1
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
2
|
Mpakosi A, Sokou R, Theodoraki M, Kaliouli-Antonopoulou C. Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors. Life (Basel) 2024; 14:902. [PMID: 39063655 PMCID: PMC11278438 DOI: 10.3390/life14070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human gastrointestinal ecosystem, or microbiome (comprising the total bacterial genome in an environment), plays a crucial role in influencing host physiology, immune function, metabolism, and the gut-brain axis. While bacteria, fungi, viruses, and archaea are all present in the gastrointestinal ecosystem, research on the human microbiome has predominantly focused on the bacterial component. The colonization of the human intestine by microbes during the first two years of life significantly impacts subsequent composition and diversity, influencing immune system development and long-term health. Early-life exposure to pathogens is crucial for establishing immunological memory and acquired immunity. Factors such as maternal health habits, delivery mode, and breastfeeding duration contribute to gut dysbiosis. Despite fungi's critical role in health, particularly for vulnerable newborns, research on the gut mycobiome in infants and children remains limited. Understanding early-life factors shaping the gut mycobiome and its interactions with other microbial communities is a significant research challenge. This review explores potential factors influencing the gut mycobiome, microbial kingdom interactions, and their connections to health outcomes from childhood to adulthood. We identify gaps in current knowledge and propose future research directions in this complex field.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | | |
Collapse
|
3
|
Cisek AA, Szymańska E, Aleksandrzak-Piekarczyk T, Cukrowska B. The Role of Methanogenic Archaea in Inflammatory Bowel Disease-A Review. J Pers Med 2024; 14:196. [PMID: 38392629 PMCID: PMC10890621 DOI: 10.3390/jpm14020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Methanogenic archaea are a part of the commensal gut microbiota responsible for hydrogen sink and the efficient production of short-chain fatty acids. Dysbiosis of methanogens is suspected to play a role in pathogenesis of variety of diseases, including inflammatory bowel disease (IBD). Unlike bacteria, the diversity of archaea seems to be higher in IBD patients compared to healthy subjects, whereas the prevalence and abundance of gut methanogens declines in IBD, especially in ulcerative colitis. To date, studies focusing on methanogens in pediatric IBD are very limited; nevertheless, the preliminary results provide some evidence that methanogens may be influenced by the chronic inflammatory process in IBD. In this review, we demonstrated the development and diversity of the methanogenic community in IBD, both in adults and children.
Collapse
Affiliation(s)
- Agata Anna Cisek
- Department of Pathomorphology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Edyta Szymańska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | - Bożena Cukrowska
- Department of Pathomorphology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| |
Collapse
|
4
|
Guerra A. Human associated Archaea: a neglected microbiome worth investigating. World J Microbiol Biotechnol 2024; 40:60. [PMID: 38172371 DOI: 10.1007/s11274-023-03842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
The majority of research in the field of human microbiota has predominantly focused on bacterial and fungal communities. Conversely, the human archaeome has received scant attention and remains poorly studied, despite its potential role in human diseases. Archaea have the capability to colonize various human body sites, including the gastrointestinal tract, skin, vagina, breast milk, colostrum, urinary tract, lungs, nasal and oral cavities. This colonization can occur through vertical transmission, facilitated by the transfer of breast milk or colostrum from mother to child, as well as through the consumption of dairy products, organic produce, salty foods, and fermented items. The involvement of these microorganisms in diseases, such as periodontitis, might be attributed to their production of toxic compounds and the detoxification of growth inhibitors for pathogens. However, the precise mechanisms through which these contributions occur remain incompletely understood, necessitating further studies to assess their impact on human health.
Collapse
|
5
|
Buttar J, Kon E, Lee A, Kaur G, Lunken G. Effect of diet on the gut mycobiome and potential implications in inflammatory bowel disease. Gut Microbes 2024; 16:2399360. [PMID: 39287010 PMCID: PMC11409510 DOI: 10.1080/19490976.2024.2399360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The gut microbiome is a complex, unique entity implicated in the prevention, pathogenesis, and progression of common gastrointestinal diseases. While largely dominated by bacterial populations, advanced sequencing techniques have identified co-inhabiting fungal communities, collectively referred to as the mycobiome. Early studies identified that gut inflammation is associated with altered microbial composition, known as gut dysbiosis. Altered microbial profiles are implicated in various pathological diseases, such as inflammatory bowel disease (IBD), though their role as a cause or consequence of systemic inflammation remains the subject of ongoing research. Diet plays a crucial role in the prevention and management of various diseases and is considered to be an essential regulator of systemic inflammation. This review compiles current literature on the impact of dietary modulation on the mycobiome, showing that dietary changes can alter the fungal architecture of the gut. Further research is required to understand the impact of diet on gut fungi, including the metabolic pathways and enzymes involved in fungal fermentation. Additionally, investigating whether dietary modulation of the gut mycobiome could be utilized as a therapy in IBD is essential.
Collapse
Affiliation(s)
- J Buttar
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - E Kon
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - A Lee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - G Kaur
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - G Lunken
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
6
|
Krawczyk A, Gosiewski T, Zapała B, Kowalska-Duplaga K, Salamon D. Alterations in intestinal Archaea composition in pediatric patients with Crohn's disease based on next-generation sequencing - a pilot study. Gut Microbes 2023; 15:2276806. [PMID: 37955638 PMCID: PMC10653639 DOI: 10.1080/19490976.2023.2276806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Intestinal dysbiosis can lead to the induction of systemic immune-mediated inflammatory diseases, such as Crohn's disease Although archaea are part of the commensal microbiota, they are still one of the least studied microorganisms. The aim of our study was the standardization of the optimal conditions and primers for sequencing of the gut archaeome using Next Generation Sequencing, and evaluation of the differences between the composition of archaea in patients and healthy volunteers, as well as analysis of the changes that occur in the archaeome of patients depending on disease activity. Newly diagnosed patients were characterized by similar archeal profiles at every taxonomic level as in healthy individuals (the dominance of Methanobacteria at the class level, and Methanobrevibacter at the genus level). In turn, in patients previously diagnosed with Crohn's disease (both in active and remission phase), an increased prevalence of Thermoplasmata, Thermoprotei, Halobacteria (at the class level), and Halococcus, Methanospaera or Picrophilus (at the genus level) were observed. Furthermore, we have found a significant correlation between the patient's parameters and the individual class or species of Archaea. Our study confirms changes in archaeal composition in pediatric patients with Crohn's disease, however, only in long-standing disease. At the beginning of the disease, the archeal profile is similar to that of healthy people. However, in the chronic form of the disease, significant differences in the composition of archaeome begin to appear. It seems that some archaea may be a good indicator of the chronicity and activity of Crohn's disease.
Collapse
Affiliation(s)
- A. Krawczyk
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - T. Gosiewski
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - B. Zapała
- Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Krakow, Poland
- Jagiellonian University Hospital in Krakow, Krakow, Poland
| | - K. Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition,Jagiellonian University Medical College, Krakow, Poland
| | - D. Salamon
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
7
|
Rhodes ME, Pace AD, Benjamin MM, Ghent H, Dawson KS. Establishment of a Halophilic Bloom in a Sterile and Isolated Hypersaline Mesocosm. Microorganisms 2023; 11:2886. [PMID: 38138031 PMCID: PMC10745797 DOI: 10.3390/microorganisms11122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Extreme environments, including hypersaline pools, often serve as biogeographical islands. Putative colonizers would need to survive transport across potentially vast distances of inhospitable terrain. Hyperhalophiles, in particular, are often highly sensitive to osmotic pressure. Here, we assessed whether hyperhalophiles are capable of rapidly colonizing an isolated and sterile hypersaline pool and the order of succession of the ensuing colonizers. A sterile and isolated 1 m3 hypersaline mesocosm pool was constructed on a rooftop in Charleston, SC. Within months, numerous halophilic lineages successfully navigated the 20 m elevation and the greater than 1 km distance from the ocean shore, and a vibrant halophilic community was established. All told, in a nine-month period, greater than a dozen halophilic genera colonized the pool. The first to arrive were members of the Haloarchaeal genus Haloarcula. Like a weed, the Haloarcula rapidly colonized and dominated the mesocosm community but were later supplanted by other hyperhalophilic genera. As a possible source of long-distance inoculum, both aerosol and water column samples were obtained from the Great Salt Lake and its immediate vicinity. Members of the same genus, Haloarcula, were preferentially enriched in the aerosol sample relative to the water column samples. Therefore, it appears that a diverse array of hyperhalophiles are capable of surviving aeolian long-distance transport and that some lineages, in particular, have possibly adapted to that strategy.
Collapse
Affiliation(s)
- Matthew E. Rhodes
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Allyson D. Pace
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Menny M. Benjamin
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Heather Ghent
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Katherine S. Dawson
- Institute of Earth, Ocean, and Atmospheric Science, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
8
|
Athanasopoulou K, Adamopoulos PG, Scorilas A. Unveiling the Human Gastrointestinal Tract Microbiome: The Past, Present, and Future of Metagenomics. Biomedicines 2023; 11:biomedicines11030827. [PMID: 36979806 PMCID: PMC10045138 DOI: 10.3390/biomedicines11030827] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Over 1014 symbiotic microorganisms are present in a healthy human body and are responsible for the synthesis of vital vitamins and amino acids, mediating cellular pathways and supporting immunity. However, the deregulation of microbial dynamics can provoke diverse human diseases such as diabetes, human cancers, cardiovascular diseases, and neurological disorders. The human gastrointestinal tract constitutes a hospitable environment in which a plethora of microbes, including diverse species of archaea, bacteria, fungi, and microeukaryotes as well as viruses, inhabit. In particular, the gut microbiome is the largest microbiome community in the human body and has drawn for decades the attention of scientists for its significance in medical microbiology. Revolutions in sequencing techniques, including 16S rRNA and ITS amplicon sequencing and whole genome sequencing, facilitate the detection of microbiomes and have opened new vistas in the study of human microbiota. Especially, the flourishing fields of metagenomics and metatranscriptomics aim to detect all genomes and transcriptomes that are retrieved from environmental and human samples. The present review highlights the complexity of the gastrointestinal tract microbiome and deciphers its implication not only in cellular homeostasis but also in human diseases. Finally, a thorough description of the widely used microbiome detection methods is discussed.
Collapse
Affiliation(s)
- Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
9
|
Korajkic A, McMinn BR, Harwood VJ. The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage. Pathogens 2023; 12:pathogens12030378. [PMID: 36986300 PMCID: PMC10053992 DOI: 10.3390/pathogens12030378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Fecal indicator bacteria (FIB: Escherichia coli and enterococci) are used to assess recreational water quality. Viral indicators (i.e., somatic and F+ coliphage), could improve the prediction of viral pathogens in recreational waters, however, the impact of environmental factors, including the effect of predatory protozoa source, on their survival in water is poorly understood. We investigated the effect of lakewater or wastewater protozoa, on the decay (decreasing concentrations over time) of culturable FIB and coliphages under sunlight and shaded conditions. FIB decay was generally greater than the coliphages and was more rapid when indicators were exposed to lake vs. wastewater protozoa. F+ coliphage decay was the least affected by experimental variables. Somatic coliphage decayed fastest in the presence of wastewater protozoa and sunlight, though their decay under shaded conditions was-10-fold less than F+ after 14 days. The protozoa source consistently contributed significantly to the decay of FIB, and somatic, though not the F+ coliphage. Sunlight generally accelerated decay, and shade reduced somatic coliphage decay to the lowest level among all the indicators. Differential responses of FIB, somatic, and F+ coliphages to environmental factors support the need for studies that address the relationship between the decay of coliphages and viral pathogens under environmentally relevant conditions.
Collapse
Affiliation(s)
- Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
- Correspondence: ; Tel.: +1-513-569-7306
| | - Brian R. McMinn
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
10
|
Archaeome in Colorectal Cancer: High Abundance of Methanogenic Archaea in Colorectal Cancer Patients. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-117843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The importance of microbiome in the progression and development of colorectal cancer (CRC) has been discussed in the last decade. Like colon bacteria, other intestinal microorganisms, including archaea, could also be involved in the CRC progression, so it's important to work out the archaeal microbiome (archaeome) composition among CRC patients. Objectives: The aim of this study was to determine the archaeome composition of CRC and healthy controls based on age and gender. Methods: Total bacterial DNA was extracted from 30 biopsy samples (17 CRC and 13 healthy controls). Archaeome communities were profiled by 16S rRNA high throughput sequencing, then compared to clinicopathological features, including CRC patients’ gender and age. Results: In the CRC patients, archaeal methanogens including Methanobrevibacter (86%) and Methanomassiliicoccus (8%) were overrepresented at the genus level. In contrast in the healthy controls, only two genera of haloarchaea including Natronococcus (58%) and Haloterrigena (42%) were presented. The results showed that the number of archaeal genera in men is higher than women in both the CRC and healthy controls. moreover, our results showed that the most genera of archaea are present in the CRC-32-50 group, six archaeal genera. The differential abundance taxa analysis results showed significant differences between healthy controls and CRC patients (P ≤ 0.05). Conclusions: The high abundance of methanogens in the colon archaeome of CRC patients compared to healthy controls suggests that methanogens may be involved in CRC development.
Collapse
|
11
|
Rashed R, Valcheva R, Dieleman LA. Manipulation of Gut Microbiota as a Key Target for Crohn's Disease. Front Med (Lausanne) 2022; 9:887044. [PMID: 35783604 PMCID: PMC9244564 DOI: 10.3389/fmed.2022.887044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) sub-type characterized by transmural chronic inflammation of the gastrointestinal tract. Research indicates a complex CD etiology involving genetic predisposition and immune dysregulation in response to environmental triggers. The chronic mucosal inflammation has been associated with a dysregulated state, or dysbiosis, of the gut microbiome (bacteria), mycobiome (fungi), virome (bacteriophages and viruses), and archeaome (archaea) further affecting the interkingdom syntrophic relationships and host metabolism. Microbiota dysbiosis in CD is largely described by an increase in facultative anaerobic pathobionts at the expense of strict anaerobic Firmicutes, such as Faecalibacterium prausnitzii. In the mycobiome, reduced fungal diversity and fungal-bacteria interactions, along with a significantly increased abundance of Candida spp. and a decrease in Saccharomyces cerevisiae are well documented. Virome analysis also indicates a significant decrease in phage diversity, but an overall increase in phages infecting bacterial groups associated with intestinal inflammation. Finally, an increase in methanogenic archaea such as Methanosphaera stadtmanae exhibits high immunogenic potential and is associated with CD etiology. Common anti-inflammatory medications used in CD management (amino-salicylates, immunomodulators, and biologics) could also directly or indirectly affect the gut microbiome in CD. Other medications often used concomitantly in IBD, such as antibiotics, antidepressants, oral contraceptives, opioids, and proton pump inhibitors, have shown to alter the gut microbiota and account for increased susceptibility to disease onset or worsening of disease progression. In contrast, some environmental modifications through alternative therapies including fecal microbiota transplant (FMT), diet and dietary supplements with prebiotics, probiotics, and synbiotics have shown potential protective effects by reversing microbiota dysbiosis or by directly promoting beneficial microbes, together with minimal long-term adverse effects. In this review, we discuss the different approaches to modulating the global consortium of bacteria, fungi, viruses, and archaea in patients with CD through therapies that include antibiotics, probiotics, prebiotics, synbiotics, personalized diets, and FMT. We hope to provide evidence to encourage clinicians and researchers to incorporate these therapies into CD treatment options, along with making them aware of the limitations of these therapies, and indicate where more research is needed.
Collapse
|
12
|
Mohammadzadeh R, Mahnert A, Duller S, Moissl-Eichinger C. Archaeal key-residents within the human microbiome: characteristics, interactions and involvement in health and disease. Curr Opin Microbiol 2022; 67:102146. [PMID: 35427870 DOI: 10.1016/j.mib.2022.102146] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Since the introduction of Archaea as new domain of life more than 40 years ago, they are no longer regarded as eccentric inhabitants of extreme ecosystems. These microorganisms are widespread in various moderate ecosystems, including eukaryotic hosts such as humans. Indeed, members of the archaeal community are now recognized as paramount constituents of human microbiome, while their definite role in disease or health is not fully elucidated and no archaeal pathogen has been reported. Here, we present a brief overview of archaea residing in and on the human body, with a specific focus on common lineages including Methanobrevibacter, Methanosphaeraand Methanomassilococcales.
Collapse
Affiliation(s)
- Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed, 8010 Graz, Austria.
| |
Collapse
|
13
|
Abstract
Host-associated microbial communities have an important role in shaping the health and fitness of plants and animals. Most studies have focused on the bacterial, fungal or viral communities, but often the archaeal component has been neglected. The archaeal community, the so-called archaeome, is now increasingly recognized as an important component of host-associated microbiomes. It is composed of various lineages, including mainly Methanobacteriales and Methanomassiliicoccales (Euryarchaeota), as well as representatives of the Thaumarchaeota. Host-archaeome interactions have mostly been delineated from methanogenic archaea in the gastrointestinal tract, where they contribute to substantial methane production and are potentially also involved in disease-relevant processes. In this Review, we discuss the diversity and potential roles of the archaea associated with protists, plants and animals. We also present the current understanding of the archaeome in humans, the specific adaptations involved in interaction with the resident microbial community as well as with the host, and the roles of the archaeome in both health and disease.
Collapse
|
14
|
Kabwe MH, Vikram S, Mulaudzi K, Jansson JK, Makhalanyane TP. The gut mycobiota of rural and urban individuals is shaped by geography. BMC Microbiol 2020; 20:257. [PMID: 32807105 PMCID: PMC7430031 DOI: 10.1186/s12866-020-01907-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Understanding the structure and drivers of gut microbiota remains a major ecological endeavour. Recent studies have shown that several factors including diet, lifestyle and geography may substantially shape the human gut microbiota. However, most of these studies have focused on the more abundant bacterial component and comparatively less is known regarding fungi in the human gut. This knowledge deficit is especially true for rural and urban African populations. Therefore, we assessed the structure and drivers of rural and urban gut mycobiota. RESULTS Our participants (n = 100) were balanced by geography and sex. The mycobiota of these geographically separated cohorts was characterized using amplicon analysis of the Internal Transcribed Spacer (ITS) gene. We further assessed biomarker species specific to rural and urban cohorts. In addition to phyla which have been shown to be ubiquitous constituents of gut microbiota, Pichia were key constituents of the mycobiota. We found that geographic location was a major driver of gut mycobiota. Other factors such as smoking where also determined gut mycobiota albeit to a lower extent, as explained by the small proportion of total variation. Linear discriminant and the linear discriminant analysis effect size analysis revealed several distinct urban and rural biomarkers. CONCLUSIONS Together, our analysis reveals distinct community structure in urban and rural South African individuals. Geography was shown to be a key driver of rural and urban gut mycobiota.
Collapse
Affiliation(s)
- Mubanga Hellen Kabwe
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynwood Road, Hatfield, Pretoria, 0028, South Africa
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynwood Road, Hatfield, Pretoria, 0028, South Africa
| | - Khodani Mulaudzi
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynwood Road, Hatfield, Pretoria, 0028, South Africa
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99352, USA
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynwood Road, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
15
|
Kim JY, Whon TW, Lim MY, Kim YB, Kim N, Kwon MS, Kim J, Lee SH, Choi HJ, Nam IH, Chung WH, Kim JH, Bae JW, Roh SW, Nam YD. The human gut archaeome: identification of diverse haloarchaea in Korean subjects. MICROBIOME 2020; 8:114. [PMID: 32753050 PMCID: PMC7409454 DOI: 10.1186/s40168-020-00894-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/17/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Archaea are one of the least-studied members of the gut-dwelling autochthonous microbiota. Few studies have reported the dominance of methanogens in the archaeal microbiome (archaeome) of the human gut, although limited information regarding the diversity and abundance of other archaeal phylotypes is available. RESULTS We surveyed the archaeome of faecal samples collected from 897 East Asian subjects living in South Korea. In total, 42.47% faecal samples were positive for archaeal colonisation; these were subsequently subjected to archaeal 16S rRNA gene deep sequencing and real-time quantitative polymerase chain reaction-based abundance estimation. The mean archaeal relative abundance was 10.24 ± 4.58% of the total bacterial and archaeal abundance. We observed extensive colonisation of haloarchaea (95.54%) in the archaea-positive faecal samples, with 9.63% mean relative abundance in archaeal communities. Haloarchaea were relatively more abundant than methanogens in some samples. The presence of haloarchaea was also verified by fluorescence in situ hybridisation analysis. Owing to large inter-individual variations, we categorised the human gut archaeome into four archaeal enterotypes. CONCLUSIONS The study demonstrated that the human gut archaeome is indigenous, responsive, and functional, expanding our understanding of the archaeal signature in the gut of human individuals. Video Abstract.
Collapse
Affiliation(s)
- Joon Yong Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Mi Young Lim
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| | - Yeon Bee Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Namhee Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Min-Sung Kwon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Juseok Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Se Hee Lee
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - In-Hyun Nam
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132 Republic of Korea
| | - Won-Hyong Chung
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, 06973 Republic of Korea
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| |
Collapse
|
16
|
The Gut Microbiota Communities of Wild Arboreal and Ground-Feeding Tropical Primates Are Affected Differently by Habitat Disturbance. mSystems 2020; 5:5/3/e00061-20. [PMID: 32457237 PMCID: PMC7253362 DOI: 10.1128/msystems.00061-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications. Human exploitation and destruction of tropical resources are currently threatening innumerable wild animal species, altering natural ecosystems and thus, food resources, with profound effects on gut microbiota. Given their conservation status and the importance to tropical ecosystems, wild nonhuman primates make excellent models to investigate the effect of human disturbance on the diversity of host-associated microbiota. Previous investigations have revealed a loss of fecal bacterial diversity in primates living in degraded compared to intact forests. However, these data are available for a limited number of species, and very limited information is available on the fungal taxa hosted by the gut. Here, we estimated the diversity and composition of gut bacterial and fungal communities in two primates living sympatrically in both human-modified and pristine forests in the Udzungwa Mountains of Tanzania. Noninvasively collected fecal samples of 12 groups of the Udzungwa red colobus (Procolobus gordonorum) (n = 89), a native and endangered primate (arboreal and predominantly leaf-eating), and five groups of the yellow baboon (Papio cynocephalus) (n = 69), a common species of least concern (ground-feeding and omnivorous), were analyzed by the V1-V3 region of the 16S rRNA gene (bacterial) and ITS1-ITS2 (fungal) sequencing. Gut bacterial diversities were associated with habitat in both species, most likely depending on their ecological niches and associated digestive physiology, dietary strategies, and locomotor behavior. In addition, fungal communities also show distinctive traits across hosts and habitat type, highlighting the importance of investigating this relatively unexplored gut component. IMPORTANCE Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications.
Collapse
|
17
|
Hooks KB, O'Malley MA. Contrasting Strategies: Human Eukaryotic Versus Bacterial Microbiome Research. J Eukaryot Microbiol 2019; 67:279-295. [PMID: 31583780 PMCID: PMC7154641 DOI: 10.1111/jeu.12766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022]
Abstract
Most discussions of human microbiome research have focused on bacterial investigations and findings. Our target is to understand how human eukaryotic microbiome research is developing, its potential distinctiveness, and how problems can be addressed. We start with an overview of the entire eukaryotic microbiome literature (578 papers), show tendencies in the human‐based microbiome literature, and then compare the eukaryotic field to more developed human bacterial microbiome research. We are particularly concerned with problems of interpretation that are already apparent in human bacterial microbiome research (e.g. disease causality, probiotic interventions, evolutionary claims). We show where each field converges and diverges, and what this might mean for progress in human eukaryotic microbiome research. Our analysis then makes constructive suggestions for the future of the field.
Collapse
Affiliation(s)
- Katarzyna B Hooks
- CBiB, University of Bordeaux, Bordeaux, 33076, France.,CNRS/LaBRI, University of Bordeaux, Talence, 33405, France
| | - Maureen A O'Malley
- School of History and Philosophy of Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
18
|
Chong PP, Chin VK, Looi CY, Wong WF, Madhavan P, Yong VC. The Microbiome and Irritable Bowel Syndrome - A Review on the Pathophysiology, Current Research and Future Therapy. Front Microbiol 2019; 10:1136. [PMID: 31244784 PMCID: PMC6579922 DOI: 10.3389/fmicb.2019.01136] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional disorder which affects a large proportion of the population globally. The precise etiology of IBS is still unknown, although consensus understanding proposes IBS to be of multifactorial origin with yet undefined subtypes. Genetic and epigenetic factors, stress-related nervous and endocrine systems, immune dysregulation and the brain-gut axis seem to be contributing factors that predispose individuals to IBS. In addition to food hypersensitivity, toxins and adverse life events, chronic infections and dysbiotic gut microbiota have been suggested to trigger IBS symptoms in tandem with the predisposing factors. This review will summarize the pathophysiology of IBS and the role of gut microbiota in relation to IBS. Current methodologies for microbiome studies in IBS such as genome sequencing, metagenomics, culturomics and animal models will be discussed. The myriad of therapy options such as immunoglobulins (immune-based therapy), probiotics and prebiotics, dietary modifications including FODMAP restriction diet and gluten-free diet, as well as fecal transplantation will be reviewed. Finally this review will highlight future directions in IBS therapy research, including identification of new molecular targets, application of 3-D gut model, gut-on-a-chip and personalized therapy.
Collapse
Affiliation(s)
- Pei Pei Chong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Voon Kin Chin
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Voon Chen Yong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
19
|
Denis A, Martínez-Núñez MA, Tenorio-Salgado S, Perez-Rueda E. Dissecting the Repertoire of DNA-Binding Transcription Factors of the Archaeon Pyrococcus furiosus DSM 3638. Life (Basel) 2018; 8:life8040040. [PMID: 30248960 PMCID: PMC6316755 DOI: 10.3390/life8040040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023] Open
Abstract
In recent years, there has been a large increase in the amount of experimental evidence for diverse archaeal organisms, and these findings allow for a comprehensive analysis of archaeal genetic organization. However, studies about regulatory mechanisms in this cellular domain are still limited. In this context, we identified a repertoire of 86 DNA-binding transcription factors (TFs) in the archaeon Pyrococcus furiosus DSM 3638, that are clustered into 32 evolutionary families. In structural terms, 45% of these proteins are composed of one structural domain, 41% have two domains, and 14% have three structural domains. The most abundant DNA-binding domain corresponds to the winged helix-turn-helix domain; with few alternative DNA-binding domains. We also identified seven regulons, which represent 13.5% (279 genes) of the total genes in this archaeon. These analyses increase our knowledge about gene regulation in P. furiosus DSM 3638 and provide additional clues for comprehensive modeling of transcriptional regulatory networks in the Archaea cellular domain.
Collapse
Affiliation(s)
- Antonia Denis
- Facultad de Medicina, Universidad Juárez Autónoma de Tabasco, C.P. 86100, Tabasco, Mexico.
| | - Mario Alberto Martínez-Núñez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Unidad Académica de Ciencias y Tecnología de la UNAM en Yucatán, Carretera Sierra Papacal-Chuburna Km. 5, C.P. 97302, Mérida, Yucatán, Mexico.
| | - Silvia Tenorio-Salgado
- Tecnológico Nacional de México, Instituto Tecnológico de Mérida, C.P. 97000, Mérida, Yucatán, Mexico.
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, C.P. 97302, Mérida, Yucatán, Mexico.
| |
Collapse
|
20
|
Khelaifia S, Caputo A, Andrieu C, Cadoret F, Armstrong N, Michelle C, Lagier JC, Djossou F, Fournier PE, Raoult D. Genome sequence and description of Haloferax massiliense sp. nov., a new halophilic archaeon isolated from the human gut. Extremophiles 2018; 22:485-498. [PMID: 29435649 PMCID: PMC5862939 DOI: 10.1007/s00792-018-1011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
By applying the culturomics concept and using culture conditions containing a high salt concentration, we herein isolated the first known halophilic archaeon colonizing the human gut. Here we described its phenotypic and biochemical characterization as well as its genome annotation. Strain Arc-HrT (= CSUR P0974 = CECT 9307) was mesophile and grew optimally at 37 °C and pH 7. Strain Arc-HrT was also extremely halophilic with an optimal growth observed at 15% NaCl. It showed gram-negative cocci, was strictly aerobic, non-motile and non-spore-forming, and exhibited catalase and oxidase activities. The 4,015,175 bp long genome exhibits a G + C% content of 65.36% and contains 3911 protein-coding and 64 predicted RNA genes. PCR-amplified 16S rRNA gene of strain Arc-HrT yielded a 99.2% sequence similarity with Haloferax prahovense, the phylogenetically closest validly published species in the Haloferax genus. The DDH was of 50.70 ± 5.2% with H. prahovense, 53.70 ± 2.69% with H. volcanii, 50.90 ± 2.64% with H. alexandrinus, 52.90 ± 2.67% with H. gibbonsii and 54.30 ± 2.70% with H. lucentense. The data herein represented confirm strain Arc-HrT as a unique species and consequently we propose its classification as representative of a novel species belonging to the genus Haloferax, as Haloferax massiliense sp. nov.
Collapse
Affiliation(s)
- Saber Khelaifia
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France.
| | - Aurelia Caputo
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Claudia Andrieu
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Frederique Cadoret
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Nicholas Armstrong
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Caroline Michelle
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Jean-Christophe Lagier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Felix Djossou
- Infectious and Tropical Diseases Department, Centre Hospitalier Andrée-Rosemon, Cayenne, French Guiana
| | - Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, (UMR 7278) IRD (198), INSERM (U1095), AMU (UM63), Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Microbial Eukaryotes: a Missing Link in Gut Microbiome Studies. mSystems 2018; 3:mSystems00201-17. [PMID: 29556538 PMCID: PMC5850078 DOI: 10.1128/msystems.00201-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/24/2022] Open
Abstract
Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. As recent studies consider eukaryotes in their surveys, it is becoming increasingly clear that eukaryotes play important ecological roles in the microbiome as well as in host health. In this perspective, we discuss new evidence on eukaryotes as fundamental species of the human gut and emphasize that future microbiome studies should characterize the multitrophic interactions between microeukaryotes, other microorganisms, and the host.
Collapse
|
22
|
Hamad I, Abou Abdallah R, Ravaux I, Mokhtari S, Tissot-Dupont H, Michelle C, Stein A, Lagier JC, Raoult D, Bittar F. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients. PLoS One 2018; 13:e0191913. [PMID: 29385188 PMCID: PMC5791994 DOI: 10.1371/journal.pone.0191913] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1) and 2 (ITS2) amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index) and alpha diversity (Shannon diversity) differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs) belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis and Hymenolepis diminuta in different proportions in fecal samples from HIV patients as compared to healthy individuals. Our work revealed that the use of different sequencing approaches can impact the perceived eukaryotic diversity results of the human gut. We also provide a more comprehensive view of the eukaryotic community in the gut of HIV-infected patients through the complementarity of the different molecular techniques used. Combining these various methodologies may provide a gold standard for a more complete characterization of the eukaryotic microbiome in future studies.
Collapse
Affiliation(s)
- Ibrahim Hamad
- Aix-Marseille Université, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
- Charmo University, Charmo Research Center, Chamchamal/Sulaimani, Iraq
| | - Rita Abou Abdallah
- Aix-Marseille Université, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Isabelle Ravaux
- Service de Maladies Infectieuses et tropicales, CHU de la Conception, IHU Méditerranée Infection, Marseille, France
| | - Saadia Mokhtari
- Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, IHU Méditerranée Infection, Marseille, France
| | - Hervé Tissot-Dupont
- Aix-Marseille Université, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Caroline Michelle
- Aix-Marseille Université, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Andreas Stein
- Service de Maladies Infectieuses et tropicales, CHU de la Conception, IHU Méditerranée Infection, Marseille, France
| | - Jean-Christophe Lagier
- Aix-Marseille Université, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Fadi Bittar
- Aix-Marseille Université, CNRS 7278, IRD 198, Inserm 1095, AP-HM, URMITE, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev 2017; 41:479-511. [PMID: 28430946 DOI: 10.1093/femsre/fuw047] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
The human body is home to a complex and diverse microbial ecosystem that plays a central role in host health. This includes a diversity of fungal species that is collectively referred to as our 'mycobiome'. Although research into the mycobiome is still in its infancy, its potential role in human disease is increasingly recognised. Here we review the existing literature available on the human mycobiota with an emphasis on the gut mycobiome, including how fungi interact with the human host and other microbes. In doing so, we provide a comprehensive critique of the methodologies available to research the human mycobiota as well as highlighting the latest research findings from mycological surveys of different groups of interest including infants, obese and inflammatory bowel disease cohorts. This in turn provides new insights and directions for future studies in this burgeoning research area.
Collapse
Affiliation(s)
- Chloe E Huseyin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| | - Pauline D Scanlan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| |
Collapse
|
24
|
First Insights into the Diverse Human Archaeome: Specific Detection of Archaea in the Gastrointestinal Tract, Lung, and Nose and on Skin. mBio 2017; 8:mBio.00824-17. [PMID: 29138298 PMCID: PMC5686531 DOI: 10.1128/mbio.00824-17] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human-associated archaea remain understudied in the field of microbiome research, although in particular methanogenic archaea were found to be regular commensals of the human gut, where they represent keystone species in metabolic processes. Knowledge on the abundance and diversity of human-associated archaea is extremely limited, and little is known about their function(s), their overall role in human health, or their association with parts of the human body other than the gastrointestinal tract and oral cavity. Currently, methodological issues impede the full assessment of the human archaeome, as bacteria-targeting protocols are unsuitable for characterization of the full spectrum of Archaea. The goal of this study was to establish conservative protocols based on specifically archaea-targeting, PCR-based methods to retrieve first insights into the archaeomes of the human gastrointestinal tract, lung, nose, and skin. Detection of Archaea was highly dependent on primer selection and the sequence processing pipeline used. Our results enabled us to retrieve a novel picture of the human archaeome, as we found for the first time Methanobacterium and Woesearchaeota (DPANN superphylum) to be associated with the human gastrointestinal tract and the human lung, respectively. Similar to bacteria, human-associated archaeal communities were found to group biogeographically, forming (i) the thaumarchaeal skin landscape, (ii) the (methano)euryarchaeal gastrointestinal tract, (iii) a mixed skin-gastrointestinal tract landscape for the nose, and (iv) a woesearchaeal lung landscape. On the basis of the protocols we used, we were able to detect unexpectedly high diversity of archaea associated with different body parts. In summary, our study highlights the importance of the primers and NGS data processing pipeline used to study the human archaeome. We were able to establish protocols that revealed the presence of previously undetected Archaea in all of the tissue samples investigated and to detect biogeographic patterns of the human archaeome in the gastrointestinal tract, on the skin, and for the first time in the respiratory tract, i.e., the nose and lungs. Our results are a solid basis for further investigation of the human archaeome and, in the long term, discovery of the potential role of archaea in human health and disease.
Collapse
|
25
|
Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA. Archaea Are Interactive Components of Complex Microbiomes. Trends Microbiol 2017; 26:70-85. [PMID: 28826642 DOI: 10.1016/j.tim.2017.07.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/06/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
Abstract
Recent findings have shaken our picture of the biology of the archaea and revealed novel traits beyond archaeal extremophily and supposed 'primitiveness'. The archaea constitute a considerable fraction of the Earth's ecosystems, and their potential to shape their surroundings by a profound interaction with their biotic and abiotic environment has been recognized. Moreover, archaea have been identified as a substantial component, or even as keystone species, in complex microbiomes - in the environment or accompanying a holobiont. Species of the Euryarchaeota (methanogens, halophiles) and Thaumarchaeota, in particular, have the capacity to coexist in plant, animal, and human microbiomes, where syntrophy allows them to thrive under energy-deficiency stress. Due to methodological limitations, the archaeome remains mysterious, and many questions with respect to potential pathogenicity, function, and structural interactions with their host and other microorganisms remain.
Collapse
Affiliation(s)
| | - Manuela Pausan
- Medical University Graz, Internal Medicine, Graz, Austria
| | | | | | - Corinna Bang
- Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
26
|
Abstract
The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.
Collapse
|
27
|
Nkamga VD, Henrissat B, Drancourt M. Archaea: Essential inhabitants of the human digestive microbiota. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2016.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Raymann K, Moeller AH, Goodman AL, Ochman H. Unexplored Archaeal Diversity in the Great Ape Gut Microbiome. mSphere 2017; 2:e00026-17. [PMID: 28251182 PMCID: PMC5322346 DOI: 10.1128/msphere.00026-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
Archaea are habitual residents of the human gut flora but are detected at substantially lower frequencies than bacteria. Previous studies have indicated that each human harbors very few archaeal species. However, the low diversity of human-associated archaea that has been detected could be due to the preponderance of bacteria in these communities, such that relatively few sequences are classified as Archaea even when microbiomes are sampled deeply. Moreover, the universal prokaryotic primer pair typically used to interrogate microbial diversity has low specificity to the archaeal domain, potentially leaving vast amounts of diversity unobserved. As a result, the prevalence, diversity, and distribution of archaea may be substantially underestimated. Here we evaluate archaeal diversity in gut microbiomes using an approach that targets virtually all known members of this domain. Comparing microbiomes across five great ape species allowed us to examine the dynamics of archaeal lineages over evolutionary time scales. These analyses revealed hundreds of gut-associated archaeal lineages, indicating that upwards of 90% of the archaeal diversity in the human and great ape gut microbiomes has been overlooked. Additionally, these results indicate a progressive reduction in archaeal diversity in the human lineage, paralleling the decline reported for bacteria. IMPORTANCE Our findings show that Archaea are a habitual and vital component of human and great ape gut microbiomes but are largely ignored on account of the failure of previous studies to realize their full diversity. Here we report unprecedented levels of archaeal diversity in great ape gut microbiomes, exceeding that detected by conventional 16S rRNA gene surveys. Paralleling what has been reported for bacteria, there is a vast reduction of archaeal diversity in humans. Our study demonstrates that archaeal diversity in the great ape gut microbiome greatly exceeds that reported previously and provides the basis for further studies on the role of archaea in the gut microbiome.
Collapse
Affiliation(s)
- Kasie Raymann
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Andrew H. Moeller
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Andrew L. Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
29
|
|
30
|
Abstract
Many species of fungi have been detected in the healthy human gut; however, nearly half of all taxa reported have only been found in one sample or one study. Fungi capable of growing in and colonizing the gut are limited to a small number of species, mostly Candida yeasts and yeasts in the family Dipodascaceae (Galactomyces, Geotrichum, Saprochaete). Malassezia and the filamentous fungus Cladosporium are potential colonizers; more work is needed to clarify their role. Other commonly-detected fungi come from the diet or environment but either cannot or do not colonize (Penicillium and Debaryomyces species, which are common on fermented foods but cannot grow at human body temperature), while still others have dietary or environmental sources (Saccharomyces cerevisiae, a fermentation agent and sometime probiotic; Aspergillus species, ubiquitous molds) yet are likely to impact gut ecology. The gut mycobiome appears less stable than the bacterial microbiome, and is likely subject to environmental factors.
Collapse
Affiliation(s)
- Heather E Hallen-Adams
- a Department of Food Science and Technology , University of Nebraska , Lincoln , NE , USA
| | - Mallory J Suhr
- a Department of Food Science and Technology , University of Nebraska , Lincoln , NE , USA
| |
Collapse
|
31
|
Hamad I, Raoult D, Bittar F. Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods. Parasite Immunol 2016; 38:12-36. [PMID: 26434599 DOI: 10.1111/pim.12284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Eukaryotes are an important component of the human gut, and their relationship with the human host varies from parasitic to commensal. Understanding the diversity of human intestinal eukaryotes has important significance for human health. In the past few decades, most of the multitudes of techniques that are involved in the diagnosis of the eukaryotic population in the human intestinal tract were confined to pathological and parasitological aspects that mainly rely on traditionally based methods. However, development of culture-independent molecular techniques comprised of direct DNA extraction from faeces followed by sequencing, offer new opportunities to estimate the occurrence of eukaryotes in the human gut by providing data on the entire eukaryotic community, particularly not-yet-cultured or fastidious organisms. Further broad surveys of the eukaryotic communities in the gut based on high throughput tools such as next generation sequencing might lead to uncovering the real diversity of these ubiquitous organisms in the human intestinal tract and discovering the unrecognized roles of these eukaryotes in modulating the host immune system and inducing changes in host gut physiology and ecosystem.
Collapse
Affiliation(s)
- I Hamad
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| | - D Raoult
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| | - F Bittar
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| |
Collapse
|
32
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
33
|
Accounting for reciprocal host–microbiome interactions in experimental science. Nature 2016; 534:191-9. [DOI: 10.1038/nature18285] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
|
34
|
Yadav BS, Singh S, Kumar P, Mathur D, Meena RK, Agrawal RK, Mani A. Bioinformatics-based study on prokaryotic, archaeal and eukaryotic nucleic acid-binding proteins for identification of low-complexity and intrinsically disordered regions. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1075433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions. Appl Microbiol Biotechnol 2015; 99:5801-15. [DOI: 10.1007/s00253-015-6739-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/23/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
|
36
|
Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 2015; 28:208-36. [PMID: 25567228 DOI: 10.1128/cmr.00110-14] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A pure bacterial culture remains essential for the study of its virulence, its antibiotic susceptibility, and its genome sequence in order to facilitate the understanding and treatment of caused diseases. The first culture conditions empirically varied incubation time, nutrients, atmosphere, and temperature; culture was then gradually abandoned in favor of molecular methods. The rebirth of culture in clinical microbiology was prompted by microbiologists specializing in intracellular bacteria. The shell vial procedure allowed the culture of new species of Rickettsia. The design of axenic media for growing fastidious bacteria such as Tropheryma whipplei and Coxiella burnetii and the ability of amoebal coculture to discover new bacteria constituted major advances. Strong efforts associating optimized culture media, detection methods, and a microaerophilic atmosphere allowed a dramatic decrease of the time of Mycobacterium tuberculosis culture. The use of a new versatile medium allowed an extension of the repertoire of archaea. Finally, to optimize the culture of anaerobes in routine bacteriology laboratories, the addition of antioxidants in culture media under an aerobic atmosphere allowed the growth of strictly anaerobic species. Nevertheless, among usual bacterial pathogens, the development of axenic media for the culture of Treponema pallidum or Mycobacterium leprae remains an important challenge that the patience and innovations of cultivators will enable them to overcome.
Collapse
|
37
|
Wlodarska M, Kostic AD, Xavier RJ. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 2015; 17:577-91. [PMID: 25974300 PMCID: PMC4498258 DOI: 10.1016/j.chom.2015.04.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota, which is composed of bacteria, viruses, and micro-eukaryotes, acts as an accessory organ system with distinct functions along the intestinal tract that are critical for health. This review focuses on how the microbiota drives intestinal disease through alterations in microbial community architecture, disruption of the mucosal barrier, modulation of innate and adaptive immunity, and dysfunction of the enteric nervous system. Inflammatory bowel disease is used as a model system to understand these microbial-driven pathologies, but the knowledge gained in this space is extended to less-well-studied intestinal diseases that may also have an important microbial component, including environmental enteropathy and chronic colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Marta Wlodarska
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Aleksandar D Kostic
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Horz HP. Archaeal Lineages within the Human Microbiome: Absent, Rare or Elusive? Life (Basel) 2015; 5:1333-45. [PMID: 25950865 PMCID: PMC4500141 DOI: 10.3390/life5021333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/15/2022] Open
Abstract
Archaea are well-recognized components of the human microbiome. However, they appear to be drastically underrepresented compared to the high diversity of bacterial taxa which can be found on various human anatomic sites, such as the gastrointestinal environment, the oral cavity and the skin. As our “microbial” view of the human body, including the methodological concepts used to describe them, has been traditionally biased towards bacteria, the question arises whether our current knowledge reflects the actual ratio of archaea versus bacteria or whether we have failed so far to unravel the full diversity of human-associated archaea. This review article hypothesizes that distinct archaeal lineages within humans exist, which still await our detection. First, previously unrecognized taxa might be quite common but they have eluded conventional detection methods. Two recent prime examples are described that demonstrate that this might be the case for specific archaeal lineages. Second, some archaeal taxa might be overlooked because they are rare and/or in low abundance. Evidence for this exists for a broad range of phylogenetic lineages, however we currently do not know whether these sporadically appearing organisms are mere transients or important members of the so called “rare biosphere” with probably basic ecosystem functions. Lastly, evidence exists that different human populations harbor different archaeal taxa and/or the abundance and activity of shared archaeal taxa may differ and thus their impact on the overall microbiome. This research line is rather unexplored and warrants further investigation. While not recapitulating exhaustively all studies on archaeal diversity in humans, this review highlights pertinent recent findings that show that the choice of appropriate methodological approaches and the consideration of different human populations may lead to the detection of archaeal lineages previously not associated with humans. This in turn will help understand variations found in the overall microbiomes from different individuals and ultimately may lead to the emergence of novel concepts/mechanisms impacting human health.
Collapse
Affiliation(s)
- Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52057 Aachen, Germany.
| |
Collapse
|
39
|
Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev 2015; 39:631-48. [DOI: 10.1093/femsre/fuv010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
|
40
|
Heisel T, Podgorski H, Staley CM, Knights D, Sadowsky MJ, Gale CA. Complementary amplicon-based genomic approaches for the study of fungal communities in humans. PLoS One 2015; 10:e0116705. [PMID: 25706290 PMCID: PMC4338280 DOI: 10.1371/journal.pone.0116705] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/14/2014] [Indexed: 12/12/2022] Open
Abstract
Recent studies highlight the importance of intestinal fungal microbiota in the development of human disease. Infants, in particular, are an important population in which to study intestinal microbiomes because microbial community structure and dynamics during this formative window of life have the potential to influence host immunity and metabolism. When compared to bacteria, much less is known about the early development of human fungal communities, owing partly to their lower abundance and the relative lack of established molecular and taxonomic tools for their study. Herein, we describe the development, validation, and use of complementary amplicon-based genomic strategies to characterize infant fungal communities and provide quantitative information about Candida, an important fungal genus with respect to intestinal colonization and human disease. Fungal communities were characterized from 11 infant fecal samples using primers that target the internal transcribed spacer (ITS) 2 locus, a region that provides taxonomic discrimination of medically relevant fungi. Each sample yielded an average of 27,553 fungal sequences and Candida albicans was the most abundant species identified by sequencing and quantitative PCR (qPCR). Low numbers of Candida krusei and Candida parapsilosis sequences were observed in several samples, but their presence was detected by species-specific qPCR in only one sample, highlighting a challenge inherent in the study of low-abundance organisms. Overall, the sequencing results revealed that infant fecal samples had fungal diversity comparable to that of bacterial communities in similar-aged infants, which correlated with the relative abundance of C. albicans. We conclude that targeted sequencing of fungal ITS2 amplicons in conjunction with qPCR analyses of specific fungi provides an informative picture of fungal community structure in the human intestinal tract. Our data suggests that the infant intestine harbors diverse fungal species and is consistent with prior culture-based analyses showing that the predominant fungus in the infant intestine is C. albicans.
Collapse
Affiliation(s)
- Timothy Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, United States of America
| | - Heather Podgorski
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, United States of America
| | - Christopher M. Staley
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, United States of America
| | - Dan Knights
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, United States of America
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Michael J. Sadowsky
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, United States of America
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, United States of America
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, United States of America
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, United States of America
| |
Collapse
|
41
|
Korajkic A, Parfrey LW, McMinn BR, Baeza YV, VanTeuren W, Knight R, Shanks OC. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi river water. WATER RESEARCH 2015; 69:30-39. [PMID: 25463929 DOI: 10.1016/j.watres.2014.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/08/2014] [Accepted: 11/04/2014] [Indexed: 05/12/2023]
Abstract
Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is known about how these communities change due to mixing and subsequent decomposition of the sewage contaminant. We investigated decay of sewage in upper Mississippi River using Illumina sequencing of 16S and 18S rRNA gene hypervariable regions and qPCR for human-associated and general fecal Bacteroidales indicators. Mixtures of primary treated sewage and river water were placed in dialysis bags and incubated in situ under ambient conditions for seven days. We assessed changes in microbial community composition under two treatments in a replicated factorial design: sunlight exposure versus shaded and presence versus absence of native river microbiota. Initial diversity was higher in sewage compared to river water for 16S sequences, but the reverse was observed for 18S sequences. Both treatments significantly shifted community composition for eukaryotes and bacteria (P < 0.05). Data indicated that the presence of native river microbiota, rather than exposure to sunlight, accounted for the majority of variation between treatments for both 16S (R = 0.50; P > 0.001) and 18S (R = 0.91; P = 0.001) communities. A comparison of 16S sequence data and fecal indicator qPCR measurements indicated that the latter was a good predictor of overall bacterial community change over time (rho: 0.804-0.814, P = 0.001). These findings suggest that biotic interactions, such as predation by bacterivorous protozoa, can be critical factors in the decomposition of sewage in freshwater habitats and support the use of Bacteroidales genetic markers as indicators of fecal pollution.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, USA
| | | | - Brian R McMinn
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, USA
| | | | - Will VanTeuren
- Biofrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Rob Knight
- Biofrontiers Institute, University of Colorado, Boulder, CO, USA; Howard Hughes Medical Institute, Boulder, CO, USA
| | - Orin C Shanks
- National Risk Management Research Laboratory, US. Environmental Protection Agency, Cincinnati, USA.
| |
Collapse
|
42
|
Gouba N, Drancourt M. Digestive tract mycobiota: A source of infection. Med Mal Infect 2015; 45:9-16. [DOI: 10.1016/j.medmal.2015.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/13/2015] [Indexed: 11/28/2022]
|
43
|
Pathogenic eukaryotes in gut microbiota of western lowland gorillas as revealed by molecular survey. Sci Rep 2014; 4:6417. [PMID: 25231746 PMCID: PMC4166708 DOI: 10.1038/srep06417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023] Open
Abstract
Although gorillas regarded as the largest extant species of primates and have a close phylogenetic relationship with humans, eukaryotic communities have not been previously studied in these populations. Herein, 35 eukaryotic primer sets targeting the 18S rRNA gene, internal transcribed spacer gene and other specific genes were used firstly to explore the eukaryotes in a fecal sample from a wild western lowland gorilla (Gorilla gorilla gorilla). Then specific real-time PCRs were achieved in additional 48 fecal samples from 21 individual gorillas to investigate the presence of human eukaryotic pathogens. In total, 1,572 clones were obtained and sequenced from the 15 cloning libraries, resulting in the retrieval of 87 eukaryotic species, including 52 fungi, 10 protozoa, 4 nematodes and 21 plant species, of which 52, 5, 2 and 21 species, respectively, have never before been described in gorillas. We also reported the occurrence of pathogenic fungi and parasites (i.e. Oesophagostomum bifurcum (86%), Necator americanus (43%), Candida tropicalis (81%) and other pathogenic fungi were identified). In conclusion, molecular techniques using multiple primer sets may offer an effective tool to study complex eukaryotic communities and to identify potential pathogens in the gastrointestinal tracts of primates.
Collapse
|
44
|
Scanlan PD, Stensvold CR, Rajilić-Stojanović M, Heilig HGHJ, De Vos WM, O'Toole PW, Cotter PD. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol 2014; 90:326-30. [PMID: 25077936 DOI: 10.1111/1574-6941.12396] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022] Open
Abstract
To date, the majority of research into the human gut microbiota has focused on the bacterial fraction of the community. Inevitably, this has resulted in a poor understanding of the diversity and functionality of other intestinal microorganisms in the human gut. One such nonbacterial member is the microbial eukaryote Blastocystis, which has been implicated in the aetiology of a range of different intestinal and extra-intestinal diseases. However, prevalence data from different studies are conflicting, and crucially, there is limited information on its incidence and diversity in healthy individuals. Here, we survey the prevalence, genetic diversity and temporal stability of Blastocystis in a group of healthy adults (n = 105) using a sensitive PCR assay. Blastocystis was present in 56% of our sample set, which is much higher than previously reported from an industrialised county (Ireland). Moreover, a diversity of different subtypes (species) were detected, and Blastocystis was present in a subset of individuals sampled over a period of time between 6 and 10 years, indicating that it is capable of long-term host colonisation. These results show that Blastocystis is a common and diverse member of the healthy gut microbiota, thereby extending our knowledge of the microbial ecology of the healthy human intestine.
Collapse
|
45
|
Gouba N, Raoult D, Drancourt M. Eukaryote culturomics of the gut reveals new species. PLoS One 2014; 9:e106994. [PMID: 25210972 PMCID: PMC4161381 DOI: 10.1371/journal.pone.0106994] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
The repertoire of microeukaryotes in the human gut has been poorly explored, mainly in individuals living in northern hemisphere countries. We further explored this repertoire using PCR-sequencing and culture in seven individuals living in four tropical countries. A total of 41 microeukaryotes including 38 different fungal species and three protists were detected. Four fungal species, Davidiella tassiana, Davidiella sp., Corticiaceae sp., and Penicillium sp., were uniquely detected by culture; 27 fungal species were uniquely detected using PCR-sequencing and Candida albicans, Candida glabrata, Trichosporon asahii, Clavispora lusitaniae, Debaryomyces hansenii, Malassezia restricta, and Malassezia sp. were detected using both molecular and culture methods. Fourteen microeukaryotes were shared by the seven individuals, whereas 27 species were found in only one individual, including 11 species in Amazonia, nine species in Polynesia, five species in India, and two species in Senegal. These data support a worldwide distribution of Malassezia sp., Trichosporon sp., and Candida sp. in the gut mycobiome. Here, 13 fungal species and two protists, Stentor roeseli and Vorticella campanula, were observed for first time in the human gut. This study revealed a previously unsuspected diversity in the repertoire of human gut microeukaryotes, suggesting spots for further exploring this repertoire.
Collapse
Affiliation(s)
- Nina Gouba
- Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- * E-mail:
| |
Collapse
|
46
|
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38:996-1047. [PMID: 24861948 PMCID: PMC4262072 DOI: 10.1111/1574-6976.12075] [Citation(s) in RCA: 774] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/29/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023] Open
Abstract
The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact.
Collapse
Affiliation(s)
- Mirjana Rajilić-Stojanović
- Department for Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of BelgradeBelgrade, Serbia
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
- Departments of Bacteriology and Immunology, and Veterinary Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
47
|
Tiodjio RE, Sakatoku A, Nakamura A, Tanaka D, Fantong WY, Tchakam KB, Tanyileke G, Ohba T, Hell VJ, Kusakabe M, Nakamura S, Ueda A. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa). Sci Rep 2014; 4:6151. [PMID: 25141868 PMCID: PMC4139950 DOI: 10.1038/srep06151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/04/2014] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos.
Collapse
Affiliation(s)
- Rosine E. Tiodjio
- Department of Environmental and Energy Sciences, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Akihiro Sakatoku
- Department of Environmental and Energy Sciences, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Akihiro Nakamura
- Department of Environmental and Energy Sciences, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Daisuke Tanaka
- Department of Environmental and Energy Sciences, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Wilson Y. Fantong
- Institute of Mining and Geological Research, P.O. Box 4110, Yaoundé, Cameroon
| | - Kamtchueng B. Tchakam
- Department of Environmental and Energy Sciences, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Gregory Tanyileke
- Institute of Mining and Geological Research, P.O. Box 4110, Yaoundé, Cameroon
| | - Takeshi Ohba
- Department of Chemistry, School of Science, University of Tokai, Kanagawa 259-1292, Japan
| | - Victor J. Hell
- Institute of Mining and Geological Research, P.O. Box 4110, Yaoundé, Cameroon
| | - Minoru Kusakabe
- Department of Environmental and Energy Sciences, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Shogo Nakamura
- Department of Environmental and Energy Sciences, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Akira Ueda
- Department of Environmental and Energy Sciences, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
48
|
Triantafyllou K, Chang C, Pimentel M. Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil 2014; 20:31-40. [PMID: 24466443 PMCID: PMC3895606 DOI: 10.5056/jnm.2014.20.1.31] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 12/16/2022] Open
Abstract
Anaerobic fermentation of the undigested polysaccharide fraction of carbohydrates produces hydrogen in the intestine which is the substrate for methane production by intestinal methanogens. Hydrogen and methane are excreted in the flatus and in breath giving the opportunity to indirectly measure their production using breath testing. Although methane is detected in 30%-50% of the healthy adult population worldwide, its production has been epidemiologically and clinically associated with constipation related diseases, like constipation predominant irritable bowel syndrome and chronic constipation. While a causative relation is not proven yet, there is strong evidence from animal studies that methane delays intestinal transit, possibly acting as a neuromuscular transmitter. This evidence is further supported by the universal finding that methane production (measured by breath test) is associated with delayed transit time in clinical studies. There is also preliminary evidence that antibiotic reduction of methanogens (as evidenced by reduced methane production) predicts the clinical response in terms of symptomatic improvement in patients with constipation predominant irritable bowel syndrome. However, we have not identified yet the mechanism of action of methane on intestinal motility, and since methane production does not account for all constipation associated cases, there is need for high quality clinical trials to examine methane as a biomarker for the diagnosis or as a biomarker that predicts antibiotic treatment response in patients with constipation related disorders.
Collapse
Affiliation(s)
- Konstantinos Triantafyllou
- GI Motility Program, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School, Athens University, Athens, Greece
| | - Christopher Chang
- GI Motility Program, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Pimentel
- GI Motility Program, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
49
|
Fernandes J, Wang A, Su W, Rozenbloom SR, Taibi A, Comelli EM, Wolever TMS. Age, dietary fiber, breath methane, and fecal short chain fatty acids are interrelated in Archaea-positive humans. J Nutr 2013; 143:1269-75. [PMID: 23739307 DOI: 10.3945/jn.112.170894] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent attention has focused on the significance of colonic Archaea in human health and energy metabolism. The main objectives of this study were to determine the associations among the number of fecal Archaea, body mass index (BMI), fecal short chain fatty acid (SCFA) concentrations, and dietary intakes of healthy humans. We collected demographic information, 3-d diet records, and breath and fecal samples from 95 healthy participants who were divided into 2 groups: detectable Archaea (>10(6) copies/g; Arch+ve) and undetectable Archaea. Dietary intakes, BMI, and fecal SCFAs were similar in both groups. The mean number of Archaea 16S rRNA gene copies detected in Arch+ve participants' feces was 8.9 ± 0.2 log/g wet weight. In Arch+ve participants, there were positive correlations between breath methane and age (r = 0.52; P = 0.001), total dietary fiber (TDF) intake (r = 0.57; P = 0.0003), and log number of fecal Archaea 16S rRNA gene copies (r = 0.35; P = 0.03). In the Arch+ve group, negative correlations were observed between TDF/1000 kcal and fecal total SCFA (r = -0.46; P ≤ 0.01) and between breath methane and fecal total SCFA (r = -0.42; P = 0.01). Principal component analysis identified a distinct Archaea factor with positive loadings of age, breath methane, TDF, TDF/1000 kcal, and number of log Archaea 16S rRNA gene copies. The results suggest that colonic Archaea is not associated with obesity in healthy humans. The presence of Archaea in humans may influence colonic fermentation by altering SCFA metabolism and fecal SCFA profile.
Collapse
Affiliation(s)
- Judlyn Fernandes
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Gouba N, Raoult D, Drancourt M. Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations. PLoS One 2013; 8:e59474. [PMID: 23555039 PMCID: PMC3598745 DOI: 10.1371/journal.pone.0059474] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/18/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Few studies describing eukaryotic communities in the human gut microbiota have been published. The objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota of an obese patient. METHODOLOGY/PRINCIPAL FINDINGS A stool specimen was collected from a 27-year-old Caucasian woman with a body mass index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA, internal transcribed spacer (ITS) and a chloroplast gene. The PCR products amplified using these primers were cloned and sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp.) species, 18 plant species from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla. Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8 fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium camemberti, Climacocystis sp. and Malassezia restricta). Many fungal species apparently originated from food, as did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda) are used as medicinal plants. CONCLUSIONS/SIGNIFICANCE Investigating the eukaryotic components of gut microbiota may help us to understand their role in human health.
Collapse
Affiliation(s)
- Nina Gouba
- Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- * E-mail:
| |
Collapse
|