1
|
Han HJ, Sivaraman A, Kim M, Min KH, Song ME, Choi Y, Choi WJ, Han HK, Han J, Jang JP, Ryoo IJ, Lee K, Soung NK. HIF-1α inhibition by MO-2097, a novel chiral-free benzofuran targeting hnRNPA2B1. J Adv Res 2024; 64:67-81. [PMID: 37977260 PMCID: PMC11464424 DOI: 10.1016/j.jare.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator mediating adaptive responses to hypoxia. It is up-regulated in the tumor microenvironment and recognized as an effective anticancer drug target. Previously, we discovered that the natural compound moracin-O and its synthetic derivative MO-460 inhibited HIF-1α via hnRNPA2B1. OBJECTIVES This study aimed to develop novel HIF-1 inhibitors for cancer chemotherapy by harnessing the potential of the natural products moracins-O and P. METHODS In an ongoing search for novel HIF-1 inhibitors, a series of nature-inspired benzofurans with modifications on the chiral rings of moracins-O and P were synthesized. They showed improved chemical tractability and were evaluated for their inhibitory activity on HIF-1α accumulation under hypoxic conditions in HeLa CCL2 cells. The most potent derivative's chemical-based toxicities, binding affinities, and in vivo anti-tumorigenic effects were evaluated. Further, we examined whether our compound, MO-2097, exhibited anticancer effects in three-dimensional cultured organoids. RESULTS Herein, we identified a novel synthetic chiral-free compound, MO-2097, with reduced structural complexity and increased efficiency. MO-2097 exhibited inhibitory effects on hypoxia-induced HIF-1α accumulation in HeLa CCL2 cells via inhibition of hnRNPA2B1 protein, whose binding affinities were confirmed by isothermal titration calorimetry analysis. In addition, MO-2097 demonstrated in vivo efficacy and biocompatibility in a BALB/c mice xenograft model. The immunohistochemistry staining of MO-2097-treated tissues showed decreased expression of HIF-1α and increased levels of apoptosis marker cleaved caspase 3, confirming in vivo efficacy. Furthermore, we confirmed that MO-2097 works effectively in cancer patient-based organoid models. CONCLUSION MO-2097 represents a promising new generation of chemotherapeutic agents targeting HIF-1α inhibition via hnRNPA2B1, requiring further investigation.
Collapse
Affiliation(s)
- Ho Jin Han
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyoung Ho Min
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Mo Eun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Jun Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Junyeol Han
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Biomolecular Science, University of Science, and Technology, Daejeon, 34113, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - In-Ja Ryoo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Nak-Kyun Soung
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Biomolecular Science, University of Science, and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Ozanique PR, Helena AL, Menezes RDP, Gonçalves DS, Santiago MB, Dilarri G, Sardi JDCO, Ferreira H, Martins CHG, Regasini LO. Synthesis, Antibacterial Effects, and Toxicity of Licochalcone C. Pharmaceuticals (Basel) 2024; 17:634. [PMID: 38794203 PMCID: PMC11124413 DOI: 10.3390/ph17050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Drug-resistant bacteria constitute a big barrier against current pharmacotherapy. Efforts are urgent to discover antibacterial drugs with novel chemical and biological features. Our work aimed at the synthesis, evaluation of antibacterial effects, and toxicity of licochalcone C (LCC), a naturally occurring chalcone. The synthetic route included six steps, affording a 10% overall yield. LCC showed effects against Gram-positive bacteria (MIC = 6.2-50.0 µg/mL), Mycobacterium species (MIC = 36.2-125 µg/mL), and Helicobacter pylori (MIC = 25 µg/mL). LCC inhibited the biofilm formation of MSSA and MRSA, demonstrating MBIC50 values of 6.25 μg/mL for both strains. The investigations by fluorescence microscopy, using PI and SYTO9 as fluorophores, indicated that LCC was able to disrupt the S. aureus membrane, similarly to nisin. Systemic toxicity assays using Galleria mellonella larvae showed that LCC was not lethal at 100 µg/mL after 80 h treatment. These data suggest new uses for LCC as a compound with potential applications in antibacterial drug discovery and medical device coating.
Collapse
Affiliation(s)
- Patrick Rômbola Ozanique
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (P.R.O.); (A.L.H.)
| | - Alvaro Luiz Helena
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (P.R.O.); (A.L.H.)
| | - Ralciane de Paula Menezes
- Department Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Umuarama 38405-320, MG, Brazil; (R.d.P.M.); (D.S.G.); (M.B.S.); (C.H.G.M.)
| | - Daniela Silva Gonçalves
- Department Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Umuarama 38405-320, MG, Brazil; (R.d.P.M.); (D.S.G.); (M.B.S.); (C.H.G.M.)
| | - Mariana Brentini Santiago
- Department Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Umuarama 38405-320, MG, Brazil; (R.d.P.M.); (D.S.G.); (M.B.S.); (C.H.G.M.)
| | - Guilherme Dilarri
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, SP, Brazil; (G.D.); (H.F.)
| | | | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, SP, Brazil; (G.D.); (H.F.)
| | - Carlos Henrique Gomes Martins
- Department Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Umuarama 38405-320, MG, Brazil; (R.d.P.M.); (D.S.G.); (M.B.S.); (C.H.G.M.)
| | - Luis Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (P.R.O.); (A.L.H.)
| |
Collapse
|
3
|
Lee SO, Lee MH, Kwak AW, Lee JY, Yoon G, Joo SH, Choi YH, Park JW, Shim JH. Licochalcone H Targets EGFR and AKT to Suppress the Growth of Oxaliplatin -Sensitive and -Resistant Colorectal Cancer Cells. Biomol Ther (Seoul) 2023; 31:661-673. [PMID: 37899744 PMCID: PMC10616518 DOI: 10.4062/biomolther.2023.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Treatment of colorectal cancer (CRC) has always been challenged by the development of resistance. We investigated the antiproliferative activity of licochalcone H (LCH), a regioisomer of licochalcone C derived from the root of Glycyrrhiza inflata, in oxaliplatin (Ox)-sensitive and -resistant CRC cells. LCH significantly inhibited cell viability and colony growth in both Ox-sensitive and Ox-resistant CRC cells. We found that LCH decreased epidermal growth factor receptor (EGFR) and AKT kinase activities and related activating signaling proteins including pEGFR and pAKT. A computational docking model indicated that LCH may interact with EGFR, AKT1, and AKT2 at the ATP-binding sites. LCH induced ROS generation and increased the expression of the ER stress markers. LCH treatment of CRC cells induced depolarization of MMP. Multi-caspase activity was induced by LCH treatment and confirmed by Z-VAD-FMK treatment. LCH increased the number of sub-G1 cells and arrested the cell cycle at the G1 phase. Taken together LCH inhibits the growth of Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, and inducing ROS generation and ER stress-mediated apoptosis. Therefore, LCH could be a potential therapeutic agent for improving not only Ox-sensitive but also Ox-resistant CRC treatment.
Collapse
Affiliation(s)
- Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Ah-Won Kwak
- Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| |
Collapse
|
4
|
Yin S, You T, Tang J, Wang L, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Dietary licorice flavonoids powder improves serum antioxidant capacity and immune organ inflammatory responses in weaned piglets. Front Vet Sci 2022; 9:942253. [PMID: 35958301 PMCID: PMC9360566 DOI: 10.3389/fvets.2022.942253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Weaning often induces oxidative stress and inflammatory response in piglets. This study investigated the effects of dietary licorice flavonoids powder (LFP) supplementation on antioxidant capacity and immunity in weaned piglets. Notably, 96 Landrace × Yorkshire × Duroc (DLY) weaned piglets were randomly allocated to four treatments with 6 replicates (4 animals per replicate) and fed with diet supplementation with 0, 50, 150, and 250 mg/kg LFP, respectively. The trial lasted for 5 weeks. The results showed that dietary LFP supplementation effectively increased the liver index (P < 0.05). In addition, dietary LFP supplementation reduced serum aspartate aminotransferase activity (P < 0.01). Piglets fed with 50 mg/kg LFP decreased total cholesterol and HDL-C content in serum (P < 0.05) and increased serum alkaline phosphatase activity (P < 0.01). Similarly, supplementation with 150 mg/kg LFP elevated the activity of total antioxidant capability (T-AOC) in serum (P < 0.01) and dietary with 150 and 250 mg/kg LFP increased T-AOC activity in spleen (P < 0.01). Moreover, dietary with 150 mg/kg LFP addition enhanced (P < 0.05) the serum IgG content of piglets. Additionally, compared with the control group, dietary 250 mg/kg LFP supplementation upregulated (P < 0.05) the mRNA abundance of Interleukin (IL)-1β and monocyte chemoattractant protein 1 (MCP-1) in the spleen. Meanwhile, dietary 150 and 250 mg/kg LFP supplementation downregulated (P < 0.05) mRNA abundance of IL-10, and MCP-1 and 250 mg/kg LFP upregulated (P < 0.05) the expression of intercellular adhesion molecule 1 (ICAM-1), IL-1β, IL-6, and tumor necrosis factor α (TNF-α) in the thymus. In conclusion, LFP supplementation improved the immune function of piglets by regulating the activity of serum biochemical enzymes, improving the antioxidant capacity, and alleviating inflammation of immune organs. This study indicated that LFP is potential alternative protection against early weaned stress in piglets.
Collapse
Affiliation(s)
- Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ting You
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Hua Zhao
| |
Collapse
|
5
|
Khademi Z, Heravi MM. Applications of Claisen condensations in total synthesis of natural products. An old reaction, a new perspective. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Park KH, Joo SH, Seo JH, Kim J, Yoon G, Jeon YJ, Lee MH, Chae JI, Kim WK, Shim JH. Licochalcone H Induces Cell Cycle Arrest and Apoptosis in Human Skin Cancer Cells by Modulating JAK2/STAT3 Signaling. Biomol Ther (Seoul) 2022; 30:72-79. [PMID: 34873073 PMCID: PMC8724845 DOI: 10.4062/biomolther.2021.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Licochalcone H (LCH) is a phenolic compound synthetically derived from licochalcone C (LCC) that exerts anticancer activity. In this study, we investigated the anticancer activity of LCH in human skin cancer A375 and A431 cells. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay was used to evaluate the antiproliferative activity of LCH. Cell cycle distribution and the induction of apoptosis were analyzed by flow cytometry. Western blotting assays were performed to detect the levels of proteins involved in cell cycle progression, apoptosis, and the JAK2/STAT3 signaling pathway. LCH inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay revealed that LCH induced apoptosis, and the LCH-induced apoptosis was accompanied by cell cycle arrest in the G1 phase. Western blot analysis showed that the phosphorylation of JAK2 and STAT3 was decreased by treatment with LCH. The inhibition of the JAK2/STAT3 signaling pathway by pharmacological inhibitors against JAK2/STAT3 (cryptotanshinone (CTS) and S3I-201) simulated the antiproliferative effect of LCH suggesting that LCH induced apoptosis by modulating JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Kyung-Ho Park
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jumi Kim
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Woo-Keun Kim
- Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea.,The China -US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| |
Collapse
|
7
|
Zhang QH, Huang HZ, Qiu M, Wu ZF, Xin ZC, Cai XF, Shang Q, Lin JZ, Zhang DK, Han L. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19. Front Pharmacol 2021; 12:719758. [PMID: 34899289 PMCID: PMC8661450 DOI: 10.3389/fphar.2021.719758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge, and although vaccines have been developed, it is expected that mild to moderate patients will control their symptoms, especially in developing countries. Licorice, not only a food additive, but also a common traditional Chinese herbal medicine, which has several pharmacological effects, such as anti-inflammation, detoxification, antibacterial, antitussive, and immunomodulatory effects, especially in respiratory diseases. Since the outbreak of COVID-19, glycyrrhizin, glycyrrhizin diamine and glycyrrhizin extract have been widely studied and used in COVID-19 clinical trials. Therefore, it is a very interesting topic to explore the material basis, pharmacological characteristics and molecular mechanism of licorice in adjuvant treatment of COVID-19. In this paper, the material basis of licorice for the prevention and treatment of COVID-19 is deeply analyzed, and there are significant differences among different components in different pharmacological mechanisms. Glycyrrhizin and glycyrrhetinic acid inhibit the synthesis of inflammatory factors and inflammatory mediators by blocking the binding of ACE 2 to virus spike protein, and exert antiviral and antibacterial effects. Immune cells are stimulated by multiple targets and pathways to interfere with the pathogenesis of COVID-19. Liquiritin can prevent and cure COVID-19 by simulating type I interferon. It is suggested that licorice can exert its therapeutic advantage through multi-components and multi-targets. To sum up, licorice has the potential to adjuvant prevent and treat COVID-19. It not only plays a significant role in anti-inflammation and anti-ACE-2, but also significantly improves the clinical symptoms of fever, dry cough and shortness of breath, suggesting that licorice is expected to be a candidate drug for adjuvant treatment of patients with early / mild COVID-19.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen-Feng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhan-Chang Xin
- Gansu Qilian Mountain Pharmaceutical Limited Liability Company, Jiuquan, China
| | - Xin-Fu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Xiao Y, Han F, Lee IS. Biotransformation of the Phenolic Constituents from Licorice and Cytotoxicity Evaluation of Their Metabolites. Int J Mol Sci 2021; 22:10109. [PMID: 34576274 PMCID: PMC8465054 DOI: 10.3390/ijms221810109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Biotransformation of four bioactive phenolic constituents from licorice, namely licoisoflavanone (1), glycyrrhisoflavone (2), echinatin (3), and isobavachalcone (4), was performed by the selected fungal strain Aspergillus niger KCCM 60332, leading to the isolation of seventeen metabolites (5-21). Structures of the isolated compounds were determined on the basis of extensive spectroscopic methods, twelve of which (5-7, 10-17 and 19) have been previously undescribed. A series of reactions including hydroxylation, hydrogenation, epoxidation, hydrolysis, reduction, cyclization, and alkylation was observed in the biotransformation process. All compounds were tested for their cytotoxic activities against three different human cancer cell lines including A375P, MCF-7, and HT-29. Compounds 1 and 12 exhibited most considerable cytotoxic activities against all the cell lines investigated, while compounds 2 and 4 were moderately cytotoxic. These findings will contribute to expanding the chemical diversity of phenolic compounds, and compounds 1 and 12 may serve as leads for the development of potential cancer chemopreventive agents.
Collapse
Affiliation(s)
| | | | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (Y.X.); (F.H.)
| |
Collapse
|
9
|
Microbial Conjugation Studies of Licochalcones and Xanthohumol. Int J Mol Sci 2021; 22:ijms22136893. [PMID: 34206985 PMCID: PMC8268106 DOI: 10.3390/ijms22136893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial conjugation studies of licochalcones (1-4) and xanthohumol (5) were performed by using the fungi Mucor hiemalis and Absidia coerulea. As a result, one new glucosylated metabolite was produced by M. hiemalis whereas four new and three known sulfated metabolites were obtained by transformation with A. coerulea. Chemical structures of all the metabolites were elucidated on the basis of 1D-, 2D-NMR and mass spectroscopic data analyses. These results could contribute to a better understanding of the metabolic fates of licochalcones and xanthohumol in mammalian systems. Although licochalcone A 4'-sulfate (7) showed less cytotoxic activity against human cancer cell lines compared to its substrate licochalcone A, its activity was fairly retained with the IC50 values in the range of 27.35-43.07 μM.
Collapse
|
10
|
Phutdhawong W, Chuenchid A, Taechowisan T, Sirirak J, Phutdhawong WS. Synthesis and Biological Activity Evaluation of Coumarin-3-Carboxamide Derivatives. Molecules 2021; 26:molecules26061653. [PMID: 33809679 PMCID: PMC8002271 DOI: 10.3390/molecules26061653] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
A series of novel coumarin-3-carboxamide derivatives were designed and synthesized to evaluate their biological activities. The compounds showed little to no activity against gram-positive and gram-negative bacteria but specifically showed potential to inhibit the growth of cancer cells. In particular, among the tested compounds, 4-fluoro and 2,5-difluoro benzamide derivatives (14b and 14e, respectively) were found to be the most potent derivatives against HepG2 cancer cell lines (IC50 = 2.62-4.85 μM) and HeLa cancer cell lines (IC50 = 0.39-0.75 μM). The activities of these two compounds were comparable to that of the positive control doxorubicin; especially, 4-flurobenzamide derivative (14b) exhibited low cytotoxic activity against LLC-MK2 normal cell lines, with IC50 more than 100 μM. The molecular docking study of the synthesized compounds revealed the binding to the active site of the CK2 enzyme, indicating that the presence of the benzamide functionality is an important feature for anticancer activity.
Collapse
Affiliation(s)
- Weerachai Phutdhawong
- Department of Science, Faculty of Liberal Arts and Science, Kamphaeng Sean Campus, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Apiwat Chuenchid
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (A.C.); (J.S.)
| | - Thongchai Taechowisan
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (A.C.); (J.S.)
| | - Waya S. Phutdhawong
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (A.C.); (J.S.)
- Correspondence: ; Tel.: +66-34-255797
| |
Collapse
|
11
|
Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Song M, Yoon G, Choi JS, Kim E, Liu X, Oh HN, Chae JI, Lee MH, Shim JH. Janus kinase 2 inhibition by Licochalcone B suppresses esophageal squamous cell carcinoma growth. Phytother Res 2020; 34:2032-2043. [PMID: 32144852 DOI: 10.1002/ptr.6661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/06/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, 85 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| |
Collapse
|
13
|
Kwak AW, Choi JS, Liu K, Lee MH, Jeon YJ, Cho SS, Yoon G, Oh HN, Chae JI, Shim JH. Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. J Chemother 2020; 32:132-143. [DOI: 10.1080/1120009x.2020.1721175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Gyeongbuk, Republic of Korea
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Young-Joo Jeon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Stem Cell Convergence Research Center, Daejeon, Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Microbial Transformation of Licochalcones. Molecules 2019; 25:molecules25010060. [PMID: 31878031 PMCID: PMC6982849 DOI: 10.3390/molecules25010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/24/2023] Open
Abstract
Microbial transformation of licochalcones B (1), C (2), D (3), and H (4) using the filamentous fungi Aspergillus niger and Mucor hiemalis was investigated. Fungal transformation of the licochalcones followed by chromatographic separations led to the isolation of ten new compounds 5–14, including one hydrogenated, three dihydroxylated, three expoxidized, and three glucosylated metabolites. Their structures were elucidated by combined analyses of UV, IR, MS, NMR, and CD spectroscopic data. Absolute configurations of the 2″,3″-diols in the three dihydroxylated metabolites were determined by ECD experiments according to the Snatzke’s method. The trans-cis isomerization was observed for the metabolites 7, 11, 13, and 14 as evidenced by the analysis of their 1H-NMR spectra and HPLC chromatograms. This could be useful in better understanding of the trans-cis isomerization mechanism of retrochalcones. The fungal transformation described herein also provides an effective method to expand the structural diversity of retrochalcones for further biological studies.
Collapse
|
16
|
Kwak AW, Cho SS, Yoon G, Oh HN, Lee MH, Chae JI, Shim JH. Licochalcone H Synthesized by Modifying Structure of Licochalcone C Extracted from Glycyrrhiza inflata Induces Apoptosis of Esophageal Squamous Cell Carcinoma Cells. Cell Biochem Biophys 2019; 78:65-76. [PMID: 31707583 DOI: 10.1007/s12013-019-00892-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/18/2019] [Indexed: 01/05/2023]
Abstract
Esophageal cancer is one of the malignant cancers with a low 5-year survival rate. Licochalcone (LC) H, a chemically synthesized substance, is a regioisomer of LCC extracted from licorice. The purpose of this study was to determine whether LCH might have anticancer effect on human esophageal squamous cell carcinoma (ESCC) cell lines via apoptosis signaling pathway. After 48 h of treatment, IC50 of LCH in KYSE 30, KYSE 70, KYSE 410, KYSE 450, and KYSE 510 cells were 15, 14, 18, 15, and 16 μM, respectively. This study demonstrated that LCH potently suppressed proliferation of ESCC cells in a concentration- and time-dependent manner. LCH triggered G2/M-phase arrest by modulating expression levels of cdc2, cyclin B1, p21, and p27. LCH also induced apoptosis of ESCC cells through reactive oxygen species-mediated endoplasmic reticulum (ER) stress via JNK/p38 activation pathways. The anticancer effect of LCH was associated with ER stress and mitochondrial dysfunction. It also affected protein levels of Mcl-1, tBid, Bax, Bcl-2, cytochrome c, Apaf-1, PARP, cleaved-PARP, and ER stress-related proteins (GRP78 and CHOP). Our findings provide the first demonstration that LCH has anticancer effect on ESCC. Thus, LCH might have potential for preventing and/or treating human ESCC.
Collapse
Affiliation(s)
- Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, Zhengzhou, 450001, Henan, China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, PR China
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea. .,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, PR China.
| |
Collapse
|
17
|
Tang YW, Shi CJ, Yang HL, Cai P, Liu QH, Yang XL, Kong LY, Wang XB. Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer's disease. Eur J Med Chem 2019; 163:307-319. [PMID: 30529634 DOI: 10.1016/j.ejmech.2018.11.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
Abstract
A series of resveratrol dimer derivatives against Alzheimer's disease (AD) was obtained by structural modification and transformation using resveratrol as substrate. Biological analysis revealed that these derivatives had moderate inhibitory activity against human monoamine oxidase B (hMAO-B). In particular, 3 and 7 showed the better inhibitory activity for hMAO-B (IC50 = 3.91 ± 0.23 μM, 0.90 ± 0.01 μM) respectively. Compound 3 (IC50 = 46.95 ± 0.21 μM for DPPH, 1.43 and 1.74 trolox equivalent by ABTS and FRAP method respectively), and 7 (IC50 = 35.33 ± 0.15 μM for DPPH, 1.70 and 1.97 trolox equivalent by ABTS method and FRAP method respectively) have excellent antioxidant effects. Cellular assay shown that 3 and 7 had lower toxicity and were resistant to neurotoxicity induced by oxidative toxins (H2O2, rotenone and oligomycin-A). More importantly, the selected compounds have neuroprotective effects against ROS generation, H2O2-induced apoptosis and a significant in vitro anti-inflammatory activity. The results of the parallel artificial membrane permeability assay for blood-brain barrier indicated that 3 and 7 would be predominant to cross the blood-brain barrier. In this study, mouse microglia BV2 cells were used to establish cell oxidative stress injury model with H2O2 and to explore the protective effect and mechanism of 3 and 7. In general, 3 and 7 can be considered candidates for potential treatment of AD.
Collapse
Affiliation(s)
- Yan-Wei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Cun-Jian Shi
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua-Li Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Pei Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiao-Hong Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Lian Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Oh HN, Oh KB, Lee MH, Seo JH, Kim E, Yoon G, Cho SS, Cho YS, Choi HW, Chae JI, Shim JH. JAK2 regulation by licochalcone H inhibits the cell growth and induces apoptosis in oral squamous cell carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:60-69. [PMID: 30599913 DOI: 10.1016/j.phymed.2018.09.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Licochalconce (LC) H is an artificial compound in the course of synthesizing LCC in 2013. So far, few studies on the effects of LCH have been found in the literature. Despite progress in treatment modalities for oral cancer, the cure from cancer has still limitations. PURPOSE The effects of LCH were investigated on human oral squamous cell carcinoma (OSCC) cells to elucidate its mechanisms. STUDY DESIGN We explored the mechanism of action of LCH by which it could have effects on JAK2/STAT3 signaling pathway. METHODS To confirm LCH anti-cancer effect, analyzed were MTT assay, DAPI staining, soft agar, kinase assay, molecular docking simulation, flow cytometry and Western blotting analysis. RESULTS According to docking and molecular dynamics simulations, the predicted pose of the complex LCH and JAK2 seems reasonable and LCH is strongly bound to active JAK2 with opened activation loop. The LCH inhibitor is surrounded by specific ATP-binding pocket in which it is stabilized by forming hydrogen bonds and hydrophobic interactions. It is shown that LCH plays as a competitive inhibitor in an active state of JAK2. LCH caused a dose-dependent decrease in phosphorylation of JAK2 and STAT3. More interestingly, LCH suppressed JAK2 kinase activity in vitro by its direct binding to the JAK2. LCH significantly inhibited the JAK2/STAT3 signaling pathway, causing the down-regulation of target genes such as Bcl-2, survivin, cyclin D1, p21 and p27. In addition, LCH inhibited cell proliferation and colony formation of OSCC cells in a dose- and time-dependent manner, as well as induction of cell apoptosis through extrinsic and intrinsic pathway. The induction of apoptosis in OSCC cells by LCH was evident in the increased production of ROS, loss of mitochondrial membrane potential, release of cyto c, variation of apoptotic proteins and activation of caspase cascade. CONCLUSION LCH not only induces apoptosis in OSCC cells through the JAK/STAT3 signaling pathway but also inhibits cell growth. It is proposed that LCH has a promising use for the chemotherapeutic agent of oral cancer.
Collapse
Key Words
- 7-AAD, 7-Aminoactinomycin D
- Abbreviations: OSCC, Oral squamous cell carcinoma
- Apaf-1, apoptotic protease activating factor-1
- Apoptosis
- C-PARP, cleaved Poly (ADP-Ribose) Polymerase
- CHOP, CCAAT/enhancer-binding protein homologous protein
- DAPI, 4′-6-diamidino-2-phenylindole
- DR, Death receptor
- FBS, fetal bovine serum
- JAK, Janus kinase
- JAK2
- LC, Licochalcone
- Licochalcone H
- MMP, Mitochondrial membrane potential
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide
- Oral cancer
- PBS, phosphate-buffered saline
- ROS, Reactive oxygen species
- RT, Room temperature
- STAT, Signal transducer and activators of transcription
- STAT3
- TPK, tyrosine protein kinase
- cyto C, cytochrome C
- tBid, truncated Bid
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Mee-Hyun Lee
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, P.R. China
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Young Sik Cho
- Department of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jung-Ii Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, P.R. China.
| |
Collapse
|
19
|
Heravi MM, Zadsirjan V, Saedi P, Momeni T. Applications of Friedel-Crafts reactions in total synthesis of natural products. RSC Adv 2018; 8:40061-40163. [PMID: 35558228 PMCID: PMC9091380 DOI: 10.1039/c8ra07325b] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/03/2018] [Indexed: 12/17/2022] Open
Abstract
Over the years, Friedel-Crafts (FC) reactions have been acknowledged as the most useful and powerful synthetic tools for the construction of a special kind of carbon-carbon bond involving an aromatic moiety. Its stoichiometric and, more recently, its catalytic procedures have extensively been studied. This reaction in recent years has frequently been used as a key step (steps) in the total synthesis of natural products and targeted complex bioactive molecules. In this review, we try to underscore the applications of intermolecular and intramolecular FC reactions in the total syntheses of natural products and complex molecules, exhibiting diverse biological properties.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Pegah Saedi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
20
|
Nho SH, Yoon G, Seo JH, Oh HN, Cho SS, Kim H, Choi HW, Shim JH, Chae JI. Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncol Rep 2018; 41:333-340. [PMID: 30320347 PMCID: PMC6278573 DOI: 10.3892/or.2018.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Licochalcone H (LCH) is a chemical compound that is a positional isomer of licochalcone C (LCC), a chalconoid isolated from the root of Glycyrrhiza inflata, which has various pharmacological properties including anti-inflammatory, antioxidant, antitumor, and anticancer effects. However, the efficacy of LCH on cancer cells has not been investigated. The present study examined the effects of LCH on cell proliferation, induction of apoptosis, and the regulation of matrin 3 (Matr3) protein in oral squamous cell carcinoma (OSCC) cells by Annexin V/propidium iodide (PI) staining and western blot analysis. LCH reduced cell viability and colony forming ability, and induced cell cycle arrest and apoptosis in HSC2 and HSC3 cells through the suppression of Matr3. It was also found that LCH directly bound to Matr3 in a Sepharose 4B pull-down assay. Consequently, the results of the present study suggest that LCH may be used as an anticancer drug in combination with conventional chemotherapy for the treatment of OSCC, and that Matr3 may be a potential effective therapeutic target.
Collapse
Affiliation(s)
- Su-Hyun Nho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| |
Collapse
|
21
|
Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. PHARMACEUTICAL BIOLOGY 2017; 55:5-18. [PMID: 27650551 PMCID: PMC7012004 DOI: 10.1080/13880209.2016.1225775] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 06/13/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
CONTEXT Increasing incidence and impact of inflammatory diseases have encouraged the search of new pharmacological strategies to face them. Licorice has been used to treat inflammatory diseases since ancient times in China. OBJECTIVE To summarize the current knowledge on anti-inflammatory properties and mechanisms of compounds isolated from licorice, to introduce the traditional use, modern clinical trials and officially approved drugs, to evaluate the safety and to obtain new insights for further research of licorice. METHODS PubMed, Web of Science, Science Direct and ResearchGate were information sources for the search terms 'licorice', 'licorice metabolites', 'anti-inflammatory', 'triterpenoids', 'flavonoids' and their combinations, mainly from year 2010 to 2016 without language restriction. Studies were selected from Science Citation Index journals, in vitro studies with Jadad score less than 2 points and in vivo and clinical studies with experimental flaws were excluded. RESULTS Two hundred and ninety-five papers were searched and 93 papers were reviewed. Licorice extract, 3 triterpenes and 13 flavonoids exhibit evident anti-inflammatory properties mainly by decreasing TNF, MMPs, PGE2 and free radicals, which also explained its traditional applications in stimulating digestive system functions, eliminating phlegm, relieving coughing, nourishing qi and alleviating pain in TCM. Five hundred and fifty-four drugs containing licorice have been approved by CFDA. The side effect may due to the cortical hormone like action. CONCLUSION Licorice and its natural compounds have demonstrated anti-inflammatory activities. More pharmacokinetic studies using different models with different dosages should be carried out, and the maximum tolerated dose is also critical for clinical use of licorice extract and purified compounds.
Collapse
Affiliation(s)
- Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Chuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yong-Sheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Rao MLN, Murty VN, Nand S. Functional group manoeuvring for tuning stability and reactivity: synthesis of cicerfuran, moracins (D, E, M) and chromene-fused benzofuran-based natural products. Org Biomol Chem 2017; 15:9415-9423. [DOI: 10.1039/c7ob02459b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The protecting group manoeuvring as a strategy was applied in tuning the stability and reactivity of substituted gem-dibromovinylphenols (12a and 22) for the domino synthesis of benzofuran-based natural products. (1–8).
Collapse
Affiliation(s)
- Maddali L. N. Rao
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208 016
- India
| | - Venneti N. Murty
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208 016
- India
| | - Sachchida Nand
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208 016
- India
| |
Collapse
|
23
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
24
|
|