1
|
Koo S, Lee EJ, Xiong H, Yun DH, McDonald MM, Park SI, Kim JS. Real-Time Live Imaging of Osteoclast Activation via Cathepsin K Activity in Bone Diseases. Angew Chem Int Ed Engl 2024; 63:e202318459. [PMID: 38105412 DOI: 10.1002/anie.202318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Intravital fluorescence imaging of functional osteoclasts within their intact disease context provides valuable insights into the intricate biology at the microscopic level, facilitating the development of therapeutic approaches for osteoclast-associated bone diseases. However, there is a lack of studies investigating osteoclast activity within deep-seated bone lesions using appropriate fluorescent probes, despite the advantages offered by the multi-photon excitation system in enhancing deep tissue imaging resolution. In this study, we report on the intravital tracking of osteoclast activity in three distinct murine bone disease models. We utilized a cathepsin K (CatK)-responsive two-photon fluorogenic probe (CatKP1), which exhibited a notable fluorescence turn-on response in the presence of active CatK. By utilizing CatKP1, we successfully monitored a significant increase in osteoclast activity in hindlimb long bones and its attenuation through pharmacological intervention without sacrificing mice. Thus, our findings highlight the efficacy of CatKP1 as a valuable tool for unraveling pathological osteoclast behavior and exploring novel therapeutic strategies.
Collapse
Affiliation(s)
- Seyoung Koo
- Department of Chemistry, Korea University, Seoul, 02841, Korea
- Department of Biomedical and Chemical Sciences, Hyupsung University, Hwaseong, 18330, Korea
| | - Eun Jung Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hao Xiong
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Da Hyeon Yun
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Korea
| | - Michelle M McDonald
- Skeletal Diseases Program, The Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical Campus, School of Clinical Medicine, University of New South Wales, Kensington, NSW, 2052, Australia
- School of Medicine Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Korea
- Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
- TheranoChem Incorporation, Seoul, 02856, Korea
| |
Collapse
|
2
|
Lee EJ, Lee KJ, Jung S, Park KH, Park SI. Mobilization of monocytic myeloid-derived suppressor cells is regulated by PTH1R activation in bone marrow stromal cells. Bone Res 2023; 11:22. [PMID: 37085481 PMCID: PMC10121701 DOI: 10.1038/s41413-023-00255-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 04/23/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are bone marrow (BM)-derived immunosuppressive cells in the tumor microenvironment, but the mechanism of MDSC mobilization from the BM remains unclear. We investigated how BM stromal cell activation by PTH1R contributes to MDSC mobilization. PTH1R activation by parathyroid hormone (PTH) or PTH-related peptide (PTHrP), a tumor-derived counterpart, mobilized monocytic (M-) MDSCs from murine BM without increasing immunosuppressive activity. In vitro cell-binding assays demonstrated that α4β1 integrin and vascular cell adhesion molecule (VCAM)-1, expressed on M-MDSCs and osteoblasts, respectively, are key to M-MDSC binding to osteoblasts. Upon PTH1R activation, osteoblasts express VEGF-A and IL6, leading to Src family kinase phosphorylation in M-MDSCs. Src inhibitors suppressed PTHrP-induced MDSC mobilization, and Src activation in M-MDSCs upregulated two proteases, ADAM-17 and MMP7, leading to VCAM1 shedding and subsequent disruption of M-MDSC tethering to osteoblasts. Collectively, our data provide the molecular mechanism of M-MDSC mobilization in the bones of tumor hosts.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seungpil Jung
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyong Hwa Park
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.
- The BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
3
|
Błaszczuk A, Sikora D, Kiś J, Stępień E, Drop B, Polz-Dacewicz M. Humoral Response after SARS-CoV-2 Vaccination in Prostate Cancer Patients. Vaccines (Basel) 2023; 11:vaccines11040770. [PMID: 37112682 PMCID: PMC10144447 DOI: 10.3390/vaccines11040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer is an important public health problem. Prostate cancer is one of the most common cancers among men. In Poland, the incidence of this type of cancer is constantly growing. Considering the appearance of a new coronavirus in December 2019 (SARS-CoV-2) and the fact that oncology patients, including those with prostate cancer, are particularly vulnerable to infection, it is recommended to get vaccinated against COVID-19. In our study, we determined the level and prevalence of antibodies against SARS-CoV-2 IgG in patients with prostate cancer compared to the control group and whether the patients’ ages affected the level of antibodies. PCa patients and controls were divided into two age groups: 50–59 years and 60–70 years. We also analyzed the level of antibodies in patients belonging to the relevant risk groups for prostate cancer (the European Society of Urology risk group classification of prostate cancer). For the study, we used the Microblot-Array COVID-19 IgG test to detect antibodies against the three main SARS-CoV-2 antigens: NCP, RBD, and S2. Our results showed that prostate cancer patients had significantly lower levels of anti-SARS-CoV-2 IgG antibodies compared to controls. In addition, age also affected the decrease in the number of IgG antibodies. The level of antibodies in the intermediate/high-risk group was lower compared to the low-risk group.
Collapse
Affiliation(s)
- Agata Błaszczuk
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dominika Sikora
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jacek Kiś
- 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland
| | - Ewa Stępień
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | | |
Collapse
|
4
|
Ling Z, Yang C, Tan J, Dou C, Chen Y. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cell Mol Life Sci 2021; 78:7161-7183. [PMID: 34635950 PMCID: PMC11072300 DOI: 10.1007/s00018-021-03966-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.
Collapse
Affiliation(s)
- Zhiguo Ling
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Hu P, Gao Y, Huang Y, Zhao Y, Yan H, Zhang J, Zhao L. Gene Expression-Based Immune Cell Infiltration Analyses of Prostate Cancer and Their Associations with Survival Outcome. DNA Cell Biol 2020; 39:1194-1204. [PMID: 32460527 DOI: 10.1089/dna.2020.5371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is the second most common cancer and the fifth cause of cancer death in males. Currently, there are no effective therapies for prostate cancer yet, and the status of treatment remains severe. In this study, we analyzed the composition of tumor-infiltrating immune cells (TIICs) in prostate cancer and paracancerous samples based on the gene expression profiles using CIBERSORT. Calculation of the TIIC subset proportions in 52 paired prostate cancer and paracancerous samples showed that their proportions were similar in intergroup and varied in intragroup. Compared with the paracancerous samples, the proportion of M0 macrophages was significantly increased in prostate cancer samples. Cox regression analysis using the TIIC subpopulations as continuous variables revealed that high plasma cell proportion was associated with poor 3-year Disease-Free Survival (DFS) in prostate cancer (hazard ratios = 1.8e-76, p = 0.001). Moreover, three immune clusters, which presented distinct prognosis, were identified using hierarchical clustering analysis based on the proportions of TIIC subpopulations. Among them, cluster 1 had superior 3-year DFS, while cluster 3 showed inferior 3-year DFS (p = 0.025). In summary, our research provided a comprehensive analysis on the TIIC composition in prostate cancer and suggested that both plasma cells and different cluster patterns were associated with the prostate cancer prognosis, which should be helpful for the clinical surveillance and treatment of prostate cancer.
Collapse
Affiliation(s)
- Ping Hu
- The Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China.,The First Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Yuanyuan Gao
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Ying Huang
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Yanjiao Zhao
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Hui Yan
- The Second Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Jiao Zhang
- The First Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Lujun Zhao
- The Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| |
Collapse
|
6
|
Targeting the Hepatocyte Growth Factor and c-Met Signaling Axis in Bone Metastases. Int J Mol Sci 2019; 20:ijms20020384. [PMID: 30658428 PMCID: PMC6359064 DOI: 10.3390/ijms20020384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Bone metastasis is the terminal stage disease of prostate, breast, renal, and lung cancers, and currently no therapeutic approach effectively cures or prevents its progression to bone metastasis. One of the hurdles to the development of new drugs for bone metastasis is the complexity and heterogeneity of the cellular components in the metastatic bone microenvironment. For example, bone cells, including osteoblasts, osteoclasts, and osteocytes, and the bone marrow cells of diverse hematopoietic lineages interact with each other via numerous cytokines and receptors. c-Met tyrosine kinase receptor and its sole ligand hepatocyte growth factor (HGF) are enriched in the bone microenvironment, and their expression correlates with the progression of bone metastasis. However, no drugs or antibodies targeting the c-Met/HGF signaling axis are currently available in bone metastatic patients. This significant discrepancy should be overcome by further investigation of the roles and regulation of c-Met and HGF in the metastatic bone microenvironment. This review paper summarizes the key findings of c-Met and HGF in the development of novel therapeutic approaches for bone metastasis.
Collapse
|
7
|
Lee C, Whang YM, Campbell P, Mulcrone PL, Elefteriou F, Cho SW, Park SI. Dual targeting c-met and VEGFR2 in osteoblasts suppresses growth and osteolysis of prostate cancer bone metastasis. Cancer Lett 2018; 414:205-213. [PMID: 29174801 DOI: 10.1016/j.canlet.2017.11.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/15/2022]
Abstract
Prostate cancer characteristically induces osteoblastic bone metastasis, for which no therapies are available. A dual kinase inhibitor of c-Met and VEGFR-2 (cabozantinib) was shown to reduce prostate cancer growth in bone, with evidence for suppressing osteoblastic activity. However, c-Met and VEGFR2 signaling in osteoblasts in the context of bone metastasis remain unclear. Here we show using cultured osteoblasts that hepatocyte growth factor (HGF) and VEGF-A increased receptor activator of NFκB ligand (RANKL) and M-CSF, two essential factors for osteoclastogenesis. Insulin-like growth factor-1 (IGF1) also increased RANKL and M-CSF via c-Met transactivation. The conditioned media from IGF1-, HGF-, or VEGFA-treated osteoblasts promoted osteoclastogenesis that was reversed by inhibiting c-Met and/or VEGFR2 in osteoblasts. In vivo experiments used cabozantinib-resistant prostate cancer cells (PC-3 and C4-2B) to test the effects of c-Met/VEGFR2 inhibition specifically in osteoblasts. Cabozantinib (60 mg/kg, 3 weeks) suppressed tumor growth in bone and reduced expression of RANKL and M-CSF and subsequent tumor-induced osteolysis. Collectively, inhibition of c-Met and VEGFR2 in osteoblasts reduced RANKL and M-CSF expression, and associated with reduction of tumor-induced osteolysis, suggesting that c-Met and VEGFR2 are promising therapeutic targets in bone metastasis.
Collapse
Affiliation(s)
- Changki Lee
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Young Mi Whang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Preston Campbell
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Patrick L Mulcrone
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Florent Elefteriou
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Departments of Human and Molecular Genetics, and Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Serk In Park
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea; The BK21 Plus Program, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
8
|
Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS NANO 2018; 12:24-43. [PMID: 29257865 PMCID: PMC6589353 DOI: 10.1021/acsnano.7b05108] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ongoing research into the application of nanotechnology for cancer treatment and diagnosis has demonstrated its advantages within contemporary oncology as well as its intrinsic limitations. The National Cancer Institute publishes the Cancer Nanotechnology Plan every 5 years since 2005. The most recent iteration helped codify the ongoing basic and translational efforts of the field and displayed its breadth with several evolving areas. From merely a technological perspective, this field has seen tremendous growth and success. However, an incomplete understanding of human cancer biology persists relative to the application of nanoscale materials within contemporary oncology. As such, this review presents several evolving areas in cancer nanotechnology in order to identify key clinical and biological challenges that need to be addressed to improve patient outcomes. From this clinical perspective, a sampling of the nano-enabled solutions attempting to overcome barriers faced by traditional therapeutics and diagnostics in the clinical setting are discussed. Finally, a strategic outlook of the future is discussed to highlight the need for next-generation cancer nanotechnology tools designed to address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Christopher M Hartshorn
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| | - Michelle S Bradbury
- Department of Radiology and Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, United States
| | - Gregory M Lanza
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63108, United States
| | - Andre E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jianghong Rao
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, California 94305, United States
| | - Andrew Z. Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14843, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Piotr Grodzinski
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| |
Collapse
|
9
|
Dai J, Lu Y, Roca H, Keller JM, Zhang J, McCauley LK, Keller ET. Immune mediators in the tumor microenvironment of prostate cancer. CHINESE JOURNAL OF CANCER 2017; 36:29. [PMID: 28292326 PMCID: PMC5351274 DOI: 10.1186/s40880-017-0198-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/09/2017] [Indexed: 01/24/2023]
Abstract
Prostate cancer tissue is composed of both cancer cells and host cells. The milieu of host components that compose the tumor is termed the tumor microenvironment (TME). Host cells can be those derived from the tissue in which the tumor originates (e.g., fibroblasts and endothelial cells) or those recruited, through chemotactic or other factors, to the tumor (e.g., circulating immune cells). Some immune cells are key players in the TME and represent a large proportion of non-tumor cells found within the tumor. Immune cells can have both anti-tumor and pro-tumor activity. In addition, crosstalk between prostate cancer cells and immune cells affects immune cell functions. In this review, we focus on immune cells and cytokines that contribute to tumor progression. We discuss T-regulatory and T helper 17 cells and macrophages as key modulators in prostate cancer progression. In addition, we discuss the roles of interleukin-6 and receptor activator of nuclear factor kappa-B ligand in modulating prostate cancer progression. This review highlights the concept that immune cells and cytokines offer a potentially promising target for prostate cancer therapy.
Collapse
Affiliation(s)
- Jinlu Dai
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 520021, P. R. China
| | - Hernan Roca
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jill M Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 520021, P. R. China
| | - Laurie K McCauley
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Evan T Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Urology, University of Michigan, Ann Arbor, MI, 48109-8940, USA.
| |
Collapse
|
10
|
Bone regeneration in the stem cell era: safe play for the patient? Clin Rheumatol 2017; 36:745-752. [DOI: 10.1007/s10067-017-3581-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/05/2017] [Accepted: 02/13/2017] [Indexed: 01/21/2023]
|
11
|
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017; 16:31. [PMID: 28148268 PMCID: PMC5286812 DOI: 10.1186/s12943-017-0597-8] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/19/2017] [Indexed: 02/08/2023] Open
Abstract
Tumour progression is dependent on the interaction between tumour cells and cells of the surrounding microenvironment. The tumour is a dynamic milieu consisting of various cell types such as endothelial cells, fibroblasts, cells of the immune system and mesenchymal stem cells (MSCs). MSCs are multipotent stromal cells that are known to reside in various areas such as the bone marrow, fat and dental pulp. MSCs have been found to migrate towards inflammatory sites and studies have shown that they also migrate towards and incorporate into the tumour. The key question is how they interact there. MSCs may interact with tumour cells through paracrine signalling. On the other hand, MSCs have the capacity to differentiate to various cell types such as osteocytes, chondrocytes and adipocytes and it is possible that MSCs differentiate at the site of the tumour. More recently it has been shown that cross-talk between tumour cells and MSCs has been shown to increase metastatic potential and promote epithelial-to-mesenchymal transition. This review will focus on the role of MSCs in tumour development at various stages of progression from growth of the primary tumour to the establishment of distant metastasis.
Collapse
Affiliation(s)
- Sarah M Ridge
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, Costello Road, Galway, Ireland.,Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, Costello Road, Galway, Ireland. .,Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland.
| |
Collapse
|
12
|
Coughlin TR, Romero-Moreno R, Mason DE, Nystrom L, Boerckel JD, Niebur GL, Littlepage LE. Bone: A Fertile Soil for Cancer Metastasis. Curr Drug Targets 2017; 18:1281-1295. [PMID: 28025941 PMCID: PMC7932754 DOI: 10.2174/1389450117666161226121650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023]
Abstract
Bone is one of the most common and most dangerous sites for metastatic growth across cancer types, and bone metastasis remains incurable. Unfortunately, the processes by which cancers preferentially metastasize to bone are still not well understood. In this review, we summarize the morphological features, physical properties, and cell signaling events that make bone a unique site for metastasis and bone remodeling. The signaling crosstalk between the tumor cells and bone cells begins a vicious cycle - a self-sustaining feedback loop between the tumor cells and the bone microenvironment composed of osteoclasts, osteoblasts, other bone marrow cells, bone matrix, and vasculature to support both tumor growth and bone destruction. Through this crosstalk, bone provides a fertile microenvironment that can harbor dormant tumor cells, sometimes for long periods, and support their growth by releasing cytokines as the bone matrix is destroyed, similar to providing nutrients for a seed to germinate in soil. However, few models exist to study the late stages of bone colonization by metastatic tumor cells. We describe some of the current methodologies used to study bone metastasis, highlighting the limitations of these methods and alternative future strategies to be used to study bone metastasis. While <i>in vivo</i> animal and patient studies may provide the gold standard for studying metastasis, <i>ex vivo</i> models can be used as an alternative to enable more controlled experiments designed to study the late stages of bone metastasis.
Collapse
Affiliation(s)
- Thomas R. Coughlin
- Harper Cancer Research Institute, South Bend, IN
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN
| | - Ricardo Romero-Moreno
- Harper Cancer Research Institute, South Bend, IN
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Devon E. Mason
- Harper Cancer Research Institute, South Bend, IN
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN
| | - Lukas Nystrom
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Chicago, Stritch School of Medicine, Maywood, IL
| | - Joel D. Boerckel
- Harper Cancer Research Institute, South Bend, IN
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN
| | - Glen L. Niebur
- Harper Cancer Research Institute, South Bend, IN
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN
| | - Laurie E. Littlepage
- Harper Cancer Research Institute, South Bend, IN
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
13
|
Jeong HM, Cho SW, Park SI. Osteoblasts Are the Centerpiece of the Metastatic Bone Microenvironment. Endocrinol Metab (Seoul) 2016; 31:485-492. [PMID: 28029019 PMCID: PMC5195822 DOI: 10.3803/enm.2016.31.4.485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is comprised of diverse stromal cell populations in addition to tumor cells. Increasing evidence now clearly supports the role of microenvironment stromal cells in tumor progression and metastasis, yet the regulatory mechanisms and interactions among tumor and stromal cells remain to be elucidated. Bone metastasis is the major problem in many types of human malignancies including prostate, breast and lung cancers, and the biological basis of bone metastasis let alone curative approaches are largely undetermined. Among the many types of stromal cells in bone, osteoblasts are shown to be an important player. In this regard, osteoblasts are a key target cell type in the development of bone metastasis, but there are currently no drugs or therapeutic approaches are available that specifically target osteoblasts. This review paper summarizes the current knowledge on osteoblasts in the metastatic tumor microenvironment, aiming to provide clues and directions for future research endeavor.
Collapse
Affiliation(s)
- Hyo Min Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
- The BK21 Plus Program, Korea University College of Medicine, Seoul, Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
- The BK21 Plus Program, Korea University College of Medicine, Seoul, Korea
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
14
|
Yeku O, Slovin SF. Radium-223 and concomitant therapies: prospects and prudence. Transl Androl Urol 2016; 5:968-970. [PMID: 28078234 PMCID: PMC5182218 DOI: 10.21037/tau.2016.11.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oladapo Yeku
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susan F Slovin
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Muthuswamy R, Corman JM, Dahl K, Chatta GS, Kalinski P. Functional reprogramming of human prostate cancer to promote local attraction of effector CD8(+) T cells. Prostate 2016; 76:1095-105. [PMID: 27199259 DOI: 10.1002/pros.23194] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/15/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Local infiltration of CD8(+) T cells (CTLs) in tumor lesions predicts overall clinical outcomes and the clinical benefit of cancer patients from immune checkpoint blockade. In the current study, we evaluated local production of different classes of chemokines in prostate cancer lesions, and the feasibility of their modulation to promote selective entry of CTLs into prostate tumors. METHODS Chemokine expression in prostate cancer lesion was analyzed by TaqMan-based quantitative PCR, confocal fluorescence microscopy and ELISA. For ex vivo chemokine modulation analysis, prostate tumor explants from patients undergoing primary prostate cancer resections were cultured for 24 hr, in the absence or presence of the combination of poly-I:C, IFNα, and celecoxib (PAC). The numbers of cells producing defined chemokines in the tissues were analyzed by confocal microscopy. Chemotaxis of effector CD8(+) T cells towards the untreated and PAC-treated tumor explant supernatants were evaluated in a standard in vitro migration assays, using 24 well trans-well plates. The number of effector cells that migrated was enumerated by flow cytometry. Pearson (r) correlation was used for analyzing correlations between chemokines and immune filtrate, while paired two tailed students t-test was used for comparison between treatment groups. RESULTS Prostate tumors showed uniformly low levels of CTL/NK/Th1-recruiting chemokines (CCL5, CXCL9, CXCL10) but expressed high levels of chemokines implicated in the attraction of myeloid derived suppressor cells (MDSC) and regulatory T cells (Treg ): CCL2, CCL22, and CXCL12. Strong positive correlations were observed between CXCL9 and CXCL10 and local CD8 expression. Tumor expression levels of CCL2, CCL22, and CXCL12 were correlated with intratumoral expression of MDSC/Treg markers: FOXP3, CD33, and NCF2. Treatment with PAC suppressed intratumoral production of the Treg -attractant CCL22 and Treg /MDSC-attractant, CXCL12, while increasing the production of the CTL attractant, CXCL10. These changes in local chemokine production were accompanied by the reduced ability of the ex vivo-treated tumors to attract CD4(+) FOXP3(+) Treg cells, and strongly enhanced attraction of the CD8(+) Granzyme B(+) CTLs. CONCLUSIONS Our data demonstrate that the chemokine environment in prostate cancer can be reprogrammed to selectively enhance the attraction of type-1 effector immune cells and reduce local attraction of MDSCs and Tregs . Prostate 76:1095-1105, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - John M Corman
- Department of Medicine, Virginia Mason Medical Center, Seattle, Washington
| | - Kathryn Dahl
- Department of Medicine, Virginia Mason Medical Center, Seattle, Washington
| | - Gurkamal S Chatta
- Department of Urology, Virginia Mason Medical Center, Seattle, Washington
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Morris EV, Edwards CM. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone. Front Endocrinol (Lausanne) 2016; 7:90. [PMID: 27471491 PMCID: PMC4943927 DOI: 10.3389/fendo.2016.00090] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/29/2016] [Indexed: 01/02/2023] Open
Abstract
The bone marrow is a favored site for a number of cancers, including the hematological malignancy multiple myeloma, and metastasis of breast and prostate cancer. This specialized microenvironment is highly supportive, not only for tumor growth and survival but also for the development of an associated destructive cancer-induced bone disease. The interactions between tumor cells, osteoclasts and osteoblasts are well documented. By contrast, despite occupying a significant proportion of the bone marrow, the importance of bone marrow adipose tissue is only just emerging. The ability of bone marrow adipocytes to regulate skeletal biology and hematopoiesis, combined with their metabolic activity, endocrine functions, and proximity to tumor cells means that they are ideally placed to impact both tumor growth and bone disease. This review discusses the recent advances in our understanding of how marrow adipose tissue contributes to bone metastasis and cancer-induced bone disease.
Collapse
Affiliation(s)
- Emma V. Morris
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Claire M. Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- *Correspondence: Claire M. Edwards,
| |
Collapse
|
17
|
Ren G, Esposito M, Kang Y. Bone metastasis and the metastatic niche. J Mol Med (Berl) 2015; 93:1203-12. [PMID: 26275789 DOI: 10.1007/s00109-015-1329-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/31/2015] [Indexed: 02/08/2023]
Abstract
The bone marrow has been long known to host a unique environment amenable to colonization by metastasizing tumor cells. Yet, the underlying molecular interactions within this specialized microenvironment which give rise to the high incidence of bone metastasis in breast and prostate cancer patients have long remained uncharacterized. With the recent description of the bone metastatic "niche," considerable focus has been placed on understanding how the bone stroma contributes to each step of metastasis. Discoveries within this field have demonstrated that when cancer cells home to the niche in which hematopoietic and mesenchymal stem/progenitor cells normally reside, a bidirectional crosstalk emerges between the tumor cells and the bone metastatic stroma. This communication modulates every step of cancer cell metastasis to the bone, including the initial homing and seeding, formation of micrometastases, outgrowth of macrometastases, and the maintenance of long-term dormancy of disseminated tumor cells in the bone. In clinical practice, targeting the bone metastatic niche is evolving into a promising avenue for the prevention of bone metastatic relapse, therapeutic resistance, and other aspects of cancer progression. Here, we review the current knowledge concerning the role of the bone metastatic niche in bone metastasis.
Collapse
Affiliation(s)
- Guangwen Ren
- Department of Molecular Biology, Princeton University, LTL255, Washington Road, Princeton, NJ, 08544, USA
| | - Mark Esposito
- Department of Molecular Biology, Princeton University, LTL255, Washington Road, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, LTL255, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
18
|
Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): an open-label, randomised, phase 3 factorial trial. Lancet Oncol 2014; 15:1076-89. [PMID: 25130995 DOI: 10.1016/s1470-2045(14)70328-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND We investigated whether 18 months of androgen suppression plus radiotherapy, with or without 18 months of zoledronic acid, is more effective than 6 months of neoadjuvant androgen suppression plus radiotherapy with or without zoledronic acid. METHODS We did an open-label, randomised, 2 × 2 factorial trial in men with locally advanced prostate cancer (either T2a N0 M0 prostatic adenocarcinomas with prostate-specific antigen [PSA] ≥10 μg/L and a Gleason score of ≥7, or T2b-4 N0 M0 tumours regardless of PSA and Gleason score). We randomly allocated patients by computer-generated minimisation--stratified by centre, baseline PSA, tumour stage, Gleason score, and use of a brachytherapy boost--to one of four groups in a 1:1:1:1 ratio. Patients in the control group were treated with neoadjuvant androgen suppression with leuprorelin (22·5 mg every 3 months, intramuscularly) for 6 months (short-term) and radiotherapy alone (designated STAS); this procedure was either followed by another 12 months of androgen suppression with leuprorelin (intermediate-term; ITAS) or accompanied by 18 months of zoledronic acid (4 mg every 3 months for 18 months, intravenously; STAS plus zoledronic acid) or by both (ITAS plus zoledronic acid). The primary endpoint was prostate cancer-specific mortality. This analysis represents the first, preplanned assessment of oncological endpoints, 5 years after treatment. Analysis was by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT00193856. FINDINGS Between Oct 20, 2003, and Aug 15, 2007, 1071 men were randomly assigned to STAS (n=268), STAS plus zoledronic acid (n=268), ITAS (n=268), and ITAS plus zoledronic acid (n=267). Median follow-up was 7·4 years (IQR 6·5-8·4). Cumulative incidences of prostate cancer-specific mortality were 4·1% (95% CI 2·2-7·0) in the STAS group, 7·8% (4·9-11·5) in the STAS plus zoledronic acid group, 7·4% (4·6-11·0) in the ITAS group, and 4·3% (2·3-7·3) in the ITAS plus zoledronic acid group. Cumulative incidence of all-cause mortality was 17·0% (13·0-22·1), 18·9% (14·6-24·2), 19·4% (15·0-24·7), and 13·9% (10·3-18·8), respectively. Neither prostate cancer-specific mortality nor all-cause mortality differed between control and experimental groups. Cumulative incidence of PSA progression was 34·2% (28·6-39·9) in the STAS group, 39·6% (33·6-45·5) in the STAS plus zoledronic acid group, 29·2% (23·8-34·8) in the ITAS group, and 26·0% (20·8-31·4) in the ITAS plus zoledronic acid group. Compared with STAS, no difference was noted in PSA progression with ITAS or STAS plus zoledronic acid; however, ITAS plus zoledronic acid reduced PSA progression (sub-hazard ratio [SHR] 0·71, 95% CI 0·53-0·95; p=0·021). Cumulative incidence of local progression was 4·1% (2·2-7·0) in the STAS group, 6·1% (3·7-9·5) in the STAS plus zoledronic acid group, 1·5% (0·5-3·7) in the ITAS group, and 3·4% (1·7-6·1) in the ITAS plus zoledronic acid group; no differences were noted between groups. Cumulative incidences of bone progression were 7·5% (4·8-11·1), 14·6% (10·6-19·2), 8·4% (5·5-12·2), and 7·6% (4·8-11·2), respectively. Compared with STAS, STAS plus zoledronic acid increased the risk of bone progression (SHR 1·90, 95% CI 1·14-3·17; p=0·012), but no differences were noted with the other two groups. Cumulative incidence of distant progression was 14·7% (10·7-19·2) in the STAS group, 17·3% (13·0-22·1) in the STAS plus zoledronic acid group, 14·2% (10·3-18·7) in the ITAS group, and 11·1% (7·6-15·2) in the ITAS plus zoledronic acid group; no differences were recorded between groups. Cumulative incidence of secondary therapeutic intervention was 25·6% (20·5-30·9), 28·9% (23·5-34·5), 20·7% (16·1-25·9), and 15·3% (11·3-20·0), respectively. Compared with STAS, ITAS plus zoledronic acid reduced the need for secondary therapeutic intervention (SHR 0·67, 95% CI 0·48-0·95; p=0·024); no differences were noted with the other two groups. An interaction between trial factors was recorded for Gleason score; therefore, we did pairwise comparisons between all groups. Post-hoc analyses suggested that the reductions in PSA progression and decreased need for secondary therapeutic intervention with ITAS plus zoledronic acid were restricted to tumours with a Gleason score of 8-10, and that ITAS was better than STAS in tumours with a Gleason score of 7 or lower. Long-term morbidity and quality-of-life scores were not affected adversely by 18 months of androgen suppression or zoledronic acid. INTERPRETATION Compared with STAS, ITAS plus zoledronic acid was more effective for treatment of prostate cancers with a Gleason score of 8-10, and ITAS alone was effective for tumours with a Gleason score of 7 or lower. Nevertheless, these findings are based on secondary endpoint data and post-hoc analyses and must be regarded cautiously. Long- term follow-up is necessary, as is external validation of the interaction between zoledronic acid and Gleason score. STAS plus zoledronic acid can be ruled out as a potential therapeutic option. FUNDING National Health and Medical Research Council of Australia, Novartis Pharmaceuticals Australia, Abbott Pharmaceuticals Australia, New Zealand Health Research Council, New Zealand Cancer Society, University of Newcastle (Australia), Calvary Health Care (Calvary Mater Newcastle Radiation Oncology Fund), Hunter Medical Research Institute, Maitland Cancer Appeal, Cancer Standards Institute New Zealand.
Collapse
|
19
|
Soki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET, Pienta KJ, Atabai K, Roca H, McCauley LK. Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J Biol Chem 2014; 289:24560-72. [PMID: 25006249 DOI: 10.1074/jbc.m114.571620] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor cells secrete factors that modulate macrophage activation and polarization into M2 type tumor-associated macrophages, which promote tumor growth, progression, and metastasis. The mechanisms that mediate this polarization are not clear. Macrophages are phagocytic cells that participate in the clearance of apoptotic cells, a process known as efferocytosis. Milk fat globule- EGF factor 8 (MFG-E8) is a bridge protein that facilitates efferocytosis and is associated with suppression of proinflammatory responses. This study investigated the hypothesis that MFG-E8-mediated efferocytosis promotes M2 polarization. Tissue and serum exosomes from prostate cancer patients presented higher levels of MFG-E8 compared with controls, a novel finding in human prostate cancer. Coculture of macrophages with apoptotic cancer cells increased efferocytosis, elevated MFG-E8 protein expression levels, and induced macrophage polarization into an alternatively activated M2 phenotype. Administration of antibody against MFG-E8 significantly attenuated the increase in M2 polarization. Inhibition of STAT3 phosphorylation using the inhibitor Stattic decreased efferocytosis and M2 macrophage polarization in vitro, with a correlating increase in SOCS3 protein expression. Moreover, MFG-E8 knockdown tumor cells cultured with wild-type or MFG-E8-deficient macrophages resulted in increased SOCS3 expression with decreased STAT3 activation. This suggests that SOCS3 and phospho-STAT3 act in an inversely dependent manner when stimulated by MFG-E8 and efferocytosis. These results uncover a unique role of efferocytosis via MFG-E8 as a mechanism for macrophage polarization into tumor-promoting M2 cells.
Collapse
Affiliation(s)
- Fabiana N Soki
- From the Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Amy J Koh
- From the Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Jacqueline D Jones
- From the Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Yeo Won Kim
- From the Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Jinlu Dai
- the Department of Urology, Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Evan T Keller
- the Department of Urology, Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kenneth J Pienta
- the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, and
| | - Kamran Atabai
- the Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Hernan Roca
- From the Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Laurie K McCauley
- From the Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109,
| |
Collapse
|
20
|
Dissecting the role of bone marrow stromal cells on bone metastases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:875305. [PMID: 25054153 PMCID: PMC4099112 DOI: 10.1155/2014/875305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Tumor-induced bone disease is a dynamic process that involves interactions with many cell types. Once metastatic cancer cells reach the bone, they are in contact with many different cell types that are present in the cell-rich bone marrow. These cells include the immune cells, myeloid cells, fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem cells. Each of these cell populations can influence the behavior or gene expression of both the tumor cells and the bone microenvironment. Additionally, the tumor itself can alter the behavior of these bone marrow cells which further alters both the microenvironment and the tumor cells. While many groups focus on studying these interactions, much remains unknown. A better understanding of the interactions between the tumor cells and the bone microenvironment will improve our knowledge on how tumors establish in bone and may lead to improvements in diagnosing and treating bone metastases. This review details our current knowledge on the interactions between tumor cells that reside in bone and their microenvironment.
Collapse
|
21
|
Chu GCY, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M, Liu Y, Farach-Carson MC, You S, Kim J, Freeman MR, Chung LWK. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 2014; 21:311-326. [PMID: 24478054 PMCID: PMC3959765 DOI: 10.1530/erc-13-0548] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) metastasis to bone is lethal and there is no adequate animal model for studying the mechanisms underlying the metastatic process. Here, we report that receptor activator of NF-κB ligand (RANKL) expressed by PCa cells consistently induced colonization or metastasis to bone in animal models. RANK-mediated signaling established a premetastatic niche through a feed-forward loop, involving the induction of RANKL and c-Met, but repression of androgen receptor (AR) expression and AR signaling pathways. Site-directed mutagenesis and transcription factor (TF) deletion/interference assays identified common TF complexes, c-Myc/Max, and AP4 as critical regulatory nodes. RANKL-RANK signaling activated a number of master regulator TFs that control the epithelial-to-mesenchymal transition (Twist1, Slug, Zeb1, and Zeb2), stem cell properties (Sox2, Myc, Oct3/4, and Nanog), neuroendocrine differentiation (Sox9, HIF1α, and FoxA2), and osteomimicry (c-Myc/Max, Sox2, Sox9, HIF1α, and Runx2). Abrogating RANK or its downstream c-Myc/Max or c-Met signaling network minimized or abolished skeletal metastasis in mice. RANKL-expressing LNCaP cells recruited and induced neighboring non metastatic LNCaP cells to express RANKL, c-Met/activated c-Met, while downregulating AR expression. These initially non-metastatic cells, once retrieved from the tumors, acquired the potential to colonize and grow in bone. These findings identify a novel mechanism of tumor growth in bone that involves tumor cell reprogramming via RANK-RANKL signaling, as well as a form of signal amplification that mediates recruitment and stable transformation of non-metastatic bystander dormant cells.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - Ruoxiang Wang
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - André Rogatko
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Biostatistics and Bioinformatics Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Xu Feng
- Department of PathologySchool of Medicine, University of AlabamaBirmingham, AlabamaUSA
| | - Majd Zayzafoon
- Department of PathologySchool of Medicine, University of AlabamaBirmingham, AlabamaUSA
| | - Youhua Liu
- Department of PathologyUniversity of PittsburghPittsburgh, PennsylvaniaUSA
| | | | - Sungyong You
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Jayoung Kim
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Michael R Freeman
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Leland W K Chung
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| |
Collapse
|
22
|
Park SI, Lee C, Sadler WD, Koh AJ, Jones J, Seo JW, Soki FN, Cho SW, Daignault SD, McCauley LK. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res 2013; 73:6574-83. [PMID: 24072746 DOI: 10.1158/0008-5472.can-12-4692] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the tumor microenvironment, CD11b(+)Gr1(+) bone marrow-derived cells are a predominant source of protumorigenic factors such as matrix metalloproteinases (MMP), but how distal tumors regulate these cells in the bone marrow is unclear. Here we addressed the hypothesis that the parathyroid hormone-related protein (PTHrP) potentiates CD11b(+)Gr1(+) cells in the bone marrow of prostate tumor hosts. In two xenograft models of prostate cancer, levels of tumor-derived PTHrP correlated with CD11b(+)Gr1(+) cell recruitment and microvessel density in the tumor tissue, with evidence for mediation of CD11b(+)Gr1(+) cell-derived MMP-9 but not tumor-derived VEGF-A. CD11b(+)Gr1(+) cells isolated from mice with PTHrP-overexpressing tumors exhibited relatively increased proangiogenic potential, suggesting that prostate tumor-derived PTHrP potentiates this activity of CD11b(+)Gr1(+) cells. Administration of neutralizing PTHrP monoclonal antibody reduced CD11b(+)Gr1(+) cells and MMP-9 in the tumors. Mechanistic investigations in vivo revealed that PTHrP elevated Y418 phosphorylation levels in Src family kinases in CD11b(+)Gr1(+) cells via osteoblast-derived interleukin-6 and VEGF-A, thereby upregulating MMP-9. Taken together, our results showed that prostate cancer-derived PTHrP acts in the bone marrow to potentiate CD11b(+)Gr1(+) cells, which are recruited to tumor tissue where they contribute to tumor angiogenesis and growth.
Collapse
Affiliation(s)
- Serk In Park
- Authors' Affiliations: Departments of Medicine and Cancer Biology; Center for Bone Biology; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry; Comprehensive Cancer Center Biostatistics Core; and Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gubin AV, Borzunov DY, Malkova TA. The Ilizarov paradigm: thirty years with the Ilizarov method, current concerns and future research. INTERNATIONAL ORTHOPAEDICS 2013; 37:1533-1539. [PMID: 23712212 PMCID: PMC3728395 DOI: 10.1007/s00264-013-1935-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/07/2013] [Indexed: 02/06/2023]
Abstract
The Ilizarov method of bone lengthening, reconstruction and osteosynthesis has developed immensely since its introduction by G.A. Ilizarov in the Soviet Union in the 1960s and in the Western countries in the early 1980s. It has become an integral part of the arsenal used by the orthopaedic community worldwide. The evolutionary development of the method and its current role has considerably improved the quality of life for millions of people around the whole world. Despite the great versatility of its possible applications for bone injuries and diseases, the Ilizarov method could not and cannot be the alternative to a range of other methods that are applied for some specific bone conditions, but rather is a method of choice. Its combination with the current methods of internal fixation or the means of internal fixation that use the biological principles that were laid down by G.A. Ilizarov have demonstrated the importance of tension stress, blood supply, functional loading, and fragment control during bone treatment. The objective of this study was to present an overview of the current state and concerns in the application of the Ilizarov method and define the prospective research trends aimed at regeneration stimulation, better control of treatment, infection barriers and patient comfort.
Collapse
Affiliation(s)
- Alexander V. Gubin
- Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopedics, 6, M. Ulianova Street, Kurgan, 640014 Russian Federation
| | - Dmitry Y. Borzunov
- Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopedics, 6, M. Ulianova Street, Kurgan, 640014 Russian Federation
| | - Tatiana A. Malkova
- Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopedics, 6, M. Ulianova Street, Kurgan, 640014 Russian Federation
| |
Collapse
|
24
|
Todenhöfer T, Hennenlotter J, Schmiedel BJ, Hohneder A, Grimm S, Kühs U, Salih HR, Bühring HJ, Fehm T, Gakis G, Blumenstock G, Aufderklamm S, Schilling D, Stenzl A, Schwentner C. Alterations of the RANKL pathway in blood and bone marrow samples of prostate cancer patients without bone metastases. Prostate 2013; 73:162-8. [PMID: 22715006 DOI: 10.1002/pros.22551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/29/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The receptor activator of the NF-kB ligand (RANKL) pathway is a key mediator of prostate cancer (PC)-induced bone disease. However, little is known about this pathway in patients with non-metastatic PC. We aimed to investigate whether changes of RANKL, its inhibitor osteoprotegerin (OPG) and bone marrow-mesenchymal stromal cells (BM-MSCs) occur in PC patients without manifest bone metastases. PATIENTS AND METHODS We determined OPG and soluble RANKL (sRANKL) in serum and corresponding bone marrow (BM) samples of 140 patients before radical prostatectomy by enzyme-linked immunosorbent assay (ELISA). As control serum samples of 50 patients with benign prostate hyperplasia were analyzed. BM mononuclear cells (BMNCs) of 16 PC patients were analyzed for expression of RANKL and CD271 (as marker for MSCs) by flow cytometry. RESULTS PC patients had significantly lower serum levels of OPG compared to BPH patients (P = 0.007), whereas no differences were observed for serum sRANKL (P = 0.74). Both OPG and sRANKL concentrations of serum and corresponding BM samples correlated significantly (P < 0.0001 each). Interestingly, in PC patients, lower serum and BM OPG levels were associated with a higher proportion of BM-MSCs (P = 0.04 and 0.0016, respectively). No correlations were observed for sRANKL, OPG, BM-MSCs, and established risk parameters of PC. DISCUSSION The results of the study indicate that localized PC is associated with early specific changes of the RANKL pathway in serum and bone marrow (BM). These changes might be part of the pre-metastatic niche of PC and implicate a potential benefit of RANKL inhibition in patients with localized PC.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zheng Y, Zhou H, Dunstan CR, Sutherland RL, Seibel MJ. The role of the bone microenvironment in skeletal metastasis. J Bone Oncol 2012; 2:47-57. [PMID: 26909265 PMCID: PMC4723345 DOI: 10.1016/j.jbo.2012.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 01/27/2023] Open
Abstract
The bone microenvironment provides a fertile soil for cancer cells. It is therefore not surprising that the skeleton is a frequent site of cancer metastasis. It is believed that reciprocal interactions between tumour and bone cells, known as the “vicious cycle of bone metastasis” support the establishment and orchestrate the expansion of malignant cancers in bone. While the full range of molecular mechanisms of cancer metastasis to bone remain to be elucidated, recent research has deepened our understanding of the cell-mediated processes that may be involved in cancer cell survival and growth in bone. This review aims to address the importance of the bone microenvironment in skeletal cancer metastasis and discusses potential therapeutic implications of novel insights.
Collapse
Affiliation(s)
- Yu Zheng
- Bone Research Program, ANZAC Research Institute, University of Sydney, NSW 2139, Australia; The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, NSW 2139, Australia
| | - Colin R Dunstan
- Bone Research Program, ANZAC Research Institute, University of Sydney, NSW 2139, Australia; Department of Biomedical Engineering, University of Sydney, NSW 2006, Australia
| | - Robert L Sutherland
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, NSW 2139, Australia; Department of Endocrinology & Metabolism, Concord Hospital, Concord, Sydney, NSW 2139, Australia
| |
Collapse
|
26
|
Sevko A, Umansky V. Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: thick as thieves. J Cancer 2012; 4:3-11. [PMID: 23386900 PMCID: PMC3564242 DOI: 10.7150/jca.5047] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Tumor progression is often associated with chronic inflammation in the tumor microenvironment, which is mediated by numerous cytokines, chemokines and growth factors produced by cancer and stroma cells. All these mediators support tumor development and immunosuppression in autocrine and/or paracrine ways. Neutralization of chronic inflammatory conditions can lead to the restoration of anti-tumor immune responses. Among stroma cells infiltrating tumors, myeloid-derived suppressor cells (MDSCs) represent one of the most important players mediating immunosuppression. These cells may not only inhibit an anti-tumor immunity but also directly stimulate tumorigenesis as well as tumor growth and expansion. Therefore, understanding the mechanisms of generation, migration to the tumor site and activation of MDSC is necessary for the development of new strategies of tumor immunotherapy.
Collapse
Affiliation(s)
- Alexandra Sevko
- Skin Cancer Unit, German Cancer Research Center, Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, 69120 Heidelberg, Germany
| | | |
Collapse
|
27
|
Park SI, Liao J, Berry JE, Li X, Koh AJ, Michalski ME, Eber MR, Soki FN, Sadler D, Sud S, Tisdelle S, Daignault SD, Nemeth JA, Snyder LA, Wronski TJ, Pienta KJ, McCauley LK. Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Res 2012; 72:2522-32. [PMID: 22589273 DOI: 10.1158/0008-5472.can-11-2928] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of cancers predominantly metastasize to bone, due to its complex microenvironment and multiple types of constitutive cells. Prostate cancer especially has been shown to localize preferentially to bones with higher marrow cellularity. Using an experimental prostate cancer metastasis model, we investigated the effects of cyclophosphamide, a bone marrow-suppressive chemotherapeutic drug, on the development and growth of metastatic tumors in bone. Priming the murine host with cyclophosphamide before intracardiac tumor cell inoculation was found to significantly promote tumor localization and subsequent growth in bone. Shortly after cyclophosphamide treatment, there was an abrupt expansion of myeloid lineage cells in the bone marrow and the peripheral blood, associated with increases in cytokines with myelogenic potential such as C-C chemokine ligand (CCL)2, interleukin (IL)-6, and VEGF-A. More importantly, neutralizing host-derived murine CCL2, but not IL-6, in the premetastatic murine host significantly reduced the prometastatic effects of cyclophosphamide. Together, our findings suggest that bone marrow perturbation by cytotoxic chemotherapy can contribute to bone metastasis via a transient increase in bone marrow myeloid cells and myelogenic cytokines. These changes can be reversed by inhibition of CCL2.
Collapse
Affiliation(s)
- Serk In Park
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone. Odontology 2012; 100:109-29. [PMID: 22684584 DOI: 10.1007/s10266-012-0070-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone.
Collapse
|
29
|
Park SI, McCauley LK. Nuclear localization of parathyroid hormone-related peptide confers resistance to anoikis in prostate cancer cells. Endocr Relat Cancer 2012; 19:243-54. [PMID: 22291434 PMCID: PMC3593272 DOI: 10.1530/erc-11-0278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Prostate cancer remains a leading cause of cancer-related death in men, largely attributable to distant metastases, most frequently to bones. Despite intensive investigations, molecular mechanisms underlying metastasis are not completely understood. Among prostate cancer-derived factors, parathyroid hormone-related peptide (PTHrP), first discovered as an etiologic factor for malignancy-induced hypercalcemia, regulates many cellular functions critical to tumor growth, angiogenesis, and metastasis. In this study, the role of PTHrP in tumor cell survival from detachment-induced apoptosis (i.e. anoikis) was investigated. Reduction of PTHLH (encoding PTHrP) gene expression in human prostate cancer cells (PC-3) increased the percentage of apoptotic cells when cultured in suspension. Conversely, overexpression of PTHrP protected prostate cancer cells (Ace-1 and LNCaP, both typically expressing low or undetectable basal PTHrP) from anoikis. Overexpression of nuclear localization signal (NLS)-defective PTHrP failed to protect cells from anoikis, suggesting that PTHrP-dependent protection from anoikis is an intracrine event. A PCR-based apoptosis-related gene array showed that detachment increased expression of the TNF gene (encoding the proapoptotic protein tumor necrosis factor-α) fourfold greater in PTHrP-knockdown PC-3 cells than in control PC-3 cells. In parallel, TNF gene expression was significantly reduced in PTHrP-overexpressing LNCaP cells, but not in NLS-defective PTHrP overexpressing LNCaP cells, when compared with control LNCaP cells. Subsequently, in a prostate cancer skeletal metastasis mouse model, PTHrP-knockdown PC-3 cells resulted in significantly fewer metastatic lesions compared to control PC-3 cells, suggesting that PTHrP mediated antianoikis events in the bloodstream. In conclusion, nuclear localization of PTHrP confers prostate cancer cell resistance to anoikis, potentially contributing to prostate cancer metastasis.
Collapse
Affiliation(s)
- Serk In Park
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Avenue, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
30
|
Nickerson NK, Mohammad KS, Gilmore JL, Crismore E, Bruzzaniti A, Guise TA, Foley J. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad. PLoS One 2012; 7:e30255. [PMID: 22276166 PMCID: PMC3261896 DOI: 10.1371/journal.pone.0030255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.
Collapse
Affiliation(s)
- Nicole K. Nickerson
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Khalid S. Mohammad
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jennifer L. Gilmore
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Erin Crismore
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana, United States of America
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Theresa A. Guise
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|