1
|
Zhu Y, Song M, Pan Y, Zhao Y, Liu H. Evaluation and Application of the MIRA-qPCR Method for Rapid Detection of Norovirus Genogroup II in Shellfish. Microorganisms 2025; 13:712. [PMID: 40284551 PMCID: PMC12029516 DOI: 10.3390/microorganisms13040712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Globally, norovirus has become the primary cause of outbreaks of acute gastroenteritis, and an increasing number of norovirus GII infections have been associated with shellfish. This highlights the urgent need to establish sensitive and rapid detection platforms for timely screening of contaminated shellfish to reduce the risk of virus transmission. To address this challenge, we developed a novel detection method combining multienzyme isothermal rapid amplification (MIRA) with qPCR, referred to as MIRA-qPCR, specifically targeting norovirus GII. It exhibited robust specificity, demonstrating no cross-reactivity with sapovirus, rotavirus, hepatitis A virus, Escherichia coli, Listeria monocytogenes, or Vibrio parahaemolyticus, and exhibited high sensitivity, detecting as low as 1.62 copies/μL for recombinant plasmid standards. Furthermore, MIRA-qPCR showed good linearity in the 1.62 × 101 to 1.62 × 107 copies/μL range, with an R2 > 0.90. MIRA-qPCR and qPCR assays were performed on 125 fresh shellfish samples; there was good consistency in the detection results, and the Kappa value was 0.90 (p < 0.001). The sensitivity and specificity of the MIRA-qPCR detection were 100.00% and 97.25%, respectively. The MIRA-qPCR technique provides a viable alternative for the rapid screening of norovirus GII-contaminated shellfish to guarantee food safety.
Collapse
Affiliation(s)
- Yanting Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengyuan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Park K, No JS, Prayitno SP, Seo YR, Lee SH, Noh J, Kim J, Kim SG, Cho HK, Natasha A, Kim B, Park J, Kim WK, Song JW. Epidemiological Surveillance and Genomic Characterization of Soochong Virus From Apodemus Species Using Multiplex PCR-Based Next-Generation Sequencing, Republic of Korea. J Med Virol 2024; 96:e70077. [PMID: 39588784 DOI: 10.1002/jmv.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Orthohantavirus hantanense causes hemorrhagic fever with renal syndrome in Eurasia, posing a substantial public health threat. Although the Hantaan virus is the primary etiological agent in the Republic of Korea (ROK), evidence suggests the potential zoonotic transmission of the Amur virus (AMRV), closely related to the Soochong virus (SOOV), to humans in China and Russia. This study examined 31 Apodemus spp. captured from six regions in Gangwon Province, ROK, between 2015 and 2018. Of these, 5/31 (16.1%) tested positive for anti-SOOV immunoglobulin G and SOOV RNA, with 3/6 (50%) in Hongcheon-gun and 2/5 (40%) in Pyeongchang-gun. Utilizing a multiplex polymerase chain reaction-based next-generation sequencing approach, we achieved complete genomic sequencing of SOOV from rodent lung tissues, with coverage rates of 90.3%-98.2% for the S segment, 92.3%-98.1% for the M segment, and 88.1%-93.0% for the L segment. Five novel whole-genome sequences of SOOV were obtained from rodents in Hongcheon-gun and Pyeongchang-gun, representing the first documented SOOV in Pyeongchang-gun. The evolutionary rate analysis of SOOV tripartite genomes demonstrated lower divergence in the S segment. Phylogenetic analysis revealed a well-supported divergence of the SOOV and AMRV lineages across the ROK, China, and Russia, with incongruences suggesting differential segment evolution. Co-divergence analysis indicated the inter-species transmission of SOOV Aa18-104 from Apodemus agrarius in Pyeongchang-gun. The high zoonotic potential of all SOOV strains underscores the need for extensive monitoring and surveillance. This report provides crucial insights for the development of effective control strategies against hantaviral outbreaks in the ROK.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun No
- Division of High-Risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sara P Prayitno
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ye-Rin Seo
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Bohyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Detection of Hepatitis E Virus (HEV) in Pigs and in the Wild Boar (Sus scrofa) Population of Chieti Province, Abruzzo Region, Italy. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen, causing infectious hepatitis in man. Pigs and wild boars are the natural asymptomatic reservoirs, while the disease in humans could be either asymptomatic or evolve in hepatitis. In Europe, an increasing number of human infections from HEV have been reported over the last few years. The main route of transmission is through contaminated food, by direct or indirect consumption of raw or undercooked pork and wild boar meat and meat products. Up to now, HEV prevalence in Italian northern regions has been extensively determined in wild boars and pigs, while less data have been collected from the southern ones. There is a need to report more data about HEV prevalence from wild boars and pigs in southern Italy in consideration of the potential risk posed by some specific traditional food products manufactured in these areas and produced from pig and wild boar livers (e.g., sausages and salami). The aim of this study was to demonstrate the circulation of the Hepatitis E virus (HEV) in pigs and in the wild boar population of the province of Chieti, Abruzzo Region, Central Italy. Moreover, potential HEV seroprevalence in hunters from that area was also assessed. The overall prevalence of HEV RNA in wild boars was 9.5% (CI 5.4–16.2%), but no HEV RNA was detected in samples from pigs.
Collapse
|
4
|
Development and validation of a SYBR green-based mitochondrial DNA quantification method by following the MIQE and other guidelines. Leg Med (Tokyo) 2022; 58:102096. [PMID: 35689884 DOI: 10.1016/j.legalmed.2022.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 01/28/2023]
Abstract
In forensic mitochondrial DNA (mtDNA) analysis, quantitative PCR (qPCR) is usually performed to obtain high-quality sequence data for subsequent Sanger or massively parallel sequencing. Unlike methods for nuclear DNA quantification using qPCR, a calibrator is necessary to obtain mtDNA concentrations (i.e., copies/µL). Herein, we developed and validated a mtDNA quantification method based on a SYBR Green assay by following MIQE [Bustin et al., Clin. Chem. 55 (2009) 611-22] and other guidelines. Primers were designed to amplify nucleotide positions 16,190-16,420 in hypervariable region 1 for qPCR using PowerUp SYBR Green and QuantStudio 5. The optimized conditions were 0.3 µM each primer and an annealing temperature of 60 °C under a 2-step cycling protocol. K562 DNA at 100 pg/µL was converted into a mtDNA concentration of 16,400 copies/µL using linearized plasmid DNA. This mtDNA calibrator was obtained by cloning the synthesized DNA fragments of mtDNA (positions 16,140-16,470) containing a 100-bp inversion. The linear dynamic range of the K562 standard curve was 10,000-0.1 pg/µL (r2 ≥ 0.999). The accuracy was examined using NIST SRM 2372a, and its components A, B, and C were quantified with differences of -29.4%, -35.0%, and -22.0%, respectively, against the mtDNA concentrations calculated from published NIST data. We also examined the specificity of the primers, stability of the reaction mix, precision, tolerance against PCR inhibitors, and cross-reactivity against DNA from various animal taxa. Our newly developed mtDNA quantification method is expected to be useful for forensic mtDNA analysis.
Collapse
|
5
|
Larocque É, Lévesque V, Lambert D. Crystal digital RT-PCR for the detection and quantification of norovirus and hepatitis A virus RNA in frozen raspberries. Int J Food Microbiol 2022; 380:109884. [PMID: 36055105 DOI: 10.1016/j.ijfoodmicro.2022.109884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
Berries are important vehicles for norovirus (NoV) and hepatitis A virus (HAV) foodborne outbreaks. Sensitive and quantitative detection of these viruses in food samples currently relies on RT-qPCR, but remains challenging due to their low concentration and the presence of RT-qPCR inhibitors. Moreover, quantification requires a standard curve. In this study, crystal digital RT-PCR (RT-cdPCR) assays were adapted from RT-qPCR sets of primers and probe currently used in our diagnostic laboratory for the detection and precise quantification of norovirus genogroups I and II (NoV GI, GII) and hepatitis A virus (HAV) RNA in frozen raspberry samples. We selected assay conditions based on optimal separation of positive and negative droplets, and peak resolution. Using virus-specific in vitro RNA transcripts diluted in raspberry RNA extracts, we showed that all three RT-cdPCR assays were sensitive, and we estimated the 95 % detection limit at 9 copies per RT-cdPCR reaction for NoV GI, 3 for NoV GII, and 14 for HAV. Serial dilutions of the RNA transcripts showed excellent linearity over a range of four orders of magnitude. We achieved precise quantification (CV ≤ 35 %) of the RNA transcripts between runs down to 15-145 copies per reaction for NoV GI, <20 for NoV GII, and < 15 for HAV. The three RT-cdPCR assays also proved to be tolerant to inhibitors from frozen raspberries, although not as tolerant as the RT-qPCR assays in the case of NoV GI and HAV. We further evaluated the assays with inoculated frozen raspberry samples and compared their performance to that of the RT-qPCR assays. As compared to the corresponding RT-qPCR assays, the NoV GI and HAV RT-cdPCR assays showed a decreased qualitative sensitivity, while the NoV GII RT-cdPCR assay had an increased sensitivity. As for quantification, the NoV GI and NoV GII RT-cdPCR assays produced similar estimates of RNA copy number than their respective RT-qPCR assays, whereas for HAV, the RT-cdPCR assay produced lower estimates than the RT-qPCR assay. However, all the RT-cdPCR assays provided more precise quantitative measurements at low levels of contamination than the RT-qPCR assays. In conclusion, the potential of the RT-cdPCR assays in this study to detect viral RNA from frozen raspberries varied according to assay, but these RT-cdPCR assays should be considered for precise absolute quantification in difficult matrices such as frozen raspberries.
Collapse
Affiliation(s)
- Émilie Larocque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada.
| | - Valérie Lévesque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Dominic Lambert
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
6
|
Genotyping and Molecular Diagnosis of Hepatitis A Virus in Human Clinical Samples Using Multiplex PCR-Based Next-Generation Sequencing. Microorganisms 2022; 10:microorganisms10010100. [PMID: 35056549 PMCID: PMC8779169 DOI: 10.3390/microorganisms10010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatitis A virus (HAV) is a serious threat to public health worldwide. We used multiplex polymerase chain reaction (PCR)-based next-generation sequencing (NGS) to derive information on viral genetic diversity and conduct precise phylogenetic analysis. Four HAV genome sequences were obtained using multiplex PCR-based NGS. HAV whole-genome sequence of one sample was obtained by conventional Sanger sequencing. The HAV strains demonstrated a geographic cluster with sub-genotype IA strains in the Republic of Korea. The phylogenetic pattern of HAV viral protein (VP) 3 region showed no phylogenetic conflict between the whole-genome and partial-genome sequences. The VP3 region in serum and stool samples showed sensitive detection of HAV with differences of quantification that did not exceed <10 copies/μL than the consensus VP4 region using quantitative PCR (qPCR). In conclusion, multiplex PCR-based NGS was implemented to define HAV genotypes using nearly whole-genome sequences obtained directly from hepatitis A patients. The VP3 region might be a potential candidate for tracking the genotypic origin of emerging HAV outbreaks. VP3-specific qPCR was developed for the molecular diagnosis of HAV infection. This study may be useful to predict for the disease management and subsequent development of hepatitis A infection at high risk of severe illness.
Collapse
|
7
|
Bigoraj E, Paszkiewicz W, Rzeżutka A. Porcine Blood and Liver as Sporadic Sources of Hepatitis E Virus (HEV) in the Production Chain of Offal-Derived Foodstuffs in Poland. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:347-356. [PMID: 33891305 PMCID: PMC8379118 DOI: 10.1007/s12560-021-09475-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 05/11/2023]
Abstract
Pig's blood and liver are valuable edible slaughter by-products which are also the major ingredients of offal-derived foodstuffs. The aim of the study was an evaluation of the occurrence of hepatitis E virus (HEV) and porcine adenovirus (pAdV) as an index virus of faecal contamination in pig's blood and liver for human consumption. In total, 246 samples of retail liver (n = 100) and pooled pig's blood (n = 146) were analysed for the presence of HEV and pAdV. Blood samples were individually collected from 1432 pigs at slaughter age. Viral genomic material, including RNA of a sample process control virus was isolated from food samples using a QIAamp® Viral RNA Mini Kit. Virus-specific IAC-controlled real-time PCR methods were used for detection of target viruses. HEV RNA was found in 6 (2.4%; 95% CI: 0.9-5.2) out of 246 samples of tested foodstuffs. The virus was detected in pig's blood (3.4%; 95% CI: 1.1-7.8) and liver (1.0%; 95% CI: 0.0-5.0) with no significant differences observed in the frequency of its occurrence between the two by-products (t = 1.33; p = 0.182 > 0.05); however PAdV was detected more frequently in pig's blood than in liver (t = 4.65; p = 0.000 < 0.05). The HEV strains belonged to the 3f and 3e subtype groups and the pAdV strains were assigned to serotype 5. PAdV was detected in pigs regardless of the farm size from which they originated. The number of animals raised on the farm (the farm size) had no influence on the occurrence of HEV or pAdV infections in pigs (F = 0.81, p = 0.447 > 0.05 for HEV; F = 0.42, p = 0.655 > 0.05 for pAdV). Although HEV was detected in pig's offal only sporadically, consumers cannot treat its occurrence with disregard as it demonstrates that HEV-contaminated pig tissues can enter the food chain.
Collapse
Affiliation(s)
- E Bigoraj
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - W Paszkiewicz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-950, Lublin, Poland
| | - A Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
8
|
Álvarez-Díaz DA, Valencia-Álvarez E, Rivera JA, Rengifo AC, Usme-Ciro JA, Peláez-Carvajal D, Lozano-Jiménez YY, Torres-Fernández O. An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. INFECTION GENETICS AND EVOLUTION 2021; 93:104967. [PMID: 34116240 DOI: 10.1016/j.meegid.2021.104967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 12/15/2022]
Abstract
The real-time reverse transcription-polymerase chain reaction (real-time RT-qPCR) has become a leading technique for the detection and quantification of arboviruses, including Chikungunya, Dengue, and Zika viruses. In this study, an updated real-time RT-qPCR assay was designed and evaluated together with a synthetic positive-control chimeric RNA for the simultaneous detection and quantification of Chikungunya, Dengue, and Zika viruses. Amplification assays were performed to verify the construct integrity and optimal reaction/thermal cycling conditions. The analytical sensitivity of the assay was determined for each virus in single and multiplex reactions, as well as the performance in the detection and viral load quantification of experimental samples. The real-time RT-qPCR assay presented here allowed for the simultaneous detection and quantification of Chikungunya, Dengue, and Zika viruses and could be applied in several studies where the accurate quantification of viral genomes is required.
Collapse
Affiliation(s)
- Diego Alejandro Álvarez-Díaz
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C. 111321, Colombia; Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C. 111321, Colombia; Doctorado en Ciencias Biología, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia.
| | - Emmanuel Valencia-Álvarez
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C. 111321, Colombia; Programa de Biología, Departamento de Ciencias Básicas, Universidad de La Salle, Bogotá D.C. 111711, Colombia
| | - Jorge Alonso Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C. 111321, Colombia
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C. 111321, Colombia; Doctorado en Ciencias Biomédicas, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia
| | - José Aldemar Usme-Ciro
- Centro de Investigación en Salud para el Trópico-CIST, Universidad Cooperativa de Colombia, Santa Marta, 470003, Colombia
| | - Dioselina Peláez-Carvajal
- Grupo de Virología, Dirección de Redes en Salud Pública, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C. 111321, Colombia
| | | | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C. 111321, Colombia
| |
Collapse
|
9
|
The contrasting role of nasopharyngeal angiotensin converting enzyme 2 (ACE2) transcription in SARS-CoV-2 infection: A cross-sectional study of people tested for COVID-19 in British Columbia, Canada. EBioMedicine 2021; 66:103316. [PMID: 33819740 PMCID: PMC8016616 DOI: 10.1016/j.ebiom.2021.103316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Angiotensin converting enzyme 2 (ACE2) protein serves as the host receptor for SARS-CoV-2, with a critical role in viral infection. We aim to understand population level variation of nasopharyngeal ACE2 transcription in people tested for COVID-19 and the relationship between ACE2 transcription and SARS-CoV-2 viral load, while adjusting for expression of: (i) the complementary protease, Transmembrane serine protease 2 (TMPRSS2), (ii) soluble ACE2, (iii) age, and (iv) biological sex. The ACE2 gene was targeted to measure expression of transmembrane and soluble transcripts. Methods A cross-sectional study of n = 424 “participants” aged 1–104 years referred for COVID-19 testing was performed in British Columbia, Canada. Patients who tested positive for COVID-19 were matched by age and biological sex to patients who tested negative. Viral load and host gene expression were assessed by quantitative reverse-transcriptase polymerase chain reaction. Bivariate analysis and multiple linear regression were performed to understand the role of nasopharyngeal ACE2 expression in SARS-CoV-2 infection. Findings Analysis showed no association between age and nasopharyngeal ACE2 transcription in those who tested negative for COVID-19 (P = 0•092). Mean relative transcription of transmembrane (P = 0•00012) and soluble (P<0•0001) ACE2 isoforms, as well as TMPRSS2 (P<0•0001) was higher in COVID-19-negative participants than COVID--19 positive ones, yielding a negative correlation between targeted host gene expression and positive COVID-19 diagnosis. In bivariate analysis of COVID-19-positive participants, transcription of transmembrane ACE2 positively correlated with SARS-CoV-2 viral RNA load (B = 0•49, R2=0•14, P<0•0001), transcription of soluble ACE2 negatively correlated (B= -0•85, R2= 0•26, P<0•0001), and no correlation was found with TMPRSS2 transcription (B= -0•042, R2=<0•10, P = 0•69). Multivariable analysis showed that the greatest viral RNA loads were observed in participants with high transmembrane ACE2 transcription (Β= 0•89, 95%CI: [0•59 to 1•18]), while transcription of the soluble isoform appears to protect against high viral RNA load in the upper respiratory tract (Β= -0•099, 95%CI: [-0•18 to -0•022]). Interpretation Nasopharyngeal ACE2 transcription plays a dual, contrasting role in SARS-CoV-2 infection of the upper respiratory tract. Transcription of the transmembrane ACE2 isoform positively correlates, while transcription of the soluble isoform negatively correlates with viral RNA load after adjusting for age, biological sex, and transcription of TMPRSS2. Funding This project (COV-55) was funded by Genome British Columbia as part of their COVID-19 rapid response initiative.
Collapse
|
10
|
Souza DSM, Tápparo DC, Rogovski P, Cadamuro RD, de Souza EB, da Silva R, Degenhardt R, Lindner JDD, Viancelli A, Michelon W, Kunz A, Treichel H, Hernández M, Rodríguez-Lázaro D, Fongaro G. Hepatitis E Virus in Manure and Its Removal by Psychrophilic anaerobic Biodigestion in Intensive Production Farms, Santa Catarina, Brazil, 2018-2019. Microorganisms 2020; 8:microorganisms8122045. [PMID: 33371202 PMCID: PMC7766788 DOI: 10.3390/microorganisms8122045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is an important enteric agent that can circulate in swine; it is excreted in manure, and of zoonotic interest. The present study investigated, by RT-qPCR, the circulation of HEV in swine manure from different types of pig farms (maternity, nursery, and grow-finish farms) in Santa Catarina State, the major pig production area of Brazil, and also evaluated the HEV removal efficiency of psychrophilic anaerobic biodigesters (PABs). While HEV was consistently detected in manure from grow-finish pig farms (>4 log HEV genome copies (GC) L−1), the virus was not detected in manure from maternity and nursery farms. These findings suggest a potential high biosafety status during primary-swine production, with a subsequent contamination in grow-finish production. The anaerobic biodigestion process reduced more than 2 log10 HEV GC in the processed swine manure. However, the virus concentration in final effluent remained high, with an average value of 3.85 log10 HEV GC L−1. Consequently, our results demonstrate that PABs can be a robust tool for effective inactivation of HEV, while reinforcing the need for sanitary surveillance and legislation of swine manure-derived biofertilizers, to avoid the spread of zoonotic enteric pathogens such as HEV.
Collapse
Affiliation(s)
- Doris Sobral Marques Souza
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; (D.S.M.S.); (P.R.); (R.D.C.); (E.B.d.S.); (R.d.S.)
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC 88034-001, Brazil; (R.D.); (J.D.D.L.)
| | | | - Paula Rogovski
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; (D.S.M.S.); (P.R.); (R.D.C.); (E.B.d.S.); (R.d.S.)
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; (D.S.M.S.); (P.R.); (R.D.C.); (E.B.d.S.); (R.d.S.)
| | - Estêvão Brasiliense de Souza
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; (D.S.M.S.); (P.R.); (R.D.C.); (E.B.d.S.); (R.d.S.)
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; (D.S.M.S.); (P.R.); (R.D.C.); (E.B.d.S.); (R.d.S.)
| | - Roberto Degenhardt
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC 88034-001, Brazil; (R.D.); (J.D.D.L.)
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC 88034-001, Brazil; (R.D.); (J.D.D.L.)
| | - Aline Viancelli
- PMPECSA-UnC, University of Contestado, Concórdia, SC 89711-330, Brazil; (A.V.); (W.M.)
| | - William Michelon
- PMPECSA-UnC, University of Contestado, Concórdia, SC 89711-330, Brazil; (A.V.); (W.M.)
| | - Airton Kunz
- Embrapa Suínos e Aves, Concórdia, SC 89715-899, Brazil;
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, RS 99700-970, Brazil;
| | - Marta Hernández
- Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain;
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, 09001 Burgos, Spain
| | - David Rodríguez-Lázaro
- Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain;
- Correspondence: (D.R.-L.); (G.F.); Tel.: +34-637-451-110 (D.R.-L.)
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; (D.S.M.S.); (P.R.); (R.D.C.); (E.B.d.S.); (R.d.S.)
- Correspondence: (D.R.-L.); (G.F.); Tel.: +34-637-451-110 (D.R.-L.)
| |
Collapse
|
11
|
Aprea G, Scattolini S, D’Angelantonio D, Chiaverini A, Di Lollo V, Olivieri S, Marcacci M, Mangone I, Salucci S, Antoci S, Cammà C, Di Pasquale A, Migliorati G, Pomilio F. Whole Genome Sequencing Characterization of HEV3- e and HEV3- f Subtypes among the Wild Boar Population in the Abruzzo Region, Italy: First Report. Microorganisms 2020; 8:microorganisms8091393. [PMID: 32932776 PMCID: PMC7565956 DOI: 10.3390/microorganisms8091393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 01/26/2023] Open
Abstract
Hepatitis E virus (HEV) is an emergent zoonotic pathogen, causing worldwide acute and chronic hepatitis in humans. HEV comprises eight genotypes and several subtypes. HEV genotypes 3 and 4 (HEV3 and HEV4) are zoonotic. In Italy, the most part of HEV infections (80%) is due to autochthonous HEV3 circulation of the virus, and the key role played by wild animals is generally accepted. Abruzzo is an Italian region officially considered an HEV "hot spot", with subtype HEV3-c being up to now the only one reported among wild boars. During the year 2018-2019, a group of wild boars in Abruzzo were screened for HEV; positive RNA liver samples were subjected to HEV characterization by using the whole genome sequencing (WGS) approach methodology. This represents the first report about the detection of HEV-3 subtypes e and f in the wild boar population in this area. Since in Italy human infections from HEV 3-e and f have been associated with pork meat consumption, our findings deserve more in-depth analysis with the aim of evaluating any potential correlation between wild animals, the pork chain production and HEV human infections.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
- Correspondence: (G.A.); (S.S.)
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
- Correspondence: (G.A.); (S.S.)
| | - Daniela D’Angelantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Sabrina Olivieri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Stefania Salucci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | | | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Adriano Di Pasquale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (A.C.); (V.D.L.); (S.O.); (M.M.); (I.M.); (S.S.); (C.C.); (A.D.P.); (G.M.); (F.P.)
| |
Collapse
|
12
|
Bandeira LM, Puga MAM, de Paula VS, Demarchi LHF, Lichs GGC, Domingos JA, da Cunha RV, Uehara SNO, Motta-Castro ARC. Use of synthetic oligonucleotides for determination of HTLV-1 proviral load by real-time PCR: a helpful alternative approach in the clinical management. J Appl Microbiol 2020; 129:768-774. [PMID: 32202037 DOI: 10.1111/jam.14646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022]
Abstract
AIMS To evaluate the potential use of synthetic oligonucleotides as a standard curve for proviral load (PVL) of human T-cell leukaemia virus type 1 (HTLV-1) quantification in peripheral blood mononuclear cells (PBMC) of HTLV-1-infected individuals by quantitative real-time polymerase chain reaction (qPCR) analysis. METHODS AND RESULTS Synthetic oligonucleotides based on HTLV-1 genome were customized to use as a standard curve. Twelve anti-HTLV-1-positive samples with known HTLV-1 PVL, previously quantified by qPCR assay using TARL-2 cells as a conventional standard curve, were submitted to the new protocol. The proviral quantification levels had a high concordance with qPCR results using a conventional standard curve. The results demonstrate that the conventional standard curve can be replaced by a synthetic standard curve due to its ability to quantification based on the linearity and qPCR efficiency and similar results with a validated qPCR assay using a conventional standard curve. CONCLUSIONS Synthetic oligonucleotides standard curves could be a very useful tool on HTLV-1 diagnosis and absolute HTLV-1 PVL quantification. SIGNIFICANCE AND IMPACT OF THE STUDY HTLV-1 PVL determination using synthetic oligonucleotides standard curve by qPCR could be a helpful alternative for the laboratories that monitor infected patients as an important prognostic factor in HTLV-1-associated diseases progression. Also, it can decrease costs and overcome the biological limitations of the plasmid curve.
Collapse
Affiliation(s)
- L M Bandeira
- Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - M A M Puga
- Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - V S de Paula
- Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - L H F Demarchi
- Central Public Health Laboratory, Lacen/MS, Campo Grande, MS, Brazil
| | - G G C Lichs
- Central Public Health Laboratory, Lacen/MS, Campo Grande, MS, Brazil
| | - J A Domingos
- Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - R V da Cunha
- Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.,Oswaldo Cruz Foundation, Campo Grande, MS, Brazil
| | - S N O Uehara
- Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - A R C Motta-Castro
- Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.,Oswaldo Cruz Foundation, Campo Grande, MS, Brazil
| |
Collapse
|
13
|
García N, Hernández M, Gutierrez-Boada M, Valero A, Navarro A, Muñoz-Chimeno M, Fernández-Manzano A, Escobar FM, Martínez I, Bárcena C, González S, Avellón A, Eiros JM, Fongaro G, Domínguez L, Goyache J, Rodríguez-Lázaro D. Occurrence of Hepatitis E Virus in Pigs and Pork Cuts and Organs at the Time of Slaughter, Spain, 2017. Front Microbiol 2020; 10:2990. [PMID: 32047480 PMCID: PMC6997137 DOI: 10.3389/fmicb.2019.02990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Zoonotic hepatitis E, mainly caused by hepatitis E virus (HEV) genotype (gt) 3, is a foodborne disease that has emerged in Europe in recent decades. The main animal reservoir for genotype 3 is domestic pigs. Pig liver and liver derivates are considered the major risk products, and studies focused on the presence of HEV in pig muscles are scarce. The objective of the present study was to evaluate the presence of HEV in different organs and tissues of 45 apparently healthy pigs from nine Spanish slaughterhouses (50% national production) that could enter into the food supply chain. Anti-HEV antibodies were evaluated in serum by an ELISA test. Ten samples from each animal were analyzed for the presence of HEV RNA by reverse transcription real-time PCR (RT-qPCR). The overall seroprevalence obtained was 73.3% (33/45). From the 450 samples analyzed, a total of 26 RT-qPCR positive samples were identified in the liver (7/45), feces (6/45), kidney (5/45), heart (4/45), serum (3/45), and diaphragm (1/45). This is the first report on detection of HEV RNA in kidney and heart samples of naturally infected pigs. HEV RNA detection was negative for rib, bacon, lean ham, and loin samples. These findings indicate that pig meat could be considered as a low risk material for foodborne HEV infection.
Collapse
Affiliation(s)
- Nerea García
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Marta Hernández
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| | - Maialen Gutierrez-Boada
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| | - Antonio Valero
- Department of Food Science and Technology, University of Córdoba, Córdoba, Spain
| | - Alejandro Navarro
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Milagros Muñoz-Chimeno
- Laboratorio de Referencia e Investigación en Hepatitis Víricas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Franco Matías Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Irene Martínez
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Carmen Bárcena
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Sergio González
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Ana Avellón
- Laboratorio de Referencia e Investigación en Hepatitis Víricas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Eiros
- Department of Microbiology, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense Madrid, Madrid, Spain
| | - Joaquín Goyache
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense Madrid, Madrid, Spain
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| |
Collapse
|
14
|
Detection of hepatitis E virus (rabbit genotype) in farmed rabbits entering the food chain. Int J Food Microbiol 2020; 319:108507. [PMID: 31981930 DOI: 10.1016/j.ijfoodmicro.2020.108507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV) infects humans and many animal species. The rabbit HEV has been found in farmed, wild and pet rabbits as well as in human patients suggesting zoonotic transmission. Although the routes of human infection with rabbit strains are unclear a foodborne transmission is suggested especially when asymptomatically infected animals could enter the food chain. The aims of the study were an evaluation of the prevalence of HEV infections in slaughtered rabbits, identification of the virus genotype(s) and assessment of their genetic relatedness to other zoonotic HEV strains. A pair of blood and liver samples (n = 482) were collected from meat rabbits of different breeds slaughtered at the age of 2.8 to 6 months. The animals originated from 20 small-scale and 4 large-scale commercial farms operating in Poland. The presence of anti-HEV antibodies in animals was detected by the use of a recomWell HEV IgG (human) ELISA kit (Mikrogen Diagnostik) adapted to rabbit sera. The isolation of HEV and sample process control virus (feline calicivirus) RNA from homogenates of liver destined for food and virus-positive sera was performed using a QIAamp® Viral RNA Mini Kit (Qiagen). A one-step real-time reverse transcription PCR method containing a target-specific internal amplification control was used for detection of HEV. The (sub)genotype of detected rabbit HEV strains was identified based on sequence analysis of the ORF2 and ORF2/3 virus genome fragments. Anti-HEV antibodies were detected in 29 (6%) out of 482 rabbit sera samples collected from animals raised only on the small-scale rabbit farms. Four sera were also positive for HEV RNA. Viral RNA was detected in 72 (14.9%) animal livers. Analysing ELISA and PCR results using Student's t-test, there were significant differences observed in the frequency of HEV infections between rabbits from small-scale and commercial farms (t = 2.675, p = 0.015 < 0.05 for ELISA and t = 2.705, p = 0.014 < 0.05 for PCR). All detected virus strains were identified as HEV gt3 ra subtype. The results of this study provide data on the occurrence of HEV infections in rabbits entering the food chain, suggesting that a risk of foodborne HEV infection due to consumption of contaminated meat and liver exists. In this light, the presence of rabbit HEV in food animals is pertinent as an issue of food safety and the surveillance of these animals for emerging or re-emerging viruses.
Collapse
|
15
|
No JS, Kim WK, Cho S, Lee SH, Kim JA, Lee D, Song DH, Gu SH, Jeong ST, Wiley MR, Palacios G, Song JW. Comparison of targeted next-generation sequencing for whole-genome sequencing of Hantaan orthohantavirus in Apodemus agrarius lung tissues. Sci Rep 2019; 9:16631. [PMID: 31719616 PMCID: PMC6851128 DOI: 10.1038/s41598-019-53043-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/26/2019] [Indexed: 01/06/2023] Open
Abstract
Orthohantaviruses, negative-sense single-strand tripartite RNA viruses, are a global public health threat. In humans, orthohantavirus infection causes hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Whole-genome sequencing of the virus helps in identification and characterization of emerging or re-emerging viruses. Next-generation sequencing (NGS) is a potent method to sequence the viral genome, using molecular enrichment methods, from clinical specimens containing low virus titers. Hence, a comparative study on the target enrichment NGS methods is required for whole-genome sequencing of orthohantavirus in clinical samples. In this study, we used the sequence-independent, single-primer amplification, target capture, and amplicon NGS for whole-genome sequencing of Hantaan orthohantavirus (HTNV) from rodent specimens. We analyzed the coverage of the HTNV genome based on the viral RNA copy number, which is quantified by real-time quantitative PCR. Target capture and amplicon NGS demonstrated a high coverage rate of HTNV in Apodemus agrarius lung tissues containing up to 103–104 copies/μL of HTNV RNA. Furthermore, the amplicon NGS showed a 10-fold (102 copies/μL) higher sensitivity than the target capture NGS. This report provides useful insights into target enrichment NGS for whole-genome sequencing of orthohantaviruses without cultivating the viruses.
Collapse
Affiliation(s)
- Jin Sun No
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.,Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Seungchan Cho
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Ho Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Ah Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, 34186, Republic of Korea
| | - Dong Hyun Song
- 4th R&D Institute, Agency for Defense Development, Daejeon, 34186, Republic of Korea
| | - Se Hun Gu
- 4th R&D Institute, Agency for Defense Development, Daejeon, 34186, Republic of Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, 34186, Republic of Korea
| | - Michael R Wiley
- The Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases at Fort Detrick, Frederick, MD, 21702, USA
| | - Gustavo Palacios
- The Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases at Fort Detrick, Frederick, MD, 21702, USA
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Kokkinos P, Karayanni H, Meziti A, Feidaki R, Paparrodopoulos S, Vantarakis A. Assessment of the Virological Quality of Marine and Running Surface Waters in NW Greece: A Case Study. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:316-326. [PMID: 29696605 DOI: 10.1007/s12560-018-9344-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
The virological quality of surface marine and running water samples collected from Igoumenitsa gulf and Kalamas river (NW Greece) was assessed from October 2012 to September 2013. Sampling sites were exposed to different land and/or anthropogenic effects. Seawater samples were collected monthly from five sampling stations (new harbor, old harbor, wastewater treatment plant outlet, protected Natura area, Drepano beach). Viral targets included human adenoviruses (hAdVs), as index human viruses, while noroviruses (NoVs) and hepatitis A virus (HAV) were also studied. Kalamas river samples were collected seasonally, from three sampling stations (Soulopoulo, Dam, Sagiada-estuaries), while viral targets included also porcine adenoviruses (pAdVs) and bovine polyoma viruses (bPyVs), as additional index viruses. All water samples were analyzed for standard bacterial indicators, as well. Physicochemical and meteorological data were also collected. Based on the standard bacterial indices, both sea and river water samples did not exceed the limits set according to Directive 2006/7/EU. However, positive samples for hAdVs were found occasionally in all sampling sites in Igoumenitsa gulf (23.3%, 14/60) showing fecal contamination of human origin. Moreover, HAV was detected once, in the sampling site of the old port (at 510 GC/L). Most of the Kalamas water samples were found positive for hAdVs (58.3%, 7/12), while human noroviruses GI (NoVGI) (8.3%, 1/12) and GII (NoVGII) (16.7%, 2/12) were also detected. HAV, pAdVs, and bovine polyomaviruses (bPyVs) were not detected in any of the analyzed samples. No statistically significant correlations were found between classic bacterial indicators and viral targets, nor between viruses and meteorological data. Overall, the present study contributed to the collection of useful data for the biomonitoring of the region, and the assessment of the overall impact of anthropogenic activities. It provided also valuable information for the evaluation of the risk of waterborne viral infections and the protection of public health. It was the first virological study in the area and one of the few in Greece.
Collapse
Affiliation(s)
- Petros Kokkinos
- Environmental Microbiology Unit (EMU), Laboratory of Hygiene, Department of Medicine, University of Patras, University Campus, Rio, 26504, Patra, Greece.
| | - Hera Karayanni
- Department of Biological Applications and Technology, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Alexandra Meziti
- Department of Biological Applications and Technology, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Ria Feidaki
- Environmental Microbiology Unit (EMU), Laboratory of Hygiene, Department of Medicine, University of Patras, University Campus, Rio, 26504, Patra, Greece
| | - Spyros Paparrodopoulos
- Environmental Microbiology Unit (EMU), Laboratory of Hygiene, Department of Medicine, University of Patras, University Campus, Rio, 26504, Patra, Greece
| | - Apostolos Vantarakis
- Environmental Microbiology Unit (EMU), Laboratory of Hygiene, Department of Medicine, University of Patras, University Campus, Rio, 26504, Patra, Greece
| |
Collapse
|
17
|
Aprea G, Amoroso MG, Di Bartolo I, D'Alessio N, Di Sabatino D, Boni A, Cioffi B, D'Angelantonio D, Scattolini S, De Sabato L, Cotturone G, Pomilio F, Migliorati G, Galiero G, Fusco G. Molecular detection and phylogenetic analysis of hepatitis E virus strains circulating in wild boars in south-central Italy. Transbound Emerg Dis 2017; 65:e25-e31. [DOI: 10.1111/tbed.12661] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 01/08/2023]
Affiliation(s)
- G. Aprea
- Istituto Zooprofilattico Sperimentale del Mezzogiorno; Portici Italy
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - M. G. Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno; Portici Italy
| | | | - N. D'Alessio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno; Portici Italy
| | - D. Di Sabatino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - A. Boni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - B. Cioffi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno; Portici Italy
| | - D. D'Angelantonio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - S. Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | | | - G. Cotturone
- Ente Parco Naturale Regionale Sirente Velino; Rocca di Mezzo, AQ Italy
| | - F. Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - G. Migliorati
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - G. Galiero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno; Portici Italy
| | - G. Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno; Portici Italy
| |
Collapse
|
18
|
Terio V, Bottaro M, Pavoni E, Losio MN, Serraino A, Giacometti F, Martella V, Mottola A, Di Pinto A, Tantillo G. Occurrence of hepatitis A and E and norovirus GI and GII in ready-to-eat vegetables in Italy. Int J Food Microbiol 2017; 249:61-65. [PMID: 28319799 DOI: 10.1016/j.ijfoodmicro.2017.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 01/19/2017] [Accepted: 03/11/2017] [Indexed: 02/08/2023]
Abstract
Fresh vegetables and their ready-to-eat (RTE) salads have become increasingly recognized as potential vehicles for foodborne diseases. The EU Reg. 1441/2007 establishes microbiological criteria for bacterial pathogens for products placed on the market during their shelf-life (i.e. Salmonella spp., Listeria monocytogenes) for pre-cut fruits and vegetables (RTE) whilst it does not address the problem of contamination by enteric viruses. In this study we investigated the contamination by hepatitis A virus (HAV), hepatitis E virus (HEV) and norovirus (NoV) in 911 ready-to-eat vegetable samples taken from products at retail in Apulia and in Lombardia. The vegetable samples were tested using validated real-time PCR (RT-qPCR) assays, ISO standardized virological methods and ISO culturing methods for bacteriological analysis. The total prevalence of HAV and HEV was 1.9% (18/911) and 0.6% (6/911), respectively. None of the samples analysed in this study was positive for NoV, Salmonella spp. or Listeria monocytogenes. The detection of HAV and HEV in RTE salads highlights a risk to consumers and the need to improve production hygiene. Appropriate implementation of hygiene procedures is required at all the steps of the RTE vegetable production chain and this should include monitoring of emerging viral pathogens.
Collapse
Affiliation(s)
- V Terio
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy.
| | - M Bottaro
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - E Pavoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi no. 9, 25124 Brescia, Italy
| | - M N Losio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi no. 9, 25124 Brescia, Italy
| | - A Serraino
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - F Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - V Martella
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - A Mottola
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - A Di Pinto
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - G Tantillo
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| |
Collapse
|
19
|
Kokkinos P, Bouwknegt M, Verhaelen K, Willems K, Moloney R, de Roda Husman A, D'Agostino M, Cook N, Vantarakis A. Virological fit-for-purpose risk assessment in a leafy green production enterprise. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.11.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Rodríguez-Lázaro D, Diez-Valcarce M, Montes-Briones R, Gallego D, Hernández M, Rovira J. Presence of pathogenic enteric viruses in illegally imported meat and meat products to EU by international air travelers. Int J Food Microbiol 2015; 209:39-43. [PMID: 25951793 DOI: 10.1016/j.ijfoodmicro.2015.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
One hundred twenty two meat samples confiscated from passengers on flights from non-European countries at the International Airport of Bilbao (Spain) were tested for the presence of the main foodborne viral pathogens (human noroviruses genogroups I and II, hepatitis A and E viruses) during 2012 and 2013. A sample process control virus, murine norovirus, was used to evaluate the correct performance of the method. Overall, 67 samples were positive for at least one enteric viruses, 65 being positive for hepatitis E virus (53.3%), 3 for human norovirus genogroup I (2.5%) and 1 for human norovirus genogroup II (0.8%), whereas hepatitis A virus was not detected in any sample. The type of positive meat samples was diverse, but mainly was pork meat products (64.2%). The geographical origin of the positive samples was wide and diverse; samples from 15 out 19 countries tested were positive for at least one virus. However, the estimated virus load was low, ranging from 55 to 9.0 × 10(4) PDU per gram of product. The results obtained showed the potential introduction of viral agents in travelers' luggage, which constitute a neglected route of introduction and transmission.
Collapse
Affiliation(s)
- David Rodríguez-Lázaro
- Instituto Tecnológico Agrario de Castilla y León, ITACyL, Valladolid, Spain; Microbiology Section, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain.
| | - Marta Diez-Valcarce
- Food Technology Section, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Rebeca Montes-Briones
- Food Technology Section, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - David Gallego
- Dependencia de Sanidad de Vizcaya, Delegación del Gobierno en el País Vasco, Bilbao, Spain
| | - Marta Hernández
- Instituto Tecnológico Agrario de Castilla y León, ITACyL, Valladolid, Spain
| | - Jordi Rovira
- Food Technology Section, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
21
|
Bouwknegt M, Verhaelen K, Rzeżutka A, Kozyra I, Maunula L, von Bonsdorff CH, Vantarakis A, Kokkinos P, Petrovic T, Lazic S, Pavlik I, Vasickova P, Willems KA, Havelaar AH, Rutjes SA, de Roda Husman AM. Quantitative farm-to-fork risk assessment model for norovirus and hepatitis A virus in European leafy green vegetable and berry fruit supply chains. Int J Food Microbiol 2015; 198:50-8. [PMID: 25598201 DOI: 10.1016/j.ijfoodmicro.2014.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 10/20/2014] [Accepted: 12/14/2014] [Indexed: 11/24/2022]
Abstract
Fresh produce that is contaminated with viruses may lead to infection and viral gastroenteritis or hepatitis when consumed raw. It is thus important to reduce virus numbers on these foods. Prevention of virus contamination in fresh produce production and processing may be more effective than treatment, as sufficient virus removal or inactivation by post-harvest treatment requires high doses that may adversely affect food quality. To date knowledge of the contribution of various potential contamination routes is lacking. A risk assessment model was developed for human norovirus, hepatitis A virus and human adenovirus in raspberry and salad vegetable supply chains to quantify contributions of potential contamination sources to the contamination of produce at retail. These models were used to estimate public health risks. Model parameterization was based on monitoring data from European supply chains and literature data. No human pathogenic viruses were found in the soft fruit supply chains; human adenovirus (hAdV) was detected, which was additionally monitored as an indicator of fecal pollution to assess the contribution of potential contamination points. Estimated risks per serving of lettuce based on the models were 3×10(-4) (6×10(-6)-5×10(-3)) for NoV infection and 3×10(-8) (7×10(-10)-3×10(-6)) for hepatitis A jaundice. The contribution to virus contamination of hand-contact was larger as compared with the contribution of irrigation, the conveyor belt or the water used for produce rinsing. In conclusion, viral contamination in the lettuce and soft fruit supply chains occurred and estimated health risks were generally low. Nevertheless, the 97.5% upper limit for the estimated NoV contamination of lettuce suggested that infection risks up to 50% per serving might occur. Our study suggests that attention to full compliance for hand hygiene will improve fresh produce safety related to virus risks most as compared to the other examined sources, given the monitoring results. This effect will be further aided by compliance with other hygiene and water quality regulations in production and processing facilities.
Collapse
Affiliation(s)
- Martijn Bouwknegt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Katharina Verhaelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| | - Iwona Kozyra
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Carl-Henrik von Bonsdorff
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Apostolos Vantarakis
- Department of Public Health, Medical School, University of Patras, Patras, Greece
| | - Petros Kokkinos
- Department of Public Health, Medical School, University of Patras, Patras, Greece
| | - Tamas Petrovic
- Virology Department, Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Sava Lazic
- Virology Department, Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | - Ivo Pavlik
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Kris A Willems
- Department of Microbial and Molecular Systems, KU Leuven University, Leuven, Belgium
| | - Arie H Havelaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia A Rutjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Lazić G, Grubač S, Lupulović D, Bugarski D, Lazić S, Knežević P, Petrović T. Presence of Human and Animal Viruses in Surface Waters in Vojvodina Province of Serbia. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:149-158. [PMID: 25687987 DOI: 10.1007/s12560-015-9187-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
For the first time in Serbia, a small surveillance study was conducted in order to estimate the presence and frequency of occurrence of selected human [adenoviruses (HAdV), noroviruses, (NoV GI, NoV GII) and hepatitis A virus (HAV)], animal [porcine adenovirus (PAdV) and bovine polyomavirus (BPyV)] and zoonotic [hepatitis E virus (HEV)] viruses in selected surface waters. In total, 60 surface water samples were collected in two sampling occasions at 30 locations, with each sampling time being separated by 1-5 months. In addition, six sewage effluent samples were collected at one sampling site per each of the three tested town sewage systems, in two sampling occasions with 2 months intervals, before their discharge into the surface waters. The most prevalent virus found was HAdV which was detected in 43.33 % samples. NoV GII was found in 40 % samples. NoV GI was found in 10 % samples, and PAdV, BPyV and HEV were detected in 5 (8.33 %), 4 (6.67 %) and 2 (3.33 %) samples, respectively. HAV was not found in any of analysed surface waters or urban sewage samples. The obtained results confirm the presence of pathogenic enteric viruses of both human and animal origin in surface waters in Serbia indicating the existence of diverse contamination sources.
Collapse
Affiliation(s)
- Gospava Lazić
- Scientific Veterinary Institute "Novi Sad", Novi Sad, Serbia
| | | | | | | | | | | | | |
Collapse
|
23
|
Mormann S, Heißenberg C, Pfannebecker J, Becker B. Tenacity of human norovirus and the surrogates feline calicivirus and murine norovirus during long-term storage on common nonporous food contact surfaces. J Food Prot 2015; 78:224-9. [PMID: 25581201 DOI: 10.4315/0362-028x.jfp-14-165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The transfer of human norovirus (hNV) to food via contaminated surfaces is highly probable during food production, processing, and preparation. In this study, the tenacity of hNV and its cultivable surrogates feline calicivirus (FCV) and murine norovirus (MNV) on two common nonporous surface materials at two storage temperatures was directly compared. Virus titer reduction on artificially inoculated stainless steel and plastic carriers was monitored for 70 days at room temperature and at 7°C. Viruses were recovered at various time points by elution. Genomes from intact capsids (hNV, FCV, and MNV) were quantified with real-time reverse transcription (RT) PCR, and infectivity (FCV and MNV) was assessed with plaque assay. RNase treatment before RNA extraction was used to eliminate exposed RNA and to assess capsid integrity. No significant differences in titer reduction were found between materials (stainless steel or plastic) with the plaque assay or the real-time quantitative RT-PCR. At room temperature, infectious FCV and MNV were detected for 7 days. Titers of intact hNV, FCV, and MNV capsids dropped gradually and were still detectable after 70 days with a loss of 3 to 4 log units. At 7°C, the viruses were considerably more stable than they were at room temperature. Although only MNV infectivity was unchanged after 70 days, the numbers of intact capsids (hNV, FCV, and MNV) were stable with less than a 1-log reduction. The results indicate that hNV persists on food contact surfaces and seems to remain infective for weeks. MNV appears to be more stable than FCV at 7°C, and thus is the most suitable surrogate for hNV under dry conditions. Although a perfect quantitative correlation between intact capsids and infective particles was not obtained, real-time quantitative RT-PCR provided qualitative data about hNV inactivation characteristics. The results of this comparative study might support future efforts in assessment of foodborne virus risk and food safety.
Collapse
Affiliation(s)
- Sascha Mormann
- Department of Life Science Technologies, Institute for Food Technology NRW, Division of Microbiology, Ostwestfalen-Lippe University of Applied Sciences, 32657 Lemgo, Germany.
| | - Cathrin Heißenberg
- Department of Life Science Technologies, Institute for Food Technology NRW, Division of Microbiology, Ostwestfalen-Lippe University of Applied Sciences, 32657 Lemgo, Germany
| | - Jens Pfannebecker
- Department of Life Science Technologies, Institute for Food Technology NRW, Division of Microbiology, Ostwestfalen-Lippe University of Applied Sciences, 32657 Lemgo, Germany
| | - Barbara Becker
- Department of Life Science Technologies, Institute for Food Technology NRW, Division of Microbiology, Ostwestfalen-Lippe University of Applied Sciences, 32657 Lemgo, Germany.
| |
Collapse
|
24
|
Haramoto E, Otagiri M. Occurrence of Human Cosavirus in Wastewater and River Water in Japan. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:62-66. [PMID: 23943064 DOI: 10.1007/s12560-013-9120-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Human cosavirus was detected using reverse transcription-quantitative polymerase chain reaction in 71 % of raw sewage and 29 % each of secondary-treated sewage and river water samples in the Kofu Basin, Japan. The highest concentration was 2.80 × 10(6) copies/l. Nucleotide sequence analysis revealed multiple genotypes of the virus in wastewater.
Collapse
Affiliation(s)
- Eiji Haramoto
- International Research Center for River Basin Environment, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
| | - Mikie Otagiri
- International Research Center for River Basin Environment, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| |
Collapse
|
25
|
Pang XL, Preiksaitis JK, Lee BE. Enhanced enteric virus detection in sporadic gastroenteritis using a multi-target real-time PCR panel: A one-year study. J Med Virol 2013; 86:1594-601. [DOI: 10.1002/jmv.23851] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoli L. Pang
- Provincial Laboratory for Public Health; Edmonton Alberta Canada
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta Canada
| | | | - Bonita E. Lee
- Department of Pediatrics; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
26
|
Verhaelen K, Bouwknegt M, Carratalà A, Lodder-Verschoor F, Diez-Valcarce M, Rodríguez-Lázaro D, de Roda Husman AM, Rutjes SA. Virus transfer proportions between gloved fingertips, soft berries, and lettuce, and associated health risks. Int J Food Microbiol 2013; 166:419-25. [PMID: 24029026 DOI: 10.1016/j.ijfoodmicro.2013.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/07/2023]
Abstract
Multiple outbreaks of human norovirus (hNoV) have been associated with fresh produce, such as soft berries and lettuce. Even though food handlers are considered an important source for the introduction of hNoV into food chains, their contribution to public health risks associated with hNoV remains unknown. To assess to which extent food handlers contribute to the introduction and spread of hNoV in fresh produce chains quantitative virus transfer data are needed. We estimated transfer proportions of hNoV GI.4, GII.4, murine norovirus (MNV-1), a culturable surrogate of hNoV, and human adenovirus (hAdV-2), a human pathogen proposed as an indicator for human faecal pollution, between gloved fingertips and raspberries, strawberries, and lettuce, by quantitative RT-PCR and cell culture if applicable. Virus transfer proportions were corrected for virus-matrix specific recoveries, and variability and uncertainty of the parameters were estimated. Virus transfer from gloves to soft berries was generally lower as compared to lettuce, with mean transfer proportions ranging between 0.1 to 2.3% and 9 to 10% for infectious MNV-1 and hAdV-2, respectively. Transfer from produce to glove was mostly greater than transfer from glove to produce, adding to the likelihood of virus transfer due to cross contamination from contaminated produce via food handlers. HNoV GI.4 and hNoV GII.4 showed no significant difference between their mean transfer proportions. Using the estimated transfer proportions, we studied the impact of low and high transfer proportions on the public health risk, based on a scenario in which a food handler picked raspberries with contaminated fingertips. Given the made assumptions, we could show that for a pathogen as infectious as hNoV, low transfer proportions may pose a greater public health risk than high transfer proportions, due to a greater viral spread. We demonstrated the potential of food handlers in spreading hNoV in food chains, showing that prevention of virus contamination on food handlers' hands is crucial for food safety. Nevertheless, complete prevention of virus contamination on fresh produce cannot be achieved in reality, and reliable and effective intervention measures are consequently required. We estimated that, especially for low transfer proportions, a robust one log10-unit reduction of infectious hNoV on contaminated produce, and on food handlers' hands, could lower the public health risk substantially. Using the obtained data in quantitative risk assessment will aid in elucidating the contribution of food handlers in hNoV transmission.
Collapse
Affiliation(s)
- Katharina Verhaelen
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, NL-3720 BA Bilthoven, The Netherlands; Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, NL-3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tracing enteric viruses in the European berry fruit supply chain. Int J Food Microbiol 2013; 167:177-85. [PMID: 24135674 DOI: 10.1016/j.ijfoodmicro.2013.09.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
In recent years, numerous foodborne outbreaks due to consumption of berry fruit contaminated by human enteric viruses have been reported. This European multinational study investigated possible contamination routes by monitoring the entire food chain for a panel of human and animal enteric viruses. A total of 785 samples were collected throughout the food production chain of four European countries (Czech Republic, Finland, Poland and Serbia) during two growing seasons. Samples were taken during the production phase, the processing phase, and at point-of-sale. Samples included irrigation water, animal faeces, food handlers' hand swabs, swabs from toilets on farms, from conveyor belts at processing plants, and of raspberries or strawberries at points-of-sale; all were subjected to virus analysis. The samples were analysed by real-time (reverse transcription, RT)-PCR, primarily for human adenoviruses (hAdV) to demonstrate that a route of contamination existed from infected persons to the food supply chain. The analyses also included testing for the presence of selected human (norovirus, NoV GI, NoV GII and hepatitis A virus, HAV), animal (porcine adenovirus, pAdV and bovine polyomavirus, bPyV) and zoonotic (hepatitis E virus, HEV) viruses. At berry production, hAdV was found in 9.5%, 5.8% and 9.1% of samples of irrigation water, food handlers' hands and toilets, respectively. At the processing plants, hAdV was detected in one (2.0%) swab from a food handler's hand. At point-of-sale, the prevalence of hAdV in fresh raspberries, frozen raspberries and fresh strawberries, was 0.7%, 3.2% and 2.0%, respectively. Of the human pathogenic viruses, NoV GII was detected in two (3.6%) water samples at berry production, but no HAV was detected in any of the samples. HEV-contaminated frozen raspberries were found once (2.6%). Animal faecal contamination was evidenced by positive pAdV and bPyV assay results. At berry production, one water sample contained both viruses, and at point-of-sale 5.7% and 1.3% of fresh and frozen berries tested positive for pAdV. At berry production hAdV was found both in irrigation water and on food handler's hands, which indicated that these may be important vehicles by which human pathogenic viruses enter the berry fruit chain. Moreover, both zoonotic and animal enteric viruses could be detected on the end products. This study gives insight into viral sources and transmission routes and emphasizes the necessity for thorough compliance with good agricultural and hygienic practice at the farms to help protect the public from viral infections.
Collapse
|
28
|
Viljoen CD, Thompson GG, Sreenivasan S. Stability of ultramer as copy number standards in real-time PCR. Gene 2013; 516:143-5. [DOI: 10.1016/j.gene.2012.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/02/2012] [Indexed: 11/17/2022]
|
29
|
Replication of hepatitis E virus in three-dimensional cell culture. J Virol Methods 2013; 187:327-32. [DOI: 10.1016/j.jviromet.2012.10.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/18/2012] [Accepted: 10/23/2012] [Indexed: 12/15/2022]
|
30
|
Abstract
Viruses are common causes of foodborne outbreaks. Viral diseases have low fatality rates but transmission to humans via food is important due to the high probability of consuming fecally contaminated food or water because of poor food handling. Because of the low infectious doses of some foodborne viruses, there is a need for standardization and the development of new sensitive methods for detecting viruses. The focus is on molecular and non-molecular approaches, and emerging methods for the detection of foodborne viruses. The detection of noroviruses, hepatitis A and E viruses, rotaviruses and adenoviruses will be discussed. The chapter will conclude with insights into future research directions.
Collapse
|
31
|
Kokkinos P, Kozyra I, Lazic S, Bouwknegt M, Rutjes S, Willems K, Moloney R, de Roda Husman AM, Kaupke A, Legaki E, D'Agostino M, Cook N, Rzeżutka A, Petrovic T, Vantarakis A. Harmonised investigation of the occurrence of human enteric viruses in the leafy green vegetable supply chain in three European countries. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:179-191. [PMID: 23412890 DOI: 10.1007/s12560-012-9087-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/31/2012] [Indexed: 06/01/2023]
Abstract
Numerous outbreaks have been attributed to the consumption of raw or minimally processed leafy green vegetables contaminated with enteric viral pathogens. The aim of the present study was an integrated virological monitoring of the salad vegetables supply chain in Europe, from production, processing and point-of-sale. Samples were collected and analysed in Greece, Serbia and Poland, from 'general' and 'ad hoc' sampling points, which were perceived as critical points for virus contamination. General sampling points were identified through the analysis of background information questionnaires based on HACCP audit principles, and they were sampled during each sampling occasion where as-ad hoc sampling points were identified during food safety fact-finding visits and samples were only collected during the fact-finding visits. Human (hAdV) and porcine (pAdV) adenovirus, hepatitis A (HAV) and E (HEV) virus, norovirus GI and GII (NoV) and bovine polyomavirus (bPyV) were detected by means of real-time (RT-) PCR-based protocols. General samples were positive for hAdV, pAdV, HAV, HEV, NoV GI, NoV GII and bPyV at 20.09 % (134/667), 5.53 % (13/235), 1.32 % (4/304), 3.42 % (5/146), 2 % (6/299), 2.95 % (8/271) and 0.82 % (2/245), respectively. Ad hoc samples were positive for hAdV, pAdV, bPyV and NoV GI at 9 % (3/33), 9 % (2/22), 4.54 % (1/22) and 7.14 % (1/14), respectively. These results demonstrate the existence of viral contamination routes from human and animal sources to the salad vegetable supply chain and more specifically indicate the potential for public health risks due to the virus contamination of leafy green vegetables at primary production.
Collapse
Affiliation(s)
- P Kokkinos
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, 26500, Patras, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Verhaelen K, Bouwknegt M, Lodder-Verschoor F, Rutjes SA, de Roda Husman AM. Persistence of human norovirus GII.4 and GI.4, murine norovirus, and human adenovirus on soft berries as compared with PBS at commonly applied storage conditions. Int J Food Microbiol 2012. [DOI: 10.1016/j.ijfoodmicro.2012.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Rodríguez-Lázaro D, Cook N, Ruggeri FM, Sellwood J, Nasser A, Nascimento MSJ, D'Agostino M, Santos R, Saiz JC, Rzeżutka A, Bosch A, Gironés R, Carducci A, Muscillo M, Kovač K, Diez-Valcarce M, Vantarakis A, von Bonsdorff CH, de Roda Husman AM, Hernández M, van der Poel WHM. Virus hazards from food, water and other contaminated environments. FEMS Microbiol Rev 2012; 36:786-814. [PMID: 22091646 PMCID: PMC7114518 DOI: 10.1111/j.1574-6976.2011.00306.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022] Open
Abstract
Numerous viruses of human or animal origin can spread in the environment and infect people via water and food, mostly through ingestion and occasionally through skin contact. These viruses are released into the environment by various routes including water run-offs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Foodstuffs of animal origin can be contaminated, and their consumption may cause human infection if the viruses are not inactivated during food processing. Molecular epidemiology and surveillance of environmental samples are necessary to elucidate the public health hazards associated with exposure to environmental viruses. Whereas monitoring of viral nucleic acids by PCR methods is relatively straightforward and well documented, detection of infectious virus particles is technically more demanding and not always possible (e.g. human norovirus or hepatitis E virus). The human pathogenic viruses that are most relevant in this context are nonenveloped and belong to the families of the Caliciviridae, Adenoviridae, Hepeviridae, Picornaviridae and Reoviridae. Sampling methods and strategies, first-choice detection methods and evaluation criteria are reviewed.
Collapse
|
34
|
Rodríguez-Lázaro D, Cook N, Ruggeri FM, Sellwood J, Nasser A, Nascimento MSJ, D'Agostino M, Santos R, Saiz JC, Rzeżutka A, Bosch A, Gironés R, Carducci A, Muscillo M, Kovač K, Diez-Valcarce M, Vantarakis A, von Bonsdorff CH, de Roda Husman AM, Hernández M, van der Poel WHM. Virus hazards from food, water and other contaminated environments. FEMS Microbiol Rev 2012. [PMID: 22091646 DOI: 10.1111/j.1574-6976.2011.00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Numerous viruses of human or animal origin can spread in the environment and infect people via water and food, mostly through ingestion and occasionally through skin contact. These viruses are released into the environment by various routes including water run-offs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Foodstuffs of animal origin can be contaminated, and their consumption may cause human infection if the viruses are not inactivated during food processing. Molecular epidemiology and surveillance of environmental samples are necessary to elucidate the public health hazards associated with exposure to environmental viruses. Whereas monitoring of viral nucleic acids by PCR methods is relatively straightforward and well documented, detection of infectious virus particles is technically more demanding and not always possible (e.g. human norovirus or hepatitis E virus). The human pathogenic viruses that are most relevant in this context are nonenveloped and belong to the families of the Caliciviridae, Adenoviridae, Hepeviridae, Picornaviridae and Reoviridae. Sampling methods and strategies, first-choice detection methods and evaluation criteria are reviewed.
Collapse
|
35
|
Diez-Valcarce M, Kokkinos P, Söderberg K, Bouwknegt M, Willems K, de Roda-Husman AM, von Bonsdorff CH, Bellou M, Hernández M, Maunula L, Vantarakis A, Rodríguez-Lázaro D. Occurrence of human enteric viruses in commercial mussels at retail level in three European countries. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:73-80. [PMID: 23412813 DOI: 10.1007/s12560-012-9078-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/16/2012] [Indexed: 05/19/2023]
Abstract
In this study, the prevalence of different enteric viruses in commercial mussels was evaluated at the retail level in three European countries (Finland, Greece and Spain). A total of 153 mussel samples from different origins were analysed for human norovirus (NoV) genogroups I and II, hepatitis A virus (HAV) and hepatitis E virus (HEV). Human adenovirus (HAdV) was also tested as an indicator of human faecal contamination. A full set of controls (such as sample process control, internal amplification controls, and positive and negative controls) were implemented during the process. The use of a sample process control allowed us to calculate the efficiencies of extraction, which ranged from 79 to 0.5 %, with an average value of 10 %. Samples were positive in 41 % of cases, with HAdV being the most prevalent virus detected (36 %), but no significant correlation was found between the presence of HAdV and human NoV, HAV and HEV. The prevalences of human norovirus genogroup II, HEV and human NoV genogroup I were 16, 3 and 0.7 %, respectively, and HAV was not detected. The estimated number of PCR detectable units varied between 24 and 1.4 × 10(3) g(-1) of digestive tract. Interestingly, there appeared to be a significant association between the type of mussel species (M. galloprovincialis) and the positive result of samples, although a complete overlap between country and species examined required this finding to be confirmed including samples of both species from all possible countries of origin.
Collapse
Affiliation(s)
- Marta Diez-Valcarce
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, Ctra. Burgos, km 119, 47071, Valladolid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Diez-Valcarce M, Cook N, Hernández M, Rodríguez-Lázaro D. Analytical Application of a Sample Process Control in Detection of Foodborne Viruses. FOOD ANAL METHOD 2011. [DOI: 10.1007/s12161-011-9262-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|