1
|
Wang X, Mondal M, Jankoski PE, Kemp LK, Clemons TD, Rangachari V, Morgan SE. De Novo Amyloid Peptide-Polymer Blends with Enhanced Mechanical and Biological Properties. ACS APPLIED POLYMER MATERIALS 2025; 7:3739-3751. [PMID: 40177395 PMCID: PMC11959523 DOI: 10.1021/acsapm.4c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Amyloid peptides are structurally diverse materials that exhibit different properties depending on their self-assembly. While they are often associated with neurodegenerative diseases, functional amyloids play important roles in nature and exhibit properties with high relevance for biomedical applications, including remarkable strength, mechanical stability, antimicrobial and antioxidant properties, low cytotoxicity, and adhesion to biotic and abiotic surfaces. Challenges in developing amyloid biomaterials include the complexity of peptide chemistry and the practical techniques required for processing amyloids into bulk materials. In this work, two de novo decapeptides with fibrillar and globular morphologies were synthesized, blended with poly(ethylene oxide), and fabricated into composite mats via electrospinning. Notable enhancements in the mechanical properties of the composite mats were observed, attributed to the uniform distribution of the peptide assemblies within the PEO matrix and interactions between the materials. Morphological differences, such as the production of thinner nanofibers, are attributed to the increased conductivity from the zwitterionic nature of the decapeptides. Blend rheology and postprocessing analysis revealed how processing might affect the amyloid aggregation and secondary structure of the peptides. Both decapeptides demonstrated low cytotoxicity and strong antioxidant activity, indicating their potential for safe and effective use as biomaterials. This research lays the foundation for designing amyloid peptides for specific applications by defining the structure-property-processing relationships of the de novo peptide-polymer blends.
Collapse
Affiliation(s)
- Xianjun Wang
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Malay Mondal
- Department
of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Penelope E. Jankoski
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Lisa K. Kemp
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Tristan D. Clemons
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
- Center
for
Molecular and Cellular Biosciences, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Vijayaraghavan Rangachari
- Department
of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
- Center
for
Molecular and Cellular Biosciences, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Sarah E. Morgan
- School of
Polymer Science and Engineering, University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
2
|
Kollaparampil Kishanchand D, K A AK, Chandrababu K, Philips CA, Sivan U, Pulikaparambil Sasidharan BC. The Intricate Interplay: Microbial Metabolites and the Gut-Liver-Brain Axis in Parkinson's Disease. J Neurosci Res 2025; 103:e70016. [PMID: 39754366 DOI: 10.1002/jnr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system. Dysregulation within this axis, encompassing gut dysbiosis and microbial metabolites, is emerging as a critical factor influencing PD progression. Our understanding of PD was traditionally centered on neurodegenerative processes within the brain. However, examining PD through the lens of the GLB axis provides new insights. This review provides a comprehensive analysis of microbial metabolites, such as short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), kynurenine, serotonin, bile acids, indoles, and dopamine, which are integral to PD pathogenesis by modulation of the GLB axis. Our extensive research included a comprehensive literature review and database searches utilizing resources such as gutMGene and gutMDisorder. These databases have been instrumental in identifying specific microbes and their metabolites, shedding light on the intricate relationship between the GLB axis and PD. This review consolidates existing knowledge and underscores the potential for targeted therapeutic interventions based on the GLB axis and its components, which offer new avenues for future PD research and treatment strategies. While the GLB axis is not a novel concept, this review is the first to focus specifically on its role in PD, highlighting the importance of integrating the liver and microbial metabolites as central players in the PD puzzle.
Collapse
Affiliation(s)
| | - Athira Krishnan K A
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Cyriac Abby Philips
- Clinical and Translational Hepatology, The Liver Institute, Centre of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Unnikrishnan Sivan
- Department of FSQA, FFE, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Baby Chakrapani Pulikaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kochi, Kerala, India
| |
Collapse
|
3
|
Ngah WZW, Ahmad HF, Ankasha SJ, Makpol S, Tooyama I. Dietary Strategies to Mitigate Alzheimer's Disease: Insights into Antioxidant Vitamin Intake and Supplementation with Microbiota-Gut-Brain Axis Cross-Talk. Antioxidants (Basel) 2024; 13:1504. [PMID: 39765832 PMCID: PMC11673287 DOI: 10.3390/antiox13121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD), which is characterized by deterioration in cognitive function and neuronal death, is the most prevalent age-related progressive neurodegenerative disease. Clinical and experimental research has revealed that gut microbiota dysbiosis may be present in AD patients. The changed gut microbiota affects brain function and behavior through several mechanisms, including tau phosphorylation and increased amyloid deposits, neuroinflammation, metabolic abnormalities, and persistent oxidative stress. The lack of effective treatments to halt or reverse the progression of this disease has prompted a search for non-pharmaceutical tools. Modulation of the gut microbiota may be a promising strategy in this regard. This review aims to determine whether specific dietary interventions, particularly antioxidant vitamins, either obtained from the diet or as supplements, may support the formation of beneficial microbiota in order to prevent AD development by contributing to the systemic reduction of chronic inflammation or by acting locally in the gut. Understanding their roles would be beneficial as it may have the potential to be used as a future therapy option for AD patients.
Collapse
Affiliation(s)
- Wan Zurinah Wan Ngah
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Hajar Fauzan Ahmad
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia;
| | - Sheril June Ankasha
- Unisza Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| |
Collapse
|
4
|
Wang X, Mondal M, Jankoski PE, Kemp LK, Clemons TD, Rangachari V, Morgan SE. Amyloid peptide - synthetic polymer blends with enhanced mechanical and biological properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605712. [PMID: 39211215 PMCID: PMC11361015 DOI: 10.1101/2024.07.29.605712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in utilizing amyloids to develop biomaterials is increasing due to their potential for biocompatibility, unique assembling morphology, mechanical stability, and biophysical properties. However, challenges include the complexity of peptide chemistry and the practical techniques required for processing amyloids into bulk materials. In this work, two decapeptides with fibrillar and globular morphologies were selected, blended with poly(ethylene oxide), and fabricated into composite mats via electrospinning. Notable enhancements in mechanical properties were observed, attributed to the uniform distribution of the decapeptide assemblies within the PEO matrix. Morphological differences, such as the production of thinner nanofibers, are attributed to the increased conductivity from the zwitterionic nature of the decapeptides. Blend rheology and post-processing analysis revealed how processing might affect the amyloid aggregation and secondary structure of the peptides. Both decapeptides demonstrated good biocompatibility and strong antioxidant activity, indicating their potential for safe and effective use as biomaterials. By evaluating these interdependencies, this research lays the foundation for understanding the structure-property-processing relationships of peptide-polymer blends and highlights the strong potential for developing applications in biotechnology.
Collapse
|
5
|
Nair VG, Srinandan CS, Rajesh YBRD, Narbhavi D, Anupriya A, Prabhusaran N, Nagarajan S. Biogenic amine tryptamine in human vaginal probiotic isolates mediates matrix inhibition and thwarts uropathogenic E. coli biofilm. Sci Rep 2024; 14:15387. [PMID: 38965339 PMCID: PMC11224256 DOI: 10.1038/s41598-024-65780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.
Collapse
Affiliation(s)
- Veena G Nair
- Microbial Biofilm Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - C S Srinandan
- Microbial Biofilm Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Y B R D Rajesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Dhiviya Narbhavi
- Department of Obstetrics and Gynaecology, TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - A Anupriya
- Department of Microbiology, TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - N Prabhusaran
- Research Faculty, Institutional Research Board TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
6
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Arad E, Jelinek R. Catalytic physiological amyloids. Methods Enzymol 2024; 697:77-112. [PMID: 38816136 DOI: 10.1016/bs.mie.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Amyloid fibrils have been identified in many protein systems, mostly linked to progression and cytotoxicity in neurodegenerative diseases and other pathologies, but have also been observed in normal physiological systems. A growing body of work has shown that amyloid fibrils can catalyze chemical reactions. Most studies have focused on catalysis by de-novo synthetic amyloid-like peptides; however, recent studies reveal that physiological, native amyloids are catalytic as well. Here, we discuss methodologies and major experimental aspects pertaining to physiological catalytic amyloids. We highlight analyzes of kinetic parameters related to the catalytic activities of amyloid fibrils, structure-function considerations, characterization of the catalytic active sites, and deciphering of catalytic mechanisms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, United States.
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
8
|
Trinh N, Bhuskute KR, Varghese NR, Buchanan JA, Xu Y, McCutcheon FM, Medcalf RL, Jolliffe KA, Sunde M, New EJ, Kaur A. A Coumarin-Based Array for the Discrimination of Amyloids. ACS Sens 2024; 9:615-621. [PMID: 38315454 DOI: 10.1021/acssensors.3c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Self-assembly of misfolded proteins can lead to the formation of amyloids, which are implicated in the onset of many pathologies including Alzheimer's disease and Parkinson's disease. The facile detection and discrimination of different amyloids are crucial for early diagnosis of amyloid-related pathologies. Here, we report the development of a fluorescent coumarin-based two-sensor array that is able to correctly discriminate between four different amyloids implicated in amyloid-related pathologies with 100% classification. The array was also applied to mouse models of Alzheimer's disease and was able to discriminate between samples from mice corresponding to early (6 months) and advanced (12 months) stages of Alzheimer's disease. Finally, the flexibility of the array was assessed by expanding the analytes to include functional amyloids. The same two-sensor array was able to correctly discriminate between eight different disease-associated and functional amyloids with 100% classification.
Collapse
Affiliation(s)
- Natalie Trinh
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kaustubh R Bhuskute
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Melbourne, Victoria 3052, Australia
| | - Nikhil R Varghese
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jessica A Buchanan
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yijia Xu
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Fiona M McCutcheon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Melbourne, Victoria 3052, Australia
| |
Collapse
|
9
|
Arad E, Pedersen KB, Malka O, Mambram Kunnath S, Golan N, Aibinder P, Schiøtt B, Rapaport H, Landau M, Jelinek R. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics. Nat Commun 2023; 14:8198. [PMID: 38081813 PMCID: PMC10713593 DOI: 10.1038/s41467-023-43624-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of β-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered β-lactam ring of nitrocefin, an antibiotic β-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of β-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed β-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of β-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Orit Malka
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Sisira Mambram Kunnath
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Centre for Structural Systems Biology (CSSB), and European Molecular Biology Laboratory (EMBL), Hamburg, 22607, Germany
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
10
|
Wang H, Zhang J, Toso D, Liao S, Sedighian F, Gunsalus R, Zhou ZH. Hierarchical organization and assembly of the archaeal cell sheath from an amyloid-like protein. Nat Commun 2023; 14:6720. [PMID: 37872154 PMCID: PMC10593813 DOI: 10.1038/s41467-023-42368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Certain archaeal cells possess external proteinaceous sheath, whose structure and organization are both unknown. By cellular cryogenic electron tomography (cryoET), here we have determined sheath organization of the prototypical archaeon, Methanospirillum hungatei. Fitting of Alphafold-predicted model of the sheath protein (SH) monomer into the 7.9 Å-resolution structure reveals that the sheath cylinder consists of axially stacked β-hoops, each of which is comprised of two to six 400 nm-diameter rings of β-strand arches (β-rings). With both similarities to and differences from amyloid cross-β fibril architecture, each β-ring contains two giant β-sheets contributed by ~ 450 SH monomers that entirely encircle the outer circumference of the cell. Tomograms of immature cells suggest models of sheath biogenesis: oligomerization of SH monomers into β-ring precursors after their membrane-proximal cytoplasmic synthesis, followed by translocation through the unplugged end of a dividing cell, and insertion of nascent β-hoops into the immature sheath cylinder at the junction of two daughter cells.
Collapse
Affiliation(s)
- Hui Wang
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Jiayan Zhang
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel Toso
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Shiqing Liao
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Farzaneh Sedighian
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
- The UCLA-DOE Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Tang Y, Zhang D, Zheng J. Repurposing Antimicrobial Protegrin-1 as a Dual-Function Amyloid Inhibitor via Cross-seeding. ACS Chem Neurosci 2023; 14:3143-3155. [PMID: 37589476 DOI: 10.1021/acschemneuro.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Amyloids and antimicrobial peptides have traditionally been recognized as distinct families with separate biological functions and targets. However, certain amyloids and antimicrobial peptides share structural and functional characteristics that contribute to the development of neurodegenerative diseases. Specifically, the aggregation of amyloid-β (Aβ) and microbial infections are interconnected pathological factors in Alzheimer's disease (AD). In this study, we propose and demonstrate a novel repurposing strategy for an antimicrobial peptide of protegrin-1 (PG-1), which exhibits the ability to simultaneously prevent Aβ aggregation and microbial infection both in vitro and in vivo. Through a comprehensive analysis using protein, cell, and worm assays, we uncover multiple functions of PG-1 against Aβ, including the following: (i) complete inhibition of Aβ aggregation at a low molar ratio of PG-1/Aβ = 0.25:1, (ii) disassembly of the preformed Aβ fibrils into amorphous aggregates, (iii) reduction of Aβ-induced cytotoxicity in SH-SY5Y cells and transgenic GMC101 nematodes, and (iv) preservation of original antimicrobial activity against P.A., E.coli., S.A., and S.E. strains in the presence of Aβ. Mechanistically, the dual anti-amyloid and anti-bacterial functions of PG-1 primarily arise from its strong binding to distinct Aβ seeds (KD = 1.24-1.90 μM) through conformationally similar β-sheet associations. This work introduces a promising strategy to repurpose antimicrobial peptides as amyloid inhibitors, effectively targeting multiple pathological pathways in AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
12
|
Lyagin I, Aslanli A, Domnin M, Stepanov N, Senko O, Maslova O, Efremenko E. Metal Nanomaterials and Hydrolytic Enzyme-Based Formulations for Improved Antifungal Activity. Int J Mol Sci 2023; 24:11359. [PMID: 37511117 PMCID: PMC10379199 DOI: 10.3390/ijms241411359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Active research of metal-containing compounds and enzymes as effective antifungal agents is currently being conducted due to the growing antifungal resistance problem. Metals are attracting special attention due to the wide variety of ligands that can be used for them, including chemically synthesized and naturally obtained variants as a result of the so-called "green synthesis". The main mechanism of the antifungal action of metals is the triggering of the generation and accumulation of reactive oxygen species (ROS). Further action of ROS on various biomolecules is nonspecific. Various hydrolytic enzymes (glucanases and proteases), in turn, exhibit antifungal properties by affecting the structural elements of fungal cells (cell walls, membranes), fungal quorum sensing molecules, fungal own protective agents (mycotoxins and antibiotics), and proteins responsible for the adhesion and formation of stable, highly concentrated populations in the form of biofilms. A wide substrate range of enzymes allows the use of various mechanisms of their antifungal actions. In this review, we discuss the prospects of combining two different types of antifungal agents (metals and enzymes) against mycelial fungi and yeast cells. Special attention is paid to the possible influence of metals on the activity of the enzymes and the possible effects of proteins on the antifungal activity of metal-containing compounds.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Maksim Domnin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
13
|
Ennerfelt H, Holliday C, Shapiro D, Zengeler K, Bolte A, Ulland T, Lukens J. CARD9 attenuates Aβ pathology and modifies microglial responses in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2023; 120:e2303760120. [PMID: 37276426 PMCID: PMC10268238 DOI: 10.1073/pnas.2303760120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/07/2023] Open
Abstract
Recent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD. Notably, TREM2, CD33, and CD22 have been described to influence signaling associated with the intracellular adaptor molecule CARD9 to mount downstream immune responses outside of the brain. However, the role of CARD9 in AD remains poorly understood. Here, we show that genetic ablation of CARD9 in the 5xFAD mouse model of AD results in exacerbated amyloid beta (Aβ) deposition, increased neuronal loss, worsened cognitive deficits, and alterations in microglial responses. We further show that pharmacological activation of CARD9 promotes improved clearance of Aβ deposits from the brains of 5xFAD mice. These results help to establish CARD9 as a key intracellular innate immune signaling molecule that regulates Aβ-mediated disease and microglial responses. Moreover, these findings suggest that targeting CARD9 might offer a strategy to improve Aβ clearance in AD.
Collapse
Affiliation(s)
- Hannah Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
| | - Coco Holliday
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
| | - Daniel A. Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
| | - Kristine E. Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
| | - Ashley C. Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA22908
| | - Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI53705
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA22908
| |
Collapse
|
14
|
The Pga59 cell wall protein is an amyloid forming protein involved in adhesion and biofilm establishment in the pathogenic yeast Candida albicans. NPJ Biofilms Microbiomes 2023; 9:6. [PMID: 36697414 PMCID: PMC9877000 DOI: 10.1038/s41522-023-00371-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The human commensal fungus Candida albicans can attach to epithelia or indwelling medical devices and form biofilms, that are highly tolerant to antifungal drugs and can evade the immune response. The cell surface protein Pga59 has been shown to influence adhesion and biofilm formation. Here, we present evidence that Pga59 displays amyloid properties. Using electron microscopy, staining with an amyloid fibre-specific dye and X-ray diffraction experiments, we showed that the predicted amyloid-forming region of Pga59 is sufficient to build up an amyloid fibre in vitro and that recombinant Pga59 can also adopt a cross-β amyloid fibre architecture. Further, mutations impairing Pga59 amyloid assembly led to diminished adhesion to substrates and reduced biofilm production. Immunogold labelling on amyloid structures extracted from C. albicans revealed that Pga59 is used by the fungal cell to assemble amyloids within the cell wall in response to adhesion. Altogether, our results suggest that Pga59 amyloid properties are used by the fungal cell to mediate cell-substrate interactions and biofilm formation.
Collapse
|
15
|
Qasemi A, Rahimi F, Katouli M. Clonal groups of extended-spectrum β-lactamase and biofilm producing uropathogenic Escherichia coli in Iran. Pathog Glob Health 2022; 116:485-497. [PMID: 34904540 PMCID: PMC9639551 DOI: 10.1080/20477724.2021.2011578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogenicity of a bacterium is affected by the social characteristics of the population and environmental factors. The ability of biofilm formation among β-lactamase-producing uropathogenic Escherichia coli (UPEC) could facilitate the exchange of antibiotic-resistance genes, which resulted in widespread dissemination of antibacterial drug resistance. We investigated the prevalence of biofilm and β-lactamase producing UPECs among patients with urinary tract infection (UTI) in two cities with different demographics and climates in Iran. A total of 265 E. coli was isolated from patients with UTIs from two referral hospitals (n = 191) and two outpatient clinics (n = 74) in Isfahan and Zahedan, Iran. Production of curli and cellulose, and, biofilm formation was investigated using Congo red agar and microtiter plate methods, respectively. Biofilm producing (BFP) isolates (n = 107) were further characterized using rep-PCR, antimicrobial susceptibility testing and extended-spectrum β-lactamase (ESBL)/AmpC phenotypic production. Isolates were also screened for the presence of carbapenemase, ESBL and AmpC genes using multiplex PCR. High diversity was found among BFP strains in both cities, with 58% strains producing ESBL and 21% producing AmpC. ESBL (98%), AmpC (50%) and carbapenemase genes (40%) were identified in BFP strains with ESBL-positive phenotype, respectively. The prevalence of BFP strains, antibiotic resistance and β-lactamase genes in Zahedan, a low socioeconomic city with a warm climate, was significantly higher than that of Isfahan. High prevalence of biofilm and β-lactamase producing UPEC strains among strains from Zahedan suggests that socioeconomic status and environmental factors might have a role in pathogenicity of the strains.
Collapse
Affiliation(s)
- Ali Qasemi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fateh Rahimi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran,CONTACT Fateh Rahimi ; Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezarjarib St., Isfahan, Iran
| | - Mohammad Katouli
- Genecology Research Center and School of Science, Technology and Education,University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
16
|
Ábrahám Á, Massignan F, Gyulai G, Katona M, Taricska N, Kiss É. Comparative Study of the Solid-Liquid Interfacial Adsorption of Proteins in Their Native and Amyloid Forms. Int J Mol Sci 2022; 23:13219. [PMID: 36362007 PMCID: PMC9656260 DOI: 10.3390/ijms232113219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/14/2023] Open
Abstract
The adhesive properties of amyloid fibers are thought to play a crucial role in various negative and positive aggregation processes, the study of which might help in their understanding and control. Amyloids have been prepared from two proteins, lysozyme and β-lactoglobulin, as well as an Exendin-4 derivative miniprotein (E5). Thermal treatment was applied to form amyloids and their structure was verified by thioflavin T (ThT), 8-Anilino-1-naphthalenesulfonic acid (ANS) dye tests and electronic circular dichroism spectroscopy (ECD). Adsorption properties of the native and amyloid forms of the three proteins were investigated and compared using the mass-sensitive quartz crystal microbalance (QCM) technique. Due to the possible electrostatic and hydrophobic interactions, similar adsorbed amounts were found for the native or amyloid forms, while the structures of the adsorbed layers differed significantly. Native proteins formed smooth and dense adsorption layers. On the contrary, a viscoelastic, highly loose layer was formed in the presence of the amyloid forms, shown by increased motional resistance values determined by the QCM technique and also indicated by atomic force microscopy (AFM) and wettability measurements. The elongated structure and increased hydrophobicity of amyloids might contribute to this kind of aggregation.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Lendület “Momentum” Peptide-Based Vaccines Research Group, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Flavio Massignan
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Miklós Katona
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Nóra Taricska
- ELKH-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
17
|
Yarmola E, Ishkov IP, di Cologna NM, Menashe M, Whitener RL, Long JR, Abranches J, Hagen SJ, Brady LJ. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Microbiol Spectr 2022; 10:e0166122. [PMID: 35950854 PMCID: PMC9431626 DOI: 10.1128/spectrum.01661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross β-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.
Collapse
Affiliation(s)
- Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ivan P. Ishkov
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Megan Menashe
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert L. Whitener
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R. Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Stephen J. Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Designed peptides as nanomolar cross-amyloid inhibitors acting via supramolecular nanofiber co-assembly. Nat Commun 2022; 13:5004. [PMID: 36008417 PMCID: PMC9411207 DOI: 10.1038/s41467-022-32688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/10/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid self-assembly is linked to numerous devastating cell-degenerative diseases. However, designing inhibitors of this pathogenic process remains a major challenge. Cross-interactions between amyloid-β peptide (Aβ) and islet amyloid polypeptide (IAPP), key polypeptides of Alzheimer's disease (AD) and type 2 diabetes (T2D), have been suggested to link AD with T2D pathogenesis. Here, we show that constrained peptides designed to mimic the Aβ amyloid core (ACMs) are nanomolar cross-amyloid inhibitors of both IAPP and Aβ42 and effectively suppress reciprocal cross-seeding. Remarkably, ACMs act by co-assembling with IAPP or Aβ42 into amyloid fibril-resembling but non-toxic nanofibers and their highly ordered superstructures. Co-assembled nanofibers exhibit various potentially beneficial features including thermolability, proteolytic degradability, and effective cellular clearance which are reminiscent of labile/reversible functional amyloids. ACMs are thus promising leads for potent anti-amyloid drugs in both T2D and AD while the supramolecular nanofiber co-assemblies should inform the design of novel functional (hetero-)amyloid-based nanomaterials for biomedical/biotechnological applications.
Collapse
|
19
|
Matilla-Cuenca L, Taglialegna A, Gil C, Toledo-Arana A, Lasa I, Valle J. Bacterial biofilm functionalization through Bap amyloid engineering. NPJ Biofilms Microbiomes 2022; 8:62. [PMID: 35909185 PMCID: PMC9339546 DOI: 10.1038/s41522-022-00324-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap.
Collapse
Affiliation(s)
| | - Agustina Taglialegna
- Instituto de Agrobiotecnología (IDAB). CSIC- Gobierno de Navarra, Mutilva, Spain.,The Campus 4 Crinan Street London N1, London, UK
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | | | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC- Gobierno de Navarra, Mutilva, Spain.
| |
Collapse
|
20
|
Arad E, Jelinek R. Catalytic amyloids. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Bücker R, Seuring C, Cazey C, Veith K, García-Alai M, Grünewald K, Landau M. The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils. Nat Commun 2022; 13:4356. [PMID: 35896552 PMCID: PMC9329304 DOI: 10.1038/s41467-022-32039-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
The amyloid-antimicrobial link hypothesis is based on antimicrobial properties found in human amyloids involved in neurodegenerative and systemic diseases, along with amyloidal structural properties found in antimicrobial peptides (AMPs). Supporting this hypothesis, we here determined the fibril structure of two AMPs from amphibians, uperin 3.5 and aurein 3.3, by cryogenic electron microscopy (cryo-EM), revealing amyloid cross-β fibrils of mated β-sheets at atomic resolution. Uperin 3.5 formed a 3-blade symmetrical propeller of nine peptides per fibril layer including tight β-sheet interfaces. This cross-β cryo-EM structure complements the cross-α fibril conformation previously determined by crystallography, substantiating a secondary structure switch mechanism of uperin 3.5. The aurein 3.3 arrangement consisted of six peptides per fibril layer, all showing kinked β-sheets allowing a rounded compactness of the fibril. The kinked β-sheets are similar to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked Segments) found in human functional amyloids.
Collapse
Grants
- Joachim Herz Foundation (Add-on fellowship, R.B.).
- This research was supported by the Ministry of Science, Research, Equalities and Districts of the Free and Hanseatic City of Hamburg (K.G., M.L., R.B.), Israel Science Foundation (grant no. 2111/20, M.L.), Israel Ministry of Science, Technology & Space (grant no. 3-15517, M.L.), U.S.-Israel Binational Science Foundation (BSF) (grant no. 2017280, M.L.),
Collapse
Affiliation(s)
- Robert Bücker
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Rigaku Europe SE, Neu-Isenburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Cornelia Cazey
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany
| | - Maria García-Alai
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Department of Chemistry, University of Hamburg, Hamburg, Germany.
- Leibniz Institute of Virology, Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Meytal Landau
- Centre for Structural Systems Biology, Hamburg, Germany.
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany.
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
22
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
23
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
24
|
Charnley M, Islam S, Bindra GK, Engwirda J, Ratcliffe J, Zhou J, Mezzenga R, Hulett MD, Han K, Berryman JT, Reynolds NP. Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19. Nat Commun 2022; 13:3387. [PMID: 35697699 PMCID: PMC9189797 DOI: 10.1038/s41467-022-30932-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
COVID-19 is primarily known as a respiratory disease caused by SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, severe headaches, and even stroke are reported in up to 30% of cases and can persist even after the infection is over (long COVID). These neurological symptoms are thought to be produced by the virus infecting the central nervous system, however we don't understand the molecular mechanisms triggering them. The neurological effects of COVID-19 share similarities to neurodegenerative diseases in which the presence of cytotoxic aggregated amyloid protein or peptides is a common feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we identified two peptides from the SARS-CoV-2 proteome that self-assemble into amyloid assemblies. Furthermore, these amyloids were shown to be highly toxic to neuronal cells. We suggest that cytotoxic aggregates of SARS-CoV-2 proteins may trigger neurological symptoms in COVID-19.
Collapse
Affiliation(s)
- Mirren Charnley
- Centre for Optical Sciences and Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, VIC, 3000, Australia
| | - Saba Islam
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Guneet K Bindra
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jeremy Engwirda
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Julian Ratcliffe
- La Trobe University Bioimaging Platform, Bundoora, 3086, VIC, Australia
| | - Jiangtao Zhou
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Mark D Hulett
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kyunghoon Han
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, 162a Avenue de la Faïencerie, Esch-sur-Alzette, L-1511, Luxembourg
| | - Joshua T Berryman
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, 162a Avenue de la Faïencerie, Esch-sur-Alzette, L-1511, Luxembourg.
| | - Nicholas P Reynolds
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
25
|
Fan Q, Bibi S, Vallad GE, Goss EM, Hurlbert JC, Paret ML, Jones JB, Timilsina S. Identification of Genes in Xanthomonas euvesicatoria pv. rosa That Are Host Limiting in Tomato. PLANTS 2022; 11:plants11060796. [PMID: 35336678 PMCID: PMC8951399 DOI: 10.3390/plants11060796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
Xanthomonas euvesicatoria pv. rosa strain Xer07 causes a leaf spot on a Rosa sp. and is closely related to X. euvesicatoria pv. euvesicatoria (Xee) and X. perforans (Xp), causal agents of bacterial spot of tomato. However, Xer07 is not pathogenic on tomato and elicits a hypersensitive reaction (HR). We compared the genomes of the three bacterial species to identify the factors that limit Xer07 on tomato. Comparison of pathogenicity associated factors including the type III secretion systems identified two genes, xopA and xer3856, in Xer07 that have lower sequence homology in tomato pathogens. xer3856 is a homolog of genes in X. citri (xac3856) and X. fuscans pv. aurantifolii, both of which have been reported to elicit HRs in tomato. When xer3856 was expressed in X. perforans and infiltrated in tomato leaflets, the transconjugant elicited an HR and significantly reduced bacterial populations compared to the wildtype X. perforans strain. When xer3856 was mutated in Xer07, the mutant strain still triggered an HR in tomato leaflets. The second gene identified codes for type III secreted effector XopA, which contains a harpin domain that is distinct from the xopA homologs in Xee and Xp. The Xer07-xopA, when expressed in X. perforans, did not elicit an HR in tomato leaflets, but significantly reduced bacterial populations. This indicates that xopA and xer3856 genes in combination with an additional factor(s) limit Xer07 in tomato.
Collapse
Affiliation(s)
- Qiurong Fan
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
| | - Shaheen Bibi
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
| | - Gary E. Vallad
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- Gulf Coast Research and Education Center, University of Florida, Balm, FL 33598, USA
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jason C. Hurlbert
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA;
| | - Matthews L. Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- Correspondence: (J.B.J.); (S.T.)
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (Q.F.); (S.B.); (G.E.V.); (E.M.G.); (M.L.P.)
- Correspondence: (J.B.J.); (S.T.)
| |
Collapse
|
26
|
Computational methods to predict protein aggregation. Curr Opin Struct Biol 2022; 73:102343. [PMID: 35240456 DOI: 10.1016/j.sbi.2022.102343] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 01/13/2023]
Abstract
In most cases, protein aggregation stems from the establishment of non-native intermolecular contacts. The formation of insoluble protein aggregates is associated with many human diseases and is a major bottleneck for the industrial production of protein-based therapeutics. Strikingly, fibrillar aggregates are naturally exploited for structural scaffolding or to generate molecular switches and can be artificially engineered to build up multi-functional nanomaterials. Thus, there is a high interest in rationalizing and forecasting protein aggregation. Here, we review the available computational toolbox to predict protein aggregation propensities, identify sequential or structural aggregation-prone regions, evaluate the impact of mutations on aggregation or recognize prion-like domains. We discuss the strengths and limitations of these algorithms and how they can evolve in the next future.
Collapse
|
27
|
Corsini PM, Wang S, Rehman S, Fenn K, Sagar A, Sirovica S, Cleaver L, Edwards-Gayle CJC, Mastroianni G, Dorgan B, Sewell LM, Lynham S, Iuga D, Franks WT, Jarvis J, Carpenter GH, Curtis MA, Bernadó P, Darbari VC, Garnett JA. Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation. NPJ Biofilms Microbiomes 2022; 8:9. [PMID: 35217675 PMCID: PMC8881592 DOI: 10.1038/s41522-022-00272-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that colonises the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and it is a major determinant of infection in virulent strains, although how it carries out these functions is not well understood. Here, we examine SslE from the commensal E. coli Waksman and BL21 (DE3) strains and the enterotoxigenic H10407 and enteropathogenic E2348/69 strains. We reveal that SslE has a unique and dynamic structure in solution and in response to acidification within mature biofilms it can form a unique aggregate with amyloid-like properties. Furthermore, we show that both SslE monomers and aggregates bind DNA in vitro and co-localise with extracellular DNA (eDNA) in mature biofilms, and SslE aggregates may also associate with cellulose under certain conditions. Our results suggest that interactions between SslE and eDNA are important for biofilm maturation in many E. coli strains and SslE may also be a factor that drives biofilm formation in other SslE-secreting bacteria.
Collapse
Affiliation(s)
- Paula M Corsini
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sunjun Wang
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Katherine Fenn
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Amin Sagar
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Slobodan Sirovica
- Centre for Oral Bioengineering, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | | | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ben Dorgan
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Lee M Sewell
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry, UK
| | - James Jarvis
- Randall Division of Cell and Molecular Biophysics and Centre for Biomolecular Spectroscopy, King's College London, London, UK
| | - Guy H Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Vidya C Darbari
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
28
|
Tang Y, Zhang D, Gong X, Zheng J. A mechanistic survey of Alzheimer's disease. Biophys Chem 2021; 281:106735. [PMID: 34894476 DOI: 10.1016/j.bpc.2021.106735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common, age-dependent neurodegenerative disorder. While AD has been intensively studied from different aspects, there is no effective cure for AD, largely due to a lack of a clear mechanistic understanding of AD. In this mini-review, we mainly focus on the discussion and summary of mechanistic causes of Alzheimer's disease (AD). While different AD mechanisms illustrate different molecular and cellular pathways in AD pathogenesis, they do not necessarily exclude each other. Instead, some of them could work together to initiate, trigger, and promote the onset and development of AD. In a broader viewpoint, some AD mechanisms (e.g., amyloid aggregation mechanism, microbial infection/neuroinflammation mechanism, and amyloid cross-seeding mechanism) could also be applicable to other amyloid diseases including type II diabetes, Parkinson's disease, and prion disease. Such common mechanisms for AD and other amyloid diseases explain not only the pathogenesis of individual amyloid diseases, but also the spreading of pathologies between these diseases, which will inspire new strategies for therapeutic intervention and prevention for AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, OH, United States of America
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America.
| |
Collapse
|
29
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
30
|
Amyloid Aggregation of Streptococcus mutans Cnm Influences Its Collagen-Binding Activity. Appl Environ Microbiol 2021; 87:e0114921. [PMID: 34406827 PMCID: PMC8516039 DOI: 10.1128/aem.01149-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The cnm gene, coding for the glycosylated collagen- and laminin-binding surface adhesin Cnm, is found in the genomes of approximately 20% of Streptococcus mutans clinical isolates and is associated with systemic infections and increased caries risk. Other surface-associated collagen-binding proteins of S. mutans, such as P1 and WapA, have been demonstrated to form an amyloid quaternary structure with functional implications within biofilms. In silico analysis predicted that the β-sheet-rich N-terminal collagen-binding domain (CBD) of Cnm has a propensity for amyloid aggregation, whereas the threonine-rich C-terminal domain was predicted to be disorganized. In this study, thioflavin-T fluorescence and electron microscopy were used to show that Cnm forms amyloids in either its native glycosylated or recombinant nonglycosylated form and that the CBD of Cnm is the main amyloidogenic unit of Cnm. We then performed a series of in vitro, ex vivo, and in vivo assays to characterize the amylogenic properties of Cnm. In addition, Congo red birefringence indicated that Cnm is a major amyloidogenic protein of S. mutans biofilms. Competitive binding assays using collagen-coated microtiter plates and dental roots, a substrate rich in collagen, revealed that Cnm monomers inhibit S. mutans binding to collagenous substrates, whereas Cnm amyloid aggregates lose this property. Thus, while Cnm contributes to recognition and initial binding of S. mutans to collagen-rich surfaces, amyloid formation by Cnm might act as a negative regulatory mechanism to modulate collagen-binding activity within S. mutans biofilms and warrants further investigation. IMPORTANCE Streptococcus mutans is a keystone pathogen that promotes caries by acidifying the dental biofilm milieu. The collagen- and laminin-binding glycoprotein Cnm is a virulence factor of S. mutans. Expression of Cnm by S. mutans is hypothesized to contribute to niche expansion, allowing colonization of multiple sites in the body, including collagen-rich surfaces such as dentin and heart valves. Here, we suggest that Cnm function might be modulated by its aggregation status. As a monomer, its primary function is to promote attachment to collagenous substrates via its collagen-binding domain (CBD). However, in later stages of biofilm maturation, the same CBD of Cnm could self-assemble into amyloid fibrils, losing the ability to bind to collagen and likely becoming a component of the biofilm matrix. Our findings shed light on the role of functional amyloids in S. mutans pathobiology and ecology.
Collapse
|
31
|
Adam JA, Middlestead HR, Debono NE, Hirsa AH. Effects of Shear Rate and Protein Concentration on Amyloidogenesis via Interfacial Shear. J Phys Chem B 2021; 125:10355-10363. [PMID: 34478304 DOI: 10.1021/acs.jpcb.1c05171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of hydrodynamics on protein fibrillization kinetics is relevant to biophysics, biochemical reactors, medicine, and disease. This investigation focused on the effects of interfacial shear on the fibrillization kinetics of insulin. Human insulin served as a model protein for studying shear-induced fibrillization with relevance to amyloid diseases such as Alzheimer's, Parkinson's, prions, and type 2 diabetes. Insulin solutions at different protein concentrations were subjected to shear flows with prescribed interfacial angular velocities using a knife-edge (surface) viscometer (KEV) operating in a laminar axisymmetric flow regime where inertia is significant. Fibrillization kinetics were quantified using intrinsic fibrillization rate and times (onset, half, and end) determined through spectroscopic measurement of monomer extinction curves and fitting to a sigmoidal function. Additionally, the occurrence of gelation was determined through macroscopic imaging and transient fibril microstructure was captured using fluorescence microscopy. The results showed that increasing interfacial shear rate produced a monotonic increase in intrinsic fibrillization rate and a monotonic decrease in fibrillization time. Protein concentration did not significantly impact the intrinsic fibrillization rate or times; however, a minimum fibril concentration for gelation was found. Protein microstructure showed increasing aggregation and plaque/cluster formation with time.
Collapse
Affiliation(s)
| | - Hannah R Middlestead
- Chemical Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0584, United States
| | | | | |
Collapse
|
32
|
Zajkowski T, Lee MD, Mondal SS, Carbajal A, Dec R, Brennock PD, Piast RW, Snyder JE, Bense NB, Dzwolak W, Jarosz DF, Rothschild LJ. The Hunt for Ancient Prions: Archaeal Prion-Like Domains Form Amyloid-Based Epigenetic Elements. Mol Biol Evol 2021; 38:2088-2103. [PMID: 33480998 DOI: 10.1093/molbev/msab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prions, proteins that can convert between structurally and functionally distinct states and serve as non-Mendelian mechanisms of inheritance, were initially discovered and only known in eukaryotes, and consequently considered to likely be a relatively late evolutionary acquisition. However, the recent discovery of prions in bacteria and viruses has intimated a potentially more ancient evolutionary origin. Here, we provide evidence that prion-forming domains exist in the domain archaea, the last domain of life left unexplored with regard to prions. We searched for archaeal candidate prion-forming protein sequences computationally, described their taxonomic distribution and phylogeny, and analyzed their associated functional annotations. Using biophysical in vitro assays, cell-based and microscopic approaches, and dye-binding analyses, we tested select candidate prion-forming domains for prionogenic characteristics. Out of the 16 tested, eight formed amyloids, and six acted as protein-based elements of information transfer driving non-Mendelian patterns of inheritance. We also identified short peptides from our archaeal prion candidates that can form amyloid fibrils independently. Lastly, candidates that tested positively in our assays had significantly higher tyrosine and phenylalanine content than candidates that tested negatively, an observation that may help future archaeal prion predictions. Taken together, our discovery of functional prion-forming domains in archaea provides evidence that multiple archaeal proteins are capable of acting as prions-thus expanding our knowledge of this epigenetic phenomenon to the third and final domain of life and bolstering the possibility that they were present at the time of the last universal common ancestor.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,University Space Research Association, Mountain View, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Shamba S Mondal
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Amanda Carbajal
- University Space Research Association, Mountain View, CA, USA.,University of California Santa Cruz, Santa Cruz, CA, USA
| | - Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | - Radoslaw W Piast
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | | | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
33
|
Zhang Y, Liu Y, Tang Y, Zhang D, He H, Wu J, Zheng J. Antimicrobial α-defensins as multi-target inhibitors against amyloid formation and microbial infection. Chem Sci 2021; 12:9124-9139. [PMID: 34276942 PMCID: PMC8261786 DOI: 10.1039/d1sc01133b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new "anti-amyloid and antimicrobial hypothesis" to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University Zhejiang China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University Zhejiang China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| |
Collapse
|
34
|
Khodaparast L, Wu G, Khodaparast L, Schmidt BZ, Rousseau F, Schymkowitz J. Bacterial Protein Homeostasis Disruption as a Therapeutic Intervention. Front Mol Biosci 2021; 8:681855. [PMID: 34150852 PMCID: PMC8206779 DOI: 10.3389/fmolb.2021.681855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cells have evolved a complex molecular network, collectively called the protein homeostasis (proteostasis) network, to produce and maintain proteins in the appropriate conformation, concentration and subcellular localization. Loss of proteostasis leads to a reduction in cell viability, which occurs to some degree during healthy ageing, but is also the root cause of a group of diverse human pathologies. The accumulation of proteins in aberrant conformations and their aggregation into specific beta-rich assemblies are particularly detrimental to cell viability and challenging to the protein homeostasis network. This is especially true for bacteria; it can be argued that the need to adapt to their changing environments and their high protein turnover rates render bacteria particularly vulnerable to the disruption of protein homeostasis in general, as well as protein misfolding and aggregation. Targeting bacterial proteostasis could therefore be an attractive strategy for the development of novel antibacterial therapeutics. This review highlights advances with an antibacterial strategy that is based on deliberately inducing aggregation of target proteins in bacterial cells aiming to induce a lethal collapse of protein homeostasis. The approach exploits the intrinsic aggregation propensity of regions residing in the hydrophobic core regions of the polypeptide sequence of proteins, which are genetically conserved because of their essential role in protein folding and stability. Moreover, the molecules were designed to target multiple proteins, to slow down the build-up of resistance. Although more research is required, results thus far allow the hope that this strategy may one day contribute to the arsenal to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Béla Z Schmidt
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| |
Collapse
|
35
|
Szulc N, Gąsior-Głogowska M, Wojciechowski JW, Szefczyk M, Żak AM, Burdukiewicz M, Kotulska M. Variability of Amyloid Propensity in Imperfect Repeats of CsgA Protein of Salmonella enterica and Escherichia coli. Int J Mol Sci 2021; 22:ijms22105127. [PMID: 34066237 PMCID: PMC8151669 DOI: 10.3390/ijms22105127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
CsgA is an aggregating protein from bacterial biofilms, representing a class of functional amyloids. Its amyloid propensity is defined by five fragments (R1–R5) of the sequence, representing non-perfect repeats. Gate-keeper amino acid residues, specific to each fragment, define the fragment’s propensity for self-aggregation and aggregating characteristics of the whole protein. We study the self-aggregation and secondary structures of the repeat fragments of Salmonella enterica and Escherichia coli and comparatively analyze their potential effects on these proteins in a bacterial biofilm. Using bioinformatics predictors, ATR-FTIR and FT-Raman spectroscopy techniques, circular dichroism, and transmission electron microscopy, we confirmed self-aggregation of R1, R3, R5 fragments, as previously reported for Escherichia coli, however, with different temporal characteristics for each species. We also observed aggregation propensities of R4 fragment of Salmonella enterica that is different than that of Escherichia coli. Our studies showed that amyloid structures of CsgA repeats are more easily formed and more durable in Salmonella enterica than those in Escherichia coli.
Collapse
Affiliation(s)
- Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (N.S.); (M.G.-G.); (J.W.W.)
- LPCT, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (N.S.); (M.G.-G.); (J.W.W.)
| | - Jakub W. Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (N.S.); (M.G.-G.); (J.W.W.)
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Andrzej M. Żak
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Michał Burdukiewicz
- Clinical Research Centre, Medical University of Białystok, Jana Kilińskiego 1, 15-089 Białystok, Poland
- Institute of Biochemistry and Biophysics, Polish Academy Sciences, 02-106 Warsaw, Poland
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Correspondence: (M.B.); (M.K.)
| | - Malgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (N.S.); (M.G.-G.); (J.W.W.)
- Correspondence: (M.B.); (M.K.)
| |
Collapse
|
36
|
Molina-Santiago C, de Vicente A, Romero D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Comput Struct Biotechnol J 2021; 19:2796-2805. [PMID: 34093994 PMCID: PMC8138678 DOI: 10.1016/j.csbj.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate megastructure made by bacterial cells to form architecturally complex biostructures called biofilms. Protection of cells, modulation of cell-to-cell signalling, cell differentiation and environmental sensing are functions of the ECM that reflect its diverse chemical composition. Proteins, polysaccharides and eDNA have specific functionalities while cooperatively interacting to sustain the architecture and biological relevance of the ECM. The accumulated evidence on the chemical heterogeneity and specific functionalities of ECM components has attracted attention because of their potential biotechnological applications, from agriculture to the water and food industries. This review compiles information on the most relevant bacterial ECM components, the biophysical and chemical features responsible for their biological roles, and their potential to be further translated into biotechnological applications.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| |
Collapse
|
37
|
Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. Int J Mol Sci 2021; 22:ijms22094349. [PMID: 33919421 PMCID: PMC8122407 DOI: 10.3390/ijms22094349] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid fibrils are supramolecular protein assemblies represented by a cross-β structure and fibrous morphology, whose structural architecture has been previously investigated. While amyloid fibrils are basically a main-chain-dominated structure consisting of a backbone of hydrogen bonds, side-chain interactions also play an important role in determining their detailed structures and physicochemical properties. In amyloid fibrils comprising short peptide segments, a steric zipper where a pair of β-sheets with side chains interdigitate tightly is found as a fundamental motif. In amyloid fibrils comprising longer polypeptides, each polypeptide chain folds into a planar structure composed of several β-strands linked by turns or loops, and the steric zippers are formed locally to stabilize the structure. Multiple segments capable of forming steric zippers are contained within a single protein molecule in many cases, and polymorphism appears as a result of the diverse regions and counterparts of the steric zippers. Furthermore, the β-solenoid structure, where the polypeptide chain folds in a solenoid shape with side chains packed inside, is recognized as another important amyloid motif. While side-chain interactions are primarily achieved by non-polar residues in disease-related amyloid fibrils, the participation of hydrophilic and charged residues is prominent in functional amyloids, which often leads to spatiotemporally controlled fibrillation, high reversibility, and the formation of labile amyloids with kinked backbone topology. Achieving precise control of the side-chain interactions within amyloid structures will open up a new horizon for designing useful amyloid-based nanomaterials.
Collapse
|
38
|
Miryala S, Nair VG, Chandramohan S, Srinandan CS. Matrix inhibition by Salmonella excludes uropathogenic E. coli from biofilm. FEMS Microbiol Ecol 2021; 97:5924450. [PMID: 33059364 DOI: 10.1093/femsec/fiaa214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/13/2020] [Indexed: 11/15/2022] Open
Abstract
Biofilm is a predominant lifestyle of bacteria that comprises of cells as collectives enmeshed in a polymeric matrix. Biofilm formation is vital for bacterial species as it provides access to nutrients and protects the cells from environmental stresses. Here we show that interference in biofilm matrix production is a strategy by the competing bacterial species to reduce the ability of the other species to colonize a surface. Escherichia coli colonies that differ in matrix production display different morphologies on Congo red agar media, which we exploited for screening bacterial isolates capable of inhibiting the matrix. The cell-free supernatants from growth culture of the screened isolates impaired uropathogenic E. coli (UPEC) UTI89 strain's biofilm. A physicochemical analysis suggested that the compound could be a glycopeptide or a polysaccharide. Isolates that inhibited matrix production belonged to species of the family Enterobacteriaceae such as Shigella, Escherichia, Enterobacter and Salmonella. Competition experiments between the isolates and the UPEC strain resulted in mutual inhibition, particularly during biofilm formation causing significant reduction in productivity and fitness. Furthermore, we show that Salmonella strains competitively excluded the UPEC strain in the biofilm by inhibiting its matrix production, highlighting the role of interference competition.
Collapse
Affiliation(s)
- Sandeep Miryala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - Veena G Nair
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - S Chandramohan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| | - C S Srinandan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology,Thanjavur, Tamil Nadu, India
| |
Collapse
|
39
|
Wang Q, Luo Y, Chaudhuri KR, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson's disease: mechanistic insights andtherapeutic options. Brain 2021; 144:2571-2593. [PMID: 33856024 DOI: 10.1093/brain/awab156] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Sven Pettersson
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore.,LKC School of Medicine, NTU, Singapore.,Sunway University, Department of Medical Sciences, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Abstract
Plant-colonizing fungi secrete a cocktail of effector proteins during colonization. After secretion, some of these effectors are delivered into plant cells to directly dampen the plant immune system or redirect host processes benefitting fungal growth. Other effectors function in the apoplastic space either as released proteins modulating the activity of plant enzymes associated with plant defense or as proteins bound to the fungal cell wall. For such fungal cell wall-bound effectors, we know particularly little about their molecular function. In this review, we describe effectors that are associated with the fungal cell wall and discuss how they contribute to colonization.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| |
Collapse
|
41
|
Shanmugam N, Baker MODG, Sanz-Hernandez M, Sierecki E, Gambin Y, Steain M, Pham CLL, Sunde M. Herpes simplex virus encoded ICP6 protein forms functional amyloid assemblies with necroptosis-associated host proteins. Biophys Chem 2021; 269:106524. [PMID: 33348174 DOI: 10.1016/j.bpc.2020.106524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The viral protein ICP6, encoded by herpes simplex virus 1 (HSV-1), harbours a RIP-homotypic interaction motif (RHIM), that plays a role in viral inhibition of host cell death pathways. Other members of the Herpesviridae family also encode RHIM-containing proteins that interfere with host-cell death pathways, including the M45 protein from murine cytomegalovirus, and ORF20 protein from varicella zoster virus. We have used amyloid assembly assays, electron microscopy and single molecule fluorescence spectroscopy to show that the ICP6 RHIM is amyloidogenic and can interact with host RHIM-containing proteins to form heteromeric amyloid complexes, in a manner similar to that of M45 and ORF20 RHIMs. The core tetrad sequence of the ICP6 RHIM is important for both amyloid formation and interaction with host RHIM-containing proteins. Notably, we show that the amyloid forming capacity of the ICP6 RHIM is affected by the redox environment. We propose that the formation of an intramolecular disulfide bond within ICP6 triggers the formation of amyloid assemblies that are distinct from previously characterised viral amyloids M45 and ORF20. Formation of viral-host heteromeric amyloid assemblies may underlie a general mechanism of viral adaptation against host immune machineries.
Collapse
Affiliation(s)
- Nirukshan Shanmugam
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Max O D G Baker
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Maximo Sanz-Hernandez
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Megan Steain
- Immunology and Infectious Diseases, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
42
|
Valette N, Renou J, Boutilliat A, Fernández-González AJ, Gautier V, Silar P, Guyeux C, Charr JC, Cuenot S, Rose C, Gelhaye E, Morel-Rouhier M. OSIP1 is a self-assembling DUF3129 protein required to protect fungal cells from toxins and stressors. Environ Microbiol 2021; 23:1594-1607. [PMID: 33393164 DOI: 10.1111/1462-2920.15381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022]
Abstract
Secreted proteins are key players in fungal physiology and cell protection against external stressing agents and antifungals. Oak stress-induced protein 1 (OSIP1) is a fungal-specific protein with unknown function. By using Podospora anserina and Phanerochaete chrysosporium as models, we combined both in vivo functional approaches and biophysical characterization of OSIP1 recombinant protein. The P. anserina OSIP1Δ mutant showed an increased sensitivity to the antifungal caspofungin compared to the wild type. This correlated with the production of a weakened extracellular exopolysaccharide/protein matrix (ECM). Since the recombinant OSIP1 from P. chrysosporium self-assembled as fibers and was capable of gelation, it is likely that OSIP1 is linked to ECM formation that acts as a physical barrier preventing drug toxicity. Moreover, compared to the wild type, the OSIP1Δ mutant was more sensitive to oak extractives including chaotropic phenols and benzenes. It exhibited a strongly modified secretome pattern and an increased production of proteins associated to the cell-wall integrity signalling pathway, when grown on oak sawdust. This demonstrates that OSIP1 has also an important role in fungal resistance to extractive-induced stress.
Collapse
Affiliation(s)
- Nicolas Valette
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Julien Renou
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Alexis Boutilliat
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | | | - Valérie Gautier
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, 75205, France
| | - Philippe Silar
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, 75205, France
| | - Christophe Guyeux
- Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon, 25030, France
| | - Jean-Claude Charr
- Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon, 25030, France
| | - Stéphane Cuenot
- Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssinière, Nantes Cedex 3, 44322, France
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, 54000, France
| | - Eric Gelhaye
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Mélanie Morel-Rouhier
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| |
Collapse
|
43
|
Morris DL, Johnson S, Bleck CKE, Lee DY, Tjandra N. Humanin selectively prevents the activation of pro-apoptotic protein BID by sequestering it into fibers. J Biol Chem 2020; 295:18226-18238. [PMID: 33106313 PMCID: PMC11843584 DOI: 10.1074/jbc.ra120.013023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/23/2020] [Indexed: 03/01/2024] Open
Abstract
Members of the B-cell lymphoma (BCL-2) protein family regulate mitochondrial outer membrane permeabilization (MOMP), a phenomenon in which mitochondria become porous and release death-propagating complexes during the early stages of apoptosis. Pro-apoptotic BCL-2 proteins oligomerize at the mitochondrial outer membrane during MOMP, inducing pore formation. Of current interest are endogenous factors that can inhibit pro-apoptotic BCL-2 mitochondrial outer membrane translocation and oligomerization. A mitochondrial-derived peptide, Humanin (HN), was reported being expressed from an alternate ORF in the mitochondrial genome and inhibiting apoptosis through interactions with the pro-apoptotic BCL-2 proteins. Specifically, it is known to complex with BAX and BID. We recently reported the fibrillation of HN and BAX into β-sheets. Here, we detail the fibrillation between HN and BID. These fibers were characterized using several spectroscopic techniques, protease fragmentation with mass analysis, and EM. Enhanced fibrillation rates were detected with rising temperatures or pH values and the presence of a detergent. BID fibers are similar to those produced using BAX; however, the structures differ in final conformations of the BCL-2 proteins. BID fibers display both types of secondary structure in the fiber, whereas BAX was converted entirely to β-sheets. The data show that two distinct segments of BID are incorporated into the fiber structure, whereas other portions of BID remain solvent-exposed and retain helical structure. Similar analyses show that anti-apoptotic BCL-xL does not form fibers with humanin. These results support a general mechanism of sequestration of pro-apoptotic BCL-2 proteins into fibers by HN to inhibit MOMP.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Johnson
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Duck-Yeon Lee
- Biochemistry Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
44
|
Kosolapova AO, Antonets KS, Belousov MV, Nizhnikov AA. Biological Functions of Prokaryotic Amyloids in Interspecies Interactions: Facts and Assumptions. Int J Mol Sci 2020; 21:E7240. [PMID: 33008049 PMCID: PMC7582709 DOI: 10.3390/ijms21197240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloids are fibrillar protein aggregates with an ordered spatial structure called "cross-β". While some amyloids are associated with development of approximately 50 incurable diseases of humans and animals, the others perform various crucial physiological functions. The greatest diversity of amyloids functions is identified within prokaryotic species where they, being the components of the biofilm matrix, function as adhesins, regulate the activity of toxins and virulence factors, and compose extracellular protein layers. Amyloid state is widely used by different pathogenic bacterial species in their interactions with eukaryotic organisms. These amyloids, being functional for bacteria that produce them, are associated with various bacterial infections in humans and animals. Thus, the repertoire of the disease-associated amyloids includes not only dozens of pathological amyloids of mammalian origin but also numerous microbial amyloids. Although the ability of symbiotic microorganisms to produce amyloids has recently been demonstrated, functional roles of prokaryotic amyloids in host-symbiont interactions as well as in the interspecies interactions within the prokaryotic communities remain poorly studied. Here, we summarize the current findings in the field of prokaryotic amyloids, classify different interspecies interactions where these amyloids are involved, and hypothesize about their real occurrence in nature as well as their roles in pathogenesis and symbiosis.
Collapse
Affiliation(s)
- Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
45
|
Beg AZ, Khan AU. Motifs and interface amino acid-mediated regulation of amyloid biogenesis in microbes to humans: potential targets for intervention. Biophys Rev 2020; 12:1249-1256. [PMID: 32930961 DOI: 10.1007/s12551-020-00759-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Amyloids are linked to many debilitating diseases in mammals. Some organisms produce amyloids that have a functional role in the maintenance of their biological processes. Microbes utilize functional bacterial amyloids (FuBA) for pathogenicity and infections. Amyloid biogenesis is regulated differentially in various systems to avoid its toxic accumulation. A familiar feature in the process of amyloid biogenesis from humans to microbes is its regulation by protein-protein interactions (PPI). The spatial arrangement of amino acid residues in proteins generates topologies like flat interface and linear motif, which participate in protein interactions. Motifs and interface residue-mediated interactions have a direct or an indirect impact on amyloid secretion and assembly. Some motifs undergo post-translational modifications (PTM), which effects interactions and dynamics of the amyloid biogenesis cascade. Interaction-induced local changes stimulate global conformational transitions in the PPI complex, which indirectly affects amyloid formation. Perturbation of such motifs and interface residues results in amyloid abolishment. Interface residues, motifs and their respective interactive protein partners could serve as potential targets for intervention to inhibit amyloid biogenesis.
Collapse
Affiliation(s)
- Ayesha Z Beg
- Medical Microbiology and Molecular Biology, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
46
|
Kaur A, New EJ, Sunde M. Strategies for the Molecular Imaging of Amyloid and the Value of a Multimodal Approach. ACS Sens 2020; 5:2268-2282. [PMID: 32627533 DOI: 10.1021/acssensors.0c01101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein aggregation has been widely implicated in neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia, Parkinson's disease, and Huntington disease, as well as in systemic amyloidoses and conditions associated with localized amyloid deposits, such as type-II diabetes. The pressing need for a better understanding of the factors governing protein assembly has driven research for the development of molecular sensors for amyloidogenic proteins. To date, a number of sensors have been developed that report on the presence of protein aggregates utilizing various modalities, and their utility demonstrated for imaging protein aggregation in vitro and in vivo. Analysis of these sensors highlights the various advantages and disadvantages of the different imaging modalities and makes clear that multimodal sensors with properties amenable to more than one imaging technique need to be developed. This critical review highlights the key molecular scaffolds reported for molecular imaging modalities such as fluorescence, positron emission tomography, single photon emission computed tomography, and magnetic resonance imaging and includes discussion of the advantages and disadvantages of each modality, and future directions for the design of amyloid sensors. We also discuss the recent efforts focused on the design and development of multimodal sensors and the value of cross-validation across multiple modalities.
Collapse
Affiliation(s)
- Amandeep Kaur
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales 2006, Australia
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth J. New
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney, School of Chemistry, Faculty of Science, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales 2006, Australia
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
Ulamec SM, Radford SE. Spot the Difference: Function versus Toxicity in Amyloid Fibrils. Trends Biochem Sci 2020; 45:635-636. [DOI: 10.1016/j.tibs.2020.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 11/29/2022]
|
48
|
Barran-Berdon AL, Ocampo S, Haider M, Morales-Aparicio J, Ottenberg G, Kendall A, Yarmola E, Mishra S, Long JR, Hagen SJ, Stubbs G, Brady LJ. Enhanced purification coupled with biophysical analyses shows cross-β structure as a core building block for Streptococcus mutans functional amyloids. Sci Rep 2020; 10:5138. [PMID: 32198417 PMCID: PMC7083922 DOI: 10.1038/s41598-020-62115-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/14/2020] [Indexed: 11/10/2022] Open
Abstract
Streptococcus mutans is an etiologic agent of human dental caries that forms dental plaque biofilms containing functional amyloids. Three amyloidogenic proteins, P1, WapA, and Smu_63c were previously identified. C123 and AgA are naturally occurring amyloid-forming fragments of P1 and WapA, respectively. We determined that four amyloidophilic dyes, ThT, CDy11, BD-oligo, and MK-H4, differentiate C123, AgA, and Smu_63c amyloid from monomers, but non-specific binding to bacterial cells in the absence of amyloid precludes their utility for identifying amyloid in biofilms. Congo red-induced birefringence is a more specific indicator of amyloid formation and differentiates biofilms formed by wild-type S. mutans from a triple ΔP1/WapA/Smu_63c mutant with reduced biofilm forming capabilities. Amyloid accumulation is a late event, appearing in older S. mutans biofilms after 60 hours of growth. Amyloid derived from pure preparations of all three proteins is visualized by electron microscopy as mat-like structures. Typical amyloid fibers become evident following protease digestion to eliminate non-specific aggregates and monomers. Amyloid mats, similar in appearance to those reported in S. mutans biofilm extracellular matrices, are reconstituted by co-incubation of monomers and amyloid fibers. X-ray fiber diffraction of amyloid mats and fibers from all three proteins demonstrate patterns reflective of a cross-β amyloid structure.
Collapse
Affiliation(s)
- Ana L Barran-Berdon
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Sebastian Ocampo
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Momin Haider
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | | | - Gregory Ottenberg
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Amy Kendall
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R Long
- Department of Biochemistry, University of Florida, Gainesville, Florida, USA
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - Gerald Stubbs
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
49
|
Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. J Biol Chem 2020; 295:34-54. [PMID: 31784450 PMCID: PMC6952617 DOI: 10.1074/jbc.rev119.006545] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ribosomally synthesized and posttranslationally modified peptides (RiPPs), also called ribosomal peptide natural products (RPNPs), form a growing superfamily of natural products that are produced by many different organisms and particularly by bacteria. They are derived from precursor polypeptides whose modification by various dedicated enzymes helps to establish a vast array of chemical motifs. RiPPs have attracted much interest as a source of potential therapeutic agents, and in particular as alternatives to conventional antibiotics to address the bacterial resistance crisis. However, their ecological roles in nature are poorly understood and explored. The present review describes major RiPP actors in competition within microbial communities, the main ecological and physiological functions currently evidenced for RiPPs, and the microbial ecosystems that are the sites for these functions. We envision that the study of RiPPs may lead to discoveries of new biological functions and highlight that a better knowledge of how bacterial RiPPs mediate inter-/intraspecies and interkingdom interactions will hold promise for devising alternative strategies in antibiotic development.
Collapse
Affiliation(s)
- Yanyan Li
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
50
|
2019-A year in Biophysical Reviews. Biophys Rev 2019; 11:833-839. [PMID: 31741173 DOI: 10.1007/s12551-019-00607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
|