1
|
Zhang Y, Zhang Z, Tu C, Chen X, He R. Advanced Glycation End Products in Disease Development and Potential Interventions. Antioxidants (Basel) 2025; 14:492. [PMID: 40298887 PMCID: PMC12024296 DOI: 10.3390/antiox14040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end products (AGEs) are a group of compounds formed through non-enzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs can be generated in the body or introduced through dietary sources and smoking. Recent clinical and animal studies have highlighted the significant role of AGEs in various health conditions. These compounds accumulate in nearly all mammalian tissues and are associated with a range of diseases, including diabetes and its complications, cardiovascular disease, and neurodegeneration. This review summarizes the major diseases linked to AGE accumulation, presenting both clinical and experimental evidence. The pathologies induced by AGEs share common mechanisms across different organs, primarily involving oxidative stress, chronic inflammation, and direct protein cross-linking. Interventions targeting AGE-related diseases focus on inhibiting AGE formation using synthetic or natural antioxidants, as well as reducing dietary AGE intake through lifestyle modifications. AGEs are recognized as significant risk factors that impact health and accelerate aging, particularly in individuals with hyperglycemia. Monitoring AGE level and implementing nutritional interventions can help maintain overall health and reduce the risk of AGE-related complications.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (Y.Z.); (Z.Z.)
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Zhen Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (Y.Z.); (Z.Z.)
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Chuyue Tu
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Xu Chen
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| |
Collapse
|
2
|
Wang J, Zhang J, Yu ZL, Chung SK, Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer's disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res Rev 2024; 99:102416. [PMID: 39002644 DOI: 10.1016/j.arr.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jingyang Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
3
|
New Type of Tannins Identified from the Seeds of Cornus officinalis Sieb. et Zucc. by HPLC-ESI-MS/MS. Molecules 2023; 28:molecules28052027. [PMID: 36903273 PMCID: PMC10004147 DOI: 10.3390/molecules28052027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
There is a lack of information on the compound profile of Cornus officinalis Sieb. et Zucc. seeds. This greatly affects their optimal utilization. In our preliminary study, we found that the extract of the seeds displayed a strong positive reaction to the FeCl3 solution, indicating the presence of polyphenols. However, to date, only nine polyphenols have been isolated. In this study, HPLC-ESI-MS/MS was employed to fully reveal the polyphenol profile of the seed extracts. A total of 90 polyphenols were identified. They were classified into nine brevifolincarboxyl tannins and their derivatives, 34 ellagitannins, 21 gallotannins, and 26 phenolic acids and their derivatives. Most of these were first identified from the seeds of C. officinalis. More importantly, five new types of tannins were reported for the first time: brevifolincarboxyl-trigalloyl-hexoside, digalloyl-dehydrohexahydroxydiphenoyl (DHHDP)-hexdside, galloyl-DHHDP-hexoside, DHHDP-hexahydroxydiphenoyl(HHDP)-galloyl-gluconic acid, and peroxide product of DHHDP-trigalloylhexoside. Moreover, the total phenolic content was as high as 79,157 ± 563 mg gallic acid equivalent per 100 g in the seeds extract. The results of this study not only enrich the structure database of tannins, but also provide invaluable aid to its further utilization in industries.
Collapse
|
4
|
Chen Y, Song S, Shu A, Liu L, Jiang J, Jiang M, Wu Q, Xu H, Sun J. The Herb Pair Radix Rehmanniae and Cornus Officinalis Attenuated Testicular Damage in Mice With Diabetes Mellitus Through Butyric Acid/Glucagon-Like Peptide-1/Glucagon-Like Peptide-1 Receptor Pathway Mediated by Gut Microbiota. Front Microbiol 2022; 13:831881. [PMID: 35273587 PMCID: PMC8902592 DOI: 10.3389/fmicb.2022.831881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Growing body of research indicates that Traditional Chinese Medicine (TCM) interact with gut microbiota (GM) after oral administration. Radix Rehmanniae and Cornus Officinalis (RR-CO), a well-known TCM pair, is often used to treat diabetes mellitus (DM) and its complications. The current study aimed to explore the protective effects of RR-CO on DM induced testicular damage by modulating GM. The RR-CO treatments significantly reduced hyperglycemia, ameliorated testicular ultrastructural damage and inflammation in DM model to varying degrees. Additionally, 16S-ribosomal DNA (rDNA) sequencing results showed that RR-CO treatment increased the amount of butyric acid-producing GM, such as Clostridiaceae_1 family, and decreased the abundance of Catabacter, Marvinbryantia, and Helicobacter genera. RR-CO fecal bacteria transplantation (RC-FMT) increased the abundance of Clostridiaceae_1 in the Model FMT (M-FMT) group and ameliorated testicular damage. Furthermore, treatment with RR-CO increased the fecal butyric acid level, serum Glucagon-like peptide-1 (GLP-1) level, and testicular GLP-1 receptor (GLP-1R) expression compared to those in DM mice. Finally, intraperitoneal administration of sodium butyrate (SB) significantly improved the pathological damage to the testis and reduced inflammation in the DM group. These data demonstrated a protective effect of RR-CO on DM-induced testicular damage by modulation of GM, which may be mediated by the butyric acid/GLP/GLP-1R pathway.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Siyuan Song
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Anmei Shu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liping Liu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jinjin Jiang
- School of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Ming Jiang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Huiqin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jihu Sun
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
5
|
Czerwińska ME, Bobińska A, Cichocka K, Buchholz T, Woliński K, Melzig MF. Cornus mas and Cornus officinalis-A Comparison of Antioxidant and Immunomodulatory Activities of Standardized Fruit Extracts in Human Neutrophils and Caco-2 Models. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112347. [PMID: 34834710 PMCID: PMC8618406 DOI: 10.3390/plants10112347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 05/06/2023]
Abstract
Fruits of Cornus mas and Cornus officinalis are representative plant materials traditionally used in Europe and Asia, respectively, in the treatment of diabetes and diabetes-related complications, which are often mediated by pathogenic inflammatory agents. Additionally, due to the fact of mutual infiltration of Asian and European medicines, the differentiation as well as standardization of traditional prescriptions seem to be crucial for ensuring the quality of traditional products. The objective of this study was a comparison of biological activity of extracts from fruits of C. mas and C. officinalis by an assessment of their effect on reactive oxygen species (ROS) generation in human neutrophils as well as cytokines secretion both in neutrophils (tumor necrosis factor α, TNF- α; interleukin 8, IL-8; interleukin 1β, IL-1β) and in human colon adenocarcinoma cell line Caco-2 (IL-8). To evaluate the phytochemical differences between the studied extracts as well as to provide a method for standardization procedures, a quantitative analysis of iridoids, such as loganin, sweroside, and loganic acid, found in extracts of Cornus fruits was performed with HPLC-DAD. All standardized extracts significantly inhibited ROS production, whereas the aqueous-alcoholic extracts were particularly active inhibitors of IL-8 secretion by neutrophils. The aqueous-methanolic extract of C. officinalis fruit, decreased IL-8 secretion by neutrophils to 54.64 ± 7.67%, 49.68 ± 6.55%, 50.29 ± 5.87% at concentrations of 5, 50, and 100 µg/mL, respectively, compared to LPS-stimulated control (100%). The aqueous extract of C. officinalis fruit significantly inhibited TNF-α release by neutrophils at concentrations of 50 and 100 µg/mL. On the other hand, the aqueous-ethanolic extract of C. mas fruit showed the propensity to increase TNF-α and IL-1β secretion. The modulatory activity of the Cornus extracts was noted in the case of secretion of IL-8 in Caco-2 cells. The effect was comparable with dexamethasone. The content of loganin in aqueous and aqueous-methanolic extract of C. officinalis fruit was higher than in the aqueous-ethanolic extract of C. mas fruit, which was characterized by a significant quantity of loganic acid. In conclusion, the immunomodulatory effect observed in vitro may partially confirm the traditional use of Cornus fruits through alleviation of the development of diabetes-derived inflammatory complications. Loganin and loganic acid are significant markers for standardization of C. mas and C. officinalis fruit extracts, respectively.
Collapse
Affiliation(s)
- Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-221-166-185
| | - Agata Bobińska
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.B.); (K.C.)
| | - Katarzyna Cichocka
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.B.); (K.C.)
| | - Tina Buchholz
- Institute of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (T.B.); (M.F.M.)
| | - Konrad Woliński
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Matthias F. Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (T.B.); (M.F.M.)
| |
Collapse
|
6
|
Velichkova S, Foubert K, Pieters L. Natural Products as a Source of Inspiration for Novel Inhibitors of Advanced Glycation Endproducts (AGEs) Formation. PLANTA MEDICA 2021; 87:780-801. [PMID: 34341977 DOI: 10.1055/a-1527-7611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein glycation, a post-translational modification found in biological systems, is often associated with a core defect in glucose metabolism. In particular, advanced glycation endproducts are complex heterogeneous sugar-derived protein modifications implicated in the progression of pathological conditions such as atherosclerosis, diabetic complications, skin diseases, rheumatism, hypertension, and neurodegenerative diseases. Undoubtedly, there is the need to expand the knowledge about antiglycation agents that can offer a therapeutic approach in preventing and treating health issues of high social and economic importance. Although various compounds have been under consideration, little data from clinical trials are available, and there is a lack of approved and registered antiglycation agents. Next to the search for novel synthetic advanced glycation endproduct inhibitors, more and more the efforts of scientists are focusing on researching antiglycation compounds from natural origin. The main purpose of this review is to provide a thorough overview of the state of scientific knowledge in the field of natural products from plant origin (e.g., extracts and pure compounds) as inhibitors of advanced glycation endproduct formation in the period between 1990 and 2019. Moreover, the objectives of the summary also include basic chemistry of AGEs formation and classification, pathophysiological significance of AGEs, mechanisms for inhibiting AGEs formation, and examples of several synthetic anti-AGEs drugs.
Collapse
Affiliation(s)
- Stefaniya Velichkova
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Chen Y, Chen J, Shu A, Liu L, Wu Q, Wu J, Song S, Fan W, Zhu Y, Xu H, Sun J, Yang L. Combination of the Herbs Radix Rehmanniae and Cornus Officinalis Mitigated Testicular Damage From Diabetes Mellitus by Enhancing Glycolysis via the AGEs/RAGE/HIF-1α Axis. Front Pharmacol 2021; 12:678300. [PMID: 34262451 PMCID: PMC8273766 DOI: 10.3389/fphar.2021.678300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Radix Rehmanniae and Cornus Officinalis (RR-CO) have been widely used as "nourishing Yin and tonifying kidney" herb pairs for the treatment of diabetes mellitus (DM) and its complications in traditional Chinese medicine (TCM). Based on the theory of "kidney governing reproduction" in TCM, the aim of this study was to investigate the therapeutic effects of RR-CO on DM-induced reproduction damage through regulating testicular glycolysis. Moreover, the regulation of AGEs/RAGE/HIF-1α axis on the testicular glycolysis process has also been studied. Spontaneous DM model KK-Ay mice were used to investigate the protective effect of RR, CO, RR-CO on DM-induced reproductive disturbances. RR, CO, RR-CO improved DM-induced renal and testicular morphology damages. Moreover, the impaired spermatogenesis, germ cell apoptosis and motility in testis induced upon DM were also attenuated by RR, CO or RR-CO, accompanied by an increased level of glycolysis metabolomics such as l-lactate, d-Fructose 1,6-bisphosphate, etc. Meanwhile, glucose membrane transporters (GLUT1, GLUT3), monocarboxylate transporter 4 (MCT4) expression, lactate dehydrogenase (LDH) activity, HIF-1α were upregulated by RR, CO and RR-CO treatment compared with the model group, whereas AGE level and RAGE expression were decreased with the drug administration. The RR-CO group was associated with superior protective effects in comparison to RR, CO use only. Aminoguanidine (Ami) and FPS-ZM1, the AGEs and RAGE inhibitors, were used as a tool drug to study the mechanism, showing different degrees of protection against DM-induced reproductive damage. This work preliminarily sheds light on the herb pair RR-CO exhibited favorable effects against DM-induced reproductive disturbances through enhancing testicular glycolysis, which might be mediated by AGEs/RAGE/HIF-1α axis.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jing Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Hanlin College, Nanjing University of Chinese Medicine, Taizhou, China
| | - Anmei Shu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liping Liu
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qin Wu
- College of Clinical Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Juansong Wu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Siyuan Song
- College of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Weiping Fan
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yihui Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiqin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jihu Sun
- College of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liucai Yang
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
8
|
Rai A, Rai M, Kamochi H, Mori T, Nakabayashi R, Nakamura M, Suzuki H, Saito K, Yamazaki M. Multiomics-based characterization of specialized metabolites biosynthesis in Cornus Officinalis. DNA Res 2021; 27:5840485. [PMID: 32426807 PMCID: PMC7320821 DOI: 10.1093/dnares/dsaa009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Cornus officinalis, an important traditional medicinal plant, is used as major constituents of tonics, analgesics, and diuretics. While several studies have focused on its characteristic bioactive compounds, little is known on their biosynthesis. In this study, we performed LC-QTOF-MS-based metabolome and RNA-seq-based transcriptome profiling for seven tissues of C. officinalis. Untargeted metabolome analysis assigned chemical identities to 1,215 metabolites and showed tissue-specific accumulation for specialized metabolites with medicinal properties. De novo transcriptome assembly established for C. officinalis showed 96% of transcriptome completeness. Co-expression analysis identified candidate genes involved in the biosynthesis of iridoids, triterpenoids, and gallotannins, the major group of bioactive metabolites identified in C. officinalis. Integrative omics analysis identified 45 cytochrome P450s genes correlated with iridoids accumulation in C. officinalis. Network-based integration of genes assigned to iridoids biosynthesis pathways with these candidate CYPs further identified seven promising CYPs associated with iridoids’ metabolism. This study provides a valuable resource for further investigation of specialized metabolites’ biosynthesis in C. officinalis.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan
| | - Megha Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hidetaka Kamochi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Michimi Nakamura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
9
|
Gao X, Liu Y, An Z, Ni J. Active Components and Pharmacological Effects of Cornus officinalis: Literature Review. Front Pharmacol 2021; 12:633447. [PMID: 33912050 PMCID: PMC8072387 DOI: 10.3389/fphar.2021.633447] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cornus officinalis Sieb. et Zucc. (Shanzhuyu), a herb and food plant in east Asia, has the properties of tonifying the liver and kidney, and nourishing the essence according to the theory of traditional Chinese medicine. C. officinalis has been commonly used to treat asthenia diseases, liver, and kidney diseases, and reproductive system diseases since ancient times. The objectives of this article were to review the pharmacological effects and phytochemistry of C. officinalis. We conducted a literature review of the pharmacological effects of C. officinalis by different systems and compared the effects with the traditional usages, discussed the research status and potential blanks to be filled. The experimental studies showed that C. officinalis extract and its active components had various pharmacological effects such as anti-oxidation, anti-apoptosis, anti-inflammation, anti-diabetes, anti-osteoporosis, immunoregulation, neuroprotection, and cardiovascular protection, but clinical studies are still needed to assess whether the reported pharmacological activities have confirmed efficacy.
Collapse
Affiliation(s)
- Xue Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin, China
| | - Zhichao An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Network Pharmacology-Based Identification of the Mechanisms of Shen-Qi Compound Formula in Treating Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5798764. [PMID: 32595730 PMCID: PMC7292981 DOI: 10.1155/2020/5798764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/20/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Aim The purpose of this research is to identify the mechanisms of Shen-Qi compound formula (SQC), a traditional Chinese medicine (TCM), for treating diabetes mellitus (DM) using system pharmacology. Methods The active components and therapeutic targets were identified, and these targets were analyzed using gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis. Finally, an integrated pathway was constructed to show the mechanisms of SQC. Results A total of 282 active components and 195 targets were identified through a database search. The component-target network was constructed, and the key components were screened out according to their degree. Through the GO, PPI, and KEGG analyses, the mechanism network of SQC treating DM was constructed. Conclusions This study shows that the mechanisms of SQC treating DM are related to various pathways and targets. This study provides a good foundation and basis for further in-depth verification and clinical application.
Collapse
|
11
|
Guilbaud A, Howsam M, Niquet-Léridon C, Delguste F, Boulanger E, Tessier FJ. The LepR db/db mice model for studying glycation in the context of diabetes. Diabetes Metab Res Rev 2019; 35:e3103. [PMID: 30467969 DOI: 10.1002/dmrr.3103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Early (furosine) and advanced (carboxymethyllysine, CML) products of glycation (AGEs) have been reported as increased in plasma, tissues, and organs of diabetic people, indicating a direct link between glycation and type 2 diabetes (T2D). While murine models present some of the characteristics observed in diabetic humans, their pertinence as models of glycation, particularly for T2D, remains poorly described. The aim of this study was to characterize and compare glycation in several organs of two commonly studied murine models of T2D using stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS). METHODS Defining parameters of type 2 diabetes including body weight, fasting glycaemia, and glucose intolerance were measured in three different C57BL6 mouse models of T2D-the genetic LepRdb/db (db/db) model and two diet-induced obesity (DIO) models-and their respective controls. Furosine, free, and protein-bound CML were quantified in kidneys, lungs, heart, and liver by LC-MS/MS. RESULTS The obesity, hyperglycaemia, and glucose intolerance in db/db mice was accompanied by an increase of furosine and protein-bound CML levels in all organs relative to controls. The DIO models took several months to become obese, exhibited less severe hyperglycaemia and glucose intolerance, while glycation products were not significantly different between these groups (with the exception of furosine in liver and CML in lungs). CONCLUSIONS The db/db model better reflected the characteristics of human T2D compared with the DIO models and exhibited greater formation and accumulation of both furosine and protein-bound CML in all of the organs tested here.
Collapse
Affiliation(s)
- Axel Guilbaud
- U995-LIRIC-Lille Inflammation Research International Center, University Lille, Inserm, CHU Lille, Lille, France
- VF Bioscience SAS, Loos-lez-Lille, France
| | - Michael Howsam
- U995-LIRIC-Lille Inflammation Research International Center, University Lille, Inserm, CHU Lille, Lille, France
| | - Céline Niquet-Léridon
- Transformations & Agroresources Unit, Institut Polytechnique UniLaSalle, Beauvais, France
| | - Florian Delguste
- U995-LIRIC-Lille Inflammation Research International Center, University Lille, Inserm, CHU Lille, Lille, France
| | - Eric Boulanger
- U995-LIRIC-Lille Inflammation Research International Center, University Lille, Inserm, CHU Lille, Lille, France
| | - Frédéric J Tessier
- U995-LIRIC-Lille Inflammation Research International Center, University Lille, Inserm, CHU Lille, Lille, France
| |
Collapse
|
12
|
Czerwińska ME, Melzig MF. Cornus mas and Cornus Officinalis-Analogies and Differences of Two Medicinal Plants Traditionally Used. Front Pharmacol 2018; 9:894. [PMID: 30210335 PMCID: PMC6121078 DOI: 10.3389/fphar.2018.00894] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023] Open
Abstract
Among 65 species belonging to the genus Cornus only two, Cornus mas L. and Cornus officinalis Sieb. et Zucc. (Cornaceae), have been traditionally used since ancient times. Cornus mas (cornelian cherry) is native to southern Europe and southwest Asia, whereas C. officinalis (Asiatic dogwood, cornel dogwood) is a deciduous tree distributed in eastern Asia, mainly in China, as well as Korea and Japan. Based on the different geographic distribution of the closely related species but clearly distinct taxa, the ethnopharmacological use of C. mas and C. officinalis seems to be independently originated. Many reports on the quality of C. mas fruits were performed due to their value as edible fruits, and few reports compared their physicochemical properties with other edible fruits. However, the detailed phytochemical profiles of C. mas and C. officinalis, in particular fruits, have never been compared. The aim of this review was highlighting the similarities and differences of phytochemicals found in fruits of C. mas and C. officinalis in relation to their biological effects as well as compare the therapeutic use of fruits from both traditional species. The fruits of C. mas and C. officinalis are characterized by the presence of secondary metabolites, in particular iridoids, anthocyanins, phenolic acids and flavonoids. However, much more not widely known iridoids, such as morroniside, as well as tannins were detected particularly in fruits of C. officinalis. The referred studies of biological activity of both species indicate their antidiabetic and hepatoprotective properties. Based on the available reports antihyperlipidemic and anticoagulant activity seems to be unique for extracts of C. mas fruits, whereas antiosteoporotic and immunomodulatory activities were assigned to preparations of C. officinalis fruits. In conclusion, the comparison of phytochemical composition of fruits from both species revealed a wide range of similarities as well as some constituents unique for cornelian cherry or Asiatic dogwood. Thus, these phytochemicals are considered the important factor determining the biological activity and justifying the use of C. mas and C. officinalis in the traditional European and Asiatic medicine.
Collapse
Affiliation(s)
- Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
13
|
Dong Y, Feng ZL, Chen HB, Wang FS, Lu JH. Corni Fructus: a review of chemical constituents and pharmacological activities. Chin Med 2018; 13:34. [PMID: 29983732 PMCID: PMC6020197 DOI: 10.1186/s13020-018-0191-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
Cornus officinalis Sieb. et Zucc. is part of the genus Cornus of the family Cornaceae. Ripening and dry fruits (Corni Fructus) are recognized as an essential herb medicine in the traditional Chinese medicine (TCM) and have been widely used for over 2000 years. This review provides a comprehensive summary of Corni Fructus (CF), including the botany, phytochemistry, traditional use, and current pharmacological activities. According to the basic theory of TCM, CF usually participates in various Chinese medicinal formulae to exert the essential roles in replenishing liver and kidney, arresting seminal emission and sweat. Based on modern pharmacological studies, about 90 compounds have been isolated and identified from CF. In vivo and in vitro experimental studies indicate that CF exhibits extensive pharmacological activities including hypoglycemic, antioxidant, anti-inflammatory, anticancer, neuroprotective, hepatoprotective, and nephroprotective activities. However, only about 18% of chemical constituents in CF were tested. It means the potential pharmacological activities and clinical values of CF need to be further investigated.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 7015, N22, Avenida da Universidade, Taipa, Macau SAR People's Republic of China
| | - Zhe-Ling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 7015, N22, Avenida da Universidade, Taipa, Macau SAR People's Republic of China
| | - Hu-Biao Chen
- 2School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR People's Republic of China
| | - Fu-Sheng Wang
- 3Ulcerous Vascular Surgical Department, Beijing Traditional Chinese Medicine Hospital Affiliated to Capital Medical University, Beijing, People's Republic of China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 7015, N22, Avenida da Universidade, Taipa, Macau SAR People's Republic of China
| |
Collapse
|
14
|
Huang J, Zhang Y, Dong L, Gao Q, Yin L, Quan H, Chen R, Fu X, Lin D. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:280-301. [PMID: 29155174 DOI: 10.1016/j.jep.2017.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis (Cornaceae), known in Chinese as "Shanzhuyu," is a frequently used traditional Chinese medicine. It tastes sour and is astringent and slightly warm in nature. Its fruits have long been used to treat kidney deficiency, high blood pressure, waist and knee pain, dizziness, tinnitus, impotence, spermatorrhea, menorrhagia, and other diseases in China. The main distribution areas are Shanxi and Gansu. AIM OF THE STUDY This review focused on the ethnopharmacological uses of the herb. We also focus on the phytochemical, pharmacological, and toxicological studies on C. officinalis. The recent analytical methods developed for the quality control of the herb's constituents are also reviewed. Additionally, future trends and prospects in the study of this herb are proposed. MATERIALS AND METHODS Information on C. officinalis was gathered by searching the internet (PubMed, ScienceDirect, Wiley, ACS, CNKI, Scifinder, Web of Science, Google Scholar, and Baidu Scholar) and libraries. RESULTS This review compiled the ethnopharmacological uses, including the classic prescriptions and historical applications. Approximately 300 chemical compounds have been isolated and identified from C. officinalis. The major active components of the plant are organic acids and iridoids, among which morroniside and loganin have been extensively investigated. The fruit of the plant has been used in treating many diseases in traditional medicine. Scientific studies indicated the herb's wide range of pharmacological activities, such as hepatic and renal protection, antidiabetes activity, cardioprotection, antioxidation, neuroprotection, antitumor activity, anti-inflammation, analgesic effects, antiaging activity, antiamnesia, antiosteoporosis, and immunoregulation. The analytical methods developed for the quantitative and qualitative determination of various compounds in the herb were further reviewed. CONCLUSIONS In this paper, we reviewed various studies conducted on C. officinalis, especially in areas of its ethnopharmacological use, as well as on its phytochemistry, pharmacology, and modern analytical methods used. Some of the herb's ethnomedical indications have been confirmed by the herb's pharmacological effects, such as its hepatic and renal protection and the antidiabetic effects. In particular, the crude extract and its chemical composition have exerted good therapeutic effect in diabetic treatment. C. officinalis entails additional attention on its pharmacological effects and drug development to expand its effective use clinically. Many advanced technologies are used for quality testing, but the detection component is exceedingly scarce for synthetically evaluating the quality of C. officinalis herbs. Thus, further research is necessary to investigate the quality control and toxicology of the plant, to further elucidate its clinical use, and to control herbal quality.
Collapse
Affiliation(s)
- Jun Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yiwei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Dong
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Lei Yin
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongfeng Quan
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Rong Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China.
| | - Dingbo Lin
- Oklahoma State University, United States.
| |
Collapse
|
15
|
New insights into the tonifying kidney-yin herbs and formulas for the treatment of osteoporosis. Arch Osteoporos 2017; 12:14. [PMID: 28127706 DOI: 10.1007/s11657-016-0301-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/11/2016] [Indexed: 02/03/2023]
Abstract
Osteoporosis is characterized by an increasing osseous fragility and fracture resulting from the low mass and deteriorated microarchitecture in the bone tissue. The hormone replacement therapy and alendronate were frequently used to treat osteoporosis as the primary therapeutic strategy, but their adverse effects have severely limited their extensive clinical application, therefore, it is urgent to develop alternative or complementary therapeutic agents for anti-osteoporosis. Interestingly, with more people focusing on the complementary and alternative medicine, traditional Chinese herbs and formulas are being gradually recognized as safe and effective agents in the treatment of osteoporosis. In particular, a notable trend is that increasing studies are making efforts to clarify the anti-osteoporotic effects and mechanism of the tonifying kidney-yin herbs and formulas, a category of agents identified as effective therapy. Therefore, the purpose of this study is to comprehensively review the tonifying kidney-yin herbs and formulas that have been reported in the treatment of osteoporosis as well as how the agents play their roles in detail. This current study not only will advance our understanding of the actions of tonifying kidney-yin herbs and formulas, but also provide new evidence for the clinic use of the tonifying kidney-yin herbs and formulas in the treatment of osteoporosis.
Collapse
|
16
|
Crascì L, Lauro MR, Puglisi G, Panico A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit Rev Food Sci Nutr 2017; 58:893-904. [PMID: 27646710 DOI: 10.1080/10408398.2016.1229657] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diet polyphenols are a secondary metabolites of plants able to act on inflammation process. Their anti-inflammatory activity is articulated through several mechanisms that are related to their antioxidative and radical scavengers properties. Our work is focused on a novel approach to inflammatory disease management, based on anti-glycative and matrix metalloproteinases (MMPs) inhibition effects, as a connected phenomena. To better understand these correlation, polyphenols Structure-Activity Relationship (SAR) studies were also reported. The antioxidant polyphenols inhibit the AGEs at different levels of the glycation process in the following ways: (1) prevention of Amadori adduct oxidation; (2) trapping reactive dycarbonyl compounds; (3) attenuation of receptor for AGEs (RAGE) expression. Moreover, several flavonoids with radical scavenging property showed also MMPs inhibition interact directly with MMPs or indirectly via radical scavengers and AGEs reduction. The essential polyphenols features involved in these mechanisms are C2-C3 double bond and number and position of hydroxyl, glycosyl and O-methyl groups. These factors induce a change in molecular planarity interfering with the hydrogen bond formation, electron delocalization and metal ion chelation. In particular, C2-C3 double bond improve the antioxidant and MMPs inhibition, while the hydroxylation, glycosylation and methylation induce a positive and negative correlation, respectively.
Collapse
Affiliation(s)
- Lucia Crascì
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| | - Maria Rosaria Lauro
- b Department of Pharmacy , University of Salerno , Via Giovanni Paolo II, Fisciano ( SA ), Italy
| | - Giovanni Puglisi
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| | - Annamaria Panico
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| |
Collapse
|
17
|
Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-d-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors. Arch Pharm Res 2016; 39:794-805. [DOI: 10.1007/s12272-016-0745-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 04/17/2016] [Indexed: 12/11/2022]
|
18
|
Aragonès G, Ardid-Ruiz A, Ibars M, Suárez M, Bladé C. Modulation of leptin resistance by food compounds. Mol Nutr Food Res 2016; 60:1789-803. [DOI: 10.1002/mnfr.201500964] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Gerard Aragonès
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Andrea Ardid-Ruiz
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Maria Ibars
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Manuel Suárez
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Cinta Bladé
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
19
|
Wang Y, Yang H, Li W, Meng P, Han Y, Zhang X, Cao D, Tan Y. Zuogui Jiangtang Jieyu Formulation Prevents Hyperglycaemia and Depressive-Like Behaviour in Rats by Reducing the Glucocorticoid Level in Plasma and Hippocampus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:158361. [PMID: 26273311 PMCID: PMC4530230 DOI: 10.1155/2015/158361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/17/2022]
Abstract
Aim. To determine whether Zuogui Jiangtang Jieyu prescription (ZGJTJY) has hypoglycemic and antidepressant effects which are mediated by corticosterone through adjustment of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and glucocorticoid (GR) levels. Materials and Methods. The diabetes-related depression rats were randomly divided into four groups: the model group, metformin (1.8 mg/kg) combined with fluoxetine (10.8 mg/kg) group, and ZGJTJY high and low dose groups. Four weeks after modeling, blood glucose, behavior, and cognitive function of depression were detected. The expressions of 11β-HSD1 and GR in hippocampus were measured by western blotting and immunohistochemical experiments. Results. We found that (1) the treatment with ZGJTJY (10.26 g/kg) increases the motor activities and improves cognition ability. (2) ZGJTJY (10.26 g/kg) significantly relieves the disorder in blood and the relative indexes. (3) ZGJTJY (10.26 g/kg) can reduce hippocampal corticosterone expression levels and further improve hippocampus pathological changes. (4) ZGJTJY increased the expression of GR accompanied with decreasing 11β-HSD1 in hippocampus. Conclusions. ZGJTJY inhibits the expression of 11β-HSD1 and increases GR in hippocampus and subsequently modulates blood glucose levels, and therefore it is potential property that ZGJTJY could be of benefit for the treatment of behavior and cognitive function of diabetes-related depression.
Collapse
Affiliation(s)
- YuHong Wang
- Hunan University of Chinese Medicine, No. 300, Bachelor Road, Changsha, Hunan 410208, China
| | - Hui Yang
- First Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Wei Li
- First Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Pan Meng
- Hunan University of Chinese Medicine, No. 300, Bachelor Road, Changsha, Hunan 410208, China
| | - YuanShan Han
- Hunan University of Chinese Medicine, No. 300, Bachelor Road, Changsha, Hunan 410208, China
| | - Xiuli Zhang
- Hunan University of Chinese Medicine, No. 300, Bachelor Road, Changsha, Hunan 410208, China
| | - DeLiang Cao
- Hunan University of Chinese Medicine, No. 300, Bachelor Road, Changsha, Hunan 410208, China
| | - Yuansheng Tan
- Hunan University of Chinese Medicine, No. 300, Bachelor Road, Changsha, Hunan 410208, China
- First Hospital of Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|