1
|
Bitar R, Zurita P, Martiniova L, Zurita AJ, Ravizzini GC. Positron Emission Tomography Radiotracers for Identification of Site of Recurrence in Prostate Cancer After Primary Treatment Failure. Cancers (Basel) 2025; 17:1723. [PMID: 40427220 PMCID: PMC12109795 DOI: 10.3390/cancers17101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/30/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Despite substantial improvement in the definitive management of primary prostate cancer, a significant number of patients experience biochemical recurrence-a clinical state in which serum prostate-specific antigen (PSA) levels rise prior to the development of physical signs or symptoms. The early detection and localization of biochemical recurrence may confer eligibility for salvage therapy; therefore, imaging techniques that provide accurate disease visualization are imperative. In this review, we discuss various imaging methods for localizing disease in the context of biochemical recurrence in prostate cancer. Particularly, we describe available or investigational positron emission tomography (PET) radiotracers, such as 18F-FDG, 18F-NaF, choline (both 18F and 11C), the 18F-labeled amino acid derivative fluciclovine, prostate-specific membrane antigen (PSMA) radioligands, and the short peptide compound bombesin. Generally, PET radiotracers such as 18F-FDG, 18F-NaF, and 18F/11C choline have fallen out of favor because of their inferior sensitivity and/or specificity in relation to more recently developed radiotracers. 18F-fluciclovine has addressed these shortcomings by exploiting the upregulation of amino acid transporters in tumors; however, PSMA-targeting agents have significantly advanced the management of biochemical recurrence of prostate cancer through their high sensitivity and specificity, enabling the identification of candidates for radionuclide therapy. Investigational agents, such as bombesin-based radiotracers, may address the shortcomings of treating prostate cancer with little to no PSMA expression.
Collapse
Affiliation(s)
- Ryan Bitar
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Pablo Zurita
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Lucia Martiniova
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Amado J. Zurita
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Gregory C. Ravizzini
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Liu H, Zhang X, Zhang J, Pan Y, Wen H, Xu X, Wu S, Wang Y, Zhang C, Ma G, Liu Y, Wang R, Zhang J. Comparison of 64Cu-DOTA-PSMA-3Q and 64Cu-NOTA-PSMA-3Q utilizing NOTA and DOTA as bifunctional chelators in prostate cancer: preclinical assessment and preliminary clinical PET/CT imaging. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07131-3. [PMID: 39954062 DOI: 10.1007/s00259-025-07131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE This study aims to investigate the efficacy and safety of prostate-specific membrane antigen (PSMA) radiolabeled with copper-64 (64Cu) using the bifunctional chelating agents (BFCAs) NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). As widely utilized BFCAs in the development of radiopharmaceuticals, NOTA and DOTA play a critical role in ensuring stable chelation with 64Cu. This study evaluates the stability, bioavailability, and therapeutic potential of these radiolabeled compounds in preclinical models and initial clinical trials. METHODS 64Cu-DOTA-PSMA-3Q and 64Cu-NOTA-PSMA-3Q were synthesized by manual labeling. The radiochemical purity, stability, specificity and biological distribution of the product were evaluated by preclinical studies. In 23 patients with suspected prostate cancer, PET/CT imaging was used to evaluate the potential and differences in biological distribution of 64Cu-DOTA-PSMA-3Q and 64Cu-NOTA-PSMA-3Q in clinical diagnosis. RESULTS The radiochemical purities of 64Cu-DOTA-PSMA-3Q and 64Cu-NOTA-PSMA-3Q are more than 98% and have good stability in vitro. Biodistribution studies in healthy mice revealed that both tracers primarily underwent renal excretion post-injection. Liver uptake of 64Cu-DOTA-PSMA-3Q was significantly higher than that of 64Cu-NOTA-PSMA-3Q at 1 h after injection (P<0.05). Micro-PET/CT imaging in 22Rv1 tumor-bearing mice demonstrated similar tumor uptake for both tracers at 1 h after injection (P>0.05). However, after 24 h, 64Cu-DOTA-PSMA-3Q exhibited significantly better tumor retention compared to 64Cu-NOTA-PSMA-3Q (P<0.05). In clinical PET/CT imaging involving 23 patients with suspected prostate cancer, no adverse reactions or significant changes in vital signs were observed, underscoring the safety of both tracers. Notably, 64Cu-NOTA-PSMA-3Q demonstrated higher uptake in the lacrimal glands (17.73 vs. 10.84), parotid glands (20.98 vs. 16.30), and submandibular glands (20.26 vs. 17.28) compared to 64Cu-DOTA-PSMA-3Q. Conversely, uptake in the sublingual glands was lower for 64Cu-NOTA-PSMA-3Q (7.10 vs. 7.49). Of particular clinical relevance, liver uptake of 64Cu-NOTA-PSMA-3Q was significantly lower than that of 64Cu-DOTA-PSMA-3Q (4.04 vs. 8.18), highlighting a key difference in their biodistribution profiles. CONCLUSIONS Both NOTA and DOTA are suitable chelators for the development of 64Cu-labeled PSMA-3Q tracers for PET/CT imaging. DOTA showed better tumor retention 24 h after injection, while NOTA showed lower uptake in the liver, in addition, NOTA was higher uptake in the salivary glands, while DOTA was lower uptake in these tissues. Overall, these findings highlight the importance of selecting the right chelating agent to optimize clinical imaging outcomes. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300072655, Registered 20 June 2023.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jingfeng Zhang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yue Pan
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hui Wen
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiaodan Xu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shina Wu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yuan Wang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Cong Zhang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Guangyu Ma
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yachao Liu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Ruimin Wang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jinming Zhang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
3
|
Yang N, Guo XY, Ding J, Wang F, Liu TL, Zhu H, Yang Z. Copper-64 Based PET-Radiopharmaceuticals: Ways to Clinical Translational. Semin Nucl Med 2024; 54:792-800. [PMID: 39521713 DOI: 10.1053/j.semnuclmed.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Positron emission tomography (PET) as an advanced noninvasive imaging technique, provides unprecedented insights into the study of physiological and biochemical processes in vivo. Copper-64 (64Cu) has a ideal half-life of 12.7 hours, with β+ and β-dual decay modes and abundant coordination chemistry, enabling the development of a wide variety of radiopharmaceuticals for PET imaging and radionuclide therapy.This review provides a comprehensive overview of the latest advances in Copper-64 (64Cu)-based PET radionuclides, covering their production, radiolabeling strategies, and clinical applications. It highlights the role of 64Cu-PET in enhancing diagnostic accuracy and therapeutic outcomes across various tumor types. Additionally, future research directions and the evolving clinical applications of 64Cu-based radiopharmaceuticals are discussed, offering insights into their potential impact on clinical practice.
Collapse
Affiliation(s)
- Nan Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Yi Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Te-Li Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
4
|
Lee I, Kim MH, Lee K, Oh K, Lim H, Ahn JH, Lee YJ, Cheon GJ, Chi DY, Lim SM. Comparison of the Effects of DOTA and NOTA Chelators on 64Cu-Cudotadipep and 64Cu-Cunotadipep for Prostate Cancer. Diagnostics (Basel) 2023; 13:2649. [PMID: 37627908 PMCID: PMC10453766 DOI: 10.3390/diagnostics13162649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND This study compared the effects of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) as 64Cu-chelating agents in newly developed prostate-specific membrane antigen (PSMA) target compounds, 64Cu-cudotadipep and 64Cu-cunotadipep, on pharmacokinetics. METHODS The in vitro stability of the chelators was evaluated using human and mouse serum. In vitro PSMA-binding affinity and cell uptake were compared using human 22Rv1 cells. To evaluate specific PSMA-expressing tumor-targeting efficiency, micro-positron emission tomography (mcroPET)/computed tomography (CT) and biodistribution analysis were performed using PSMA+ PC3-PIP and PSMA- PC3-flu tumor xenografts. RESULTS The serum stability of DOTA- or NOTA-conjugated 64Cu-cudotadipep and 64Cu-cunotadipep was >97%. The Ki value of the NOTA derivative, cunotadipep, in the in vitro affinity binding analysis was higher (2.17 ± 0.25 nM) than that of the DOTA derivative, cudotadipep (6.75 ± 0.42 nM). The cunotadipep exhibited a higher cellular uptake (6.02 ± 0.05%/1 × 106 cells) compared with the cudotadipep (2.93 ± 0.06%/1 × 106 cells). In the biodistribution analysis and microPET/CT imaging, the 64Cu-labeled NOTA derivative, 64Cu-cunotadipep, demonstrated a greater tumor uptake and lower liver uptake than the DOTA derivative. CONCLUSIONS This study indicates that the PSMA-targeted 64Cu-cunotadipep can be applied in clinical practice owing to its high diagnostic power for prostate cancer.
Collapse
Affiliation(s)
- Inki Lee
- Department of Nuclear Medicine, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea;
| | - Min Hwan Kim
- Research Institute of Radiopharmaceuticals, FutureChem Co., Ltd., Seoul 04793, Republic of Korea; (M.H.K.); (K.L.); (K.O.); (H.L.)
| | - Kyongkyu Lee
- Research Institute of Radiopharmaceuticals, FutureChem Co., Ltd., Seoul 04793, Republic of Korea; (M.H.K.); (K.L.); (K.O.); (H.L.)
| | - Keumrok Oh
- Research Institute of Radiopharmaceuticals, FutureChem Co., Ltd., Seoul 04793, Republic of Korea; (M.H.K.); (K.L.); (K.O.); (H.L.)
| | - Hyunwoo Lim
- Research Institute of Radiopharmaceuticals, FutureChem Co., Ltd., Seoul 04793, Republic of Korea; (M.H.K.); (K.L.); (K.O.); (H.L.)
| | - Jae Hun Ahn
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; (J.H.A.); (Y.J.L.)
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; (J.H.A.); (Y.J.L.)
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Dae Yoon Chi
- Research Institute of Radiopharmaceuticals, FutureChem Co., Ltd., Seoul 04793, Republic of Korea; (M.H.K.); (K.L.); (K.O.); (H.L.)
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea;
| |
Collapse
|
5
|
Chhabra A, Thakur ML. Theragnostic Radionuclide Pairs for Prostate Cancer Management: 64Cu/ 67Cu, Can Be a Budding Hot Duo. Biomedicines 2022; 10:2787. [PMID: 36359312 PMCID: PMC9687163 DOI: 10.3390/biomedicines10112787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 08/26/2023] Open
Abstract
Prostate cancer (PCa) is one of the preeminent causes of mortality in men worldwide. Theragnostic, a combination of therapy and diagnostic, using radionuclide pairs to diagnose and treat disease, has been shown to be a promising approach for combating PCa. In PCa patients, bone is one of the most common sites of metastases, and about 90% of patients develop bone metastases. This review focuses on (i) clinically translated theragnostic radionuclide pairs for the management of PCa, (ii) radionuclide therapy of bone metastases in PCa, and (iii) a special emphasis on emerging theragnostic radionuclide pair, Copper-64/Copper-67 (64Cu/67Cu) for managing the disease.
Collapse
Affiliation(s)
- Anupriya Chhabra
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mathew L. Thakur
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Cardoza-Ochoa DR, Rivera-Bravo B. A Comparison of 18F-PSMA-1007 and 64Cu-PSMA in 2 Patients With Metastatic Prostate Cancer. Clin Nucl Med 2022; 47:e120-e122. [PMID: 34115708 DOI: 10.1097/rlu.0000000000003758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT 18F-prostate-specific membrane antigen (PSMA) 1007 is one of the most promising radiotracers for PET imaging in prostate cancer, minimal urinary clearance, and higher spatial resolution, which are the most outstanding features. PSMA can also be labeled with 64Cu, offering a longer half-life and different resolution imaging. We present images of metastatic prostate cancer in two patients, where 64Cu-PSMA PET/CT was performed one day after 18F-PSMA-1007 PET/CT. In the two patients, both radiotracers provided high image quality and a similar range of detection for metastatic lesions.
Collapse
Affiliation(s)
- David R Cardoza-Ochoa
- From the PET-CT Unit, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
7
|
Mirzaei S, Lipp R, Zandieh S, Leisser A. Single-Center Comparison of [ 64Cu]-DOTAGA-PSMA and [ 18F]-PSMA PET-CT for Imaging Prostate Cancer. Curr Oncol 2021; 28:4167-4173. [PMID: 34677271 PMCID: PMC8534892 DOI: 10.3390/curroncol28050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: the diagnostic performance of [64Cu]-DOTAGA-PSMA PET–CT imaging was compared retrospectively to [18F]-PSMA PET–CT in prostate cancer patients with recurrent disease and in the primary staging of selected patients with advanced local and possible metastatic disease. Methods: We retrospectively selected a total of 100 patients, who were consecutively examined in our department, with biochemical recurrence after radical prostatectomy or who had progressive local and possible metastatic disease in the last 3 months prior to this investigation. All patients were examined with a dedicated PET–CT scanner (Biograph; Siemens Healthineers). A total of 250 MBq (3.5 MBq per kg bodyweight, range 230–290 MBq) of [64Cu]-DOTAGA-PSMA or [18-F]-PSMA was applied intravenously. PET images were performed 1 h post-injection (skull base to mid-thigh). The maximum standardized uptake values (SUVmax) of PSMA-positive lesions and the mean standardized uptake value (SUVmean) of the right liver lobe were measured. Results: All but 9/50 of the patients (18%; PSA range: 0.01–0.7 µg/L) studied with [64Cu]-DOTAGA-PSMA and 6/50 of the ones (12%; PSA range: 0.01–4.2) studied with [18F]-PSMA had at least one positive PSMA lesion shown by PET–CT. The total number of lesions was higher with [64Cu]-DOTAGA-PSMA (209 vs. 191); however, the median number of lesions was one for [64Cu]-DOTAGA-PSMA and two for [18F]-PSMA. Interestingly, the median SUVmean of the right liver lobe was slightly higher for [18F]-PSMA (11.8 vs. 8.9). Conclusions: [64Cu]-DOTAGA-PSMA and [18F]-PSMA have comparable detection rates for the assessment of residual disease in patients with recurrent or primary progressive prostate cancer. The uptake in the liver is moderately different, and therefore at least the SUVs of the lesions in both studies would not be comparable.
Collapse
Affiliation(s)
- Siroos Mirzaei
- Department of Nuclear Medicine with PET-Center, Clinic Ottakring (Wilhelminenspital), 1160 Vienna, Austria;
- Correspondence:
| | - Rainer Lipp
- Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Shahin Zandieh
- Department of Radiology and Nuclear Medicine, Hanusch Hospital, 1160 Vienna, Austria;
| | - Asha Leisser
- Department of Nuclear Medicine with PET-Center, Clinic Ottakring (Wilhelminenspital), 1160 Vienna, Austria;
| |
Collapse
|
8
|
Mascia M, Villano C, De Francesco V, Schips L, Marchioni M, Cindolo L. Efficacy and Safety of the 64Cu(II)Cl2 PET/CT for Urological Malignancies: Phase IIa Clinical Study. Clin Nucl Med 2021; 46:443-448. [PMID: 33883484 DOI: 10.1097/rlu.0000000000003658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF THE REPORT The aim of this study was to evaluate safety and efficacy of copper-64(II)dichloride (64Cu(II)Cl2) as a new PET tracer for urological malignancies (UMs). METHODS Patients with UM were enrolled in a prospective study. All patients were staged with preoperative CT and 64Cu(II)Cl2 PET/CT. Patient characteristics, anatomical and functional imaging, and final histopathology were recorded. Surgical specimens for histopathological examination were collected. To determine time-activity curves for 64Cu(II)Cl2 uptake in UM and normal tissues, SUVs were calculated. The safety of 64Cu(II)Cl2 was assessed. RESULTS Twenty-three patients were included. An administered activity of 174.7 MBq (4.72 mCi) for 64Cu(II)Cl2 was equal to 9.80 mSv of the effective dose. The median SUVmax values were 5.7, 0.9, 1.8, and 9.8 for the prostate, bladder, penis, and kidney, respectively. Median SUVmax values were higher in organs with a malignancy in comparison with healthy tissue (prostate [11.5 vs 5.3, P < 0.001], bladder [6.2 vs 0.9, P = 0.007], and penis [3.9 vs 1.3, P = 0.027]), but not in the kidneys (5.0 vs 10.4, P = 0.998). The highest area under the curve (AUC) was reported for prostate cancer (AUC, 0.978), and the lowest for penile cancer (AUC, 0.775). The detection rates based on the best suggested cutoff according to the SUVmax were 85.7% (6/7) for prostate and bladder and 83.3% (5/6) for penile cancer. Neither drug-related effects nor physiologic responses occurred, nor adverse reactions. CONCLUSIONS 64Cu(II)Cl2 is an effective and well-tolerated tracer in patients with UM. Our results show higher SUVmax in cancer patients than in healthy subjects. Our findings suggest that 64Cu(II)Cl2 PET/CT is useful in patients affected by prostate, bladder, and penis cancer.
Collapse
Affiliation(s)
- Manlio Mascia
- From the Department of Nuclear Medicine and Radiometabolic Therapy, "Spirito Santo" Hospital, Pescara
| | - Carlo Villano
- From the Department of Nuclear Medicine and Radiometabolic Therapy, "Spirito Santo" Hospital, Pescara
| | - Valerio De Francesco
- From the Department of Nuclear Medicine and Radiometabolic Therapy, "Spirito Santo" Hospital, Pescara
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, Urology Unit, SS Annunziata Hospital
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, "G. d'Annunzio" University of Chieti, Chieti
| | - Luca Cindolo
- Department of Urology, Villa Stuart Private Hospital, Rome, Italy
| |
Collapse
|
9
|
McMahon JH, Zerbato JM, Lau JSY, Lange JL, Roche M, Tumpach C, Dantanarayana A, Rhodes A, Chang J, Rasmussen TA, Mackenzie CA, Alt K, Hagenauer M, Roney J, O'Bryan J, Carey A, McIntyre R, Beech P, O'Keefe GJ, Wichmann CW, Scott FE, Guo N, Lee ST, Liu Z, Caskey M, Nussenzweig MC, Donnelly PS, Egan G, Hagemeyer CE, Scott AM, Lewin SR. A clinical trial of non-invasive imaging with an anti-HIV antibody labelled with copper-64 in people living with HIV and uninfected controls. EBioMedicine 2021; 65:103252. [PMID: 33640794 PMCID: PMC7921458 DOI: 10.1016/j.ebiom.2021.103252] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND A research priority in finding a cure for HIV is to establish methods to accurately locate and quantify where and how HIV persists in people living with HIV (PLWH) receiving suppressive antiretroviral therapy (ART). Infusing copper-64 (64Cu) radiolabelled broadly neutralising antibodies targeting HIV envelope (Env) with CT scan and positron emission tomography (PET) identified HIV Env in tissues in SIV infected non-human primates . We aimed to determine if a similar approach was effective in people living with HIV (PLWH). METHODS Unmodified 3BNC117 was compared with 3BNC117 bound to the chelator MeCOSar and 64Cu (64Cu-3BNC117) in vitro to assess binding and neutralization. In a clinical trial 64Cu-3BNC117 was infused into HIV uninfected (Group 1), HIV infected and viremic (viral load, VL >1000 c/mL; Group 2) and HIV infected aviremic (VL <20 c/mL; Group 3) participants using two dosing strategies: high protein (3mg/kg unlabeled 3BNC117 combined with <5mg 64Cu-3BNC117) and trace (<5mg 64Cu-3BNC117 only). All participants were screened for 3BNC117 sensitivity from virus obtained from viral outgrowth. Magnetic resonance imaging (MRI)/PET and pharmacokinetic assessments (ELISA for serum 3BNC117 concentrations and gamma counting for 64Cu) were performed 1, 24- and 48-hours post dosing. The trial (clincialtrials.gov NCT03063788) primary endpoint was comparison of PET standard uptake values (SUVs) in regions of interest (e.g lymph node groups and gastrointestinal tract). FINDINGS Comparison of unmodified and modified 3BNC117 in vitro demonstrated no difference in HIV binding or neutralisation. 17 individuals were enrolled of which 12 were dosed including Group 1 (n=4, 2 high protein, 2 trace dose), Group 2 (n=6, 2 high protein, 4 trace) and Group 3 (n=2, trace only). HIV+ participants had a mean CD4 of 574 cells/microL and mean age 43 years. There were no drug related adverse effects and no differences in tissue uptake in regions of interest (e.g lymph node gut, pharynx) between the 3 groups. In the high protein dosing group, serum concentrations of 3BNC117 and gamma counts were highly correlated demonstrating that 64Cu-3BNC117 remained intact in vivo. INTERPRETATION In PLWH on or off ART, the intervention of infusing 64Cu-3BNC117 and MRI/PET imaging over 48 hours, was unable to detect HIV-1 env expression in vivo. Future studies should investigate alternative radiolabels such as zirconium which have a longer half-life in vivo. FUNDING Funded by the Alfred Foundation, The Australian Centre for HIV and Hepatitis Virology Research with additional support from the Division of AIDS, National Institute of Allergy and Infectious Disease, US National Institutes of Health (USAI126611). JHM and SRL are supported by the Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- James H McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Department of Infectious Diseases, Monash Health, Melbourne, Australia
| | - Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Jaclyn L Lange
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Michael Roche
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ajantha Rhodes
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Judy Chang
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Thomas A Rasmussen
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Charlene A Mackenzie
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Karen Alt
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Michelle Hagenauer
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Janine Roney
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Jessica O'Bryan
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Department of Infectious Diseases, Monash Health, Melbourne, Australia
| | - Alexandra Carey
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Richard McIntyre
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Paul Beech
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Graeme J O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Christian W Wichmann
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Fiona E Scott
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sze-Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Zhanqi Liu
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, United States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States
| | - Paul S Donnelly
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | | | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
10
|
Mirzaei S, Lipp RW. Peptide and pseudo-peptide. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:364-370. [DOI: 10.23736/s1824-4785.20.03311-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Piccardo A, Ugolini M, Righi S, Bottoni G, Cistaro A, Paparo F, Giovanella L, Evangelista L. Copper, PET/CT and prostate cancer: a systematic review of the literature. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2020; 64:382-392. [PMID: 32900177 DOI: 10.23736/s1824-4785.20.03277-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Copper is an essential element that plays an important role in both cancer development and growth. Indeed, high levels of copper have been found in prostate cancer (PCa), and this finding have paved the way for the use of this element as a target for positron emission tomography (PET) imaging. Copper64 (64Cu) can be used alone, as 64CuCl2, and also as a precursor for the in-vitro radio-labelling of specific carriers for PET imaging in PCa, (e.g. associated to prostate-specific membrane antigen: PSMA). The use of 64Cu-PSMA can yield late acquisitions in which PET images are characterized by a higher target-to-background ratio. At the same time, the shorter positron range of 64Cu provides high spatial resolution, which leads to better detection of small lesions. In this context, the aim of this review was to systematically review studies evaluating the identification of PCa in humans by means of 64CuCl2 and other PET tracers radio-labelled with 64Cu.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- Department of Nuclear Medicine, EO Ospedali Galliera, Genoa, Italy -
| | - Martina Ugolini
- Department of Nuclear Medicine, EO Ospedali Galliera, Genoa, Italy
| | - Sergio Righi
- Medical Physics Department, EO Ospedali Galliera, Genoa, Italy
| | - Gianluca Bottoni
- Department of Nuclear Medicine, EO Ospedali Galliera, Genoa, Italy
| | - Angelina Cistaro
- Department of Nuclear Medicine, EO Ospedali Galliera, Genoa, Italy
| | | | - Luca Giovanella
- Clinic for Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
12
|
Rangger C, Haubner R. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals (Basel) 2020; 13:E22. [PMID: 32019275 PMCID: PMC7169460 DOI: 10.3390/ph13020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
This review deals with the development of peptide-based radiopharmaceuticals for the use with positron emission tomography and peptide receptor radiotherapy. It discusses the pros and cons of this class of radiopharmaceuticals as well as the different labelling strategies, and summarises approaches to optimise metabolic stability. Additionally, it presents different target structures and addresses corresponding tracers, which are already used in clinical routine or are being investigated in clinical trials.
Collapse
Affiliation(s)
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| |
Collapse
|
13
|
Mirzaei S, Revheim ME, Raynor W, Zehetner W, Knoll P, Zandieh S, Alavi A. 64Cu-DOTATOC PET-CT in Patients with Neuroendocrine Tumors. Oncol Ther 2019; 8:125-131. [PMID: 32700066 PMCID: PMC7360020 DOI: 10.1007/s40487-019-00104-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/04/2022] Open
Abstract
Introduction Several radiolabeled somatostatin analogues have been developed for molecular imaging of neuroendocrine tumors (NETs) with single-photon emission computed tomography (SPECT) and positron-emission tomography (PET). The aim of the present study was to report our first results using 64Cu-DOTATOC in patients with NETs. Methods Thirty-three patients with NETs (15 female, 18 male; mean age 64 ± 13 years) were included in this retrospective study. 64Cu-DOTATOC PET–CT scans were performed on all patients. Results Five out of 33 patients with a history of NET after surgical removal of the primary lesion showed no pathological lesions on PET–CT imaging and 8/33 patients had enhanced uptake in the area of recurrent meningioma at the skull base. The remaining 20/33 patients had a history of neuroendocrine tumor in the gastrointestinal tract (GEP-NET) and were presented with at least one pathological lesion. Conclusion The high detection rate of suspected lesions in patients with NETs and the high target-to-background contrast found in this study hold promise for the safe application of 64Cu-DOTATOC in patients with NET.
Collapse
Affiliation(s)
- Siroos Mirzaei
- Department of Nuclear Medicine with PET-Center, Wilhelminenspital, Vienna, Austria.
| | - Mona-Eilsabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - William Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Walter Zehetner
- Department of Nuclear Medicine with PET-Center, Wilhelminenspital, Vienna, Austria
| | - Peter Knoll
- Department of Nuclear Medicine with PET-Center, Wilhelminenspital, Vienna, Austria
| | - Shahin Zandieh
- Department of Radiology and Nuclear Medicine, Hanusch Hospital, Vienna, Austria.,Department of Radiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Carlos Dos Santos J, Beijer B, Bauder-Wüst U, Schäfer M, Leotta K, Eder M, Benešová M, Kleist C, Giesel F, Kratochwil C, Kopka K, Haberkorn U, Mier W. Development of Novel PSMA Ligands for Imaging and Therapy with Copper Isotopes. J Nucl Med 2019; 61:70-79. [PMID: 31541034 DOI: 10.2967/jnumed.119.229054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 01/05/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA)-binding tracers have been shown to be promising agents for the specific targeting of prostate tumors. On labeling with the short-lived isotopes 18F and 68Ga, excellent molecular imaging performance is achieved. This potential could be further exploited using long-lived isotopes. Because of the favorable half-life of 64Cu, tracers labeled with this PET nuclide could solve logistic problems. Moreover, this isotope provides a theranostic pair with the therapeutic copper isotope 67Cu. Hence, 9 novel tracers that combine dedicated copper chelators with the PSMA-specific urea-based binding motif were developed. Methods: The precursors were obtained by solid-phase synthesis. The purity and molecular weight of the PSMA ligands were confirmed by high-performance liquid chromatography and liquid chromatography-mass spectrometry. The compounds were labeled with 64Cu, with a radiolabeling yield of more than 99%. Competitive cell binding assays and internalization assays were performed with C4-2 cells, a subline of the PSMA-positive cell line LNCaP (human lymph node carcinoma of the prostate). In vitro serum stability, the stability of 64Cu-CA003 in blood, and the in vivo fate of neat 64Cu-chloride or 64Cu-CA003 were determined to prove whether the stability of the radiolabeled compounds is sufficient to ensure no significant loss of copper during the targeting process. For PET imaging and biodistribution studies, a C4-2 tumor-bearing mouse model was used. Results: The radiolabeled 64Cu-PSMA ligands showed high serum stability. All PSMA ligands showed high inhibition potencies, with equilibrium inhibition constants in the low nanomolar range. 64Cu-CA003 and 64Cu-CA005 showed high internalization ratios (34.6% ± 2.8 and 18.6% ± 4.4, respectively). Both the in vitro serum stability determination and the in vivo characterization of the main radiolabeled compounds confirmed that, except for 64Cu-PSMA-617, all compounds showed high serum stability within the observation period of 24 h. Small-animal PET imaging demonstrated high tumor uptake within 20 min. Organ distribution studies confirmed high specific uptake in the tumor, with 30.8 ± 12.6 percentage injected dose (%ID)/g at 1 h after injection. Rapid clearance from the kidneys was observed-a decrease from 67.0 ± 20.9 %ID/g at 1 h after injection to 7.5 ± 8.51 %ID/g at 24 h after injection (in the case of CA003). The performance of CA003, the compound with the best preclinical properties, was assessed in a first patient. In line with its preclinical data, PET imaging resulted in clear visualization of the cancer lesions, with high contrast. Conclusion: The 64Cu-labeled PSMA ligands are promising agents to target PSMA and visualize PSMA-positive tumor lesions as shown in preclinical evaluation by small-animal PET studies, organ distribution, and a patient application. Most importantly, the images obtained at 20 h enabled delineation of unclear lesions, showing that the compounds fulfill the prerequisite for dosimetry in the course of therapy planning with 67Cu. Thus, we suggest clinical use of copper-labeled CA003 for diagnostics and radiotherapy of prostate cancer.
Collapse
Affiliation(s)
| | - Barbro Beijer
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Bauder-Wüst
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, Heidelberg, Germany
| | - Martin Schäfer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, Heidelberg, Germany
| | - Karin Leotta
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Eder
- Division of Radiopharmaceutical Development, German Cancer Consortium Freiburg, Department of Nuclear Medicine, University of Freiburg, Freiburg, Germany; and
| | - Martina Benešová
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Frederik Giesel
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Amor-Coarasa A, Kelly JM, Ponnala S, Nikolopoulou A, Williams C, Babich JW. 66Ga: A Novelty or a Valuable Preclinical Screening Tool for the Design of Targeted Radiopharmaceuticals? Molecules 2018; 23:molecules23102575. [PMID: 30304795 PMCID: PMC6222850 DOI: 10.3390/molecules23102575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/30/2022] Open
Abstract
Emerging interest in extending the plasma half-life of small molecule radioligands warrants a consideration of the appropriate radionuclide for PET imaging at longer time points (>8 h). Among candidate positron-emitting radionuclides, 66Ga (t1/2 = 9.5 h, β+ = 57%) has suitable nuclear and chemical properties for the labeling and PET imaging of radioligands of this profile. We investigated the value of 66Ga to preclinical screening and the evaluation of albumin-binding PSMA-targeting small molecules. 66Ga was produced by irradiation of a natZn target. 66Ga3+ ions were separated from Zn2+ ions by an optimized UTEVA anion exchange column that retained 99.99987% of Zn2+ ions and allowed 90.2 ± 2.8% recovery of 66Ga3+. Three ligands were radiolabeled in 46.4 ± 20.5%; radiochemical yield and >90% radiochemical purity. Molar activity was 632 ± 380 MBq/µmol. Uptake in the tumor and kidneys at 1, 3, 6, and 24 h p.i. was determined by µPET/CT imaging and more completely predicted the distribution kinetics than uptake of the [68Ga]Ga-labeled ligands did. Although there are multiple challenges to the use of 66Ga for clinical PET imaging, it can be a valuable research tool for ligand screening and preclinical imaging beyond 24 h.
Collapse
Affiliation(s)
- Alejandro Amor-Coarasa
- Division of Radiopharmaceutical Sciences and MI3, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - James M Kelly
- Division of Radiopharmaceutical Sciences and MI3, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Shashikanth Ponnala
- Division of Radiopharmaceutical Sciences and MI3, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Anastasia Nikolopoulou
- Division of Radiopharmaceutical Sciences and MI3, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA.
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Clarence Williams
- Division of Radiopharmaceutical Sciences and MI3, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - John W Babich
- Division of Radiopharmaceutical Sciences and MI3, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA.
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|