases. Here we discuss recent advances in NK cell biology and the organ-specific features of NK cells in normal brain aging, Alzheimer's disease, Parkinson's disease and stroke. Our increasing understanding of NK cells and their unique features in aging and age-related diseases may facilitate the future design of immune therapies targeting NK cells to benefit the old population.
Collapse
Affiliation(s)
- Caiyun Qi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Immunology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
20
|
García-Marín LM, Reyes-Pérez P, Diaz-Torres S, Medina-Rivera A, Martin NG, Mitchell BL, Rentería ME. Shared molecular genetic factors influence subcortical brain morphometry and Parkinson's disease risk. NPJ Parkinsons Dis 2023; 9:73. [PMID: 37164954 PMCID: PMC10172359 DOI: 10.1038/s41531-023-00515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
Parkinson's disease (PD) is a late-onset and genetically complex neurodegenerative disorder. Here we sought to identify genes and molecular pathways underlying the associations between PD and the volume of ten brain structures measured through magnetic resonance imaging (MRI) scans. We leveraged genome-wide genetic data from several cohorts, including the International Parkinson's Disease Genomics Consortium (IPDG), the UK Biobank, the Adolescent Brain Cognitive Development (ABCD) study, the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), the Enhancing Neuroimaging Genetics through Meta-Analyses (ENIGMA), and 23andMe. We observed significant positive genetic correlations between PD and intracranial and subcortical brain volumes. Genome-wide association studies (GWAS) - pairwise analyses identified 210 genomic segments with shared aetiology between PD and at least one of these brain structures. Pathway enrichment results highlight potential links with chronic inflammation, the hypothalamic-pituitary-adrenal pathway, mitophagy, disrupted vesicle-trafficking, calcium-dependent, and autophagic pathways. Investigations for putative causal genetic effects suggest that a larger putamen volume could influence PD risk, independently of the potential causal genetic effects of intracranial volume (ICV) on PD. Our findings suggest that genetic variants influencing larger intracranial and subcortical brain volumes, possibly during earlier stages of life, influence the risk of developing PD later in life.
Collapse
Affiliation(s)
- Luis M García-Marín
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Santiago Diaz-Torres
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Nicholas G Martin
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Brittany L Mitchell
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Mamais A, Wallings R, Rocha EM. Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:33-51. [PMID: 36803821 DOI: 10.1016/b978-0-323-85555-6.00009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Rebecca Wallings
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
22
|
Gong Z, Gao R, Ba L, Liu Y, Hou H, Zhang M. The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy. Brain Sci 2023; 13:brainsci13020205. [PMID: 36831748 PMCID: PMC9953988 DOI: 10.3390/brainsci13020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence suggests immune involvement in the pathology of multiple system atrophy (MSA). Research on detailed peripheral immune indices, however, is relatively sparse, and is one of the intriguing aspects of MSA yet to be elucidated. A total of 26 MSA patients and 56 age-and sex-matched healthy controls (HC) were enrolled in the current case-control study to delineate the peripheral immune traits of MSA patients. The ratio of CD4+/CD8+ T cells, natural killer cells, CD28 expression on both CD4+ T cells and CD8+ T cells increased in MSA patients compared to HC, but CD8+ T cells and active marker (HLA-DR) expression on total T cells decreased (p < 0.05). This study sheds light on the dysregulation of cellular immunity in MSA, pointing to future mechanistic research.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (H.H.); (M.Z.)
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (H.H.); (M.Z.)
| |
Collapse
|
23
|
Menees KB, Lee JK. New Insights and Implications of Natural Killer Cells in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S83-S92. [PMID: 35570499 PMCID: PMC9535577 DOI: 10.3233/jpd-223212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of dopaminergic neurons in the substantia nigra and the abnormal aggregation and accumulation of the alpha-synuclein (α-syn) protein into Lewy bodies. It is established that there is an association between inflammation and PD; however, the time course of the inflammatory process as well as the immune cells involved are still debated. Natural killer (NK) cells are innate lymphocytes with numerous functions including targeting and killing infected or malignant cells, antimicrobial defense, and resolving inflammation. NK cell subsets differ in their effector function capacities which are modulated by activating and inhibitory receptors expressed at the cell surface. Alterations in NK cell numbers and receptor expression have been reported in PD patients. Recently, NK cell numbers and frequency were shown to be altered in the periphery and in the central nervous system in a preclinical mouse model of PD. Moreover, NK cells have recently been shown to internalize and degrade α-syn aggregates and systemic NK cell depletion exacerbated synuclein pathology in a preclinical mouse model of PD, indicating a potential protective role of NK cells. Here, we review the inflammatory process in PD with a particular focus on alterations in NK cell numbers, phenotypes, and functions.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
24
|
The Innate and Adaptive Immune Cells in Alzheimer’s and Parkinson’s Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1315248. [PMID: 36211819 PMCID: PMC9534688 DOI: 10.1155/2022/1315248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders of the central nervous system (CNS). Increasing evidence supports the view that dysfunction of innate immune cells initiated by accumulated and misfolded proteins plays essential roles in the pathogenesis and progression of these diseases. The TLR family was found to be involved in the regulation of microglial function in the pathogenesis and progression of AD or PD, making it as double-edged sword in these diseases. Altered function of peripheral innate immune cells was found in AD and PD and thus contributed to the development and progression of AD and PD. Alteration of different subsets of T cells was found in the peripheral blood and CNS in AD and PD. The CNS-infiltrating T cells can exert both neuroprotective and neurotoxic effects in the pathogenesis and progression. Here, we review recent evidences for the roles of innate and adaptive immune cells in the pathogenesis and progression of AD and PD.
Collapse
|
25
|
He Y, Peng K, Li R, Zhang Z, Pan L, Zhang T, Lin A, Hong R, Nie Z, Guan Q, Jin L. Changes of T lymphocyte subpopulations and their roles in predicting the risk of Parkinson's disease. J Neurol 2022; 269:5368-5381. [PMID: 35608657 PMCID: PMC9467943 DOI: 10.1007/s00415-022-11190-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/29/2022]
Abstract
T lymphocytes are involved in the pathogenesis of Parkinson's disease (PD), while the heterogeneity of T-cell subpopulations remains elusive. In this study, we analyzed up to 22 subpopulations of T lymphocytes in 115 PD patients and 60 matched healthy controls (HC) using flow cytometry. We found that PD patients exhibited decreased naïve CD8+ T cells (CD3+ CD8+ CD45RA+ CD45RO-) and increased late-differentiated CD4+ T cells (CD3+ CD4+ CD28- CD27-), compared to HC, which were not affected by anti-parkinsonism medication administration. The proportion of naïve CD8+ T cells in PD patients was positively correlated with their severity of autonomic dysfunction and psychiatric complications, but negatively associated with the severity of rapid eye movement and sleep behavior disorder. The proportion of late-differentiated CD4+ T cells was negatively correlated with the onset age of the disease. We further developed individualized PD risk prediction models with high reliability and accuracy on the base of the T lymphocyte subpopulations. These data suggest that peripheral cellular immunity is disturbed in PD patients, and changes in CD8+ T cells and late-differentiated CD4+ T cells are representative and significant. Therefore, we recommend naïve CD8 + and late-differentiated CD4+ T cells as candidates for multicentric clinical study and pathomechanism study of PD.
Collapse
Affiliation(s)
- Yijing He
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Kangwen Peng
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Ruoyu Li
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Zhuoyu Zhang
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Lizhen Pan
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Tianyu Zhang
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Ao Lin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Ronghua Hong
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Zhiyu Nie
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Qiang Guan
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China.
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China. .,Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China. .,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
26
|
Zhang L, Zhang Y, Fan D. Pathological Role of Natural Killer Cells in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:890816. [PMID: 35663564 PMCID: PMC9157643 DOI: 10.3389/fnagi.2022.890816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the common neurodegenerative diseases that is characterized by selective degeneration of dopaminergic neurons in the substantia nigra, and misfolding of α-synuclein into aggregates is thought to contribute to its pathology. Studies have shown that immune-inflammatory responses are involved in the development of PD and play an important role in α-synuclein scavenge. Natural killer (NK) cells are first responders in immune cells and can directly promote immune defense mechanisms by cytotoxicity and by secreting cytokines. Recent discoveries suggest that NK cells are increasingly recognized in the pathological features of PD. However, the mechanisms underlying it have not been fully understood. In this review, we systematically retrieved and evaluated published evidence about the functions of NK cells in PD. We find alterations in the number of NK cells and cytotoxicity during the progression of PD, and it seems that NK cells play a neuroprotective role in PD pathogenesis, which may further reveal novel targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Le Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- *Correspondence: Yingshuang Zhang
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Dongsheng Fan
| |
Collapse
|
27
|
Fu J, Huang Y, Bao T, Liu C, Liu X, Chen X. The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J Neuroinflammation 2022; 19:98. [PMID: 35459141 PMCID: PMC9034482 DOI: 10.1186/s12974-022-02446-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive loss of certain populations of neurons, which eventually lead to dysfunction. These diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Immune pathway dysregulation is one of the common features of neurodegeneration. Recently, there is growing interest in the specific role of T helper Th 17 cells and Interleukin-17A (IL-17A), the most important cytokine of Th 17 cells, in the pathogenesis of the central nervous system (CNS) of neurodegenerative diseases. In the present study, we summarized current knowledge about the function of Th17/IL-17A, the physiology of Th17/IL-17A in diseases, and the contribution of Th17/IL-17A in AD, PD, and ALS. We also update the findings on IL-17A-targeting drugs as potentially immunomodulatory therapeutic agents for neurodegenerative diseases. Although the specific mechanism of Th17/IL-17A in this group of diseases is still controversial, uncovering the molecular pathways of Th17/IL-17A in neurodegeneration allows the identification of suitable targets to modulate these cellular processes. Therapeutics targeting IL-17A might represent potentially novel anti-neurodegeneration drugs.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China
| | - Yan Huang
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Bao
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Contaldi E, Magistrelli L, Comi C. T Lymphocytes in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S65-S74. [PMID: 35253782 PMCID: PMC9535550 DOI: 10.3233/jpd-223152] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
T cells are key mediators of both humoral and cellular adaptive immune responses, and their role in Parkinson’s disease (PD) is being increasingly recognized. Several lines of evidence have highlighted how T cells are involved in both the central nervous system and the periphery, leading to a profound imbalance in the immune network in PD patients. This review discusses the involvement of T cells in both preclinical and clinical studies, their importance as feasible biomarkers of motor and non-motor progression of the disease, and recent therapeutic strategies addressing the modulation of T cell response.
Collapse
Affiliation(s)
- Elena Contaldi
- Department of Translational Medicine, Movement Disorders Centre, "Maggiore della Caritá" University Hospital, University of Piemonte Orientale, Novara, Italy.,Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Department of Translational Medicine, Movement Disorders Centre, "Maggiore della Caritá" University Hospital, University of Piemonte Orientale, Novara, Italy.,Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale, Vercelli, Italy
| |
Collapse
|
29
|
Kasen A, Houck C, Burmeister AR, Sha Q, Brundin L, Brundin P. Upregulation of α-synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiol Dis 2022; 166:105654. [DOI: 10.1016/j.nbd.2022.105654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
|
30
|
Tian J, Dai SB, Jiang SS, Yang WY, Yan YQ, Lin ZH, Dong JX, Liu Y, Zheng R, Chen Y, Zhang BR, Pu JL. Specific immune status in Parkinson's disease at different ages of onset. NPJ Parkinsons Dis 2022; 8:5. [PMID: 35013369 PMCID: PMC8748464 DOI: 10.1038/s41531-021-00271-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that innate and adaptive immunity play a crucial role in Parkinson's disease (PD). However, studies regarding specific immune cell classification in the peripheral blood in PD remain lacking. Therefore, we aimed to explore the different immune status in patients with PD at different ages of onset. We included 22 patients; among them were 10 who had early-onset PD (EOPD) and 12 had late-onset PD (LOPD) and 10 young healthy controls (YHCs) and 8 elder HCs (EHCs). Mass cytometry staining technology was used to perform accurate immunotyping of cell populations in the peripheral blood. Motor symptoms and cognitive function were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) III score and Mini-mental State Examination (MMSE) score, respectively. T test and ANOVA statistical analysis were performed on the frequency of annotated cell population. Linear regression model was used to analyze the correlation between clusters and clinical symptoms. We characterized 60 cell clusters and discovered that the immune signature of PD consists of cluster changes, including decreased effector CD8+ T cells, lower cytotoxicity natural killer (NK) cells and increased activated monocytes in PD patients. In summary, we found that CD8+ T cells, NK cells, and monocytes were associated with PD. Furthermore, there may be some differences in the immune status of patients with EOPD and LOPD, suggesting differences in the pathogenesis between these groups.
Collapse
Affiliation(s)
- Jun Tian
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shao-Bing Dai
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Si-Si Jiang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Yi Yang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Qun Yan
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Hao Lin
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Xian Dong
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Liu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Zheng
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Chen
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jia-Li Pu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Zhang Y, Grazda R, Yang Q. Interaction Between Innate Lymphoid Cells and the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:135-148. [DOI: 10.1007/978-981-16-8387-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Huang Y, Liu H, Hu J, Han C, Zhong Z, Luo W, Zhang Y, Ling F. Significant Difference of Immune Cell Fractions and Their Correlations With Differential Expression Genes in Parkinson's Disease. Front Aging Neurosci 2021; 13:686066. [PMID: 34483877 PMCID: PMC8416258 DOI: 10.3389/fnagi.2021.686066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is the second most neurodegenerative disease in the world. T cell infiltration in the central nervous system (CNS) has provided insights that the peripheral immune cells participate in the pathogenesis of PD. However, the association between the peripheral immune system and CNS remains to be elucidated. In this study, we analyzed incorporative substantia nigra (SN) expression data and blood expression data using the CIBERSORT to obtain the 22 immune cell fractions and then explored the molecular function to identify the potential key immune cell types and genes of PD. We observed that the proportions of naïve CD4 T cells, gamma delta T cells, resting natural killer (NK) cells, neutrophils in the blood, and regulatory T cells (Tregs) in the SN were significantly different between patients with PD and healthy controls (HCs). We identified p53-induced death domain protein 1 (PIDD1) as the hub gene of a PD-related module. The enrichment score of the neuron-specific gene set was significantly different between PD and HC, and genes in the neuron-related module were enriched in the biological process about mitochondria and synapses. These results suggested that the fractions of naïve CD4 T cells, gamma delta T cells, resting NK cells, and neutrophils may be used as a combined diagnostic marker in the blood, and Tregs in SN may be a potential therapeutic design target for PD.
Collapse
Affiliation(s)
- Yilin Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huisheng Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chongyin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhenggang Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wei Luo
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
33
|
Chen X, Feng W, Ou R, Liu J, Yang J, Fu J, Cao B, Chen Y, Wei Q, Shang H. Evidence for Peripheral Immune Activation in Parkinson's Disease. Front Aging Neurosci 2021; 13:617370. [PMID: 33994989 PMCID: PMC8119625 DOI: 10.3389/fnagi.2021.617370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Accumulating evidence has revealed that peripheral immunity is involved in Parkinson's disease (PD). However, the results regarding the percentage of T-cell subsets are inconsistent, and the changes of immunoglobins levels have been seldom studied in PD patients. METHODS Serum levels of the percentage of T-cell subsets and immunoglobulins were measured in 761 PD patients and 761 age- and gender-matched healthy controls. The correlations between the variables of peripheral immune activation (PIA) and the clinical characteristics of PD were analyzed using correlation analysis. RESULTS The pooled results showed that PD patients had higher proportional levels of CD3+ T and CD4+ T lymphocytes than healthy controls. CD8+ T cell percentages were similar in PD patients and controls, and the CD4/CD8 ratio was significantly higher in the PD population. No significant differences in IgG, IgA, or IgM levels between these two groups were found. CD4+ T cell percentage was inversely correlated with the H&Y stage, and IgG level was positively correlated with disease duration and UPDRS part III. Subgroup analyses showed that these associations existed in female patients, but not in male patients. CONCLUSION The enhanced immune activation in the peripheral system is indicated in PD, and dynamic alterations in CD4+ T cell percentage and IgG level suggest an active role for peripheral immunity in the disease progression, especially in female PD patients.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Weihua Feng
- Division of Clinical Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Content of Peripheral Blood T- and B-Cell Subpopulations in Transgenic A53T Mice of Different Age (A Model of Parkinson's Disease). Bull Exp Biol Med 2021; 170:401-404. [PMID: 33725243 DOI: 10.1007/s10517-021-05075-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 10/21/2022]
Abstract
We analyzed the behavior and peripheral blood T- and B-cell subpopulations in mice overexpressing the mutant form of human α-synuclein (A53T) in comparison with mice of the wild type (WT) parent C57BL/6J strain. Behavioral phenotype and the content of various cell subpopulations of A53T mice depended on animal age. Young (2-month-old mice) were characterized by low emotionality and the most pronounced changes in cell subpopulation composition (an increase in CD3+T cells and CD4+T helper cells, a decrease in CD19+B cells along with unchanged content of CD3+CD4+CD25+T-regulatory cells and CD19+CD25+B-regulatory cells). In old A53T mice (10-month-old), movement impairments appeared and increased numbers of CD4+T helper cells and CD3+CD4+CD25+T-regulatory cells were revealed.
Collapse
|
35
|
Karaaslan Z, Kahraman ÖT, Şanlı E, Ergen HA, Ulusoy C, Bilgiç B, Yılmaz V, Tüzün E, Hanağası HA, Küçükali Cİ. Inflammation and regulatory T cell genes are differentially expressed in peripheral blood mononuclear cells of Parkinson's disease patients. Sci Rep 2021; 11:2316. [PMID: 33504893 PMCID: PMC7841172 DOI: 10.1038/s41598-021-81961-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Our aim was to identify the differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMC) of Parkinson’s disease (PD) patients and healthy controls by microarray technology and analysis of related molecular pathways by functional annotation. Thirty PD patients and 30 controls were enrolled. Agilent Human 8X60 K Oligo Microarray was used for gene level expression identification. Gene ontology and pathway enrichment analyses were used for functional annotation of DEGs. Protein–protein interaction analyses were performed with STRING. Expression levels of randomly selected DEGs were quantified by real time quantitative polymerase chain reaction (RT-PCR) for validation. Flow cytometry was done to determine frequency of regulatory T cells (Tregs) in PBMC. A total of 361 DEGs (143 upregulated and 218 downregulated) were identified after GeneSpring analysis. DEGs were involved in 28 biological processes, 12 cellular components and 26 molecular functions. Pathway analyses demonstrated that upregulated genes mainly enriched in p53 (CASP3, TSC2, ATR, MDM4, CCNG1) and PI3K/Akt (IL2RA, IL4R, TSC2, VEGFA, PKN2, PIK3CA, ITGA4, BCL2L11) signaling pathways. TP53 and PIK3CA were identified as most significant hub proteins. Expression profiles obtained by RT-PCR were consistent with microarray findings. PD patients showed increased proportions of CD49d+ Tregs, which correlated with disability scores. Survival pathway genes were upregulated putatively to compensate neuronal degeneration. Bioinformatics analysis showed an association between survival and inflammation genes. Increased CD49d+ Treg ratios might signify the effort of the immune system to suppress ongoing neuroinflammation.
Collapse
Affiliation(s)
- Zerrin Karaaslan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Özlem Timirci Kahraman
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Şanlı
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hayriye Arzu Ergen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ulusoy
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Başar Bilgiç
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yılmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Haşmet Ayhan Hanağası
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cem İsmail Küçükali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
36
|
The role of natural killer cells in Parkinson's disease. Exp Mol Med 2020; 52:1517-1525. [PMID: 32973221 PMCID: PMC8080760 DOI: 10.1038/s12276-020-00505-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous lines of evidence indicate an association between sustained inflammation and Parkinson's disease, but whether increased inflammation is a cause or consequence of Parkinson's disease remains highly contested. Extensive efforts have been made to characterize microglial function in Parkinson's disease, but the role of peripheral immune cells is less understood. Natural killer cells are innate effector lymphocytes that primarily target and kill malignant cells. Recent scientific discoveries have unveiled numerous novel functions of natural killer cells, such as resolving inflammation, forming immunological memory, and modulating antigen-presenting cell function. Furthermore, natural killer cells are capable of homing to the central nervous system in neurological disorders that exhibit exacerbated inflammation and inhibit hyperactivated microglia. Recently, a study demonstrated that natural killer cells scavenge alpha-synuclein aggregates, the primary component of Lewy bodies, and systemic depletion of natural killer cells results in exacerbated neuropathology in a mouse model of alpha-synucleinopathy, making them a highly relevant cell type in Parkinson's disease. However, the exact role of natural killer cells in Parkinson's disease remains elusive. In this review, we introduce the systemic inflammatory process seen in Parkinson's disease, with a particular focus on the direct and indirect modulatory capacity of natural killer cells in the context of Parkinson's disease.
Collapse
|
37
|
Bi Y, Lin X, Liang H, Yang D, Zhang X, Ke J, Xiao J, Chen Z, Chen W, Zhang X, Wang S, Liu CF. Human Adipose Tissue-Derived Mesenchymal Stem Cells in Parkinson's Disease: Inhibition of T Helper 17 Cell Differentiation and Regulation of Immune Balance Towards a Regulatory T Cell Phenotype. Clin Interv Aging 2020; 15:1383-1391. [PMID: 32884248 PMCID: PMC7434526 DOI: 10.2147/cia.s259762] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder displaying a typical neuroinflammation pathology that may result from an imbalance between regulatory T cells (Treg) and T helper 17 (Th17) cells. Human adipose tissue-derived mesenchymal stem cells (Ad-MSCs) exert immunomodulatory effects by inhibiting effector T cell responses and have been used to treat diverse immune disorders. We aimed to investigate the modulating effect of human Ad-MSCs on peripheral blood mononuclear cells (PBMCs) of patients with PD, focusing on differentiation into Th17 and Treg cells. METHODS We isolated human peripheral blood CD4+T cells and co-cultured them with Ad-MSCs at a ratio of 4:1 under either Th17 or Treg cell polarizing conditions for 4 days to detect the proportions of IL-17-producing CD4+T (Th17) and CD4+CD25+Foxp3+regulatory T (Treg) cells by flow cytometry. We also determined the mRNA expression levels of the retinoid-related orphan nuclear receptor (RORγt) transcription factor and those of interleukin-6 receptor (IL-6R), interleukin-23 receptor (IL-23R), leukemia inhibitory factor (LIF), and LIF receptor (LIFR) by quantitative reverse transcription PCR. We detected levels of cytokines in the supernatant (including LIF, IL-6, IL-23, IL-10, and TGF-β) using ELISA. RESULTS Our results showed that Ad-MSCs specifically inhibited the differentiation of PBMCs of patients with PD into IL-17-producing CD4+T cells by decreasing expressions of IL-6R, IL-23R, and RORγt (the key transcription factor for Th17 cells). Moreover, Ad-MSCs induced a functional CD4+CD25+Foxp3+T regulatory cell phenotype as evidenced by the secretion of IL-10. The levels of IL-6, IL-23, and TGF-β remained constant after co-culture under either the Th17 or the Treg cell polarizing condition. In addition, levels of LIF protein and its receptor mRNA were significantly increased under both polarizing conditions. CONCLUSION The present in vitro study found that Ad-MSCs from healthy participants were able to correct the imbalance between Th17 and Treg found in PBMCs of PD patients, which were correlated with an increase in LIF secretion and a decrease in expression of IL-6R, IL-23R, and RORγt. These findings should be confirmed by in vivo experiments.
Collapse
Affiliation(s)
- Yong Bi
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, People’s Republic of China
| | - Xiaobin Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huazheng Liang
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Dehao Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaowei Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Ke
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jingjing Xiao
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Zhilin Chen
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Weian Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Shaoshi Wang
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
38
|
Oxidative Stress and Neuroinflammation Potentiate Each Other to Promote Progression of Dopamine Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6137521. [PMID: 32714488 PMCID: PMC7354668 DOI: 10.1155/2020/6137521] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a chronic and complex disease of the central nervous system (CNS). Progressive loss of dopamine (DA) neurons in midbrain substantia nigra is considered to be the main cause of PD. The hallmark of PD pathology is the formation of Lewy bodies and the deposition of α-synuclein (α-syn). The mechanisms responsible for the progressive feature of DA neurodegeneration are not fully illustrated. Recently, oxidative stress and neuroinflammation have received extensive attention as two important entry points in the pathogenesis of PD. The occurrence of oxidative stress and neuroinflammation is usually derived from external influences or changes in internal environment, such as the accumulation of reactive oxygen species, exposure to a toxic environment, and the transformation of systemic inflammation. However, PD never results from a single independent factor and the simultaneous participation of oxidative stress and neuroinflammation contributed to PD development. Oxidative stress and neuroinflammation could potentiate each other to promote progression of PD. In this review, we briefly summarized the conditions of oxidative stress and neuroinflammation and the crosstalk between oxidative stress and neuroinflammation on the development of PD.
Collapse
|
39
|
Wijeyekoon RS, Kronenberg-Versteeg D, Scott KM, Hayat S, Kuan WL, Evans JR, Breen DP, Cummins G, Jones JL, Clatworthy MR, Floto RA, Barker RA, Williams-Gray CH. Peripheral innate immune and bacterial signals relate to clinical heterogeneity in Parkinson's disease. Brain Behav Immun 2020; 87:473-488. [PMID: 32006615 PMCID: PMC7613010 DOI: 10.1016/j.bbi.2020.01.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 01/09/2023] Open
Abstract
The innate immune system is implicated in Parkinson's disease (PD), but peripheral in-vivo clinical evidence of the components and driving mechanisms involved and their relationship with clinical heterogeneity and progression to dementia remain poorly explored. We examined changes in peripheral innate immune-related markers in PD cases (n = 41) stratified according to risk of developing early dementia. 'Higher Risk'(HR) (n = 23) and 'Lower Risk' (LR) (n = 18) groups were defined according to neuropsychological predictors and MAPT H1/H2 genotype, and compared to age, gender and genotype-matched controls. Monocyte subsets and expression of key surface markers were measured using flow cytometry. Serum markers including alpha-synuclein, inflammasome-related caspase-1 and bacterial translocation-related endotoxin were measured using quantitative immuno-based assays. Specific markers were further investigated using monocyte assays and validated in plasma samples from a larger incident PD cohort (n = 95). We found that classical monocyte frequency was elevated in PD cases compared to controls, driven predominantly by the HR group, in whom Toll-Like Receptor (TLR)4+ monocytes and monocyte Triggering Receptor Expressed on Myeloid cells-2 (TREM2) expression were also increased. Monocyte Human Leukocyte Antigen (HLA)-DR expression correlated with clinical variables, with lower levels associated with worse cognitive/motor performance. Notably, monocyte changes were accompanied by elevated serum bacterial endotoxin, again predominantly in the HR group. Serum alpha-synuclein and inflammasome-related caspase-1 were decreased in PD cases compared to controls regardless of group, with decreased monocyte alpha-synuclein secretion in HR cases. Further, alpha-synuclein and caspase-1 correlated positively in serum and monocyte lysates, and in plasma from the larger cohort, though no associations were seen with baseline or 36-month longitudinal clinical data. Principal Components Analysis of all monocyte and significant serum markers indicated 3 major components. Component 1 (alpha-synuclein, caspase-1, TLR2+ monocytes) differentiated PD cases and controls in both groups, while Component 2 (endotoxin, monocyte TREM2, alpha-synuclein) did so predominantly in the HR group. Component 3 (classical monocytes, alpha-synuclein) also differentiated cases and controls overall in both groups. These findings demonstrate that systemic innate immune changes are present in PD and are greatest in those at higher risk of rapid progression to dementia. Markers associated with PD per-se (alpha-synuclein, caspase-1), differ from those related to cognitive progression and clinical heterogeneity (endotoxin, TREM2, TLR4, classical monocytes, HLA-DR), with mechanistic and therapeutic implications. Alpha-synuclein and caspase-1 are associated, suggesting inflammasome involvement common to all PD, while bacterial translocation associated changes may contribute towards progression to Parkinson's dementia. Additionally, HLA-DR-associated variations in antigen presentation/clearance may modulate existing clinical disease.
Collapse
Affiliation(s)
- Ruwani S. Wijeyekoon
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Corresponding Author;
| | | | - Kirsten M. Scott
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Shaista Hayat
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Jonathan R. Evans
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Nottingham University Hospital NHS Trust, Nottingham, UK
| | - David P. Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49, Little France Crescent, Edinburgh, EH16 4SB, UK,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Chancellor’s Building, 49, Little France Crescent, Edinburgh, EH16 4SB, UK,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, 9, Little France Road, Edinburgh BioQuarter, Edinburgh, EH16 4UX, UK
| | - Gemma Cummins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Joanne L. Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - R. Andres Floto
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Caroline H. Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| |
Collapse
|
40
|
NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proc Natl Acad Sci U S A 2020; 117:1762-1771. [PMID: 31900358 DOI: 10.1073/pnas.1909110117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The pathological hallmark of synucleinopathies, including Lewy body dementia and Parkinson's disease (PD), is the presence of Lewy bodies, which are primarily composed of intracellular inclusions of misfolded α-synuclein (α-syn) among other proteins. α-Syn is found in extracellular biological fluids in PD patients and has been implicated in modulating immune responses in the central nervous system (CNS) and the periphery. Natural killer (NK) cells are innate effector lymphocytes that are present in the CNS in homeostatic and pathological conditions. NK cell numbers are increased in the blood of PD patients and their activity is associated with disease severity; however, the role of NK cells in the context of α-synucleinopathies has never been explored. Here, we show that human NK cells can efficiently internalize and degrade α-syn aggregates via the endosomal/lysosomal pathway. We demonstrate that α-syn aggregates attenuate NK cell cytotoxicity in a dose-dependent manner and decrease the release of the proinflammatory cytokine, IFN-γ. To address the role of NK cells in PD pathogenesis, NK cell function was investigated in a preformed fibril α-syn-induced mouse PD model. Our studies demonstrate that in vivo depletion of NK cells in a preclinical mouse PD model resulted in exacerbated motor deficits and increased phosphorylated α-syn deposits. Collectively, our data provide a role of NK cells in modulating synuclein pathology and motor symptoms in a preclinical mouse model of PD, which could be developed into a therapeutic for PD and other synucleinopathies.
Collapse
|
41
|
Sun C, Zhao Z, Yu W, Mo M, Song C, Si Y, Liu Y. Abnormal subpopulations of peripheral blood lymphocytes are involved in Parkinson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:637. [PMID: 31930038 DOI: 10.21037/atm.2019.10.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Abnormal immune responses are involved in the development of Parkinson's disease (PD), and also affect peripheral blood lymphocytes. The profile of lymphocyte subsets in peripheral blood and whether it is relevant to the clinical features of PD patients remains controversial. Methods To explore the role of peripheral blood lymphocytes (NK cells, B cells, CD3+ T cells, CD3+CD4+ T cells and CD3+CD8+ T cells) in the development of PD, a case-control study including 127 patients and 148 healthy controls was conducted, and peripheral blood lymphocyte subpopulations of participants were analysed by a FACSCalibur flow cytometer. Results PD patients had a significantly higher percentage of NK cells and a lower percentage of CD3+ T cells and CD3+CD4+ T cells than controls [16.4% (12.3%) vs. 12.6% (6.2%), 63.7% (14.2%) vs. 69.0% (6.6%), 33.1% (13.1%) vs. 38.9% (7.6%), P<0.05, respectively]. Through a binary logistic regression model adjusted for gender and age, we found that those who were outside of the reference range of peripheral blood lymphocytes (NK cell, B cell, CD3+ T cell and CD3+CD4+ T cell) had an increased risk of PD [odds ratio (OR): 2.3, 5.1, 3.1 and 4.1, P<0.05, respectively]. Through a multivariable linear regression model adjusted for gender, age and levodopa equivalent daily dose, we found that deviation from the reference range of CD3+CD8+ T cells (regression coefficient =3.474, P=0.015), course of disease (regression coefficient =0.411, P=0.004) and the Non-Motor Symptoms Scale (NMSS) scores (regression coefficient =0.553, P=5.92E-11) had a positive association with the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS)-III score (adjusted R2=0.364, F=13.004). Conclusions Abnormal peripheral blood lymphocyte subpopulations have clinical relevance for PD.
Collapse
Affiliation(s)
- Congcong Sun
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhenxiang Zhao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenfei Yu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mingshu Mo
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Youfeng Si
- Department of Neurology, Feicheng Mining Central Hospital, Feicheng 271600, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
42
|
Storelli E, Cassina N, Rasini E, Marino F, Cosentino M. Do Th17 Lymphocytes and IL-17 Contribute to Parkinson's Disease? A Systematic Review of Available Evidence. Front Neurol 2019; 10:13. [PMID: 30733703 PMCID: PMC6353825 DOI: 10.3389/fneur.2019.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons, appearance of Lewy bodies and presence of neuroinflammation. No treatments currently exist to prevent PD or delay its progression, and dopaminergic substitution treatments just relieve the consequences of dopaminergic neuron loss. Increasing evidence points to peripheral T lymphocytes as key players in PD, and recently there has been growing interest into the specific role of T helper (Th) 17 lymphocytes. Th17 are a proinflammatory CD4+ T cell lineage named after interleukin (IL)-17, the main cytokine produced by these cells. Th17 are involved in immune-related disease such as psoriasis, rheumatoid arthritis and inflammatory bowel disease, and drugs targeting Th17/IL-17 are currently approved for clinical use in such disease. In the present paper, we first summarized current knowledge about contribution of the peripheral immune system in PD, as well as about the physiopharmacology of Th17 and IL-17 together with its therapeutic relevance. Thereafter, we systematically retrieved and evaluated published evidence about Th17 and IL-17 in PD, to help assessing Th17/IL-17-targeting drugs as potentially novel antiparkinson agents. Critical appraisal of the evidence did not allow to reach definite conclusions: both animal as well as clinical studies are limited, just a few provide mechanistic evidence and none of them investigates the eventual relationship between Th17/IL-17 and clinically relevant endpoints such as disease progression, disability scores, intensity of dopaminergic substitution treatment. Careful assessment of Th17 in PD is anyway a priority, as Th17/IL-17-targeting therapeutics might represent a straightforward opportunity for the unmet needs of PD patients.
Collapse
Affiliation(s)
| | | | | | | | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
43
|
Li S, Le W. Biomarker Discovery in Parkinson's Disease: Present Challenges and Future Opportunities. Neurosci Bull 2017; 33:481-482. [PMID: 28936754 PMCID: PMC5636743 DOI: 10.1007/s12264-017-0184-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Song Li
- Clinical Research Center on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
- Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|