1
|
Xia H, He W, Lv C, Zhang J, Lin X, Qin S. The inhibitory effect of Astragalus flavone extract on hyperuricemia and its underlying molecular mechanism by targeting JNK/AP-1/NLRP3/IL-1β signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156622. [PMID: 40073779 DOI: 10.1016/j.phymed.2025.156622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Hyperuricemia (HUA) is a metabolic disease disturbing human health caused by the overproduction or underexcretion of uric acid (UA). Astragalus is the root of Astragalus membranaceus (Fisch.) Bunge, has notable regulatory effect on chronic nephritis, proteinuria and spontaneous sweating, suggesting it could be a potential anti-HUA agent. However, limited research has been conducted on its anti-HUA effect and mechanism. METHODS The present study performed untargeted and plasma metabolomics of Astragalus extract to identify the main constituents that can be absorbed and exert effect in mice, and further investigated the underlying mechanism by enzyme activity assay, Western Blotting and molecular docking. RESULTS The results showed that Astragalus flavone extract inhibited UA synthesis by binding to XOD to hinder substrate binding and inhibiting xanthine oxidase (XOD) protein expression, inhibited JNK/AP-1/NLRP3/IL-1β signaling pathway to alleviate prolonged HUA-induced inflammation and abnormal UA metabolism, and protected the kidney by reducing serum renal function index and improving renal tissue atrophy, fibrosis and tubular dilatation both in vitro and in vivo. Besides, glycitein and isoformononet were identified as the main flavones in Astragalus extract absorbed into the bloodstream of mice, isoformononetin was found to inhibit UA synthesis by direct binding to XOD, and glycitein was found to interact with c-Jun to facilitate UA excretion and inhibit inflammation. CONCLUSION This paper represents the pioneering investigation that firstly identifying two flavonoids of Astragalus extract that can be absorbed to fight against HUA, and elucidating their diverse molecular mechanism by targeting JNK/AP-1/NLRP3/IL-1β signaling pathway, UA metabolism and kidney protection.
Collapse
Affiliation(s)
- Hongjuan Xia
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang He
- Health Food R&D Center Infinitus, Guangzhou 510665, China
| | - Chenghao Lv
- College of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jieyan Zhang
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xuan Lin
- Department of Endocrinology, CR & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan 430080, China.
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
He J, Tian W, Meng Y, Yan A, Lai X, Wang F, Che B. Protective effect of xylosma congesta extract on renal injury in hyperuricemic rats. Heliyon 2024; 10:e40674. [PMID: 39660202 PMCID: PMC11629226 DOI: 10.1016/j.heliyon.2024.e40674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Background The purpose of this study was to investigate the protective effect of xylosma congesta extract on kidney injury in hyperuricemic rats. Methods The rats were fed yeast extract and intraperitoneal injections of potassium oxonate for 3 weeks to establish the hyperuricemia model. And then the rats were treated with allopurinol and different doses of oak extract. The contents of uric acid in urine and serum, creatinine, and urea nitrogen in serum were detected by biochemical methods. TUNEL was used to detect cell apoptosis in renal tissue. The protein expression of TLR4 and NF- kappa B (NF-κB) p65 and the proportion of CD68 and CD206 positive cells in renal tissue were detected by pathological method. Results The xylosma congesta group showed decreased renal tubular dilatation, decreased renal interstitial inflammatory cell infiltration, decreased serum creatinine content, and decreased apoptotic cell count as compared to the model group. And positive expression of TLR4 and NF-κB decreased with each dose. Additionally, the xylosma congesta groups showed a significant rise in CD206 and a considerable decrease in CD68. Conclusion The extract from xylosma congesta has the ability to lower serum uric acid and creatinine levels while also providing protection against kidney damage caused by hyperuricemia.
Collapse
Affiliation(s)
- Jinjun He
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Weiyi Tian
- The First Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Yonghui Meng
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - An Yan
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Xin Lai
- The First Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Fei Wang
- The First Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Bangwei Che
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| |
Collapse
|
3
|
Qiao K, Huang Q, Sun T, Chen B, Huang W, Su Y, Lin H, Liu Z. Preparation and Efficacy Evaluation of Antihyperuricemic Peptides from Marine Sources. Nutrients 2024; 16:4301. [PMID: 39770922 PMCID: PMC11678060 DOI: 10.3390/nu16244301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Marine-derived foods, often called blue foods, are promising sustainable alternatives to conventional food sources owing to their abundant amino acids and high protein content. Current treatments for hyperuricemia, a chronic condition attributed to purine metabolism disorders, are associated with various side effects. Novel peptide xanthine oxidase inhibitors have been discovered in the hydrolyzed products of marine fish and invertebrate proteins, which have demonstrated promising therapeutic potential by reducing uric acid levels in vitro and in vivo. This review explores the potential therapeutic effects of xanthine oxidase inhibitors derived from marine fish and invertebrates, summarizes the methods for extracting bioactive peptides from marine organisms, and emphasizes the impact of different proteases on the structure-activity relationship of bioactive peptides. The hypouricemic effects of these bioactive peptides warrant further verification. There is consensus on the in vitro chemical methods used to verify the xanthine oxidase inhibitory effects of these peptides. Considering several cell and animal model development strategies, this review summarizes several highly recognized modeling methods, proposes strategies to improve the bioavailability of bioactive peptides, and advocates for a diversified evaluation system. Although the screening and evaluation methods for antihyperuricemic peptides have been shown to be feasible across numerous studies, they are not optimal. This review examines the deficiencies in bioavailability, synthesis efficiency, and evaluation mechanisms in terms of their future development and proposes potential solutions to address these issues. This review provides a novel perspective for the exploration and application of marine-derived hypouricemic bioactive peptides.
Collapse
Affiliation(s)
- Kun Qiao
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Qiongmei Huang
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Tongtong Sun
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Wenmei Huang
- Xiamen Daozhiyuan Biological Technology Co., Ltd., Xiamen 361024, China;
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Hetong Lin
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
| | - Zhiyu Liu
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| |
Collapse
|
4
|
Yuan P, Feng A, Wei Y, Li S, Fu Y, Wang X, Guo M, Feng W, Zheng X. Indole-3-carboxaldehyde alleviates cisplatin-induced acute kidney injury in mice by improving mitochondrial dysfunction via PKA activation. Food Chem Toxicol 2024; 186:114546. [PMID: 38408633 DOI: 10.1016/j.fct.2024.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Cisplatin (DDP) is widely used in the treatment of cancer as a chemotherapeutic drug. However, its severe nephrotoxicity limits the extensive application of cisplatin, which is characterized by injury and apoptosis of renal tubular epithelial cells. This study aimed to reveal the protective effect and its underlying mechanism of Indole-3-carboxaldehyde (IC) against DDP-induced AKI in mice and NRK-52E cells pretreated with PKA antagonist (H-89). Here, we reported that IC improved renal artery blood flow velocity and renal function related indicators, attenuated renal pathological changes, which were confirmed by the results of HE staining and PASM staining. Meanwhile, IC inhibited the levels of inflammatory factors, oxidative stress, CTR1, OCT2, and the levels of autophagy and apoptosis. Mitochondrial dysfunction was significantly improved as observed by TEM. To clarify the potential mechanism, NRK-52E cells induced by DDP was used and the results proved that H-89 could blocked the improvement with IC effectively in vitro. Our findings showed that IC has the potential to treat cisplatin-induced AKI, and its role in protecting the kidney was closely related to activating PKA, inhibiting autophagy and apoptosis, improving mitochondrial function, which could provide a theoretical basis for the development of new clinical drugs.
Collapse
Affiliation(s)
- Peipei Yuan
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Aozi Feng
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Yaxin Wei
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Saifei Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yang Fu
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Xiao Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Menghuan Guo
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, PR China.
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, PR China
| |
Collapse
|
5
|
Qi X, Ma Y, Guan K, Zhao L, Ma Y, Wang R. Whey Protein Peptide Pro-Glu-Trp Ameliorates Hyperuricemia by Enhancing Intestinal Uric Acid Excretion, Modulating the Gut Microbiota, and Protecting the Intestinal Barrier in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2573-2584. [PMID: 38240209 DOI: 10.1021/acs.jafc.3c00984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by an increase in the concentrations of uric acid (UA) in the bloodstream, intricately linked to the onset and progression of numerous chronic diseases. The tripeptide Pro-Glu-Trp (PEW) was identified as a xanthine oxidase (XOD) inhibitory peptide derived from whey protein, which was previously shown to mitigate HUA by suppressing UA synthesis and enhancing renal UA excretion. However, the effects of PEW on the intestinal UA excretion pathway remain unclear. This study investigated the impact of PEW on alleviating HUA in rats from the perspective of intestinal UA transport, gut microbiota, and intestinal barrier. The results indicated that PEW inhibited the XOD activity in the serum, jejunum, and ileum, ameliorated intestinal morphology changes and oxidative stress, and upregulated the expression of ABCG2 and GLUT9 in the small intestine. PEW reversed gut microbiota dysbiosis by decreasing the abundance of harmful bacteria (e.g., Bacteroides, Alloprevotella, and Desulfovibrio) and increasing the abundance of beneficial microbes (e.g., Muribaculaceae, Lactobacillus, and Ruminococcus) and elevated the concentration of short-chain fatty acids. PEW upregulated the expression of occludin and ZO-1 and decreased serum IL-1β, IL-6, and TNF-α levels. Our findings suggested that PEW supplementation ameliorated HUA by enhancing intestinal UA excretion, modulating the gut microbiota, and restoring the intestinal barrier function.
Collapse
Affiliation(s)
- Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yanfeng Ma
- Mengniu Hi-tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Le Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
6
|
Liu M, Cao B, Luo Q, Song Y, Shi Y, Cheng M, Liu K, Mao D, Wang X, Gong C. A Gender-, Age-, and Weight Status-Specific Analysis of the High Prevalence of Hyperuricemia Among Chinese Children and Adolescents with Obesity. Diabetes Metab Syndr Obes 2024; 17:381-391. [PMID: 38283639 PMCID: PMC10821731 DOI: 10.2147/dmso.s448638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Objective To explore the gender-, age-, and weight status-specific prevalence of hyperuricemia (HUA) and its associated risk factors among Chinese children and adolescents with obesity. Methods A total of 1329 children aged 2-17 years, who were diagnosed with obesity and hospitalized in our center from January 2016 to December 2022 were recruited. They were divided into mild obesity, moderate obesity, and severe obesity groups. HUA was defined as fasting serum uric acid level >420 μmol/L for boys and >360 μmol/L for girls. Multivariate logistic regression analyses were performed to identify risk factors for HUA. Results The highest proportion of hospitalized obese children was aged 10-13 years comprising 677 (50.9%) followed by those aged 6-9 years comprising 348 (26.2%) whereas the least proportion was aged 2-5 years comprising 76 (5.7%). The above differences in age distribution were still present in subgroup analyses according to weight status. Most hospitalized obese children were boys (64.7%), especially in the severe obesity group (75.0%). The overall estimated prevalence of HUA in obese children was 54.8%. It presented a gradual increase trend over the last 7 years, with more rapidly in boys than in girls. Subgroup analysis by weight status showed that the prevalence of HUA was higher in children with moderate obesity (64.3%) and severe obesity (64.2%) when compared with mild obesity (48.2%) (P all<0.01). Boys reached a relatively high HUA incidence level (≥60%) at age 12, which occurred about 2 years later than in girls (age 10). With 12 years as the cut-off point, a high prevalence of HUA (≥60%) was observed in both genders. Multivariable logistic regression analyses showed that boy (OR=2.844, 95% CI 2.024-3.998), age (OR=1.253, 95% CI 1.155-1.360), BMI-Z score (OR=2.132, 95% CI 1.438-3.162), fasting blood glucose (OR=0.907, 95% CI 0.860-0.956), phosphorus (OR=4.123, 95% CI 2.349-7.239), alkaline phosphatase (OR=1.002, 95% CI 1.001-1.004), creatinine (OR=1.067, 95% CI 1.037-1.098), urea nitrogen (OR=1.193, 95% CI 1.032-1.378), aspartate aminotransferase (OR=1.016, 95% CI 1.002-1.030), triglycerides (OR=1.339, 95% CI 1.075-1.667), and high-density lipoprotein cholesterol (OR=0.381, 95% CI 0.160-0.910) were independently associated with odds of HUA (P all<0.05). Conclusion The prevalence of HUA in Chinese obese children and adolescents is unexpectedly high. Childhood HUA was significantly associated with obesity. Gender and age differences were observed in the association between childhood obesity and HUA. Obese children aged ≥12 years should be focused on screening the risk of HUA.
Collapse
Affiliation(s)
- Meijuan Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Bingyan Cao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Qipeng Luo
- Department of Pain Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yanning Song
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Yuting Shi
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Ming Cheng
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Kai Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Di Mao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Xinmeng Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Xiao Y, Liu F, Wu Q, Zhu X, Yu C, Jiang N, Li S, Liu Y. Dioscin Activates Endoplasmic Reticulum Unfolded Protein Response for Defense Against Pathogenic Bacteria in Caenorhabditis elegans via IRE-1/XBP-1 Pathway. J Infect Dis 2024; 229:237-244. [PMID: 37499184 DOI: 10.1093/infdis/jiad294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved pathway that senses and responds to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen during bacterial infection. The IRE-1/XBP-1 pathway is a major branch of the UPRER that has been conserved from yeast to human. Dioscin, a steroidal saponin exhibits a broad spectrum of properties. However, whether dioscin influences the immune response and the underlying molecular mechanisms remain obscure. We find that dioscin increases resistance to Gram-negative pathogen Pseudomonas aeruginosa. Furthermore, dioscin also inhibits the growth of pathogenic bacteria. Meanwhile, dioscin enhances the resistance to pathogens by reducing bacterial burden in the intestine. Through genetic screening, we find that dioscin activates the UPRER to promote innate immunity via IRE-1/XBP-1 pathway. Intriguingly, dioscin requires the neural XBP-1 for immune response. Our findings suggest that dioscin may be a viable candidate for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Liu
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qinyi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Laboratory for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Wu C, Zhang R, Wang J, Chen Y, Zhu W, Yi X, Wang Y, Wang L, Liu P, Li P. Dioscorea nipponica Makino: A comprehensive review of its chemical composition and pharmacology on chronic kidney disease. Biomed Pharmacother 2023; 167:115508. [PMID: 37716118 DOI: 10.1016/j.biopha.2023.115508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Chronic kidney disease (CKD) is a widespread ailment that significantly impacts global health. It is characterized by high prevalence, poor prognosis, and substantial healthcare costs, making it a major public health concern. The current clinical treatments for CKD are not entirely satisfactory, leading to a high demand for alternative therapeutic options. Chinese herbal medicine, with its long history, diverse varieties, and proven efficacy, offers a promising avenue for exploration. One such Chinese herbal medicine, Dioscorea nipponica Makino (DNM), is frequently used to treat kidney diseases. In this review, we have compiled studies examining the mechanisms of action of DNM in the context of CKD, focusing on five primary areas: improvement of oxidative stress, inhibition of renal fibrosis, regulation of metabolism, reduction of inflammatory response, and regulation of autophagy.
Collapse
Affiliation(s)
- Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiang Yi
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
9
|
Guo XL, Gao YY, Yang YX, Zhu QF, Guan HY, He X, Zhang CL, Wang Y, Xu GB, Zou SH, Wei MC, Zhang J, Zhang JJ, Liao SG. Amelioration effects of α-viniferin on hyperuricemia and hyperuricemia-induced kidney injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154868. [PMID: 37209608 DOI: 10.1016/j.phymed.2023.154868] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND α-Viniferin, the major constituent of the roots of Caragana sinica (Buc'hoz) Rehder with a trimeric resveratrol oligostilbenoid skeleton, was demonstrated to possess a strong inhibitory effect on xanthine oxidase in vitro, suggesting it to be a potential anti-hyperuricemia agent. However, the in vivo anti-hyperuricemia effect and its underlying mechanism were still unknown. PURPOSE The current study aimed to evaluate the anti-hyperuricemia effect of α-viniferin in a mouse model and to assess its safety profile with emphasis on its protective effect on hyperuricemia-induced renal injury. METHODS The effects were assessed in a potassium oxonate (PO)- and hypoxanthine (HX)-induced hyperuricemia mice model by analyzing the levels of serum uric acid (SUA), urine uric acid (UUA), serum creatinine (SCRE), serum urea nitrogen (SBUN), and histological changes. Western blotting and transcriptomic analysis were used to identify the genes, proteins, and signaling pathways involved. RESULTS α-Viniferin treatment significantly reduced SUA levels and markedly mitigated hyperuricemia-induced kidney injury in the hyperuricemia mice. Besides, α-viniferin did not show any obvious toxicity in mice. Research into the mechanism of action of α-viniferin revealed that it not only inhibited uric acid formation by acting as an XOD inhibitor, but also reduced uric acid absorption by acting as a GLUT9 and URAT1 dual inhibitor as well as promoted uric acid excretion by acting as a ABCG2 and OAT1 dual activator. Then, 54 differentially expressed (log2 FPKM ≥ 1.5, p ≤ 0.01) genes (DEGs) repressed by the treatment of α-viniferin in the hyperuricemia mice were identified in the kidney. Finally, gene annotation results revealed that downregulation of S100A9 in the IL-17 pathway, of CCR5 and PIK3R5 in the chemokine signaling pathway, and of TLR2, ITGA4, and PIK3R5 in the PI3K-AKT signaling pathway were involved in the protective effect of α-viniferin on the hyperuricemia-induced renal injury. CONCLUSIONS α-Viniferin inhibited the production of uric acid through down-regulation of XOD in hyperuricemia mice. Besides, it also down-regulated the expressions of URAT1 and GLUT9 and up-regulated the expressions of ABCG2 and OAT1 to promote the excretion of uric acid. α-Viniferin could prevent hyperuricemia mice from renal damage by regulating the IL-17, chemokine, and PI3K-AKT signaling pathways. Collectively, α-viniferin was a promising antihyperuricemia agent with desirable safety profile. This is the first report of α-viniferin as an antihyperuricemia agent.
Collapse
Affiliation(s)
- Xiao-Li Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Yan-Yan Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Ya-Xin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Huan-Yu Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Chun-Lei Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Ya Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, 550004, Guizhou, China
| | - Shu-Han Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China
| | - Mao-Chen Wei
- Guiyang Xintian Pharmaceutical Co., Ltd, Guiyang, 550000, Guizhou, China
| | - Jian Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; Medicinal Bioinformatics Center, Shanghai JiaoTong University School of Medicine, 2000000, Shanghai, China
| | - Jin-Juan Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, 550025, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
10
|
Xiao Y, Liu F, Zhu X, Li S, Meng L, Jiang N, Yu C, Wang H, Qin Y, Hui J, Yu C, Liu Y. Dioscin integrates regulation of monosaturated fatty acid metabolism to extend the life span through XBP-1/SBP-1 dependent manner. iScience 2023; 26:106265. [PMID: 36936783 PMCID: PMC10014289 DOI: 10.1016/j.isci.2023.106265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Delay aging, especially in healthy life extension, brought the most interest to the medical field. Searching for anti-aging drugs with relative safety profiles bring natural products in hotspot. In this study, we find that dioscin promotes the health span extension in wild-type Caenorhabditis elegans. Through the genetic screening in C. elegans, we further reveal that dioscin activates the transcription factor SBP-1/SREBP by the UPRER transcription factor XBP-1 to upregulate transcription of the Δ9 desaturase FAT-5 and FAT-7, resulting in increased monounsaturated fatty acid content which requires for healthy life span extension. Intriguingly, through tissue-specific knockdown, we find that dioscin modulates the health span by activating SBP-1 in the intestine. Unexpectedly, dietary supplementation of POA and OA rescues XBP-1, SBP-1 mutants-induced shortened life span phenotype. Considering the conservation of MUFAs metabolism, dioscin may promote health span in other species, including mammals. Our work suggests that dioscin might be a promising candidate for developing anti-aging agent.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Corresponding author
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lingjie Meng
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haijuan Wang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ying Qin
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jing Hui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chunbo Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Corresponding author
| |
Collapse
|
11
|
Qi X, Ma Y, Guan K, Liu C, Wang R, Ma Y, Niu T. Whey protein peptide PEW attenuates hyperuricemia and associated renal inflammation in potassium oxonate and hypoxanthine-induced rat. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Liu P, Zhu W, Wang Y, Ma G, Zhao H, Li P. Chinese herbal medicine and its active compounds in attenuating renal injury via regulating autophagy in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1142805. [PMID: 36942026 PMCID: PMC10023817 DOI: 10.3389/fendo.2023.1142805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease worldwide, and there is a lack of effective treatment strategies. Autophagy is a highly conserved lysosomal degradation process that maintains homeostasis and energy balance by removing protein aggregates and damaged organelles. Increasing evidence suggests that dysregulated autophagy may contribute to glomerular and tubulointerstitial lesions in the kidney under diabetic conditions. Emerging studies have shown that Chinese herbal medicine and its active compounds may ameliorate diabetic kidney injury by regulating autophagy. In this review, we summarize that dysregulation or insufficiency of autophagy in renal cells, including podocytes, glomerular mesangial cells, and proximal tubular epithelial cells, is a key mechanism for the development of DKD, and focus on the protective effects of Chinese herbal medicine and its active compounds. Moreover, we systematically reviewed the mechanism of autophagy in DKD regulated by Chinese herb compound preparations, single herb and active compounds, so as to provide new drug candidates for clinical treatment of DKD. Finally, we also reviewed the candidate targets of Chinese herbal medicine regulating autophagy for DKD. Therefore, further research on Chinese herbal medicine with autophagy regulation and their targets is of great significance for the realization of new targeted therapies for DKD.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Guijie Ma
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Hailing Zhao, ; Ping Li,
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Hailing Zhao, ; Ping Li,
| |
Collapse
|
13
|
A Brief Review of Natural Products with Urate Transporter 1 Inhibition for the Treatment of Hyperuricemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5419890. [PMID: 36337587 PMCID: PMC9635963 DOI: 10.1155/2022/5419890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
Hyperuricemia is a common disease caused by a high level of uric acid. Urate transporter 1 (URAT1) is an important protein and mediates approximately 90% of uric acid reabsorption. Therefore, the URAT1 inhibitor is a class of uricosuric medicines widely used in the clinic for the treatment of hyperuricemia. To find the new medicine with stronger URAT1 inhibition and lower toxicity, researchers have been exploring natural products. This study systematically summarizes the natural products with URAT1 inhibition. The results show that many natural products are potential URAT1 inhibitors, such as flavonoids, terpenoids, alkaloids, coumarins, stilbenes, and steroids, among which flavonoids are the most promising source of URAT1 inhibitors. It is worth noting that most studies have focused on finding natural products with inhibition of URAT1 and have not explored their activities and mechanisms toward URAT1. By reviewing the few existing studies of the structure-activity relationship and analyzing common features of natural products with URAT1 inhibition, we speculate that the rigid ring structure and negative charge may be the keys for natural products to produce URAT1 inhibition. In conclusion, natural products are potential URAT1 inhibitors, and exploring the mechanism of action and structure-activity relationship will be an important research direction in the future.
Collapse
|
14
|
She D, Wang Y, Liu J, Luo N, Feng S, Li Y, Xu J, Xie S, Zhu Y, Xue Y, Zhang Z. Changes in the prevalence of hyperuricemia in clients of health examination in Eastern China, 2009 to 2019. BMC Endocr Disord 2022; 22:202. [PMID: 35948906 PMCID: PMC9364534 DOI: 10.1186/s12902-022-01118-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the continuous improvement of people's living standards, the incidence of hyperuricemia (HUA) is increasing globally. The prevalence of HUA ranged in terms of region, race, and age. This study aims to investigate the changes in the prevalence of HUA in clients of health examination in Eastern China between 2009 and 2019. METHODS Chinese men and women aged 20-79 years (n = 4847 in the 2009 group and n = 12,188 in 2019 group) who had received health examinations were enrolled. Serum uric acid (UA) levels and biochemical parameters, including fasting blood-glucose (FBG), triglyceride (TG), total cholesterol (CHOL), high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine (Cr) and blood urea nitrogen (BUN) were evaluated. The prevalence of HUA in different age groups were measured, and the correlation of biochemical parameters with HUA were analyzed. RESULTS The prevalence of HUA was 18.7% in the 2019 group, which was significantly higher than that in 2009 (11.1%). In females, the prevalence of HUA was significantly higher in 2019 than 2009 for age groups of 20-29 and 30-39 years. In male population, 2019 participants had significantly higher age-specific prevalence for all age groups than 2009 participants. Young men aged 20-29 years became the main population of HUA in the 2019 participants, whereas middle-aged men aged 40-49 years had the highest prevalence of HUA in the 2009 participants. The prevalence rates of HUA in all BMI groups in 2019 participants were significantly higher than those in 2009 participants. Spearmen's correlation analysis and Logistic regression analysis indicated that BMI was positively correlated with HUA. The receiver-operating characteristic curve (ROC) analysis showed BMI > 24.48 kg/m2 and BMI > 23.84 kg/m2 displayed good capacities to discriminate the population with HUA from those without HUA in 2009 and 2019 participants, respectively. CONCLUSIONS In recent 10 years, the prevalence of HUA was increased rapidly in Chinese adults, especially in males. In 2019, the young male group (20-29 years old) replaced the middle-aged male group (40-49 years old) in 2009 as the leading age group for male HUA. BMI was positively correlated with HUA, and might be a potential risk factors to predict HUA.
Collapse
Affiliation(s)
- Dunmin She
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yongliang Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jing Liu
- Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Na Luo
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shangyong Feng
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Ying Li
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jin Xu
- Department of Information Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shichun Xie
- Department of Information Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yan Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Ying Xue
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Zhenwen Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
15
|
Nunes MJ, Valério GN, Samhan-Arias A, Moura JJG, Rouco C, Sousa JP, Cordas CM. Screen-Printed Electrodes Testing for Detection of Potential Stress Biomarkers in Sweat. Electrocatalysis (N Y) 2022; 13:299-305. [DOI: 10.1007/s12678-022-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
|
16
|
Choy SH, Nyanatay SA, Sothilingam S, Malek R, J. R. S, Toh CC, Sundram M, Md Yusoff NA, Nagappan P, Kamaruzaman S, Yeoh WS, Ong TA, Lim J. Cardiovascular risk factors, ethnicity and infection stone are independent factors associated with reduced renal function in renal stone formers. PLoS One 2022; 17:e0265510. [PMID: 35421118 PMCID: PMC9009641 DOI: 10.1371/journal.pone.0265510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent evidence suggested the link between nephrolithiasis and renal function impairment. We aimed to determine the renal function profile and potential factors associated with reduced renal function amongst renal stone formers in multi-ethnic Asians. METHODS We conducted a cross-sectional study involving patients undergoing percutaneous nephrolithotomy between May 2015 and December 2019. Reduced renal function was defined as having estimated glomerular filtration rate < 60 ml/min per 1.73 m2. Renal stone samples were collected and quantified using infrared spectroscopy. Potential factors associated with reduced renal function including age, ethnicity, educational level, history of diabetes, hypertension, gout, hydronephrosis, serum uric acid level, and type of renal stone were evaluated using univariable and multivariable analyses. RESULTS A total of 1162 patients from a multi-ethnic population (Malays 67%, Chinese 19%, Indians 13% and indigenous people 1%) with median age of 57 years (Interquartile range 48-64) were enrolled in the study. Almost a third of patients were found with reduced renal function. Multivariable analysis showed that the odds of having reduced renal function increased with age, ethnicity, lower educational level, history of diabetes, hypertension, gout, bilateral hydronephrosis, elevated serum uric acid level and infection stone. CONCLUSIONS Reduced renal function varies between ethnicities and all age groups of renal stone formers. In addition to age and ethnicity, cardiovascular risk factors including diabetes and hypertension may also need to be taken into account in managing stone patients with reduced renal function.
Collapse
Affiliation(s)
- Seow Huey Choy
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Selina Ann Nyanatay
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Rohan Malek
- Department of Urology, Hospital Selayang, Selangor, Malaysia
| | | | - Charng Chee Toh
- Department of Urology, Hospital Selayang, Selangor, Malaysia
| | - Murali Sundram
- Department of Urology, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | | | - Shakirin Kamaruzaman
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei Sien Yeoh
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Teng Aik Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jasmine Lim
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Huang Y, Wu CX, Guo L, Zhang XX, Xia DZ. Effects of polysaccharides-riched Prunus mume fruit juice concentrate on uric acid excretion and gut microbiota in mice with adenine-induced chronic kidney disease. Curr Res Food Sci 2022; 5:2135-2145. [DOI: 10.1016/j.crfs.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
|
18
|
Chauhan N, Porte S, Joshi V, Shah K. Plants' steroidal saponins - A review on its pharmacology properties and analytical techniques. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Bandopadhyay S, Anand U, Gadekar VS, Jha NK, Gupta PK, Behl T, Kumar M, Shekhawat MS, Dey A. Dioscin: A review on pharmacological properties and therapeutic values. Biofactors 2022; 48:22-55. [PMID: 34919768 DOI: 10.1002/biof.1815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Sung YY, Yuk HJ, Kim DS. Saengmaeksan, a traditional herbal formulation consisting of Panax ginseng, ameliorates hyperuricemia by inhibiting xanthine oxidase activity and enhancing urate excretion in rats. J Ginseng Res 2021; 45:565-574. [PMID: 34803426 PMCID: PMC8587482 DOI: 10.1016/j.jgr.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 10/27/2022] Open
Abstract
Background Saengmaeksan (SMS) is a traditional Korean medicine composed of three herbs, Panax ginseng, Schisandra chinensis, and Liriope platyphylla. SMS is used to treat respiratory and cardiovascular disorders. However, whether SMS exerts antihyperuricemic effects is unknown. Methods Effects of the SMS extract in water (SMS-W) and 30% ethanol (SMS-E) were studied in a rat model of potassium oxonate-induced hyperuricemia. Uric acid concentrations and xanthine oxidase (XO) activities were evaluated in the serum, urine, and hepatic tissue. Using renal histopathology to assess kidney function and uric acid excretion, we investigated serum creatinine and blood urea nitrogen concentrations, as well as protein levels of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), and organic anion transporter 1 (OAT1). The effects of SMS on in vitro XO activity and uric acid uptake were also evaluated. The components of SMS were identified using Ultra Performance Liquid Chromatography (UPLC). Results SMS-E reduced serum uric acid and creatinine concentrations, and elevated urine uric acid excretion. SMS-E lowered XO activities in both the serum and liver, and downregulated the expression of renal URAT1 and GLUT9 proteins. SMS-E reduced renal inflammation and IL-1β levels in both the serum and kidneys. SMS-E inhibited both in vitro XO activity and urate uptake in URAT1-expressing oocytes. Using UPLC, 25 ginsenosides were identified, all of which were present in higher levels in SMS-E than in SMS-W. Conclusion SMS-E exhibited antihyperuricemic effects by regulating XO activity and renal urate transporters, providing the first evidence of its applicability in the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Recent Updates of Natural and Synthetic URAT1 Inhibitors and Novel Screening Methods. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5738900. [PMID: 34754317 PMCID: PMC8572588 DOI: 10.1155/2021/5738900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Human urate anion transporter 1 (hURAT1) is responsible for the reabsorption of uric acid in the proximal renal tubules and is a promising therapeutic target for treating hyperuricemia. To mitigate the side effects of URAT1-targeted clinical agents such as benzbromarone, there is significant interest in discovering new URAT1 inhibitors and developing technology that can evaluate URAT1 inhibition. This review summarizes the methods for assay of URAT1 inhibition and the progress on the discovery of natural and synthetic URAT1 inhibitors in the past five years.
Collapse
|
22
|
Sung YY, Kim DS. Eggshell Membrane Ameliorates Hyperuricemia by Increasing Urate Excretion in Potassium Oxonate-Injected Rats. Nutrients 2021; 13:3323. [PMID: 34684325 PMCID: PMC8540004 DOI: 10.3390/nu13103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022] Open
Abstract
Hyperuricemia is the primary cause of gouty arthritis and other metabolic disorders. Eggshell membrane (EM) is an effective and safe supplement for curing pain and stiffness connected with osteoarthritis. However, the effect of EM on hyperuricemia is unclear. This study determines the effects of EM on potassium oxonate-injected hyperuricemia. Uric acid, creatinine, blood urea nitrogen concentrations in the serum, and xanthine oxidase activity in the liver are measured. Protein levels of renal urate transporter 1 (URAT1), organic anion transporters 1 (OAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette transporter G2 (ABCG2) in the kidney are determined with renal histopathology. The results demonstrate that EM reduces serum uric acid levels and increases urine uric acid levels in hyperuricemic rats. Moreover, EM downregulates renal URAT1 protein expression, upregulates OAT1 and ABCG2, but does not change GLUT9 expression. Additionally, EM does not change xanthine oxidase activity in the liver or the serum. EM also decreases uric acid uptake into oocytes expressing hURAT1. Finally, EM markedly reduces renal inflammation and serum interleukin-1β levels. These findings suggest that EM exhibits antihyperuricemic effects by promoting renal urate excretion and regulating renal urate transporters. Therefore, EM may be useful in the prevention and treatment of gout and hyperuricemia.
Collapse
Affiliation(s)
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
| |
Collapse
|
23
|
Li R, Qi Y, Yuan Q, Xu L, Gao M, Xu Y, Han X, Yin L, Liu C. Protective effects of dioscin against isoproterenol-induced cardiac hypertrophy via adjusting PKCε/ERK-mediated oxidative stress. Eur J Pharmacol 2021; 907:174277. [PMID: 34171391 DOI: 10.1016/j.ejphar.2021.174277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
Cardiac hypertrophy (CH) plays a central role in cardiac remodeling and is an independent risk factor for cardiac events. It is imperative to find drugs with protective effect on CH. Dioscin, one natural product, shows various pharmacological activities, and PKCepsilon (PKCε) plays an important role in the physiological hypertrophic responses. Thus, we aimed to investigate the possible protective effect of dioscin on CH through PKCε. In the present study, the isoproterenol (ISO)-induced H9C2 cells and primary cardiomyocytes models, and the ISO-induced rat model were established, and the pharmacodynamics and mechanism of dioscin were investigated. In vitro results prompted that, dioscin significantly improved ISO-induced cardiomyocyte hypertrophy, decreased the levels of cell size, protein content of single cell, reactive oxygen species, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC). Moreover, in vivo, changes in histopathological of the animals caused by ISO are improved by dioscin. And dioscin decreased the index of CH and the levels of CK, MDA, LDH, and increased the levels of GSH, SOD and GSH-Px. Mechanism research showed that dioscin inhibited the expression levels of PKCε, and affected the expression levels of p-MEK, p-ERK, Nrf2, Keap1 and HO-1 to inhibit oxidative stress. In addition, the results of ISO-induced CH in PKCε siRNA transfected H9C2 cells and C57BL/6 mice further showed that the protective effect of dioscin on CH, which was mediated by inhibition of PKCε/ERK signal pathway. In summary, dioscin can effectively inhibit CH by regulating PKCε-mediated oxidative stress, which should be considered as one potent candidate for new drug research and development to treat CH in the future.
Collapse
Affiliation(s)
- Ruomiao Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Qianhui Yuan
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, China.
| | - Chuntong Liu
- Pharmaceutical Department, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
24
|
Song D, Zhao X, Wang F, Wang G. A brief review of urate transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia and gout: Current therapeutic options and potential applications. Eur J Pharmacol 2021; 907:174291. [PMID: 34216576 DOI: 10.1016/j.ejphar.2021.174291] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Hyperuricemia is a common metabolic condition, cause by increased levels of serum urate (SUA). Reduced excretion of uric acid is reported as the key factor of primary hyperuricemia, accounting for approximately 90% of the cases. Urate transporter 1 (URAT1) is a major protein involved in uric acid reabsorption (about 90%). Therefore, URAT1 inhibitors are considered to be a highly effective and promising class of uricosuric agents for treating hyperuricemia. This review summarizes the development of URAT1 inhibitors for the treatment of hyperuricemia, including approved URAT1 inhibitors, URAT1 inhibitors under development in clinical trials, substances with URAT1 inhibitory effects from derivatives and natural products, and conventional drugs with new uses. This review provides new ideas regarding research on URAT1 inhibitors by introducing the structure, properties, and side effects of chemical drugs, as well as the sources and categories of natural drugs. We also discuss new mechanisms of classic drugs, which may provide guidance to many practicing clinicians. The research and discovery of new inhibitors remain in full swing, and tremendous developments are expected in the field.
Collapse
Affiliation(s)
- Danni Song
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Fuqi Wang
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, China
| |
Collapse
|
25
|
Mo Y, Jie X, Wang L, Ji C, Gu Y, Lu Z, Liu X. Bupi Yishen formula attenuates kidney injury in 5/6 nephrectomized rats via the tryptophan-kynurenic acid-aryl hydrocarbon receptor pathway. BMC Complement Med Ther 2021; 21:207. [PMID: 34376166 PMCID: PMC8353787 DOI: 10.1186/s12906-021-03376-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bupi Yishen Formula (BYF), a patent traditional Chinese medicine (TCM) formulation, has been used in the clinical treatment of chronic kidney disease (CKD). However, the mechanism of action of BYF has not been fully elucidated. METHOD To investigate the variation in the metabolic profile in response to BYF treatment in a rat model of 5/6 nephrectomy (Nx), rats in the treatment groups received low- or high-dose BYF. At the end of the study, serum and kidney samples were collected for biochemical, pathological, and western blotting analysis. Metabolic changes in serum were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS The results showed that BYF treatment could reduce kidney injury, inhibit inflammation and improve renal function in a dose-dependent manner. In total, 405 and 195 metabolites were identified in negative and positive ion modes, respectively. Metabolic pathway enrichment analysis of differential metabolites based on the Kyoto Encyclopedia of Genes and Genomes database identified 35 metabolic pathways, 3 of which were related to tryptophan metabolism. High-dose BYF reduced the level of kynurenic acid (KA) by more than 50%, while increasing melatonin 25-fold and indole-3-acetic acid twofold. Expression levels of aryl hydrocarbon receptor (AhR), Cyp1A1, and CyP1B1 were significantly reduced in the kidney tissue of rats with high-dose BYF, compared to 5/6 Nx rats. CONCLUSION BYF has a reno-protective effect against 5/6 Nx-induced CKD, which may be mediated via inhibition of the tryptophan-KA-AhR pathway.
Collapse
Affiliation(s)
- Yenan Mo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Xina Jie
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Lixin Wang
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China
| | - Chunlan Ji
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Yueyu Gu
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China
| | - Zhaoyu Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China. .,Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China.
| | - Xusheng Liu
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China.
| |
Collapse
|
26
|
Macioszek S, Wawrzyniak R, Kranz A, Kordalewska M, Struck-Lewicka W, Dudzik D, Biesemans M, Maternik M, Żurowska AM, Markuszewski MJ. Comprehensive Metabolic Signature of Renal Dysplasia in Children. A Multiplatform Metabolomics Concept. Front Mol Biosci 2021; 8:665661. [PMID: 34395519 PMCID: PMC8358436 DOI: 10.3389/fmolb.2021.665661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Renal dysplasia is a severe congenital abnormality of the kidney parenchyma, which is an important cause of end-stage renal failure in childhood and early adulthood. The diagnosis of renal dysplasia relies on prenatal or postnatal ultrasounds as children show no specific clinical symptoms before chronic kidney disease develops. Prompt diagnosis is important in terms of early introduction of nephroprotection therapy and improved long-term prognosis. Metabolomics was applied to study children with renal dysplasia to provide insight into the changes in biochemical pathways underlying its pathology and in search of early indicators for facilitated diagnosis. The studied cohort consisted of 72 children, 39 with dysplastic kidneys and 33 healthy controls. All subjects underwent comprehensive urine metabolic profiling with the use of gas chromatography and liquid chromatography coupled to mass spectrometry, with two complementary separation modes of the latter. Univariate and multivariate statistical calculations identified a total of nineteen metabolites, differentiating the compared cohorts, independent of their estimated glomerular filtration rate. Seven acylcarnitines, xanthine, and glutamine were downregulated in the urine of renal dysplasia patients. Conversely, renal dysplasia was associated with higher urinary levels of dimethylguanosine, threonic acid or glyceric acid. This is the first metabolomic study of subjects with renal dysplasia. The authors define a characteristic urine metabolic signature in children with dysplastic kidneys, irrespective of renal function, linking the condition with altered fatty acid oxidation, amino acid and purine metabolisms.
Collapse
Affiliation(s)
- Szymon Macioszek
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Renata Wawrzyniak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Kranz
- Department of Pediatrics, Nephrology and Hypertension, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Kordalewska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiktoria Struck-Lewicka
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Margot Biesemans
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Maternik
- Department of Pediatrics, Nephrology and Hypertension, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
27
|
Chen L, Luo Z, Wang M, Cheng J, Li F, Lu H, He Q, You Y, Zhou X, Kwan HY, Zhao X, Zhou L. The Efficacy and Mechanism of Chinese Herbal Medicines in Lowering Serum Uric Acid Levels: A Systematic Review. Front Pharmacol 2021; 11:578318. [PMID: 33568990 PMCID: PMC7868570 DOI: 10.3389/fphar.2020.578318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background. Chinese herbal medicines are widely used to lower serum uric acid levels. However, no systemic review summarizes and evaluates their efficacies and the underlying mechanisms of action. Objectives. To evaluate the clinical and experimental evidences for the effectiveness and the potential mechanism of Chinese herbal medicines in lowering serum uric acid levels. Methods. Four electronic databases PubMed, Wed of Science, the Cochrane Library and Embase were used to search for Chinese herbal medicines for their effects in lowering serum uric acid levels, dated from 1 January 2009 to 19 August 2020. For clinical trials, randomized controlled trials (RCTs) were included; and for experimental studies, original articles were included. The methodological quality of RCTs was assessed according to the Cochrane criteria. For clinical trials, a meta-analysis of continuous variables was used to obtain pooled effects. For experimental studies, lists were used to summarize and integrate the mechanisms involved. Results. A total of 10 clinical trials and 184 experimental studies were included. Current data showed that Chinese herbal medicines have promising clinical efficacies in patients with elevated serum uric acid levels (SMD: −1.65, 95% CI: −3.09 to −0.22; p = 0.024). There was no significant difference in serum uric acid levels between Chinese herbal medicine treatments and Western medicine treatments (SMD: −0.13, 95% CI: −0.99 to 0.74; p = 0.772). Experimental studies revealed that the mechanistic signaling pathways involved in the serum uric acid lowering effects include uric acid synthesis, uric acid transport, inflammation, renal fibrosis and oxidative stress. Conclusions. The clinical studies indicate that Chinese herbal medicines lower serum uric acid levels. Further studies with sophisticated research design can further demonstrate the efficacy and safety of these Chinese herbal medicines in lowering serum uric acid levels and reveal a comprehensive picture of the underlying mechanisms of action.
Collapse
Affiliation(s)
- Liqian Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhengmao Luo
- Department of Nephrology, General Hospital of Southern Theatre Command, PLA, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Traditional Chinese Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Hanqi Lu
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Yang Y, Yin L, Zhu M, Song S, Sun C, Han X, Xu Y, Zhao Y, Qi Y, Xu L, Peng JY. Protective effects of dioscin on vascular remodeling in pulmonary arterial hypertension via adjusting GRB2/ERK/PI3K-AKT signal. Biomed Pharmacother 2021; 133:111056. [PMID: 33378960 DOI: 10.1016/j.biopha.2020.111056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and lethal cardiopulmonary. Pulmonary vascular remodeling (PVR) caused by excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) is the chief pathological feature of PAH. Dioscin is a natural product that possesses multiple pharmacological activities, but its effect on PAH remains unclear. In this study, effect of dioscin on vascular remodeling in PAH was assessed in hypoxia-induced PASMCs, hypoxia-induced and monocrotaline (MCT)-induced rats. Western blot, Real-time PCR and siRNA transfection tests were applied to evaluate the possible mechanisms of dioscin. In vitro experiments, results showed dioscin markedly inhibited the proliferation and migration, and promoted apoptosis of hypoxic PASMCs. In vivo, dioscin significantly decreased the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI), and improved pulmonary vascular stenosis in rats induced by hypoxia or MCT. Molecular mechanism studies showed that dioscin significantly reduced the expression of growth factor receptor-bound protein 2 (GRB2). Subsequently, dioscin reduced the expressions of Ras, Cyclin D1, CDK4, c-Fos, PCNA and p-ERK to inhibit proliferation and migration of PASMCs, inhibited p-PI3K and p-AKT levels and increased Bax/Bcl2 ratio to promote cell apoptosis. GRB2 siRNA transfection in PASMCs further confirmed that the inhibitory action of dioscin in PAH was evoked by adjusting GRB2/ERK/PI3K-AKT signal. Taken together, our study indicated that dioscin attenuates PAH through adjusting GRB2/ERK/PI3K-AKT signal to inhibit PASMCs proliferation and migration, and promote apoptosis, and dioscin may be developed as a therapeutic strategy for treating PAH in the future.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Diosgenin/analogs & derivatives
- Diosgenin/pharmacology
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GRB2 Adaptor Protein/genetics
- GRB2 Adaptor Protein/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/enzymology
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Signal Transduction
- Vascular Remodeling/drug effects
- Rats
Collapse
Affiliation(s)
- Yueyue Yang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Manning Zhu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Changjie Sun
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China.
| | - J-Y Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
29
|
Ghazizadeh H, Yaghooti-Khorasani M, Khodabandeh AK, Hasanzadeh E, Sahranavard T, Banihashem-Rad SH, Zare-Feyzabadi R, Ekhteraee-Toosi MS, Akbarpour E, Timar A, Mohammadi-Bajgiran M, Assaran-Darban R, Farkhany EM, Oladi MR, Ferns GA, Esmaily H, Ghayour-Mobarhan M. Reference intervals for routine biochemical markers and body mass index: A study based on healthcare center database in northeastern Iran. IUBMB Life 2020; 73:390-397. [PMID: 33382533 DOI: 10.1002/iub.2437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Age- and sex-specific reference intervals (RIs) for some biochemical tests may be useful for their interpretation, due to the variations in lifestyle and genetic, or ethnic factors. The aim of this study was to obtain RIs for some routine biochemical markers including a serum lipid profile, fasting blood glucose (FBG), aspartate and alanine aminotransferase (AST and ALT), uric acid, and body mass index (BMI) in subjects who attended primary healthcare centers. The large database of primary healthcare centers uses RIs to report results for children, adolescents, and young and old adults. RIs were obtained by using the indirect method, recommended by the CLSI Ep28-A3 guidelines. RIs for FBG, BMI, and serum lipid profile, including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in people aged 18 to 120 years, were obtained without age/sex segmentation. RIs for serum AST, ALT, and uric acid were obtained without age segmentation, though these RIs were higher in males than females. The RIs for AST, ALT, and uric acid were higher in men, while the RIs for the other variables were similar in both sexes. This is the first study reporting the use of indirect RIs for BMI.
Collapse
Affiliation(s)
- Hamideh Ghazizadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Atieh Kamel Khodabandeh
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Hasanzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Toktam Sahranavard
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Reza Zare-Feyzabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Ameneh Timar
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mohammadi-Bajgiran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Assaran-Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Mosa Farkhany
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Oladi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Tan Y, Wang L, Gao J, Ma J, Yu H, Zhang Y, Wang T, Han L. Multiomics Integrative Analysis for Discovering the Potential Mechanism of Dioscin against Hyperuricemia Mice. J Proteome Res 2020; 20:645-660. [PMID: 33107303 DOI: 10.1021/acs.jproteome.0c00584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyperuricemia is a well-known key risk factor for gout and can cause a variety of metabolic diseases. Several studies have shown that dioscin could improve metabolic symptoms and reduce the uric acid level in blood. However, there is no comprehensive metabolomic study on the anti-hyperuricemia effects of dioscin. A total of 29 adult male Kunming mice were divided into three groups: Normal (blank), PO (potassium oxonate-administrated, 200 mg/kg/day), and Dioscin (potassium oxonate + dioscin, potassium oxonate 200 mg/kg/day, dioscin 50 mg/kg/day). All mice were treated for 42 days via oral gavage. This paper implemented an untargeted metabolomics study based on 1H NMR and LC-MS to discover the comprehensive mechanism of dioscin. Furthermore, a targeted lipidomics was fulfilled to further analyze the lipid metabolism disorder. Finally, the metabolic pathway mediated by dioscin was verified at the gene level by means of transcriptomics. The results show 53 different metabolites were closely related to the improvement of dioscin in PO-induced hyperuricemia, and 19 of them were lipids. These metabolites are mainly involved in the tricarboxylic acid cycle, lipid metabolism, amino acid metabolism, and pyrimidine metabolism. According to the transcriptomics study, the levels of 89 genes were significantly changed in the PO group compared to the normal control. Among them, six gene levels were restored by the treatment of dioscin. The six changed genes (tx1b, Tsku, Tmem163, Psmc3ip, Tcap, Tbx15) are mainly involved in the cell cycle and energy metabolism. These metabolites and genes might provide useful information for further study of the therapeutic mechanism of dioscin.
Collapse
Affiliation(s)
- Yao Tan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Liming Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jian Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Junhong Ma
- Tianjin Hospital of ITCWM Nankai Hospital, Tianjin 300100, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Tao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| |
Collapse
|
31
|
Han J, Shi G, Li W, Xie Y, Li F, Jiang D. Preventive effect of dioscin against monosodium urate-mediated gouty arthritis through inhibiting inflammasome NLRP3 and TLR4/NF-κB signaling pathway activation: an in vivo and in vitro study. J Nat Med 2020; 75:37-47. [PMID: 32761488 DOI: 10.1007/s11418-020-01440-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Monosodium urate (MSU)-mediated inflammation is closely related to gouty arthritis (GA). Dioscin, an active ingredient, has been reported to possess anti-inflammatory property. Nevertheless, the role of dioscin in GA and the underlying mechanism have not been fully understood. In the present study, we investigated the anti-inflammatory effect of dioscin on MSU-induced GA through in vivo and in vitro experiments. Histopathological analysis showed that dioscin alleviated the severity of GA concomitant with the lowered uric acid and creatinine levels. Moreover, the increasing IL-1β, IL-6, and TNF-α levels induced by MSU were decreased via administration of dioscin in mice and human synoviocytes. Western blotting results suggested that dioscin inhibited the activation of NLRP3 through down-regulating the protein expressions of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved-caspase-1, as well as IL-1β. In addition, TLR4, myeloid differentiation primary response gene 88 (MyD88), p-IKKβ, p-p65, and NF-κB p65 in nuclei levels were significantly reduced by dioscin. Importantly, dioscin remarkably lowered the NF-κB p65-DNA activity in MSU-treated mice utilizing electrophoretic mobility shift assay (EMSA) analysis. Taken together, dioscin had a protective effect against MSU-initiated inflammatory response via repressing the production of inflammatory cytokines and the activation of inflammasome NLRP3 and TLR4/NF-κB signaling pathway. The above findings revealed that dioscin could be a potential drug for the treatment of GA.
Collapse
Affiliation(s)
- Jieru Han
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Guangyu Shi
- Department of Ultrasound Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Wenhao Li
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Fuzhen Li
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
32
|
Jiang LL, Gong X, Ji MY, Wang CC, Wang JH, Li MH. Bioactive Compounds from Plant-Based Functional Foods: A Promising Choice for the Prevention and Management of Hyperuricemia. Foods 2020; 9:foods9080973. [PMID: 32717824 PMCID: PMC7466221 DOI: 10.3390/foods9080973] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Hyperuricemia is a common metabolic disease that is caused by high serum uric acid levels. It is considered to be closely associated with the development of many chronic diseases, such as obesity, hypertension, hyperlipemia, diabetes, and cardiovascular disorders. While pharmaceutical drugs have been shown to exhibit serious side effects, and bioactive compounds from plant-based functional foods have been demonstrated to be active in the treatment of hyperuricemia with only minimal side effects. Indeed, previous reports have revealed the significant impact of bioactive compounds from plant-based functional foods on hyperuricemia. This review focuses on plant-based functional foods that exhibit a hypouricemic function and discusses the different bioactive compounds and their pharmacological effects. More specifically, the bioactive compounds of plant-based functional foods are divided into six categories, namely flavonoids, phenolic acids, alkaloids, saponins, polysaccharides, and others. In addition, the mechanism by which these bioactive compounds exhibit a hypouricemic effect is summarized into three classes, namely the inhibition of uric acid production, improved renal uric acid elimination, and improved intestinal uric acid secretion. Overall, this current and comprehensive review examines the use of bioactive compounds from plant-based functional foods as natural remedies for the management of hyperuricemia.
Collapse
Affiliation(s)
- Lin-Lin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Ming-Yue Ji
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Cong-Cong Wang
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Jian-Hua Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Correspondence: (J.-H.W.); (M.-H.L.); Tel.: +86-472-716-7795 (M.-H.L.)
| | - Min-Hui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
- Department of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China
- Correspondence: (J.-H.W.); (M.-H.L.); Tel.: +86-472-716-7795 (M.-H.L.)
| |
Collapse
|
33
|
The Time-Feature of Uric Acid Excretion in Hyperuricemia Mice Induced by Potassium Oxonate and Adenine. Int J Mol Sci 2020; 21:ijms21155178. [PMID: 32707836 PMCID: PMC7432283 DOI: 10.3390/ijms21155178] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperuricemia is an important risk factor of chronic kidney disease, metabolic syndrome and cardiovascular disease. We aimed to assess the time-feature relationship of hyperuricemia mouse model on uric acid excretion and renal function. A hyperuricemia mouse model was established by potassium oxonate (PO) and adenine for 21 days. Ultra Performance Liquid Chromatography was used to determine plasma uric acid level. Hematoxylin-eosin staining was applied to observe kidney pathological changes, and Western blot was used to detect renal urate transporters’ expression. In hyperuricemia mice, plasma uric acid level increased significantly from the 3rd day, and tended to be stable from the 7th day, and the clearance rate of uric acid decreased greatly from the 3rd day. Further study found that the renal organ of hyperuricemia mice showed slight damage from the 3rd day, and significantly deteriorated renal function from the 10th day. In addition, the expression levels of GLUT9 and URAT1 were upregulated from the 3rd day, while ABCG2 and OAT1 were downregulated from the 3rd day, and NPT1 were downregulated from the 7th day in hyperuricemia mice kidney. This paper presents a method suitable for experimental hyperuricemia mouse model, and shows the time-feature of each index in a hyperuricemia mice model.
Collapse
|
34
|
Khaliq OP, Konoshita T, Moodely J, Ramsuran V, Naicker T. Gene polymorphisms of uric acid are associated with pre-eclampsia in South Africans of African ancestry. Hypertens Pregnancy 2020; 39:103-116. [PMID: 32255363 DOI: 10.1080/10641955.2020.1741608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: To investigate the association of uric acid gene polymorphisms and Pre-eclampsia.Methods: 637 women of African ancestry [280 controls, 357 pre-eclampsia (early-onset = 187, late-onset = 170]) retrospectively. The rs505802, rs1212986, and rs1014290 SNPs were genotyped from purified DNA using real-time PCR.Results: CT genotype (rs505802) was higher in pre-eclampsia [Adjusted p = 0.028*: OR (95% CI) = 1.73 (1.258-2.442)] and late-onset pre-eclampsia [Adjusted p = 0.027*: OR (95% CI) = 1.75 (1.165-2.2628)] than controls. CT genotype (rs1014290) was higher in early-onset pre-eclampsia [Adjusted p-value = 0.040*: OR (95% CI) = 1.60 (1.102-2.325)] than controls.Conclusion: The genotyped rs505802 and rs1014290 are significantly associated with pre-eclampsia.
Collapse
Affiliation(s)
- Olive P Khaliq
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui Faculty of Medicine Sciences, Fukui, Japan
| | - Jagidesa Moodely
- Department of Obstetrics and Gynecology and Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
35
|
From Xanthine Oxidase Inhibition to In Vivo Hypouricemic Effect: An Integrated Overview of In Vitro and In Vivo Studies with Focus on Natural Molecules and Analogues. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9531725. [PMID: 32184901 PMCID: PMC7060854 DOI: 10.1155/2020/9531725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Hyperuricemia is characterized by elevated uric acid (UA) levels on blood, which can lead to gout, a common pathology. These high UA levels are associated with increased purine ingestion and metabolization and/or its decreased excretion. In this field, xanthine oxidase (XO), by converting hypoxanthine and xanthine to UA, plays an important role in hyperuricemia control. Based on limitations and adverse effects associated with the use of allopurinol and febuxostat, the most known approved drugs with XO inhibitory effect, the search for new molecules with XO activity is growing. However, despite the high number of studies, it was found that the majority of tested products with relevant XO inhibition were left out, and no further pharmacological evaluation was performed. Thus, in the present review, available information published in the past six years concerning isolated molecules with in vitro XO inhibition complemented with cytotoxicity evaluation as well as other relevant studies, including in vivo hypouricemic effect, and pharmacokinetic/pharmacodynamic profile was compiled. Interestingly, the analysis of data collected demonstrated that molecules from natural sources or their mimetics and semisynthetic derivatives constitute the majority of compounds being explored at the moment by means of in vitro and in vivo animal studies. Therefore, several of these molecules can be useful as lead compounds and some of them can even have the potential to be considered in the future clinical candidates for the treatment of hyperuricemia.
Collapse
|
36
|
Data Mining-Based Analysis of Chinese Medicinal Herb Formulae in Chronic Kidney Disease Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9719872. [PMID: 32047530 PMCID: PMC7003280 DOI: 10.1155/2020/9719872] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
Abstract
Background Traditional Chinese medicine (TCM) has long been used to treat chronic kidney disease (CKD) in Asia. Its effectiveness and safety for CKD treatment have been confirmed in documented studies. However, the prescription rule of formulae for Chinese medicinal herbs is complicated and remains uncharacterized. Thus, we used data mining technology to evaluate the treatment principle and coprescription pattern of these formulae in CKD TCM treatment. Methods Data on patients with CKD were obtained from the outpatient system of a TCM hospital. We established a Chinese herb knowledge base based on the Chinese Pharmacopoeia and the Chinese Materia Medica. Then, following extraction of prescription information, we deweighted and standardized each prescribed herb according to the knowledge base to establish a database of CKD treatment formulae. We analyzed the frequency with which individual herbs were prescribed, as well as their properties, tastes, meridian tropisms, and categories. Then, we evaluated coprescription patterns and assessed medication rules by performing association rule learning, cluster analysis, and complex network analysis. Results We retrospectively analyzed 299 prescriptions of 166 patients with CKD receiving TCM treatment. The most frequently prescribed core herbs for CKD treatment were Rhizoma Dioscoreae (Shanyao), Spreading Hedyotis Herb (Baihuasheshecao), Root of Snow of June (Baimagu), Radix Astragali (Huangqi), Poria (Fulin), Rhizoma Atractylodis Macrocephalae (Baizhu), Radix Pseudostellariae (Taizishen), and Fructus Corni (Shanzhuyu). The TCM properties of the herbs were mainly being warm, mild, and cold. The tastes of the herbs were mainly sweet, followed by bitter. The main meridian tropisms were Spleen Meridian of Foot-Taiyin, Liver Meridian of Foot-Jueyi, Lung Meridian of Hand-Taiyin, Stomach Meridian of Foot-Yangming, and Kidney Meridian of Foot-Shaoyin. The top three categories were deficiency-tonifying, heat-clearing, and dampness-draining diuretic. Conclusion Using an integrated analysis method, we confirmed that the primary TCM pathogeneses of kidney disease were deficiency and dampness-heat. The primary treatment principles were tonifying deficiency and eliminating dampness-heat.
Collapse
|
37
|
Wang C, Li Q, Li T. Dioscin alleviates lipopolysaccharide-induced acute lung injury through suppression of TLR4 signaling pathways. Exp Lung Res 2020; 46:11-22. [PMID: 31931639 DOI: 10.1080/01902148.2020.1711830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aim: Acute lung injury (ALI) is a life-threatening inflammatory syndrome that lacks an effective therapy. Dioscin, a natural steroid saponin isolated from a variety of herbs, could serve as an anti-inflammatory agent, as suggested in previous reports. The purpose of this study was to explore the effects of dioscin on lipopolysaccharide (LPS)-induced ALI and validate the potential mechanisms.Materials and Methods: An ALI model was induced by intratracheal administration of LPS. Dioscin (20, 40, and 80 mg/kg) was administered intragastrically once daily for seven consecutive days prior to LPS challenge.Results: Our data revealed that dioscin significantly suppressed LPS-induced lung pathological changes, pulmonary capillary permeability, pulmonary edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity, and cytokine production, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and keratinocyte chemoattractant (KC). Moreover, dioscin inhibited LPS-induced nuclear factor-kappaB (NF-κB) activation as well as Toll-like receptor 4 (TLR4) expression.Conclusions: In brief, the results indicated that dioscin alleviates LPS-induced ALI through suppression of TLR4 signaling pathways.
Collapse
Affiliation(s)
- Chuntao Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingnian Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Yang L, Ren S, Xu F, Ma Z, Liu X, Wang L. Recent Advances in the Pharmacological Activities of Dioscin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763602. [PMID: 31511824 PMCID: PMC6710808 DOI: 10.1155/2019/5763602] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Dioscin is a typical saponin with multiple pharmacological activities. The past few years have seen an emerging interest in and growing research on this pleiotropic saponin. Here, we review the emerging pharmacological activities reported recently, with foci on its antitumor, antimicrobial, anti-inflammatory, antioxidative, and tissue-protective properties. The potential use of dioscin in therapies of diverse clinical disorders is also discussed.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lufei Wang
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| |
Collapse
|
39
|
Qian X, Wang X, Luo J, Liu Y, Pang J, Zhang H, Xu Z, Xie J, Jiang X, Ling W. Hypouricemic and nephroprotective roles of anthocyanins in hyperuricemic mice. Food Funct 2019; 10:867-878. [PMID: 30693917 DOI: 10.1039/c8fo02124d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hyperuricemia (HUA) is a universal metabolic disorder characterized by a high level of uric acid in the serum. Anthocyanins (ACNs) are a group of natural flavonoids that have shown favourable bioactivities in the metabolic syndrome but the effect on uric acid metabolism remains underexplored. The present study investigated the hypouricemic effects of ACNs in a mice model and further studied the potential mechanisms. ICR mice based on a high-yeast diet were administered potassium oxonate (PO, 280 mg per kg body weight) and inosine (400 mg per kg body weight) to induce a hyperuricemia model, meanwhile, ACNs were supplemented by gavage. The mice were sacrificed after 3 weeks of treatment. ACN administration significantly reduced serum uric acid (SUA), blood urea nitrogen (BUN) and serum creatinine (Scr) levels and suppressed xanthine oxidase (XOD) activity in mice serum and liver. In addition, ACNs down-regulated the expression of hepatic XOD, caspase-1, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and regulated the expression of renal urate transporters URAT1, GLUT9, ABCG2, OAT1, OAT3, OCT1, OCT2, OCTN1 and OCTN2. According to histological analysis, ACN treatment exhibited hepatoprotective and nephroprotective effects in hyperuricemic mice. In conclusion, ACNs reduced urate production and promoted uric acid excretion from the renal system, which suggests the potential of ACNs for the future treatment of HUA.
Collapse
Affiliation(s)
- Xiaoyun Qian
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (North Campus), Guangzhou, 510080, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhong S, Ding Y, Wang Y, Zhou G, Guo H, Chen Y, Yang Y. Temperature and humidity index (THI)-induced rumen bacterial community changes in goats. Appl Microbiol Biotechnol 2019; 103:3193-3203. [DOI: 10.1007/s00253-019-09673-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023]
|
41
|
Yamaguchi H, Mano N. Analysis of membrane transport mechanisms of endogenous substrates using chromatographic techniques. Biomed Chromatogr 2019; 33:e4495. [PMID: 30661254 DOI: 10.1002/bmc.4495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Membrane transporters are expressed in various bodily tissues and play essential roles in the homeostasis of endogenous substances and the absortion, distribution and/or excretion of xenobiotics. For transporter assays, radioisotope-labeled compounds have been mainly used. However, commercially available radioisotope-labeled compounds are limited in number and relatively expensive. Chromatographic analyses such as high-performance liquid chromatography with ultraviolet absorptiometry and liquid chromatography with tandem mass spectrometry have also been applied for transport assays. To elucidate the transport properties of endogenous substrates, although there is no difficulty in performing assays using radioisotope-labeled probes, the endogenous background and the metabolism of the compound after its translocation across cell membranes must be considered when the intact compound is assayed. In this review, the current state of knowledge about the transport of endogenous substrates via membrane transporters as determined by chromatographic techniques is summarized. Chromatographic techniques have contributed to our understanding of the transport of endogenous substances including amino acids, catecholamines, bile acids, prostanoids and uremic toxins via membrane transporters.
Collapse
Affiliation(s)
- Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
42
|
Pleskacova A, Bartakova V, Chalasova K, Pacal L, Kankova K, Tomandl J. Uric Acid and Xanthine Levels in Pregnancy Complicated by Gestational Diabetes Mellitus-The Effect on Adverse Pregnancy Outcomes. Int J Mol Sci 2018; 19:ijms19113696. [PMID: 30469427 PMCID: PMC6274971 DOI: 10.3390/ijms19113696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Uric acid (UA) levels are associated with many diseases including those related to lifestyle. The aim of this study was to evaluate the influence of clinical and anthropometric parameters on UA and xanthine (X) levels during pregnancy and postpartum in women with physiological pregnancy and pregnancy complicated by gestational diabetes mellitus (GDM), and to evaluate their impact on adverse perinatal outcomes. A total of 143 participants were included. Analyte levels were determined by HPLC with ultraviolet detection (HPLC-UV). Several single-nucleotide polymorphisms (SNPs) in UA transporters were genotyped using commercial assays. UA levels were higher within GDM women with pre-gestational obesity, those in high-risk groups, and those who required insulin during pregnancy. X levels were higher in the GDM group during pregnancy and also postpartum. Positive correlations between UA and X levels with body mass index (BMI) and glycemia levels were found. Gestational age at delivery was negatively correlated with UA and X levels postpartum. Postpartum X levels were significantly higher in women who underwent caesarean sections. Our data support a possible link between increased UA levels and a high-risk GDM subtype. UA levels were higher among women whose glucose tolerance was severely disturbed. Mid-gestational UA and X levels were not linked to adverse perinatal outcomes.
Collapse
Affiliation(s)
- Anna Pleskacova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Biochemistry, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Vendula Bartakova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Katarina Chalasova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Lukas Pacal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Katerina Kankova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Josef Tomandl
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Biochemistry, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| |
Collapse
|
43
|
Tao X, Yin L, Xu L, Peng J. Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol Res 2018; 137:259-269. [PMID: 30315966 DOI: 10.1016/j.phrs.2018.09.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/11/2023]
Abstract
Currently, the numbers of patients with cancer, fibrosis, diabetes, chronic kidney disease, stroke and osteoporosis are increasing fast and fast. It's critical necessary to discovery lead compounds for new drug development. Dioscin, one active compound in some medicinal plants, has anti-inflammation, immunoregulation, hypolipidemic, anti-viral, anti-fungal and anti-allergic effects. In recent years, dioscin has reached more and more attention with its potent effects to treat liver, kidney, brain, stomach and intestine damages, and metabolic diseases including diabetes, osteoporosis, obesity, hyperuricemia as well as its anti-cancer activities through adjusting multiple targets and multiple signals. Therefore, dioscin is a promising multi-target candidate to treat various diseases. This review paper summarized the progress on pharmacological activities and mechanisms of dioscin, which may provide useful data for development and exploration of this natural product in the further.
Collapse
Affiliation(s)
- Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| |
Collapse
|
44
|
Wang Z, Cui T, Ci X, Zhao F, Sun Y, Li Y, Liu R, Wu W, Yi X, Liu C. The effect of polymorphism of uric acid transporters on uric acid transport. J Nephrol 2018; 32:177-187. [DOI: 10.1007/s40620-018-0546-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 01/09/2023]
|
45
|
Dioscin ameliorates cardiac hypertrophy through inhibition of the MAPK and Akt/GSK3β/mTOR pathways. Life Sci 2018; 209:420-429. [DOI: 10.1016/j.lfs.2018.08.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022]
|
46
|
Zhang Y, Jin L, Liu J, Wang W, Yu H, Li J, Chen Q, Wang T. Effect and mechanism of dioscin from Dioscorea spongiosa on uric acid excretion in animal model of hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:29-36. [PMID: 29233733 DOI: 10.1016/j.jep.2017.12.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Dioscin, a spirostane glycoside, the rhizoma of Dioscorea septemloba (Diocoreacea) is used for diuresis, rheumatism, and joints pain. Given the poor solubility and stability of Dioscin, we proposed a hypothesis that Dioscin's metabolite(s) are the active substance(s) in vivo to contribute to the reducing effects on serum uric acid levels. AIM OF THE STUDY The aim of this study is to identify the active metabolite(s) of Dioscin in vivo and to explore the mechanism of its antihyperuricemic activity. MATERIALS AND METHODS After oral administration of Dioscin in potassium oxonate (PO) induced hyperuricemia rats and adenine-PO induced hyperuricemia mice models, serum uric acid and creatinine levels, clearance of uric acid and creatinine, fractional excretion of uric acid, and renal pathological lesions were determined were used to evaluate the antihyperuricemic effects. Renal glucose transporter-9 (GLUT-9) and organic anion transporter-1 (OAT-1) expressions were analyzed by western blotting method. Renal uric acid excretion was evaluated using stably urate transporter-1 (URAT-1) transfected human epithelial kidney cell line. Intestinal uric acid excretion was evaluated by measuring the transcellular transport of uric acid in HCT116 cells. RESULTS In hyperuricemia rats, both 25 and 50mg/kg of oral Dioscin decreased serum uric acid levels over 4h. In the hyperuricemia mice, two weeks treatment of Dioscin significantly decreased serum uric acid and creatinine levels, increased clearance of uric acid and creatinine, increased fractional excretion of uric acid, and reduced renal pathological lesions caused by hyperuricemia. In addition, renal GLUT -9 was significantly down-regulated and OAT-1 was up-regulated in Dioscin treated hyperuricemia mice. Dioscin's metabolite Tigogenin significantly inhibited uric acid re-absorption via URAT1 from 10 to 100μM. Diosgenin and Tigogenin increased uric acid excretion via ATP binding cassette subfamily G member 2 (ABCG2). CONCLUSION Decreasing effect of Dioscin on serum uric acid level and enhancing effect on urate excretion were confirmed in hyperuricemia animal models. Tigogenin, a metabolite of Dioscin, was identified as an active substance with antihyperuricemic activity in vivo, through inhibition of URAT1 and promotion of ABCG2.
Collapse
Affiliation(s)
- Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Lijun Jin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Jinchang Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Wei Wang
- Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Jian Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Qian Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| |
Collapse
|
47
|
Su Q, Su H, Nong Z, Li D, Wang L, Chu S, Liao L, Zhao J, Zeng X, Ya Q, He F, Lu W, Wei B, Wei G, Chen N. Hypouricemic and Nephroprotective Effects of an Active Fraction from Polyrhachis Vicina Roger On Potassium Oxonate-Induced Hyperuricemia in Rats. Kidney Blood Press Res 2018; 43:220-233. [DOI: 10.1159/000487675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
|
48
|
Vascular endothelium dysfunction: a conservative target in metabolic disorders. Inflamm Res 2018; 67:391-405. [PMID: 29372262 DOI: 10.1007/s00011-018-1129-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
AIM Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders. METHODS The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms. RESULTS Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide. CONCLUSION Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.
Collapse
|
49
|
Zhang R, Zhan S, Li S, Zhu Z, He J, Lorenzo JM, Barba FJ. Anti-hyperuricemic and nephroprotective effects of extracts from Chaenomeles sinensis (Thouin) Koehne in hyperuricemic mice. Food Funct 2018; 9:5778-5790. [DOI: 10.1039/c8fo01480a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CSF-E possesses potent anti-hyperuricemic through inhibiting XOD activity.
Collapse
Affiliation(s)
- Rui Zhang
- School of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Shaoying Zhan
- School of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Shuyi Li
- School of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Zhenzhou Zhu
- School of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Jingren He
- School of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia
- rúa Galicia n° 4
- Parque Tecnológico de Galicia
- San Cibrao das Viñas
- Spain
| | - Francisco J. Barba
- Nutrition and Food Science Area
- Preventive Medicine and Public Health
- Food Sciences
- Toxicology and Forensic Medicine Department
- Faculty of Pharmacy
| |
Collapse
|
50
|
Ma Y, Cao H, Li Z, Fang J, Wei X, Cheng P, Jiao R, Liu X, Li Y, Xing Y, Tang J, Jin L, Li T. A Novel Multi-Epitope Vaccine Based on Urate Transporter 1 Alleviates Streptozotocin-Induced Diabetes by Producing Anti-URAT1 Antibody and an Immunomodulatory Effect in C57BL/6J Mice. Int J Mol Sci 2017; 18:ijms18102137. [PMID: 29035321 PMCID: PMC5666819 DOI: 10.3390/ijms18102137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 01/07/2023] Open
Abstract
Hyperuricemia (HUA) is related to diabetes. Uric acid-induced inflammation and oxidative stress are risk factors for diabetes and its complications. Human urate transporter 1 (URAT1) regulates the renal tubular reabsorption of uric acid. IA-2(5)-P2-1, a potent immunogenic carrier designed by our laboratory, can induce high-titer specific antibodies when it carries a B cell epitope, such as B cell epitopes of DPP4 (Dipeptidyl peptidase-4), xanthine oxidase. In this report, we describe a novel multi-epitope vaccine composing a peptide of URAT1, an anti-diabetic B epitope of insulinoma antigen-2(IA-2) and a Th2 epitope (P2:IPALDSLTPANED) of P277 peptide in human heat shock protein 60 (HSP60). Immunization with the multi-epitope vaccine in streptozotocin-induced diabetes C57BL/6J mice successfully induced specific anti-URAT1 antibody, which inhibited URAT1 action and uric acid reabsorption, and increased pancreatic insulin level with a lower insulitis incidence. Vaccination with U-IA-2(5)-P2-1 (UIP-1) significantly reduced blood glucose and uric acid level, increased Th2 cytokines interleukin (IL)-10 and IL-4, and regulated immune reactions through a balanced Th1/Th2 ratio. These results demonstrate that the URAT1-based multi-epitope peptide vaccine may be a suitable therapeutic approach for diabetes and its complications.
Collapse
Affiliation(s)
- Yanjie Ma
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Huimin Cao
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhixin Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jinzhi Fang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaomin Wei
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Peng Cheng
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Rui Jiao
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoran Liu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Ya Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Yun Xing
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jiali Tang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Liang Jin
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Taiming Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|