1
|
Chen SL, Fei YR, Cai XX, Wang C, Tong SY, Zhang ZZ, Huang YX, Bian DD, He YB, Yang XX. Exploring the role of metabolic pathways in TNBC immunotherapy: insights from single-cell and spatial transcriptomics. Front Endocrinol (Lausanne) 2025; 15:1528248. [PMID: 39850483 PMCID: PMC11754047 DOI: 10.3389/fendo.2024.1528248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
The article provides an overview of the current understanding of the interplay between metabolic pathways and immune function in the context of triple-negative breast cancer (TNBC). It highlights recent advancements in single-cell and spatial transcriptomics technologies, which have revolutionized the analysis of tumor heterogeneity and the immune microenvironment in TNBC. The review emphasizes the crucial role of metabolic reprogramming in modulating immune cell function, discussing how specific metabolic pathways, such as glycolysis, lipid metabolism, and amino acid metabolism, can directly impact the activity and phenotypes of various immune cell populations within the TNBC tumor microenvironment. Furthermore, the article explores the implications of these metabolic-immune interactions for the efficacy of immune checkpoint inhibitor (ICI) therapies in TNBC, suggesting that strategies targeting metabolic pathways may enhance the responsiveness to ICI treatments. Finally, the review outlines future directions and the potential for combination therapies that integrate metabolic modulation with immunotherapeutic approaches, offering promising avenues for improving clinical outcomes for TNBC patients.
Collapse
Affiliation(s)
- Shi-liang Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yi-Ran Fei
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-xian Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- School of Medical Technology and Informmation Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cong Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shi-yuan Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe-zhong Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yan-xia Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dan-dan Bian
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yi-bo He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiao-xiao Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Zhang Y, Wang Y, Zhao Y, Hu R, Yuan H. Design of aggregation-induced emission materials for biosensing of molecules and cells. Biosens Bioelectron 2025; 267:116805. [PMID: 39321612 DOI: 10.1016/j.bios.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
In recent years, aggregation-induced emission (AIE) materials have gained significant attention and have been developed for various applications in different fields including biomedical research, chemical analysis, optoelectronic devices, materials science, and nanotechnology. AIE is a unique luminescence phenomenon, and AIEgens are fluorescent moieties with relatively twisted structures that can overcome the aggregation-caused quenching (ACQ) effect. Additionally, AIEgens offer advantages such as non-washing properties, deep tissue penetration, minimal damage to biological structures, high signal-to-noise ratio, and excellent photostability. Fluorescent probes with AIE characteristics exhibit high sensitivity, short response time, simple operation, real-time detection capability, high selectivity, and excellent biocompatibility. As a result, they have been widely applied in cellular imaging, luminescent sensing, detection of physiological abnormalities in the human body, as well as early diagnosis and treatment of diseases. This review provides a comprehensive summary and discussion of the progress over the past four years regarding the detection of metal ions, small chemical molecules, biomacromolecules, microbes, and cells based on AIE materials, along with discussing their potential applications and future development prospects.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
3
|
Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation. Curr Top Med Chem 2024; 24:1050-1074. [PMID: 38279745 DOI: 10.2174/0115680266282518231231075311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | | | - Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, Noida, 201301, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
4
|
Meybodi SM, Farasati Far B, Pourmolaei A, Baradarbarjastehbaf F, Safaei M, Mohammadkhani N, Samadani AA. Immune checkpoint inhibitors promising role in cancer therapy: clinical evidence and immune-related adverse events. Med Oncol 2023; 40:243. [PMID: 37453930 DOI: 10.1007/s12032-023-02114-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The advent of immune checkpoint inhibitors (ICIs) has led to noteworthy progressions in the management of diverse cancer types, as evidenced by the pioneering "ipilimumab" medication authorized by US FDA in 2011. Importantly, ICIs agents have demonstrated encouraging potential in bringing about transformation across diverse forms of cancer by selectively targeting the immune checkpoint pathways that are exploited by cancerous cells for dodging the immune system, culminating in progressive and favorable health outcomes for patients. The primary mechanism of action (MOA) of ICIs involves blocking inhibitory immune checkpoints. There are three approved categories including Programmed Death (PD-1) inhibitors (cemiplimab, nivolumab, and pembrolizumab), Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (Ipilimumab), and Programmed Death-Ligand 1 (PDL-1) (Avelumab). Although ICIs promisingly increase therapeutic response and cancer survival rates, using ICIs has demonstrated some limitations including autoimmune reactions and toxicities, requiring close monitoring. The present review endeavors to explicate the underlying principles of the MOA and pharmacokinetics of the approved ICIs in the realm of cancer induction, including an appraisal of their level of practice-based evidence.
Collapse
Affiliation(s)
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Ali Pourmolaei
- Babol Noshirvani University of Technology, Shariati Ave, Babol, Mazandaran, Iran
| | - Farid Baradarbarjastehbaf
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Pécs, Pécs, Hungary
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, 99628, Famagusta, Turkey
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10:1367-1401. [PMID: 37397557 PMCID: PMC10310991 DOI: 10.1016/j.gendis.2022.02.007] [Citation(s) in RCA: 527] [Impact Index Per Article: 263.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Kolkata, West Bengal 700056, India
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples 80131, Italy
| | - Arun Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan 305817, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132001, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-D), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jayalakshmi Vallamkondu
- Department of Physics, National Institute of Technology-Warangal, Warangal, Telangana 506004, India
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain
| |
Collapse
|
6
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
7
|
Wang G, Yao Y, Huang H, Zhou J, Ni C. Multiomics technologies for comprehensive tumor microenvironment analysis in triple-negative breast cancer under neoadjuvant chemotherapy. Front Oncol 2023; 13:1131259. [PMID: 37284197 PMCID: PMC10239824 DOI: 10.3389/fonc.2023.1131259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes and is characterized by abundant infiltrating immune cells within the microenvironment. As standard care, chemotherapy remains the fundamental neoadjuvant treatment in TNBC, and there is increasing evidence that supplementation with immune checkpoint inhibitors may potentiate the therapeutic efficiency of neoadjuvant chemotherapy (NAC). However, 20-60% of TNBC patients still have residual tumor burden after NAC and require additional chemotherapy; therefore, it is critical to understand the dynamic change in the tumor microenvironment (TME) during treatment to help improve the rate of complete pathological response and long-term prognosis. Traditional methods, including immunohistochemistry, bulk tumor sequencing, and flow cytometry, have been applied to elucidate the TME of breast cancer, but the low resolution and throughput may overlook key information. With the development of diverse high-throughput technologies, recent reports have provided new insights into TME alterations during NAC in four fields, including tissue imaging, cytometry, next-generation sequencing, and spatial omics. In this review, we discuss the traditional methods and the latest advances in high-throughput techniques to decipher the TME of TNBC and the prospect of translating these techniques to clinical practice.
Collapse
Affiliation(s)
- Gang Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Yao D, Wang Y, Bian K, Zhang B, Wang D. A self-cascaded unimolecular prodrug for pH-responsive chemotherapy and tumor-detained photodynamic-immunotherapy of triple-negative breast cancer. Biomaterials 2023; 292:121920. [PMID: 36442436 DOI: 10.1016/j.biomaterials.2022.121920] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022]
Abstract
Despite the success of immune checkpoint blockade (ICB) therapy in cancer management, ICB-based immunotherapy of triple-negative breast cancer (TNBC) still suffers from immunosuppressive tumor microenvironment (ITM). To break through the bottleneck of TNBC immunotherapy, a self-cascaded unimolecular prodrug consisting of an acidic pH-activatable doxorubicin and an aggregation-induced emission luminogen (AIEgen) photosensitizer coupled to a caspase-3-responsive peptide was engineered. The generated prodrug, could not only release doxorubicin initiatively in acidic tumor microenvironment, but also activate apoptosis-related caspase-3. The activated caspase-3 could in turn trigger release and in situ aggregation of photosensitizers. Importantly, the unimolecular prodrug exhibits a renal clearance pathway similar to small molecules in vivo, while the aggregated AIEgens prolong tumor retention for long-term fluorescence imaging and repeatable photodynamic therapy (PDT) by only one single-dose injection. Furthermore, the tumor-detained PDT boosts both immunogenic cell death of TNBC cells and maturation of dendritic cells. Finally, the combination of repeatable PDT with ICB therapy further promotes the proliferation and intratumoral infiltration of cytotoxic T lymphocytes, and effectively suppresses tumor growth and pulmonary metastasis. This prodrug is a proof-of-concept that confirms the first self-cascaded chemo-PDT strategy to reverse the ITM and boost the ICB-mediated TNBC immunotherapy.
Collapse
Affiliation(s)
- Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanshu Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kexin Bian
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
9
|
New Achievements for the Treatment of Triple-Negative Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.
Collapse
|
10
|
Valencia GA, Rioja P, Morante Z, Ruiz R, Fuentes H, Castaneda CA, Vidaurre T, Neciosup S, Gomez HL. Immunotherapy in triple-negative breast cancer: A literature review and new advances. World J Clin Oncol 2022; 13:219-236. [PMID: 35433291 PMCID: PMC8966508 DOI: 10.5306/wjco.v13.i3.219] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly complex, heterogeneous disease and historically has limited treatment options. It has a high probability of disease recurrence and rapid disease progression despite adequate systemic treatment. Immunotherapy has emerged as an important alternative in the management of this malignancy, showing an impact on progression-free survival and overall survival in selected populations. In this review we focused on immunotherapy and its current relevance in the management of TNBC, including various scenarios (metastatic and early -neoadjuvant, adjuvant-), new advances in this subtype and the research of potential predictive biomarkers of response to treatment.
Collapse
Affiliation(s)
| | - Patricia Rioja
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Zaida Morante
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Rossana Ruiz
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Hugo Fuentes
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Carlos A Castaneda
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Tatiana Vidaurre
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Silvia Neciosup
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Henry L Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| |
Collapse
|
11
|
Paterson K, Paterson S, Mulholland T, Coffelt S, Zagnoni M. Assessment of CAR-T cell-mediated cytotoxicity in 3D microfluidic cancer co-culture models for combination therapy. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2022; 3:86-95. [PMID: 35813488 PMCID: PMC9252335 DOI: 10.1109/ojemb.2022.3178302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is efficacious against many haematological malignancies, but challenges remain when using this cellular immunotherapy for treating solid tumours. Classical 2D in vitro models fail to recapitulate the complexity of the tumour microenvironment, whilst in vivo models, such as patient-derived xenografts, are costly and labour intensive. Microfluidic technologies can provide miniaturized solutions to assess CAR-T therapies in 3D complex preclinical models of solid tumours. Here, we present a novel microfluidic immunoassay for the evaluation of CAR-T cell cytotoxicity and targeting specificity on 3D spheroids containing cancer cells and stromal cells. Monitoring the interaction between CAR-T cells and spheroid co-cultures, we show that CAR-T cells home towards target-expressing cancer cells and elicit a cytotoxic effect. Testing CAR-T cells in combination therapies, we show that CAR-T cell cytotoxicity is enhanced with anti-PD-L1 therapy and carboplatin chemotherapy. We propose this proof-of-concept microfluidic immunoassay as a material-saving, pre-clinical screening tool for quantification of cell therapy efficacy.
Collapse
Affiliation(s)
- Karla Paterson
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK
| | - Sarah Paterson
- ScreenIn3D Limited, Technology and Innovation Centre, Glasgow, UK
| | | | - Seth Coffelt
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michele Zagnoni
- EEE, Univ Strathclyde, Glasgow, United Kingdom of Great Britain and Northern Ireland, G1 1XW
| |
Collapse
|
12
|
Kos K, de Visser KE. The Multifaceted Role of Regulatory T Cells in Breast Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021; 5:291-310. [PMID: 34632244 PMCID: PMC7611782 DOI: 10.1146/annurev-cancerbio-042920-104912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment of breast cancer hosts a dynamic cross talk between diverse players of the immune system. While cytotoxic immune cells are equipped to control tumor growth and metastasis, tumor-corrupted immunosuppressive immune cells strive to impair effective immunity and promote tumor progression. Of these, regulatory T cells (Tregs), the gatekeepers of immune homeostasis, emerge as multifaceted players involved in breast cancer. Intriguingly, clinical observations suggest that blood and intratumoral Tregs can have strong prognostic value, dictated by breast cancer subtype. Accordingly, emerging preclinical evidence shows that Tregs occupy a central role in breast cancer initiation and progression and provide critical support to metastasis formation. Here, Tregs are not only important for immune escape but also promote tumor progression independent of their immune regulatory capacity. Combining insights into Treg biology with advances made across the rapidly growing field of immuno-oncology is expected to set the stage for the design of more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Kevin Kos
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
13
|
Domblides C, Rochefort J, Riffard C, Panouillot M, Lescaille G, Teillaud JL, Mateo V, Dieu-Nosjean MC. Tumor-Associated Tertiary Lymphoid Structures: From Basic and Clinical Knowledge to Therapeutic Manipulation. Front Immunol 2021; 12:698604. [PMID: 34276690 PMCID: PMC8279885 DOI: 10.3389/fimmu.2021.698604] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is a complex ecosystem almost unique to each patient. Most of available therapies target tumor cells according to their molecular characteristics, angiogenesis or immune cells involved in tumor immune-surveillance. Unfortunately, only a limited number of patients benefit in the long-term of these treatments that are often associated with relapses, in spite of the remarkable progress obtained with the advent of immune checkpoint inhibitors (ICP). The presence of “hot” tumors is a determining parameter for selecting therapies targeting the patient immunity, even though some of them still do not respond to treatment. In human studies, an in-depth analysis of the organization and interactions of tumor-infiltrating immune cells has revealed the presence of an ectopic lymphoid organization termed tertiary lymphoid structures (TLS) in a large number of tumors. Their marked similarity to secondary lymphoid organs has suggested that TLS are an “anti-tumor school” and an “antibody factory” to fight malignant cells. They are effectively associated with long-term survival in most solid tumors, and their presence has been recently shown to predict response to ICP inhibitors. This review discusses the relationship between TLS and the molecular characteristics of tumors and the presence of oncogenic viruses, as well as their role when targeted therapies are used. Also, we present some aspects of TLS biology in non-tumor inflammatory diseases and discuss the putative common characteristics that they share with tumor-associated TLS. A detailed overview of the different pre-clinical models available to investigate TLS function and neogenesis is also presented. Finally, new approaches aimed at a better understanding of the role and function of TLS such as the use of spheroids and organoids and of artificial intelligence algorithms, are also discussed. In conclusion, increasing our knowledge on TLS will undoubtedly improve prognostic prediction and treatment selection in cancer patients with key consequences for the next generation immunotherapy.
Collapse
Affiliation(s)
- Charlotte Domblides
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Juliette Rochefort
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Université de Paris, Faculté de Santé, UFR Odontologie, Paris, France.,Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), La Pitié-Salpêtrière, Paris, France
| | - Clémence Riffard
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Marylou Panouillot
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Géraldine Lescaille
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Université de Paris, Faculté de Santé, UFR Odontologie, Paris, France.,Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), La Pitié-Salpêtrière, Paris, France
| | - Jean-Luc Teillaud
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Véronique Mateo
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| |
Collapse
|
14
|
Graeser M, Feuerhake F, Gluz O, Volk V, Hauptmann M, Jozwiak K, Christgen M, Kuemmel S, Grischke EM, Forstbauer H, Braun M, Warm M, Hackmann J, Uleer C, Aktas B, Schumacher C, Kolberg-Liedtke C, Kates R, Wuerstlein R, Nitz U, Kreipe HH, Harbeck N. Immune cell composition and functional marker dynamics from multiplexed immunohistochemistry to predict response to neoadjuvant chemotherapy in the WSG-ADAPT-TN trial. J Immunother Cancer 2021; 9:e002198. [PMID: 33963012 PMCID: PMC8108653 DOI: 10.1136/jitc-2020-002198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The association of early changes in the immune infiltrate during neoadjuvant chemotherapy (NACT) with pathological complete response (pCR) in triple-negative breast cancer (TNBC) remains unexplored. METHODS Multiplexed immunohistochemistry was performed in matched tumor biopsies obtained at baseline and after 3 weeks of NACT from 66 patients from the West German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early Breast Cancer - Triple Negative Breast Cancer (WSG-ADAPT-TN) trial. Association between CD4, CD8, CD73, T cells, PD1-positive CD4 and CD8 cells, and PDL1 levels in stroma and/or tumor at baseline, week 3 and 3-week change with pCR was evaluated with univariable logistic regression. RESULTS Compared with no change in immune cell composition and functional markers, transition from 'cold' to 'hot' (below-median and above-median marker level at baseline, respectively) suggested higher pCR rates for PD1-positive CD4 (tumor: OR=1.55, 95% CI 0.45 to 5.42; stroma: OR=2.65, 95% CI 0.65 to 10.71) and PD1-positive CD8 infiltrates (tumor: OR=1.77, 95% CI 0.60 to 5.20; stroma: OR=1.25, 95% CI 0.41 to 3.84; tumor+stroma: OR=1.62, 95% CI 0.51 to 5.12). No pCR was observed after 'hot-to-cold' transition in PD1-positive CD8 cells. pCR rates appeared lower after hot-to-cold transitions in T cells (tumor: OR=0.26, 95% CI 0.03 to 2.34; stroma: OR=0.35, 95% CI 0.04 to 3.25; tumor+stroma: OR=0.00, 95% CI 0.00 to 1.04) and PD1-positive CD4 cells (tumor: OR=0.60, 95% CI 0.11 to 3.35; stroma: OR=0.22, 95% CI 0.03 to 1.92; tumor+stroma: OR=0.32, 95% CI 0.04 to 2.94). Higher pCR rates collated with 'altered' distribution (levels below-median and above-median in tumor and stroma, respectively) of T cell (OR=3.50, 95% CI 0.84 to 14.56) and PD1-positive CD4 cells (OR=4.50, 95% CI 1.01 to 20.14). CONCLUSION Our exploratory findings indicate that comprehensive analysis of early immune infiltrate dynamics complements currently investigated predictive markers for pCR and may have a potential to improve guidance for individualized de-escalation/escalation strategies in TNBC.
Collapse
Affiliation(s)
- Monika Graeser
- West German Study Group, Moenchengladbach, Germany
- Breast Center Niederrhein, Bethesda Protestant Hospital Monchengladbach, Monchengladbach, Germany
- Department of Gynecology, University Medical Center Hamburg, Hamburg, Germany
| | - Friedrich Feuerhake
- Institute of Pathology, Medical School Hannover, Hannover, Germany
- Institute of Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Oleg Gluz
- West German Study Group, Moenchengladbach, Germany
- Breast Center Niederrhein, Bethesda Protestant Hospital Monchengladbach, Monchengladbach, Germany
- University Clinics Cologne, Cologne, Germany
| | - Valery Volk
- Institute of Pathology, Medical School Hannover, Hannover, Germany
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Katarzyna Jozwiak
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | | | - Sherko Kuemmel
- West German Study Group, Moenchengladbach, Germany
- Breast Unit, Kliniken Essen-Mitte, Essen, Germany
- University Hospital Charité, Humboldt University, Berlin, Germany
| | | | | | - Michael Braun
- Breast Center, Rotkreuz Clinics Munich, Munich, Germany
| | - Mathias Warm
- Breast Center, City Hospital Holweide, Cologne, Germany
| | | | | | - Bahriye Aktas
- Women's Clinic, University Clinics Essen, Essen, Germany
- Women's Clinic, University Clinics Leipzig, Leipzig, Germany
| | | | - Cornelia Kolberg-Liedtke
- University Hospital Charité, Humboldt University, Berlin, Germany
- Women's Clinic, University Clinics Essen, Essen, Germany
| | - Ronald Kates
- West German Study Group, Moenchengladbach, Germany
| | - Rachel Wuerstlein
- West German Study Group, Moenchengladbach, Germany
- Breast Center, Department of Gynecology and Obstetrics and CCCLMU, LMU University Hospital, Munich, Germany
| | - Ulrike Nitz
- West German Study Group, Moenchengladbach, Germany
- Breast Center Niederrhein, Bethesda Protestant Hospital Monchengladbach, Monchengladbach, Germany
| | | | - Nadia Harbeck
- West German Study Group, Moenchengladbach, Germany
- Breast Center, Department of Gynecology and Obstetrics and CCCLMU, LMU University Hospital, Munich, Germany
| |
Collapse
|
15
|
Xia L, Zheng Z, Liu JY, Chen YJ, Ding J, Hu GS, Hu YH, Liu S, Luo WX, Xia NS, Liu W. Targeting Triple-Negative Breast Cancer with Combination Therapy of EGFR CAR T Cells and CDK7 Inhibition. Cancer Immunol Res 2021; 9:707-722. [PMID: 33875483 DOI: 10.1158/2326-6066.cir-20-0405] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
EGFR-targeted chimeric antigen receptor (CAR) T cells are potent and specific in suppressing the growth of triple-negative breast cancer (TNBC) in vitro and in vivo. However, in this study, a subset of mice soon acquired resistance, which limits the potential use of EGFR CAR T cells. We aimed to find a way to overcome the observed resistance. Transcriptomic analysis results revealed that EGFR CAR T-cell treatment induced a set of immunosuppressive genes, presumably through IFNγ signaling, in EGFR CAR T-cell-resistant TNBC tumors. The EGFR CAR T-cell-induced immunosuppressive genes were associated with EGFR CAR T-cell-activated enhancers and were especially sensitive to THZ1, a CDK7 inhibitor we screened out of a panel of small molecules targeting epigenetic modulators. Accordingly, combination therapy with THZ1 and EGFR CAR T cells suppressed immune resistance, tumor growth, and metastasis in TNBC tumor models, including human MDA-MB-231 cell-derived and TNBC patient-derived xenografts, and mouse EMT6 cell-derived allografts. Taken together, we demonstrated that transcriptional modulation using epigenetic inhibitors could overcome CAR T-cell therapy-induced immune resistance, thus providing a therapeutic avenue for treating TNBC in the clinic.
Collapse
Affiliation(s)
- Lin Xia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Zaozao Zheng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jun-Yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Yu-Jie Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiancheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ya-Hong Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Suling Liu
- Shanghai Cancer Hospital, Xuhui District, Shanghai, China
| | - Wen-Xin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. .,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China.,State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
16
|
Kim R, Kin T. Clinical Perspectives in Addressing Unsolved Issues in (Neo)Adjuvant Therapy for Primary Breast Cancer. Cancers (Basel) 2021; 13:926. [PMID: 33672204 PMCID: PMC7927115 DOI: 10.3390/cancers13040926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 01/13/2023] Open
Abstract
The treatment of primary breast cancer has evolved over the past 50 years based on the concept that breast cancer is a systemic disease, with the escalation of adjuvant and neoadjuvant therapies and de-escalation of breast cancer surgery. Despite the development of these therapies, recurrence with distant metastasis during the 10 years after surgical treatment is observed, albeit infrequently. Recent advances in genomic analysis based on circulating tumor cells and circulating tumor DNA have enabled the development of targeted therapies based on genetic mutations in residual tumor cells. A paradigm shift involving the application of neoadjuvant chemotherapy (NAC) has enabled the prediction of treatment response and long-term prognoses; additional adjuvant chemotherapy targeting remaining tumor cells after NAC improves survival. The activation of antitumor immunity by anticancer agents may be involved in the eradication of residual tumor cells. Elucidation of the manner in which antitumor immunity is induced by anticancer agents and unknown factors, and the overcoming of drug resistance via the targeted eradication of residual tumor cells based on genomic profiles, will inevitably lead to the achievement of 0% distant recurrence and a complete cure for primary breast cancer.
Collapse
Affiliation(s)
- Ryungsa Kim
- Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome, Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, 7-33, Moto-machi, Naka-ku, Hiroshima 730-8518, Japan;
| |
Collapse
|
17
|
Setordzi P, Chang X, Liu Z, Wu Y, Zuo D. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy. Eur J Pharmacol 2021; 895:173867. [PMID: 33460617 DOI: 10.1016/j.ejphar.2021.173867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Over the past decade, there has been sustained research activity on programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors for breast cancer (BC) immunotherapy. Several clinical studies have demonstrated the anti-tumor efficacy of monotherapy drugs targeting PD-1 and PD-L1 checkpoint signaling in BC. Besides, the combination of anti-PD-1/PD-L1 agents with other inhibitors, including poly-adenosine diphosphate-ribose polymerase (PARP) inhibitors, vaccines, mitogen-activated protein kinase (MEK) inhibitors, and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) inhibitors are being investigated to improve drug efficacy. These trials have performed well and have shown better and more sustainable therapeutic responses. As follows, the purpose of this review is to discuss the recent advances in BC immunotherapy targeting the inhibition of PD-1/PD-L1 immune checkpoint signaling, when recommended as a monotherapy or in conjunction with other treatments. We look forward to providing new insights into the current state of BC research and the future direction of PD-1/PD-L1 immune checkpoint signaling.
Collapse
Affiliation(s)
- Patience Setordzi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
18
|
B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy. Biochem Pharmacol 2020; 183:114298. [PMID: 33153969 DOI: 10.1016/j.bcp.2020.114298] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
B7-H3 is an immune checkpoint molecule from the B7 superfamily. It has been widely studied in tumor immune evasion in certain types of cancer. In our preliminary study, we found that B7-H3 is specifically enriched in tumor-associated macrophages (TAMs) in triple-negative breast cancer (TNBC) patients and strongly correlated with poor clinical prognosis. However, the role of B7-H3 in breast cancer remains elusive. Our current study aims to explore the potential of B7-H3 as a novel target in TNBC therapy. Here, we demonstrated that B7-H3 enriched on TAMs is tightly correlated with TNBC clinical progression. B7-H3high TAMs exhibit great pro-metastatic and immunosuppressive functions by intriguing extracellular matrix (ECM) reconstruction and tumor angiogenesis, therefore helping tumor cell dissemination and dampening T-cell infiltration in tumor microenvironment (TME). Importantly, targeting blockade of B7-H3 by anti-B7-H3 antibody improves the tumor vasculature disorder, thereby enhancing chemotherapy and PD-1 therapy efficacy. In conclusion, our study establishes the correlation between B7-H3high TAMs and TNBC progression for the first time. By exploring the possibility of targeting B7-H3 expressed in both tumor cells and TAMs, we suggest that B7-H3 could be a promising target in clinical TNBC treatment.
Collapse
|
19
|
Shenoy A, Belugali Nataraj N, Perry G, Loayza Puch F, Nagel R, Marin I, Balint N, Bossel N, Pavlovsky A, Barshack I, Kaufman B, Agami R, Yarden Y, Dadiani M, Geiger T. Proteomic patterns associated with response to breast cancer neoadjuvant treatment. Mol Syst Biol 2020; 16:e9443. [PMID: 32960509 PMCID: PMC7507992 DOI: 10.15252/msb.20209443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
Tumor relapse as a consequence of chemotherapy resistance is a major clinical challenge in advanced stage breast tumors. To identify processes associated with poor clinical outcome, we took a mass spectrometry-based proteomic approach and analyzed a breast cancer cohort of 113 formalin-fixed paraffin-embedded samples. Proteomic profiling of matched tumors before and after chemotherapy, and tumor-adjacent normal tissue, all from the same patients, allowed us to define eight patterns of protein level changes, two of which correlate to better chemotherapy response. Supervised analysis identified two proteins of proline biosynthesis pathway, PYCR1 and ALDH18A1, that were significantly associated with resistance to treatment based on pattern dominance. Weighted gene correlation network analysis of post-treatment samples revealed that these proteins are associated with tumor relapse and affect patient survival. Functional analysis showed that knockdown of PYCR1 reduced invasion and migration capabilities of breast cancer cell lines. PYCR1 knockout significantly reduced tumor burden and increased drug sensitivity of orthotopically injected ER-positive tumor in vivo, thus emphasizing the role of PYCR1 in resistance to chemotherapy.
Collapse
Affiliation(s)
- Anjana Shenoy
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | | | - Gili Perry
- Sheba Medical CenterCancer Research CenterTel‐HashomerIsrael
| | | | - Remco Nagel
- Netherlands Cancer InstituteAmsterdamNetherlands
| | - Irina Marin
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Nora Balint
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Noa Bossel
- Weizmann Institute of ScienceRehovotIsrael
| | - Anya Pavlovsky
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Iris Barshack
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Bella Kaufman
- Sheba Medical CenterOncology InstituteTel‐HashomerIsrael
| | - Reuven Agami
- Netherlands Cancer InstituteAmsterdamNetherlands
| | | | - Maya Dadiani
- Sheba Medical CenterCancer Research CenterTel‐HashomerIsrael
| | - Tamar Geiger
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
20
|
Juliá EP, Mordoh J, Levy EM. Cetuximab and IL-15 Promote NK and Dendritic Cell Activation In Vitro in Triple Negative Breast Cancer. Cells 2020; 9:cells9071573. [PMID: 32605193 PMCID: PMC7408037 DOI: 10.3390/cells9071573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) treatment is still challenging, and immunotherapy is a potential approach in this tumor subtype. Cetuximab is an IgG1 monoclonal antibody (mAb) directed against Epidermic Growth Factor Receptor (EGFR), a protein overexpressed in a subgroup of TNBC patients and associated with poor prognosis. Previously, we demonstrated in vitro that Cetuximab triggers Ab-dependent cell cytotoxicity against TNBC cells. In this study, using co-cultures including TNBC cells, and NK and Dendritic Cells (DCs) from healthy donors, we studied the effect of Cetuximab-activated NK cells on DC function. Given that we already demonstrated that TNBC has an immunosuppressive effect on NK cells, we also tested Cetuximab combination with IL-15. We determined that Cetuximab opsonization of TNBC cells increased IFN-γ and TNF-α production by NK cells co-cultured with DCs. Moreover, we showed that NK cells activated by TNBC cells opsonized with Cetuximab promoted tumor material uptake and maturation of DCs, as well as their ability to produce IL-12. Furthermore, the stimulation with IL-15 increased the activation of NK cells and the maturation of DCs. These results suggest that IL-15 may enhance the efficacy of Cetuximab in the treatment of TNBC by promoting activation of both NK cells and DCs.
Collapse
Affiliation(s)
- Estefanía Paula Juliá
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (E.P.J.); (J.M.)
| | - José Mordoh
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (E.P.J.); (J.M.)
- Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina
| | - Estrella Mariel Levy
- Centro de Investigaciones Oncológicas CIO-FUCA, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (E.P.J.); (J.M.)
- Correspondence: ; Tel.: +54-11-3221-8900
| |
Collapse
|
21
|
Bluthgen MV, Basté N, Recondo G. Immunotherapy combinations for the treatment of patients with solid tumors. Future Oncol 2020; 16:1715-1736. [PMID: 32501724 DOI: 10.2217/fon-2020-0303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint inhibitors directed against CTLA-4, PD-1 and PD-L1 have transformed the treatment of patients with cancer. Immunotherapy regimens have evolved from a single agent approach to the combination of immune checkpoint inhibitors like anti CTLA-4 and PD-1, immune checkpoint blockade combined with chemotherapy, anti-angiogenic agents and kinase inhibitors. These synergistic combinations were developed to heighten the potency and duration of immune responses against cancer cells. Hence, immunotherapy combinations have shaped the landscape of therapeutic options against a wide range of cancer types, and are current standard treatment regimens worldwide. In this review, we describe the clinical evidence supporting the use of immunotherapy combination regimens for the treatment of patients with solid tumors.
Collapse
Affiliation(s)
| | - Neus Basté
- Medical Oncology, Hospital Clinic de Barcelona, 08036, Spain
| | - Gonzalo Recondo
- Medical Oncology, Centro de Educación Médica e Investigaciones Clinicas (CEMIC), Buenos Aires 1431, Argentina
| |
Collapse
|
22
|
Diana A, Carlino F, Franzese E, Oikonomidou O, Criscitiello C, De Vita F, Ciardiello F, Orditura M. Early Triple Negative Breast Cancer: Conventional Treatment and Emerging Therapeutic Landscapes. Cancers (Basel) 2020; 12:E819. [PMID: 32235297 PMCID: PMC7225917 DOI: 10.3390/cancers12040819] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are characterized by worse prognosis, higher propensity to earlier metastases, and shorter survival after recurrence compared with other breast cancer subtypes. Anthracycline- and taxane-based chemotherapy is still the mainstay of treatment in early stages, although several escalation approaches have been evaluated to improve survival outcomes. The addition of platinum salts to standard neoadjuvant chemotherapy (NACT) remains controversial due to the lack of clear survival advantage, and the use of adjuvant capecitabine represents a valid treatment option in TNBC patients with residual disease after NACT. Recently, several clinical trials showed promising results through the use of poly ADP-ribose polymerase (PARP) inhibitors and by incorporating immunotherapy with chemotherapy, enriching treatment options beyond conventional cytotoxic agents. In this review, we provided an overview on the current standard of care and a comprehensive update of the recent advances in the management of early stage TNBC and focused on the latest emerging biomarkers and their clinical application to select the best therapeutic strategy in this hard-to-treat population.
Collapse
Affiliation(s)
- Anna Diana
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (F.C.); (E.F.); (F.D.V.); (F.C.); (M.O.)
| | - Francesca Carlino
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (F.C.); (E.F.); (F.D.V.); (F.C.); (M.O.)
| | - Elisena Franzese
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (F.C.); (E.F.); (F.D.V.); (F.C.); (M.O.)
| | - Olga Oikonomidou
- Cancer Research UK, Edinburgh Centre, MRC Institute Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK;
| | | | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (F.C.); (E.F.); (F.D.V.); (F.C.); (M.O.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (F.C.); (E.F.); (F.D.V.); (F.C.); (M.O.)
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (F.C.); (E.F.); (F.D.V.); (F.C.); (M.O.)
| |
Collapse
|