1
|
Zhong YL, Liu H, Huang X. Genetic mechanisms of dynamic functional connectivity density in diabetic retinopathy brains: a combined transcriptomic and resting-state functional magnetic resonance imaging study. Front Cell Neurosci 2025; 19:1476038. [PMID: 40276708 PMCID: PMC12018502 DOI: 10.3389/fncel.2025.1476038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Background Diabetic retinopathy (DR) is a condition characterized by fundus lesions resulting from retinal microvascular leakage and obstruction linked to chronic progressive diabetes mellitus. Previous neuroimaging research has revealed both structural and functional changes in the brains of DR patients. Nevertheless, the variations in dynamic functional connectivity density (dFCD) within the brains of DR patients, along with the underlying molecular mechanisms connected to these changes, have yet to be fully understood. Methods Forty-seven diabetic retinopathy (DR) patients and 46 healthy controls (HCs) matched for sex, age, and education were recruited for this study from the Department of Ophthalmology at the Jiangxi Provincial People's Hospital. All subjects underwent resting-state functional magnetic resonance imaging scans to analyze the differences in dFCD between the two groups. Utilizing the Allen Human Brain Atlas, we conducted spatial correlation analyses integrating transcriptomic and neuroimaging data to pinpoint genes showing correlated expression levels with dFCD alterations in DR patients. Subsequently, we carried out gene enrichment, specific expression, and protein-protein interaction analyses. Results In comparison to the HC group, the DR group exhibited significantly reduced dFCD variability in the left anterior cingulum, left superior occipital gyrus, and right postcentral gyrus. The abnormal dFCD variability is linked to 1,318 positively and 1,318 negatively associated genes, primarily enriched for biological functions such as ion channels, synapses, and cellular junctions. Specific expression analysis revealed that these genes were distinctly expressed in Purkinje neurons, cortex, and striatum brain regions. Furthermore, protein-protein interaction (PPI) analyses indicated that these positive and negative genes could organize PPI networks with the support of respective hub genes. Conclusion our study identified altered dFCD variability in brain regions linked to visual and cognitive functions in DR patients. Moreover, transcriptome-neuroimaging correlation analyses revealed a spatial association between these dFCD changes and the genes with unique functional profiles. These genes were enriched in biologically significant functions and pathways, specific to certain cells and brain areas. Our research offers novel understandings of the genetic mechanisms influencing dFCD alterations in DR.
Collapse
Affiliation(s)
- Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Hao Liu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Kononov B, Bilash S, Tretiak I, Kononova M, Pronina O, Koptev M, Pirog-Zakaznikova A, Donchenko S, Oliinichenko Y, Oleksiienko V. Structural changes in the ganglionic layer of the rat cerebellar cortex due to the use of monosodium glutamate and sodium nitrite in combination. Tissue Cell 2025; 93:102760. [PMID: 39933409 DOI: 10.1016/j.tice.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND The issue of using many food additives in food is becoming increasingly relevant. The effect of these substances on the nervous system, namely the cerebellum, is not unrelated. There are studies on the impact of food additives individually, but their combined effect has not been studied sufficiently. Therefore, the aim of our study was to determine structural changes in rats' ganglionic layer of the cerebellar cortex under the influence of monosodium glutamate and sodium nitrite in combination. METHODS The experiment involved 84 white Wistar laboratory rats, which were divided into a control group and five experimental groups. The obtained cerebellar samples were paraffin-embedded and histological sections (3-4) μm thick were made. These sections were stained with hematoxylin, eosin, and silver impregnated by Grimmelius. RESULTS After calculating the average thickness of the cerebellar cortex ganglionic layer at different administration periods of monosodium glutamate and sodium nitrite in combination, significant changes were observed after week 1, where this indicator was 1.18 times less than in the control. Also, a decrease in the average thickness was observed after the 4th and 12th and a significant decrease in the 16th week of the study, namely by 1.61 times, 1.43 times and 1.77 times, respectively. It indicates substantial structural changes in the ganglionic layer. CONCLUSIONS The study found that the ganglionic layer is formed of a single row of Purkinje cells, and they, in turn, are the main functional link in the entire grey matter of the cerebellum, which suggests that the use of a complex of food additives causes functional disorders of the cerebellum as a whole.
Collapse
Affiliation(s)
- Bohdan Kononov
- Department of Anatomy with Clinical Anatomy and Operative Surgery, Poltava State Medical University, Poltava, Ukraine
| | - Serhii Bilash
- Department of Anatomy with Clinical Anatomy and Operative Surgery, Poltava State Medical University, Poltava, Ukraine
| | - Ihor Tretiak
- Department of Internal Medicine №1, Poltava State Medical University, Poltava, Ukraine
| | - Maryna Kononova
- Department of Psychological, Poltava V.G. Korolenko National Pedagogical University, Poltava, Ukraine
| | - Olena Pronina
- Department of Anatomy with Clinical Anatomy and Operative Surgery, Poltava State Medical University, Poltava, Ukraine
| | - Mykhailo Koptev
- Department of Anatomy with Clinical Anatomy and Operative Surgery, Poltava State Medical University, Poltava, Ukraine
| | - Angelina Pirog-Zakaznikova
- Department of Anatomy with Clinical Anatomy and Operative Surgery, Poltava State Medical University, Poltava, Ukraine
| | - Svitlana Donchenko
- Department of Anatomy with Clinical Anatomy and Operative Surgery, Poltava State Medical University, Poltava, Ukraine
| | - Yaryna Oliinichenko
- Department of Anatomy with Clinical Anatomy and Operative Surgery, Poltava State Medical University, Poltava, Ukraine.
| | - Vladyslav Oleksiienko
- Department of Anatomy with Clinical Anatomy and Operative Surgery, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
3
|
Huang LY, Liu YN, Chen J, Zhu HX, Li LL, Liang ZY, Song JX, Li YJ, Hu ZL, Demon D, Wullaert A, Wang W, Qi SH. Caspase-12 is Expressed in Purkinje Neurons and Prevents Psychiatric-Like Behavior in Mice. Mol Neurobiol 2025; 62:1705-1719. [PMID: 39023795 DOI: 10.1007/s12035-024-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Caspase-12 is a caspase family member for which functions in regulating cell death and inflammation have previously been suggested. In this study, we used caspase-12 lacZ reporter mice to elucidate the expression pattern of caspase-12 in order to obtain an idea about its possible in vivo function. Strikingly, these reporter mice showed that caspase-12 is expressed explicitly in Purkinje neurons of the cerebellum. As this observation suggested a function for caspase-12 in Purkinje neurons, we analyzed the brain and behavior of caspase-12 deficient mice in detail. Extensive histological analyses showed that caspase-12 was not crucial for establishing cerebellum structure or for maintaining Purkinje cell numbers. We then performed behavioral tests to investigate whether caspase-12 deficiency affects memory, motor, and psychiatric functions in mice. Interestingly, while the absence of caspase-12 did not affect memory and motor function, caspase-12 deficient mice showed depression and hyperactivity tendencies, together resembling manic behavior. Next, suggesting a possible molecular mechanistic explanation, we showed that caspase-12 deficient cerebella harbored diminished signaling through the brain-derived neurotrophic factor/tyrosine kinase receptor B/cyclic-AMP response binding protein axis, as well as strongly enhanced expression of the neuronal activity marker c-Fos. Thus, our study establishes caspase-12 expression in mouse Purkinje neurons and opens novel avenues of research to investigate the role of caspase-12 in regulating psychiatric behavior.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Yi-Ning Liu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, 221002, China
| | - Hai-Xue Zhu
- Department of Ophthalmology, The Affiliated Huai'an Hospital of Xuzhou Medical University, No.62 Huaihai South Road, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Li-Li Li
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Zhi-Yan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jin-Xiu Song
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yu-Jie Li
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dieter Demon
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- Cell Death Signaling Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Mougkogiannis P, Nikolaidou A, Adamatzky A. Proteinoids-Polyaniline Interaction with Stimulated Neurons on Living and Plastic Surfaces. ACS OMEGA 2024; 9:45789-45810. [PMID: 39583677 PMCID: PMC11579727 DOI: 10.1021/acsomega.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024]
Abstract
The integration of proteinoid-polyaniline (PANI) nanofibers with neuromorphic architectures shows potential for developing computer systems that are adaptable, energy-efficient, and have the capacity of tolerating faults. This work examines the capacity of proteinoid-PANI nanofibers to imitate different spiking patterns in stimulated Izhikevich neurons. The proteinoid-PANI nanofibers exhibit diverse spiking behaviors on different substrates, showcasing a broad range of control and programmability, as confirmed by experimental characterization and computational modeling. K-means clustering technique measures the extent and selectivity of the proteinoid-PANI spiking behavior in response to various stimuli and spiking patterns. The presence of strong positive correlations between membrane potential and time suggests that the system is capable of producing reliable and consistent electrical activity patterns. Proteinoid-PANI samples demonstrate enhanced stability and consistency in numerous spiking modes when compared to simulated input neurons. The results emphasize the capability of proteinoid-PANI nanofibers as a bioinspired substance for neuromorphic computing and open up possibilities for their incorporation into neuromorphic structures and bioinspired computer models.
Collapse
Affiliation(s)
| | - Anna Nikolaidou
- Unconventional Computing
Laboratory, UWE, Bristol, BS16 1QY, U.K.
| | - Andrew Adamatzky
- Unconventional Computing
Laboratory, UWE, Bristol, BS16 1QY, U.K.
| |
Collapse
|
5
|
Erdoğan MA, Tunç KC, Daştan Aİ, Tomruk C, Uyanıkgil Y, Erbaş O. Therapeutic effects of pentoxifylline in propionic acid-induced autism symptoms in rat models: A behavioral, biochemical, and histopathological study. Int J Dev Neurosci 2024. [PMID: 39520226 DOI: 10.1002/jdn.10394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The role of propionic acid (PPA) in eliciting behaviors analogous to autism in rat models is a documented phenomenon. This study examines the therapeutic implications of pentoxifylline-an agent traditionally used for peripheral vascular diseases-on these autism-like behaviors by modulating brain proteins and reducing pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α) in a rat model. METHODS This research involved 30 male Wistar albino rats, which were divided into three distinct groups: a baseline control set, a PPA-treated cluster receiving a 250 mg/kg/day dose of PPA via intraperitoneal injection for a span of five days followed by saline orally, and a PPA group administered an oral dose of pentoxifylline at 300 mg/kg/day over 15 days. Subsequent to the treatment phase, euthanasia was carried out for the extraction of brain and blood samples, which were then analyzed for histopathological and biochemical markers. RESULTS The pentoxifylline-treated subjects demonstrated a significant mitigation in the manifestation of autistic-like behaviors, as assessed through a triad of social interaction tests. A noteworthy decline in TNF-α levels was observed, alongside a significant rise in the concentration of adenosine triphosphate and nerve growth factor in brain tissue (p < 0.05). Histopathological analysis underscored a reduction in oxidative stress and a significant preservation of neuronal cell types, specifically pyramidal neurons in the hippocampal CA1 and CA3 regions and Purkinje cells in the cerebellum (p < 0.001). CONCLUSION Pentoxifylline treatment has been found to effectively reduce the behavioral symptoms associated with autism, as well as biochemical and histopathological disruptions induced by PPA in rat models, highlighting its potential as a neurotherapeutic agent.
Collapse
Affiliation(s)
- Mümin Alper Erdoğan
- Faculty of Medicine, Department of Physiology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Kerem Can Tunç
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Ali İmran Daştan
- Department of Medical Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Türkiye
| | - Canberk Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, Istanbul, Türkiye
| |
Collapse
|
6
|
Carreira RB, Dos Santos CC, de Oliveira JVR, da Silva VDA, David JM, Butt AM, Costa SL. Neuroprotective Effect of Flavonoid Agathisflavone in the Ex Vivo Cerebellar Slice Neonatal Ischemia. Molecules 2024; 29:4159. [PMID: 39275007 PMCID: PMC11396859 DOI: 10.3390/molecules29174159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively. Agathisflavone (10 μM) was administered preventively for 60 min before inducing ischemia by oxygen and glucose deprivation (OGD) for 60 min and compared to controls maintained in normal oxygen and glucose (OGN). The density of SOX-10+ oligodendrocyte lineage cells and NG2 immunopositive oligodendrocyte progenitor cells (OPCs) were not altered in OGD, but it resulted in significant oligodendroglial cell atrophy marked by the retraction of their processes, and this was prevented by agathisflavone. OGD caused marked axonal demyelination, determined by myelin basic protein (MBP) and neurofilament (NF70) immunofluorescence, and this was blocked by agathisflavone preventative treatment. OGD also resulted in astrocyte reactivity, exhibited by increased GFAP-EGFP fluorescence and decreased expression of glutamate synthetase (GS), and this was prevented by agathisflavone pretreatment. In addition, agathisflavone protected Purkinje neurons from ischemic damage, assessed by calbindin (CB) immunofluorescence. The results demonstrate that agathisflavone protects neuronal and myelin integrity in ischemia, which is associated with the modulation of glial responses in the face of ischemic damage.
Collapse
Affiliation(s)
- Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Jorge Maurício David
- Department of General and Inorganic Chemistry, Institute of Chemistry, University Federal da Bahia, Salvador 40170-110, BA, Brazil
| | - Arthur Morgan Butt
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
7
|
Wang J, Zhang Y, Yang H, Tian E, Guo Z, Chen J, Qiao C, Jiang H, Guo J, Zhou Z, Luo Q, Shi S, Yao H, Lu Y, Zhang S. Advanced progress of vestibular compensation in vestibular neural networks. CNS Neurosci Ther 2024; 30:e70037. [PMID: 39268632 PMCID: PMC11393560 DOI: 10.1111/cns.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
Vestibular compensation is the natural process of recovery that occurs with acute peripheral vestibular lesion. Here, we summarize the current understanding of the mechanisms underlying vestibular compensation, focusing on the role of the medial vestibular nucleus (MVN), the central hub of the vestibular system, and its associated neural networks. The disruption of neural activity balance between the bilateral MVNs underlies the vestibular symptoms after unilateral vestibular damage, and this balance disruption can be partially reversed by the mutual inhibitory projections between the bilateral MVNs, and their top-down regulation by other brain regions via different neurotransmitters. However, the detailed mechanism of how MVN is involved in vestibular compensation and regulated remains largely unknown. A deeper understanding of the vestibular neural network and the neurotransmitter systems involved in vestibular compensation holds promise for improving treatment outcomes and developing more effective interventions for vestibular disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huajing Yang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqun Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyi Yao
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Garcia-Garcia MG, Kapoor A, Akinwale O, Takemaru L, Kim TH, Paton C, Litwin-Kumar A, Schnitzer MJ, Luo L, Wagner MJ. A cerebellar granule cell-climbing fiber computation to learn to track long time intervals. Neuron 2024; 112:2749-2764.e7. [PMID: 38870929 PMCID: PMC11343686 DOI: 10.1016/j.neuron.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/31/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive granule cells (GrCs) that were active just prior (∼150 ms). The cerebellum also contributes to behaviors characterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predictions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further lengthened GrC activations. We computed CF-dependent GrC→PkC plasticity rules, demonstrating that reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals-a strategy well suited for learning to track the long intervals common in cognitive domains.
Collapse
Affiliation(s)
- Martha G Garcia-Garcia
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Akash Kapoor
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Oluwatobi Akinwale
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lina Takemaru
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tony Hyun Kim
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Casey Paton
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ashok Litwin-Kumar
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mark J Schnitzer
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
9
|
Mwachaka PM, Gichangi P, Abdelmalek A, Odula P, Ogeng'o J. Impact of varying maternal dietary folate intake on cerebellar cortex histomorphology and cell density in offspring rats. Int J Dev Neurosci 2024; 84:406-422. [PMID: 38773676 DOI: 10.1002/jdn.10337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
The cerebellum has a long, protracted developmental period that spans from the embryonic to postnatal periods; as a result, it is more sensitive to intrauterine and postnatal insults like nutritional deficiencies. Folate is crucial for foetal and early postnatal brain development; however, its effects on cerebellar growth and development are unknown. The aim of this study was to examine the effects of maternal folate intake on the histomorphology and cell density of the developing cerebellum. Twelve adult female rats (rattus norvegicus) were randomly assigned to one of four premixed diet groups: standard (2 mg/kg), folate-deficient (0 mg/kg), folate-supplemented (8 mg/kg) or folate supra-supplemented (40 mg/kg). The rats started their diets 14 days before mating and consumed them throughout pregnancy and lactation. On postnatal days 1, 7, 21 and 35, five pups from each group were sacrificed, and their brains were processed for light microscopic analysis. Histomorphology and cell density of the external granule, molecular, Purkinje and internal granule layers were obtained. The folate-deficient diet group had smaller, dysmorphic cells and significantly lower densities of external granule, molecular, Purkinje and internal granule cells. Although the folate-enriched groups had greater cell densities than the controls, the folate-supplemented group had considerably higher cell densities than the supra-supplemented group. The folate supra-supplemented group had ectopic Purkinje cells in the internal granule cell layer. These findings imply that a folate-deficient diet impairs cellular growth and reduces cell density in the cerebellar cortex. On the other hand, folate supplementation increases cell densities, but there appears to be an optimal dose of supplementation since excessive folate levels may be detrimental.
Collapse
Affiliation(s)
| | - Peter Gichangi
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Adel Abdelmalek
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Paul Odula
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Julius Ogeng'o
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
10
|
Wu S, Liu P, Cvetanovic M, Lin W. Endoplasmic reticulum associated degradation preserves neurons viability by maintaining endoplasmic reticulum homeostasis. Front Neurosci 2024; 18:1437854. [PMID: 39135735 PMCID: PMC11317260 DOI: 10.3389/fnins.2024.1437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a principal quality-control mechanism responsible for targeting misfolded ER proteins for cytosolic degradation. Evidence suggests that impairment of ERAD contributes to neuron dysfunction and death in neurodegenerative diseases, many of which are characterized by accumulation and aggregation of misfolded proteins. However, the physiological role of ERAD in neurons remains unclear. The Sel1L-Hrd1 complex consisting of the E3 ubiquitin ligase Hrd1 and its adaptor protein Sel1L is the best-characterized ERAD machinery. Herein, we showed that Sel1L deficiency specifically in neurons of adult mice impaired the ERAD activity of the Sel1L-Hrd1 complex and led to disruption of ER homeostasis, ER stress and activation of the unfold protein response (UPR). Adult mice with Sel1L deficiency in neurons exhibited weight loss and severe motor dysfunction, and rapidly succumbed to death. Interestingly, Sel1L deficiency in neurons caused global brain atrophy, particularly cerebellar and hippocampal atrophy, in adult mice. Moreover, we found that cerebellar and hippocampal atrophy in these mice resulted from degeneration of Purkinje neurons and hippocampal neurons, respectively. These findings indicate that ERAD is required for maintaining ER homeostasis and the viability and function of neurons in adults under physiological conditions.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Pingting Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Ratcliffe E, Mouri D, Torres-Cuevas I, Millán I, Saubaméa B, Mignon V, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Neuroglobin overexpression in cerebellar neurons of Harlequin mice improves mitochondrial homeostasis and reduces ataxic behavior. Mol Ther 2024; 32:2150-2175. [PMID: 38796706 PMCID: PMC11286817 DOI: 10.1016/j.ymthe.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.
Collapse
Affiliation(s)
- Hélène Cwerman-Thibault
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Vassilissa Malko-Baverel
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Gwendoline Le Guilloux
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Edward Ratcliffe
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Isabel Torres-Cuevas
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Millán
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Bruno Saubaméa
- Université Paris Cité, Platform of Cellular and Molecular Imaging (PICMO), US25 Inserm, UAR3612 CNRS, 75006 Paris, France; Université Paris Cité, Optimisation Thérapeutique en Neuropsychopharmacologie, UMR-S 1144 Inserm, 75006 Paris, France
| | - Virginie Mignon
- Université Paris Cité, Platform of Cellular and Molecular Imaging (PICMO), US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Marisol Corral-Debrinski
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France.
| |
Collapse
|
12
|
Zhang Y, Pei X, Jing L, Zhang Q, Zhao H. Lead induced cerebellar toxicology of developmental Japanese quail (Coturnix japonica) via oxidative stress-based Nrf2/Keap1 pathway inhibition and glutathione-mediated apoptosis signaling activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124114. [PMID: 38718965 DOI: 10.1016/j.envpol.2024.124114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Lead (Pb) is a heavy metal that has been recognized as a neurotoxin, meaning it can cause harmful effects on the nervous system. However, the neurotoxicology of Pb to birds still needs further study. In this study, we examined the neurotoxic effects of Pb exposure on avian cerebellum by using an animal model-Japanese quail (Coturnix japonica). The one-week old male chicks were exposed to 50, 200 and 500 mg/kg Pb of environmental relevance in the feed for five weeks. The results showed Pb caused cerebellar microstructural damages charactered by deformation of neuroglia cells, granule cells and Purkinje cells with Nissl body changes. Moreover, cerebellar neurotransmission was disturbed by Pb with increasing acetylcholine (ACh) and decreasing acetylcholinesterase (AChE), dopamine (DA), γ-Aminobutyric Acid (GABA) and Na+/K+ ATPase. Meanwhile, cerebellar oxidative stress was caused by Pb exposure represented by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) as well as decreasing catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH) and superoxide dismutase (SOD). Moreover, RNA-Seq analysis showed that molecular signaling pathways in the cerebellum were disrupted by Pb exposure. In particular, the disruption of nuclear factor erythroid-2-related factor 2 (Nfr2)/kelch-like ECH-associated protein 1 (Keap1) pathway and glutathione metabolism pathway indicated increasing cell apoptosis and functional disorder in the cerebellum. The present study revealed that Pb induced cerebellar toxicology through structural injury, oxidative stress, neurotransmission interference and abnormal apoptosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoqing Pei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
13
|
Cauzzo S, Bruno E, Boulet D, Nazac P, Basile M, Callara AL, Tozzi F, Ahluwalia A, Magliaro C, Danglot L, Vanello N. A modular framework for multi-scale tissue imaging and neuronal segmentation. Nat Commun 2024; 15:4102. [PMID: 38778027 PMCID: PMC11111705 DOI: 10.1038/s41467-024-48146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The development of robust tools for segmenting cellular and sub-cellular neuronal structures lags behind the massive production of high-resolution 3D images of neurons in brain tissue. The challenges are principally related to high neuronal density and low signal-to-noise characteristics in thick samples, as well as the heterogeneity of data acquired with different imaging methods. To address this issue, we design a framework which includes sample preparation for high resolution imaging and image analysis. Specifically, we set up a method for labeling thick samples and develop SENPAI, a scalable algorithm for segmenting neurons at cellular and sub-cellular scales in conventional and super-resolution STimulated Emission Depletion (STED) microscopy images of brain tissues. Further, we propose a validation paradigm for testing segmentation performance when a manual ground-truth may not exhaustively describe neuronal arborization. We show that SENPAI provides accurate multi-scale segmentation, from entire neurons down to spines, outperforming state-of-the-art tools. The framework will empower image processing of complex neuronal circuitries.
Collapse
Affiliation(s)
- Simone Cauzzo
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy.
| | - Ester Bruno
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - David Boulet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Miriam Basile
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Federico Tozzi
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Chiara Magliaro
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France.
| | - Nicola Vanello
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy.
| |
Collapse
|
14
|
Fong PY, Rothwell JC, Rocchi L. The Past, Current and Future Research in Cerebellar TMS Evoked Responses-A Narrative Review. Brain Sci 2024; 14:432. [PMID: 38790411 PMCID: PMC11118133 DOI: 10.3390/brainsci14050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is a novel technique to investigate cortical physiology in health and disease. The cerebellum has recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports published recently. However, EEG responses obtained by cerebellar stimulation vary considerably across the literature, possibly due to different experimental methods. Compared to conventional TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone coils are used, resulting in contamination of responses by electromyographic activity and sensory potentials. Understanding technical difficulties and limitations is essential for the development of cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies, highlighting limitations in experimental design and potential issues that can result in discrepancies between experimental outcomes. Lastly, we propose a possible direction for academic and clinical research with cerebellar TMS-EEG.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Medical School, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
15
|
Sandhu A, Rawat K, Gautam V, Bhatia A, Grover S, Saini L, Saha L. Ameliorating effect of pioglitazone on prenatal valproic acid-induced behavioral and neurobiological abnormalities in autism spectrum disorder in rats. Pharmacol Biochem Behav 2024; 237:173721. [PMID: 38307465 DOI: 10.1016/j.pbb.2024.173721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder that mainly arises due to abnormalities in different brain regions, resulting in behavioral deficits. Besides its diverse phenotypical features, ASD is associated with complex and varied etiology, presenting challenges in understanding its precise neuro-pathophysiology. Pioglitazone was reported to have a fundamental role in neuroprotection in various other neurological disorders. The present study aimed to investigate the therapeutic potential of pioglitazone in the prenatal valproic acid (VPA)-model of ASD in Wistar rats. Pregnant female Wistar rats received VPA on Embryonic day (E.D12.5) to induce autistic-like-behavioral and neurobiological alterations in their offspring. VPA-exposed rats presented core behavioral symptoms of ASD such as deficits in social interaction, poor spatial and learning behavior, increased anxiety, locomotory and repetitive activity, and decreased exploratory activity. Apart from these, VPA exposure also stimulated neurochemical and histopathological neurodegeneration in various brain regions. We administered three different doses of pioglitazone i.e., 2.5, 5, and 10 mg/kg in rats to assess various parameters. Of all the doses, our study highlighted that 10 mg/kg pioglitazone efficiently attenuated the autistic symptoms along with other neurochemical alterations such as oxidative stress, neuroinflammation, and apoptosis. Moreover, pioglitazone significantly attenuated the neurodegeneration by restoring the neuronal loss in the hippocampus and cerebellum. Taken together, our study suggests that pioglitazone exhibits therapeutic potential in alleviating behavioral abnormalities induced by prenatal VPA exposure in rats. However, further research is needed to fully understand and establish pioglitazone's effectiveness in treating ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education andResearch (PGIMER), 2nd Floor, Research Block B, Chandigarh 160012, India
| | - Sandeep Grover
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Lokesh Saini
- Department of Paediatrics, All India Institute of Medical Sciences (AIIMS), Jodhpur 342001, Rajasthan, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India.
| |
Collapse
|
16
|
Ge F, Wang Z, Yu W, Yuan X, Cai Q, Wang G, Li X, Xu X, Yang P, Fan Y, Chang J, Guan X. Activating Lobule VI PC TH+-Med Pathway in Cerebellum Blocks the Acquisition of Methamphetamine Conditioned Place Preference in Mice. J Neurosci 2024; 44:e1312232024. [PMID: 38331582 PMCID: PMC10941241 DOI: 10.1523/jneurosci.1312-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zilin Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Yu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiya Yuan
- The first Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiang Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiasong Chang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
17
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
18
|
Chen Y, Li W. Rapid eye movement sleep contributes to the formation of new axonal varicosities in mouse cerebellar parallel fibers after motor training. Neurosci Lett 2023; 810:137349. [PMID: 37327855 DOI: 10.1016/j.neulet.2023.137349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Synaptic structural plasticity is essential for the development, learning and memory. It is well established that sleep plays important roles in synaptic plasticity after motor learning. In cerebellar cortex, parallel fibers of granule cells make excitatory synapses to the dendrites of Purkinje cells. However, the synaptic structural dynamics between parallel and Purkinje cells after motor training and the function of sleep in cerebellar synaptic plasticity remain unclear. Here, we used two-photon microscopy to examine presynaptic axonal structural dynamics at parallel fiber-Purkinje cell synapses and investigated the effect of REM sleep in synaptic plasticity of mouse cerebellar cortex following motor training. We found that motor training induces higher formation of new axonal varicosities in cerebellar parallel fibers. Our results also indicate that calcium activities of granule cells significantly increase during REM sleep, and REM sleep deprivation prevents motor training-induced formation of axonal varicosities in parallel fibers, suggesting that higher calcium activity of granule cells was crucial for promoting newly formed axonal varicosities after motor training. Together, these findings reveal the effect of motor training on parallel fiber presynaptic structural modification and the important role of REM sleep in synaptic plasticity in cerebellar cortex.
Collapse
Affiliation(s)
- Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
19
|
Yuan B, Luo L, Hu C, Lin F, Yang T, Chen J, Li T. Retinoic acid supplementation ameliorates motor incoordination via RARα-CBLN2 in the cerebellum of a prenatal valproic acid-exposed rat autism model. Neurosci Lett 2023; 809:137316. [PMID: 37247722 DOI: 10.1016/j.neulet.2023.137316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
In addition to their core symptoms, most individuals with autism spectrum disorder (ASD) also experience motor impairments. These impairments are often linked to the cerebellum, which is the focus of the current study. Herein, we utilized a prenatal valproic acid (VPA)-induced rat model of autism and performed RNA sequencing in the cerebellum. Relative to control animals, the VPA-treated offspring demonstrated both abnormal motor coordination and impaired dendritic arborization of Purkinje cells (PCs). Concurrently, we observed a decrease in the cerebellar expression of retinoic acid (RA) synthesis enzymes (RDH10, ALDH1A1), metabolic enzyme (CYP26A2), and lower levels of RA, retinoic acid receptor α (RARα), and Cerebellin2 (CBLN2) in the VPA-treated offspring. However, RA supplementation ameliorated these deficits, restoring motor coordination, normalizing PCs dendritic arborization, and increasing the expression of RA, RARα, and CBLN2. Further, ChIP assays confirmed that RA supplementation enhanced RARα's binding capacity to CBLN2 promoters. Collectively, these findings highlight the therapeutic potential of RA for treating motor incoordination in VPA-induced autism, acting through the RARα-CBLN2 pathway.
Collapse
Affiliation(s)
- Binlin Yuan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lijuan Luo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chaoqun Hu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Fang Lin
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Childhood Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| |
Collapse
|
20
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Xi K, Cai SQ, Yan HF, Tian Y, Cai J, Yang XM, Wang JM, Xing GG. CSMD3 Deficiency Leads to Motor Impairments and Autism-Like Behaviors via Dysfunction of Cerebellar Purkinje Cells in Mice. J Neurosci 2023; 43:3949-3969. [PMID: 37037606 PMCID: PMC10219040 DOI: 10.1523/jneurosci.1835-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.
Collapse
Affiliation(s)
- Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Si-Qing Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Hui-Fang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jing-Min Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
- Second Affiliated Hospital of Xinxiang Medical University, Henan 453002, People's Republic of China
| |
Collapse
|
22
|
Yoon S, Boonpraman N, Kim CY, Moon JS, Yi SS. Reduction of fetuin-A levels contributes to impairment of Purkinje cells in cerebella of patients with Parkinson's disease. BMB Rep 2023; 56:308-313. [PMID: 36935573 PMCID: PMC10230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023] Open
Abstract
Phenotypic features such as ataxia and loss of motor function, which are characteristics of Parkinson's disease (PD), are expected to be very closely related to cerebellum function. However, few studies have reported the function of the cerebellum. Since the cerebellum, like the cerebrum, is known to undergo functional and morphological changes due to neuroinflammatory processes, elucidating key functional factors that regulate neuroinflammation in the cerebellum can be a beneficial therapeutic approach. Therefore, we employed PD patients and MPTP-induced PD mouse model to find cytokines involved in cerebellar neuroinflammation in PD and to examine changes in cell function by regulating related genes. Along with the establishment of a PD mouse model, abnormal shapes such as arrangement and number of Purkinje cells in the cerebellum were confirmed based on histological finding, consistent with those of cerebellums of PD patients. As a result of proteome profiling for neuroinflammation using PD mouse cerebellar tissues, fetuin-A, a type of cytokine, was found to be significantly reduced in Purkinje cells. To further elucidate the function of fetuin-A, neurons isolated from cerebellums of embryos (E18) were treated with fetuin-A siRNA. We uncovered that not only the population of neuronal cells, but also their morphological appearances were significantly different. In this study, we found a functional gene called fetuin-A in the PD model's cerebellum, which was closely related to the role of cerebellar Purkinje cells of mouse and human PD. In conclusion, morphological abnormalities of Purkinje cells in PD mice and patients have a close relationship with a decrease of fetuin-A, suggesting that diagnosis and treatment of cerebellar functions of PD patients might be possible through regulation of fetuin-A. [BMB Reports 2023; 56(5): 308-313].
Collapse
Affiliation(s)
- Sunmi Yoon
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Napissara Boonpraman
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Chae Young Kim
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Sun Shin Yi
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
23
|
Liu F, Li S, Zhao X, Xue S, Li H, Yang G, Li Y, Wu Y, Zhu L, Chen L, Wu H. O-GlcNAcylation Is Required for the Survival of Cerebellar Purkinje Cells by Inhibiting ROS Generation. Antioxidants (Basel) 2023; 12:antiox12040806. [PMID: 37107182 PMCID: PMC10135177 DOI: 10.3390/antiox12040806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Purkinje cells (PCs), as a unique type of neurons output from the cerebellar cortex, are essential for the development and physiological function of the cerebellum. However, the intricate mechanisms underlying the maintenance of Purkinje cells are unclear. The O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuity. In this study, we demonstrate that the O-GlcNAc transferase (OGT) in PCs maintains the survival of PCs. Furthermore, a loss of OGT in PCs induces severe ataxia, extensor rigidity and posture abnormalities in mice. Mechanistically, OGT regulates the survival of PCs by inhibiting the generation of intracellular reactive oxygen species (ROS). These data reveal a critical role of O-GlcNAc signaling in the survival and maintenance of cerebellar PCs.
Collapse
|
24
|
Bürgisser GM, Heuberger DM, Schaffner N, Giovanoli P, Calcagni M, Buschmann J. Delineation of the healthy rabbit heart by immunohistochemistry - A technical note. Acta Histochem 2023; 125:151993. [PMID: 36584538 DOI: 10.1016/j.acthis.2022.151993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Heart failure poses a big health problem and may result from obesity, smoking, alcohol and/or growing age. Studying pathological heart tissue demands accurate histological and immunohistochemical stainings in animal models, including chromogenic and fluorescent approaches. Moreover, a reliable set of healthy heart stainings and labeling are required, in order to provide a reference for the pathological situation. Heart and brain tissue of a healthy rabbit were collected, and different histological key steps were compared, such as paraffin embedding after formalin fixation versus cryopreservation; an antigen retrieval (AR) step in processing paraffin sections versus the same procedure without AR; or a chromogenic with a fluorescent detection system, respectively. Using serial sections, we stained the same morphological structure with classic approaches (HE, Masson Goldner Trichrome (GT) and Elastica van Gieson (EL)) and with different markers, including collagen I, collagen III, fibronectin, α-SMA, protease-activated receptor-2 (PAR-2) which is an inflammation-related marker, and ki67 for proliferating cells. Differences between conditions were quantitatively assessed by measuring the color intensity. Generally, cryosections exhibited a more prominent signal intensity in immunohistochemically labeled sections than in paraffin sections, but the strong staining was slurry, which sometimes impeded proper identification of morphological structures, particularly at higher magnifications. In addition, the advantage of an AR step was observed when compared to the condition without AR, where signal intensities were significantly lower. Different stainings of the heart arteries and the myocardium revealed a clear distribution of extracellular matrix components, with prominent collagen III in the artery wall, but an absence of collagen III in the myocardium. Moreover, paraffin-embedded sections provided more distinct structures compared to cryosections after collagen III, ki67, fibronectin, and α-SMA labeling. As for the Purkinje cells that were depicted in the heart and the cerebellum (Purkinje neurons), we found GT staining most suitable to depict them in the heart, while HE as well as EL staining was ideal to depict Purkinje neurons in the cerebellum. In sum, we provide useful reference images with different stainings for researchers using the rabbit heart or brain model. Such images can help to decide which of the immunohistochemical protocols are valuable to reach a specific aim. Recommendations are given for the best visualization of the target structures and specific (immunohistochemical) staining.
Collapse
Affiliation(s)
- Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Nicola Schaffner
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
25
|
Medina S, Ihrie RA, Irish JM. Learning cell identity in immunology, neuroscience, and cancer. Semin Immunopathol 2023; 45:3-16. [PMID: 36534139 PMCID: PMC9762661 DOI: 10.1007/s00281-022-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Suspension and imaging cytometry techniques that simultaneously measure hundreds of cellular features are powering a new era of cell biology and transforming our understanding of human tissues and tumors. However, a central challenge remains in learning the identities of unexpected or novel cell types. Cell identification rubrics that could assist trainees, whether human or machine, are not always rigorously defined, vary greatly by field, and differentially rely on cell intrinsic measurements, cell extrinsic tissue measurements, or external contextual information such as clinical outcomes. This challenge is especially acute in the context of tumors, where cells aberrantly express developmental programs that are normally time, location, or cell-type restricted. Well-established fields have contrasting practices for cell identity that have emerged from convention and convenience as much as design. For example, early immunology focused on identifying minimal sets of protein features that mark individual, functionally distinct cells. In neuroscience, features including morphology, development, and anatomical location were typical starting points for defining cell types. Both immunology and neuroscience now aim to link standardized measurements of protein or RNA to informative cell functions such as electrophysiology, connectivity, lineage potential, phospho-protein signaling, cell suppression, and tumor cell killing ability. The expansion of automated, machine-driven methods for learning cell identity has further created an urgent need for a harmonized framework for distinguishing cell identity across fields and technology platforms. Here, we compare practices in the fields of immunology and neuroscience, highlight concepts from each that might work well in the other, and propose ways to implement these ideas to study neural and immune cell interactions in brain tumors and associated model systems.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
26
|
Fan L, Li C, Huang ZG, Zhao J, Wu X, Liu T, Li Y, Wang J. The longitudinal neural dynamics changes of whole brain connectome during natural recovery from poststroke aphasia. NEUROIMAGE: CLINICAL 2022; 36:103190. [PMID: 36174256 PMCID: PMC9668607 DOI: 10.1016/j.nicl.2022.103190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Poststroke aphasia is one of the most dramatic functional deficits that results from direct damage of focal brain regions and dysfunction of large-scale brain networks. The reconstruction of language function depends on the hierarchical whole-brain dynamic reorganization. However, investigations into the longitudinal neural changes of large-scale brain networks for poststroke aphasia remain scarce. Here we characterize large-scale brain dynamics in left-frontal-stroke aphasia through energy landscape analysis. Using fMRI during an auditory comprehension task, we find that aphasia patients suffer serious whole-brain dynamics perturbation in the acute and subacute stages after stroke, in which the brains were restricted into two major activity patterns. Following spontaneous recovery process, the brain flexibility improved in the chronic stage. Critically, we demonstrated that the abnormal neural dynamics are correlated with the aberrant brain network coordination. Taken together, the energy landscape analysis exhibited that the acute poststroke aphasia has a constrained, low dimensional brain dynamics, which were replaced by less constrained and high dimensional dynamics at chronic aphasia. Our study provides a new perspective to profoundly understand the pathological mechanisms of poststroke aphasia.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi 710032, PR China
| | - Zi-gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, Shaanxi 710049, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| |
Collapse
|
27
|
Carugati M, Goodlett CR, Cudd TA, Washburn SE. The effects of gestational choline supplementation on cerebellar Purkinje cell number in the sheep model of binge alcohol exposure during the first trimester-equivalent. Alcohol 2022; 100:11-21. [PMID: 35114358 PMCID: PMC8983574 DOI: 10.1016/j.alcohol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Individuals with fetal alcohol spectrum disorders (FASD) incur enduring brain damage and neurodevelopmental impairments from prenatal alcohol exposure (PAE). Preclinical rodent models have demonstrated that choline supplementation during development can reduce the severity of adverse neurodevelopmental consequences of PAE. This study used the sheep model to evaluate dietary choline supplementation during pregnancy as a therapeutic intervention, testing the hypothesis that choline can ameliorate alcohol-induced cerebellar Purkinje cell loss. Pregnant ewes were randomly assigned either to a normal control [NC] group (n = 8), or to groups given intravenous infusions of alcohol (or saline) from gestational days 4-41 (the first trimester-equivalent). A weekly binge-drinking pattern was modeled, with three consecutive days of infusions of saline [SAL], 1.75 g/kg/day alcohol [1.75ALC], or 2.5 g/kg/day alcohol [2.5ALC] followed by four days off. Infused ewes were randomly assigned to receive dietary supplements throughout pregnancy of choline (10 mg/kg/day) or placebo (n = 8 per group). Mean blood alcohol concentrations (BAC) were significantly higher in the 2.5ALC groups (287 mg/dL) than the 1.75ALC groups (197 mg/dL). Lamb cerebella were harvested on postnatal day 180 and processed for stereological counts of Purkinje cells. Both alcohol doses caused significant reductions in Purkinje number relative to NC and SAL-Placebo groups, confirming previous findings. Effects of choline supplementation depended on infusion group: it significantly protected against Purkinje cell loss in the 2.5ALC group, had no effect in the 1.75ALC group, and significantly reduced numbers in the SAL-Choline group (though neither the SAL-Choline nor the SAL-Placebo group differed from the NC group). The protection by choline evident only in the 2.5ALC group suggests that multiple, BAC-dependent mechanisms of cerebellar damage may be activated with alcohol exposure in the first trimester, and that choline may protect against pathogenic mechanisms that emerge at higher BACs. These outcomes extend the evidence that early choline supplementation can mitigate some neurodevelopmental defects resulting from binge-like PAE.
Collapse
Affiliation(s)
- Megan Carugati
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Timothy A Cudd
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Shannon E Washburn
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States.
| |
Collapse
|
28
|
Hooshmandi M, Truong VT, Fields E, Thomas RE, Wong C, Sharma V, Gantois I, Soriano Roque P, Chalkiadaki K, Wu N, Chakraborty A, Tahmasebi S, Prager-Khoutorsky M, Sonenberg N, Suvrathan A, Watt AJ, Gkogkas CG, Khoutorsky A. 4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Rep 2021; 35:109036. [PMID: 33910008 DOI: 10.1016/j.celrep.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vinh Tai Truong
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Riya Elizabeth Thomas
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vijendra Sharma
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Patricia Soriano Roque
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Neil Wu
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anindyo Chakraborty
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christos G Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
29
|
Chowdhury D, Watters K, Biederer T. Synaptic recognition molecules in development and disease. Curr Top Dev Biol 2021; 142:319-370. [PMID: 33706921 DOI: 10.1016/bs.ctdb.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptic connectivity patterns underlie brain functions. How recognition molecules control where and when neurons form synapses with each other, therefore, is a fundamental question of cellular neuroscience. This chapter delineates adhesion and signaling complexes as well as secreted factors that contribute to synaptic partner recognition in the vertebrate brain. The sections follow a developmental perspective and discuss how recognition molecules (1) guide initial synaptic wiring, (2) provide for the rejection of incorrect partner choices, (3) contribute to synapse specification, and (4) support the removal of inappropriate synapses once formed. These processes involve a rich repertoire of molecular players and key protein families are described, notably the Cadherin and immunoglobulin superfamilies, Semaphorins/Plexins, Leucine-rich repeat containing proteins, and Neurexins and their binding partners. Molecular themes that diversify these recognition systems are defined and highlighted throughout the text, including the neuron-type specific expression and combinatorial action of recognition factors, alternative splicing, and post-translational modifications. Methodological innovations advancing the field such as proteomic approaches and single cell expression studies are additionally described. Further, the chapter highlights the importance of choosing an appropriate brain region to analyze synaptic recognition factors and the advantages offered by laminated structures like the hippocampus or retina. In a concluding section, the profound disease relevance of aberrant synaptic recognition for neurodevelopmental and psychiatric disorders is discussed. Based on the current progress, an outlook is presented on research goals that can further advance insights into how recognition molecules provide for the astounding precision and diversity of synaptic connections.
Collapse
Affiliation(s)
| | - Katherine Watters
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States; Neuroscience Graduate Program, Tufts University School of Medicine, Boston, MA, United States
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
30
|
Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease. Essays Biochem 2021; 64:591-606. [PMID: 32756865 PMCID: PMC7517341 DOI: 10.1042/ebc20200043] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Neurosteroids are steroid hormones synthesised de novo in the brain and peripheral nervous tissues. In contrast to adrenal steroid hormones that act on intracellular nuclear receptors, neurosteroids directly modulate plasma membrane ion channels and regulate intracellular signalling. This review provides an overview of the work that led to the discovery of neurosteroids, our current understanding of their intracellular biosynthetic machinery, and their roles in regulating the development and function of nervous tissue. Neurosteroids mediate signalling in the brain via multiple mechanisms. Here, we describe in detail their effects on GABA (inhibitory) and NMDA (excitatory) receptors, two signalling pathways of opposing function. Furthermore, emerging evidence points to altered neurosteroid function and signalling in neurological disease. This review focuses on neurodegenerative diseases associated with altered neurosteroid metabolism, mainly Niemann-Pick type C, multiple sclerosis and Alzheimer disease. Finally, we summarise the use of natural and synthetic neurosteroids as current and emerging therapeutics alongside their potential use as disease biomarkers.
Collapse
|
31
|
Tapper S, Göransson N, Lundberg P, Tisell A, Zsigmond P. A pilot study of essential tremor: cerebellar GABA+/Glx ratio is correlated with tremor severity. CEREBELLUM & ATAXIAS 2020; 7:8. [PMID: 32607248 PMCID: PMC7318770 DOI: 10.1186/s40673-020-00116-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Objective Essential tremor is a common movement disorder with an unclear origin. Emerging evidence suggests the role of the cerebellum and the thalamus in tremor pathophysiology. We examined the two main neurotransmitters acting inhibitory (GABA+) and excitatory (Glx) respectively, in the thalamus and cerebellum, in patients diagnosed with severe essential tremor. Furthermore, we also investigated the relationship between determined neurotransmitter concentrations and tremor severity in the essential tremor patients. Methods Ten essential tremor patients (prior to deep brain stimulation surgery) and six healthy controls, were scanned using a 3 T MR system. GABA+ and Glx concentrations were measured using magnetic resonance spectroscopy (MRS) performed using single voxel MEGA-PRESS. For the purpose of assessing the tremor severity, the essential tremor rating scale (ETRS) was used in accordance with Fahn, Tolosa, and Marin. Results We demonstrated that the cerebellar GABA+/Glx ratio was positively correlated to the ETRS (r = 0.70, p = 0.03) in essential tremor. Cerebellar and thalamic GABA+ and Glx concentrations did not show any significant difference when comparing essential tremor patients with healthy controls, at the group level. Conclusion We demonstrated a positive correlation between increasing tremor disability and the ratio of GABA+/ Glx in the cerebellum of essential tremor patients. This highlights the impact of an altered balance of the excitatory and inhibitory neurotransmitters in tremor severity. Rather than a change in GABA+, which was constant, we attribute this finding to an overall decrease of Glx.
Collapse
Affiliation(s)
- Sofie Tapper
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Nathanael Göransson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Zsigmond
- Department of Neurosurgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
Sadeghinezhad J, Aghabalazadeh Asl M, Saeidi A, De Silva M. Morphometrical study of the cat cerebellum using unbiased design‐based stereology. Anat Histol Embryol 2020; 49:788-797. [DOI: 10.1111/ahe.12583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Mahdi Aghabalazadeh Asl
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Ava Saeidi
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008) University of Bologna Bologna Italy
| |
Collapse
|
33
|
Wagner MJ, Luo L. Neocortex-Cerebellum Circuits for Cognitive Processing. Trends Neurosci 2019; 43:42-54. [PMID: 31787351 DOI: 10.1016/j.tins.2019.11.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Although classically thought of as a motor circuit, the cerebellum is now understood to contribute to a wide variety of cognitive functions through its dense interconnections with the neocortex, the center of brain cognition. Recent investigations have shed light on the nature of cerebellar cognitive processing and information exchange with the neocortex. We review findings that demonstrate widespread reward-related cognitive input to the cerebellum, as well as new studies that have characterized the codependence of processing in the neocortex and cerebellum. Together, these data support a view of the neocortex-cerebellum circuit as a joint dynamic system both in classical sensorimotor contexts and reward-related, cognitive processing. These studies have also expanded classical theory on the computations performed by the cerebellar circuit.
Collapse
Affiliation(s)
- Mark J Wagner
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|