1
|
Marinacci B, D'Ambrosio C, Vitale I, Di Sotto A, Cairone F, Spano M, Carradori S, Scaloni A, Gullì M, Puca V, Francati S, Matuozzo M, Lundberg LE, Grompone G, Roos S, Grande R. Biochemical and functional properties of vesicles from planktonic and biofilm phenotypes of Limosilactobacillus reuteri DSM 17938. Sci Rep 2025; 15:18889. [PMID: 40442239 PMCID: PMC12123010 DOI: 10.1038/s41598-025-03823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
Limosilactobacillus reuteri DSM 17938 is among the world's most studied probiotic strains and has been shown to provide several health benefits for the host. We have previously shown that the cell-free supernatant of L. reuteri DSM 17938 possesses antimicrobial activity and contains several bioactive compounds. Furthermore, the strain was shown to be a biofilm producer that releases both planktonic and biofilm Membrane Vesicles (MVs). In this study, membrane vesicles isolated from planktonic (pMVs) and biofilm (bMVs) phenotypes were comparatively investigated for their toxicity, ability to kill cancer as well as non-cancer cell lines and modulate phagocytosis in murine macrophages. Neither pMVs nor bMVs showed any in vivo toxicity in a Galleria mellonella model, and weakly affected cancer and noncancerous cell viability after both short- and long-term treatments. However, they were able to affect phagocytosis in lipopolysaccharide challenged RAW 264.7 macrophages, suggesting possible immunomodulatory properties. NMR-based metabolomic analysis of pMVs and bMVs identified and quantified engulfed compounds, mainly organic acids and amino acids, with lactate being the most abundant molecule in both vesicle types. bMVs contained higher concentrations of all measured metabolites compared to pMVs. Proteomic analysis of pMVs and bMVs described equivalent protein cargos, emphasizing quantitative compositional differences that presumably reflect the physiological state of each parent bacterial phenotype. Through the assignment of molecules possibly acting as mediators of immune/inflammatory responses in the host and/or modulating known beneficial effects of L. reuteri, important signaling functions of these vesicles were suggested. Finally, storage stability of MVs up to four weeks was established.
Collapse
Affiliation(s)
- Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM- National Research Council, Portici, 80055, Italy
| | - Irene Vitale
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, 00185, Italy
| | - Francesco Cairone
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, 00185, Italy
| | - Mattia Spano
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, 00185, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM- National Research Council, Portici, 80055, Italy
| | - Marco Gullì
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, 00185, Italy
| | - Valentina Puca
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Santolo Francati
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, 40127, Italy
| | - Monica Matuozzo
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM- National Research Council, Portici, 80055, Italy
| | - Ludwig Ermann Lundberg
- Department of Molecular Sciences, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
- BioGaia AB, Stockholm, SE-103 64, Sweden
| | | | - Stefan Roos
- Department of Molecular Sciences, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
- BioGaia AB, Stockholm, SE-103 64, Sweden
| | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy.
- Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy.
| |
Collapse
|
2
|
Wang G, Wang Y, Sheng K, Wang Y. Effect of probiotic extracellular vesicles and their applications on health and disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3539-3549. [PMID: 39806860 DOI: 10.1002/jsfa.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/25/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles. These nanoscale structures, secreted during the growth and metabolism of probiotics, possess favorable biocompatibility and targeting properties, thereby promoting intercellular material transport and signaling. This article aimed to review the bioactive components and functions of these probiotics vesicles, highlighting their role in the treatment of various diseases and discussing their potential future applications. By exploring the mechanisms of probiotic extracellular vesicles in disease development, this review aimed to provide a theoretical reference for further research on their therapeutic potential. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| |
Collapse
|
3
|
Zhong H, Jiang J, Hussain M, Zhang H, Chen L, Guan R. The Encapsulation Strategies for Targeted Delivery of Probiotics in Preventing and Treating Colorectal Cancer: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500304. [PMID: 40192333 PMCID: PMC12079478 DOI: 10.1002/advs.202500304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Indexed: 05/16/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide. It is associated with imbalanced gut microbiota. Probiotics can help restore this balance, potentially reducing the risk of CRC. However, the hostile environment and constant changes in the gastrointestinal tract pose significant challenges to the efficient delivery of probiotics to the colon. Traditional delivery methods are often insufficient due to their low viability and lack of targeting. To address these challenges, researchers are increasingly focusing on innovative encapsulation technologies. One such approach is single-cell encapsulation, which involves applying nanocoatings to individual probiotic cells. This technique can improve their resistance to the harsh gastrointestinal environment, enhance mucosal adhesion, and facilitate targeted release, thereby increasing the effectiveness of probiotic delivery. This article reviews the latest developments in probiotic encapsulation methods for targeted CRC treatment, emphasizing the potential benefits of emerging single-cell encapsulation techniques. It also analyzes and compares the advantages and disadvantages of current encapsulation technologies. Furthermore, it elucidates the underlying mechanisms through which probiotics can prevent and treat CRC, evaluates the efficacy and safety of probiotics in CRC treatment and adjuvant therapy, and discusses future directions and potential challenges in the targeted delivery of probiotics for CRC treatment and prevention.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Jin Jiang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Muhammad Hussain
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
- Moganshan Institute ZJUTKangqianDeqing313200China
| | - Haoxuan Zhang
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Ling Chen
- Sanya Branch of Hainan Academy of Inspection and TestingSan Ya572011China
| | - Rongfa Guan
- College of Food Science and TechnologyZhejiang University of TechnologyHangzhou310014China
- Moganshan Institute ZJUTKangqianDeqing313200China
| |
Collapse
|
4
|
Yadav P, Debnath N, Pradhan D, Mehta PK, Kumar A, Yadav ML, Yadav AK. Probiotic Lactobacillus-Derived Extracellular Vesicles: Insights Into Disease Prevention and Management. Mol Nutr Food Res 2025:e70013. [PMID: 40200671 DOI: 10.1002/mnfr.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 04/10/2025]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as versatile and promising tools for therapeutic interventions across a spectrum of medical applications. Among these, Lactobacillus-derived extracellular vesicles (LDEVs) have garnered significant attention due to their diverse physiological functions and applications in health advancement. These LDEVs modulate host cell signaling pathways through the delivery of bioactive molecules, including nucleic acids and proteins. The immunomodulatory properties of LDEVs are important, as they have been shown to regulate the balance between pro-inflammatory and anti-inflammatory responses in various diseases. These LDEVs play a crucial role in maintaining gut homeostasis by modulating the composition and function of the gut microbiota, which has implications for health conditions, including inflammatory bowel diseases, metabolic disorders, and neurological disorders. Furthermore, LDEVs hold potential to deliver therapeutic payloads to specific tissues or organs. Engineered LDEVs can be loaded with therapeutic agents such as antimicrobial peptides or nucleic acid-based therapies to treat various diseases. By leveraging the unique properties of LDEVs, researchers can develop innovative strategies for disease prevention, treatment, and overall well-being. Thus, this review aims to provide a comprehensive overview of the therapeutic benefits of LDEVs and their implications for promoting overall well-being.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Diwas Pradhan
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Munna Lal Yadav
- Discovery Research Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
- Department of Zoology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| |
Collapse
|
5
|
Tobias J, Heinl S, Dendinovic K, Ramić A, Schmid A, Daniel C, Wiedermann U. The benefits of Lactiplantibacillus plantarum: From immunomodulator to vaccine vector. Immunol Lett 2025; 272:106971. [PMID: 39765312 DOI: 10.1016/j.imlet.2025.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Probiotics have been increasingly recognized for positively influencing many aspects of human health. Lactiplantibacillus plantarum (L. plantarum), a non-pathogenic bacterium, previously known as Lactobacillus plantarum, is one of the lactic acid bacteria commonly used in fermentation. The probiotic properties of L. plantarum have highlighted its health benefits to humans when consumed in adequate amounts. L. plantarum strains primarily enter the body orally and alter intestinal microflora and modulate the immune responses in their host; thereby benefiting human health. Furthermore, the use of L. plantarum as vaccine vectors delivering mucosal antigens has been shown to be a promising strategy. These aspects, from Immunomodulation to vaccine delivery by L. plantarum in preclinical settings, are highlighted in this review. Along these lines, construction of a recombinant L. plantarum strain expressing a B cell multi-peptide, as a future vaccine to modulate immunity and confer anti-tumor effect by targeting Her-2/neu-overexpressing cancers in local and distal sites, is also presented and discussed.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Stefan Heinl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristina Dendinovic
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ajša Ramić
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Plavec TV, Žagar Soderžnik K, Della Pelle G, Zupančič Š, Vidmar R, Berlec A. Incorporation of recombinant proteins into extracellular vesicles by Lactococcus cremoris. Sci Rep 2025; 15:1768. [PMID: 39815011 PMCID: PMC11736121 DOI: 10.1038/s41598-025-86492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer particles released by various cellular organisms that carry an array of bioactive molecules. EVs have diagnostic potential, as they play a role in intercellular interspecies communication, and could be applied in drug delivery. In contrast to mammalian cell-derived EVs, the study of EVs from bacteria, particularly Gram-positive bacteria, received less research attention. This study aimed to investigate the production of EVs by lactic acid bacterium Lactococcus cremoris NZ9000 and to examine the impact of recombinant protein expression on their formation and protein content. Four different recombinant proteins were expressed in L. cremoris NZ9000, in different forms of expression and combinations, and the produced EVs were isolated using the standard ultracentrifugation method. The presence of vesicular structures (50-200 nm) in the samples was confirmed by transmission electron microscopy and by flow cytometry using membrane-specific stain. Mass spectrometry analyses confirmed the presence of recombinant proteins in the EVs fraction, with amounts ranging from 13.17 to 100%, highlighting their significant incorporation into the vesicles, together with intrinsic L. cremoris NZ9000 proteins that were either more abundant in the cytoplasm (ribosomal proteins, metabolic enzymes) or present in the membrane. The presence of the most abundant lactococcal proteins in EVs fraction suggests that protein cargo-loading of EVs in L. cremoris NZ9000 is not regulated. However, our data suggests that L. cremoris NZ9000 genetically engineered to express recombinant proteins can produce EVs containing these proteins in scalable manner. As L. cremoris NZ9000 is considered safe bacterium, EVs from L. cremoris NZ9000 could have several advantages over EVs from other bacteria, implying possible biotechnological applications, e.g. in therapeutic protein delivery.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Zhou Z, Kleis L, Depetris-Chauvin A, Jaskulski S, Damerell V, Michels KB, Gigic B, Nöthlings U, Panagiotou G. Beneficial microbiome and diet interplay in early-onset colorectal cancer. EMBO Mol Med 2025; 17:9-30. [PMID: 39653811 PMCID: PMC11730345 DOI: 10.1038/s44321-024-00177-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide. Although the risk of developing CRC increases with age, approximately 10% of newly diagnosed cases occur in individuals under the age of 50. Significant changes in dietary habits in young adults since industrialization create a favorable microenvironment for colorectal carcinogenesis. We aim here to shed light on the complex interplay between diet and gut microbiome in the pathogenesis and prevention of early-onset CRC (EO-CRC). We provide an overview of dietary risk factors associated with EO-CRC and contrast them with the general trends for CRC. We delve into gut bacteria, fungi, and phages with potential benefits against CRC and discuss the underlying molecular mechanisms. Furthermore, based on recent findings from human studies, we offer insights into how dietary modifications could potentially enhance gut microbiome composition to mitigate CRC risk. All together, we outline the current research landscape in this area and propose directions for future investigations that could pave the way for novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Linda Kleis
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Ana Depetris-Chauvin
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Stefanie Jaskulski
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Victoria Damerell
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karin B Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Nöthlings
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany.
- Friedrich Schiller University, Jena University Hospital, Jena, Germany.
| |
Collapse
|
8
|
Ciernikova S, Sevcikova A, Mego M. Targeting the gut and tumor microbiome in cancer treatment resistance. Am J Physiol Cell Physiol 2024; 327:C1433-C1450. [PMID: 39437444 DOI: 10.1152/ajpcell.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironments and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a proapoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pretreatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
9
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
10
|
Zhang L, Mao Z, Yin K, Wang S. Review of METTL3 in colorectal cancer: From mechanisms to the therapeutic potential. Int J Biol Macromol 2024; 277:134212. [PMID: 39069066 DOI: 10.1016/j.ijbiomac.2024.134212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
N6-methyladenosine (m6A), the most abundant modification in mRNAs, affects the fate of the modified RNAs at the post-transcriptional level and participants in various biological and pathological processes. Increasing evidence shows that m6A modification plays a role in the progression of many malignancies, including colorectal cancer (CRC). As the only catalytic subunit in methyltransferase complex, methyltransferase-like 3 (METTL3) is essential to the performance of m6A modification. It has been found that METTL3 is associated with the prognosis of CRC and significantly influences various aspects of CRC, such as cell proliferation, invasion, migration, metastasis, metabolism, tumor microcirculation, tumor microenvironment, and drug resistance. The relationship between METTL3 and gut-microbiota is also involved into the progression of CRC. Furthermore, METTL3 might be a viable target for CRC treatment to prolong survival. In this review, we comprehensively summarize the function of METTL3 in CRC and the underlying molecular mechanisms. We aim to deepen understanding and offer new ideas for diagnostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Lexuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
11
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
12
|
Sanwlani R, Bramich K, Mathivanan S. Role of probiotic extracellular vesicles in inter-kingdom communication and current technical limitations in advancing their therapeutic utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:509-526. [PMID: 39697628 PMCID: PMC11648425 DOI: 10.20517/evcna.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 12/20/2024]
Abstract
Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding of gut uptake and demonstration of in vivo effect are some important issues. This review aims to summarize the diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the importance of addressing these gaps and limitations with technical advances such as rigorous omics has been discussed.
Collapse
Affiliation(s)
| | | | - Suresh Mathivanan
- Correspondence to: Prof. Suresh Mathivanan, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, Science Drive, Melbourne 3086, Victoria, Australia. E-mail:
| |
Collapse
|
13
|
Fida F, Yuvarajan S, Ashwath K, Rekha PD. Lactiplantibacillus plantarum exerts anticancer effects and increase the chemosensitivity of 5-fluorouracil against oral cancer cells in vitro. BIOIMPACTS : BI 2024; 15:30427. [PMID: 40256235 PMCID: PMC12008257 DOI: 10.34172/bi.30427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 04/22/2025]
Abstract
Introduction Probiotics are used to provide health benefits and can improve the immune response. They can also target cancer cells directly with anticancer effects through various mechanisms. In this study, Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) strain MCC 3016 and its postbiotic metabolites/cell free supernatant (CFS) were used against Cal27 oral cancer cells in vitro. Methods Standard assays were employed to investigate the effect of Lpb. plantarum on cell viability, proliferation, migration, and clonogenicity of Cal27 cells. The mechanism of action was assessed by measuring the levels of reactive oxygen species (ROS), interleukins (IL)-6 and IL-8, tumor necrosis factor-α (TNF-α), as well as the expression of Ki67, vascular endothelial growth factor (VEGF), p53 and caspase-3. Further, the effect of Lpb. plantarum and its CFS on the cytotoxicity of chemotherapy drug 5-fluorouracil (5-FU) was evaluated using cell viability assays. Results Cal27 cells treated with Lpb. plantarum and its CFS showed a significant decrease (P < 0.01) in cell viability, proliferation, migration, and clonogenicity, along with increased levels of ROS and induced apoptosis. It significantly reduced IL-6, IL-8, TNF-α, and VEGF levels and upregulated p53 and caspase-3 expression. The postbiotic metabolites also showed similar effects on Cal27 cells. Furthermore, the cytotoxic effect of 5-FU on Cal27 cells was enhanced by Lpb. plantarum and its CFS treatment. Conclusion Lpb. plantarum MCC 3016 and its postbiotic metabolites exhibited promising anticancer effects on oral cancer cells and improved drug efficacy, demonstrating their potential therapeutic value in oral cancer therapy.
Collapse
Affiliation(s)
- Fathima Fida
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Subramaniyan Yuvarajan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Kesari Ashwath
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore-575018, India
| |
Collapse
|
14
|
Shi Y, Zhang C, Cao W, Li L, Liu K, Zhu H, Balcha F, Fang Y. Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 inhibit HIF-1α-mediated glycolysis of colon cancer. Future Microbiol 2024; 19:227-239. [PMID: 38270125 DOI: 10.2217/fmb-2023-0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 01/26/2024] Open
Abstract
Aims: Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 have antiproliferative activity of colon cells, but the effect on glycolytic metabolism of cancer cell remains enigmatic. The authors investigated how Lacticaseibacillus paracasei extracellular vesicles (LpEVs) inhibit the growth of colon cancer cells by affecting tumor metabolism. Materials & methods: HCT116 cells were treated with LpEVs and then differentially expressed genes were analyzed by transcriptome sequencing, the sequencing results were confirmed in vivo and in vitro. Results: LpEVs entered colon cancer cells and inhibited their growth. Transcriptome sequencing revealed differentially expressed genes were related to glycolysis. Lactate production, glucose uptake and lactate dehydrogenase activity were significantly reduced after treatment. LpEVs also reduced HIF-1α, GLUT1 and LDHA expression. Conclusion: LpEVs exert their antiproliferative activity of colon cancer cells by decreasing HIF-1α-mediated glycolysis.
Collapse
Affiliation(s)
- Yangqian Shi
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Microbiology, Beihua University, 132013 Jilin, China
| | - Chunliang Zhang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Blood Centre,150056 Harbin, China
| | - Wanyu Cao
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Luyi Li
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Kaili Liu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Hanyue Zhu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Fikadu Balcha
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Medical Laboratory Science, College of Health Science, Arsi University, POBX 193 Asella, Ethiopia
| | - Yong Fang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Heilongjiang Province Key Laboratory of Immunity & Infection, Pathogenic Biology, 150081 Harbin, China
| |
Collapse
|
15
|
Samuel M, Sanwlani R, Pathan M, Anand S, Johnston EL, Ang CS, Kaparakis-Liaskos M, Mathivanan S. Isolation and Characterization of Cow-, Buffalo-, Sheep- and Goat-Milk-Derived Extracellular Vesicles. Cells 2023; 12:2491. [PMID: 37887335 PMCID: PMC10605021 DOI: 10.3390/cells12202491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Milk is a complex biological fluid that has high-quality proteins including growth factors and also contains extracellular vesicles (EVs). EVs are a lipid bilayer containing vesicles that contain proteins, metabolites and nucleic acids. Several studies have proposed that EVs in cow milk can survive the gut and can illicit cross-species communication in the consuming host organism. In this study, we isolated and characterized extracellular vesicles from the raw milk of the four species of the Bovidae family, namely cow, sheep, goat and buffalo, that contribute 99% of the total milk consumed globally. A comparative proteomic analysis of these vesicles was performed to pinpoint their potential functional role in health and disease. Vesicles sourced from buffalo and cow milk were particularly enriched with proteins implicated in modulating the immune system. Furthermore, functional studies were performed to determine the anti-cancer effects of these vesicles. The data obtained revealed that buffalo-milk-derived EVs induced significantly higher cell death in colon cancer cells. Overall, the results from this study highlight the potent immunoregulatory and anti-cancer nature of EVs derived from the milk of Bovidae family members.
Collapse
Affiliation(s)
- Monisha Samuel
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| | - Rahul Sanwlani
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mohashin Pathan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sushma Anand
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ella L. Johnston
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Victoria, VIC 2010, Australia
| | - Maria Kaparakis-Liaskos
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia (R.S.); (S.A.)
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
16
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00766-x. [PMID: 37169888 DOI: 10.1038/s41571-023-00766-x] [Citation(s) in RCA: 252] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
18
|
Jeong S, Kim Y, Park S, Lee D, Lee J, Hlaing SP, Yoo JW, Rhee SH, Im E. Lactobacillus plantarum Metabolites Elicit Anticancer Effects by Inhibiting Autophagy-Related Responses. Molecules 2023; 28:molecules28041890. [PMID: 36838877 PMCID: PMC9966080 DOI: 10.3390/molecules28041890] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Lactobacillus plantarum (L. plantarum) is a probiotic that has emerged as novel therapeutic agents for managing various diseases, such as cancer, atopic dermatitis, inflammatory bowel disease, and infections. In this study, we investigated the potential mechanisms underlying the anticancer effect of the metabolites of L. plantarum. We cultured L. plantarum cells to obtain their metabolites, created several dilutions, and used these solutions to treat human colonic Caco-2 cells. Our results showed a 10% dilution of L. plantarum metabolites decreased cell viability and reduced the expression of autophagy-related proteins. Moreover, we found co-treatment with L. plantarum metabolites and chloroquine, a known autophagy inhibitor, had a synergistic effect on cytotoxicity and downregulation of autophagy-related protein expression. In conclusion, we showed the metabolites from the probiotic, L. plantarum, work synergistically with chloroquine in killing Caco-2 cells and downregulating the expression of autophagy-related proteins, suggesting the involvement of autophagy, rather than apoptosis, in their cytotoxic effect. Hence, this study provides new insights into new therapeutic methods via inhibiting autophagy.
Collapse
Affiliation(s)
- Sihyun Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yuju Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Doyeon Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.:+82-51-510-2812; Fax:+82-50-513-6754
| |
Collapse
|
19
|
Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics 2023; 15:522. [PMID: 36839844 PMCID: PMC9967243 DOI: 10.3390/pharmaceutics15020522] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
For many decades, the proper functioning of the human body has become a leading scientific topic. In the course of numerous experiments, a striking impact of probiotics on the human body has been documented, including maintaining the physiological balance of endogenous microorganisms, regulating the functioning of the immune system, enhancing the digestive properties of the host, and preventing or alleviating the course of many diseases. Recent research, especially from the last decade, shows that this health-benefiting activity of probiotics is largely conditioned by the production of extracellular vesicles. Although the importance of extracellular vesicles in the virulence of many live-threatening pathogens is widely described in the literature, much less is known with respect to the health-promoting effect of extracellular vesicles secreted by non-pathogenic microorganisms, including probiotics. Based on this, in the current review article, we decided to collect the latest literature data on the health-inducing properties of extracellular vesicles secreted by probiotics. The characteristics of probiotics' extracellular vesicles will be extended by the description of their physicochemical properties and the proteome in connection with the biological activities exhibited by these structures.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Beatrice Marinacci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “Gabriele d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Irene Vitale
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|