1
|
Wang X, Yu YJ, Liao C, Liu XR, Yu R, Wang Y. Characterization of the gut microbiota in drug abuse: prediction, prevention, and personalized medicine to benefit affected populations. EPMA J 2025; 16:505-517. [PMID: 40438492 PMCID: PMC12106171 DOI: 10.1007/s13167-025-00402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/03/2025] [Indexed: 06/01/2025]
Abstract
Drug abuse poses an enormous threat to global public health. Long-term drug abuse can reduce the quality of life of patients and increase the healthcare burden on society. There is growing interest in developing new methods to mitigate the effects of drug abuse. The gut microbiota plays a key role in maintaining homeostasis within the brain-gut-lung axis, which is critical in drug-abusing patients. The microbiota-brain-gut-lung axis refers to the interactions of microbes with the brain, gut, and lung. The effects of drug abuse on the gut microbiota are increasingly recognized, especially the pathogenesis by which the microbiota-brain-gut-lung axis is involved in regulating organ-organ communication, to explore new therapeutic approaches for clinical drug abuse. Currently, in addition to antibiotics, antiviral drugs, anti-tumor drugs, corticosteroids, drugs for the treatment of neurodegenerative diseases, and anesthetics also cause gut microbiota imbalance. This review summarizes the effects of drug abuse on gut microbiota and the important role of the microbiota-brain-gut-lung axis in drug abuse. Identifying changes in the gut microbiota associated with drug abuse and their underlying mechanisms under the principles of predictive, preventive, and personalized medicine (PPPM) is a critical step toward achieving PPPM. These strategies include FMT, probiotic supplements, and engineered bacteria that can benefit sub-healthy individuals with gut dysbiosis caused by drug abuse.
Collapse
Affiliation(s)
- Xin Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning China
| | - Xiao-Ru Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning China
| | - Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning China
| |
Collapse
|
2
|
Kaur S, Kumari D, Dandekar MP. Importance of Gut Microbiota Dysbiosis and Circadian Disruption-Associated Biomarkers in Emergence of Alzheimer's Disease. Mol Neurobiol 2025; 62:6308-6316. [PMID: 39775480 DOI: 10.1007/s12035-024-04685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a major devastating neurodegenerative disorder afflicting majorly the geriatric population. Emerging studies augur the connection of gut dysbiosis and circadian disruption with the early onset of AD. Gut dysbiosis is characterized by dysregulated gut microbiota signature and compromised intestinal integrity, which provokes the translocation of bacterial metabolites into the systemic circulation. Noteworthy, gut-derived metabolites like calprotectin, trimethylamine-N-oxide, kynurenine, isoamylamine, and short-chain fatty acids play a key role in AD pathogenesis. Circadian dysregulation also corresponds with the exacerbated AD pathogenesis by accumulating Aβ and tau proteins. Moreover, circadian dysregulation is one of the causative factors for gut dysbiosis. This review discusses the complex interplay between the microbiota-gut-brain axis, circadian rhythmicity, and the emergence of AD. We reviewed preclinical and clinical studies on AD describing potential biomarkers of gut dysbiosis and circadian dysregulation. The identification of new biomarkers associated with the microbiota-gut-brain axis and circadian rhythmicity may help in early diagnosis and development of targeted therapies for mitigating neurodegenerative AD.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037
| | - Deepali Kumari
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037.
| |
Collapse
|
3
|
Yuan X, Ouedraogo SY, Jammeh ML, Simbiliyabo L, Jabang JN, Jaw M, Darboe A, Tan Y, Bajinka O. Can microbiota gut-brain axis reverse neurodegenerative disorders in human? Ageing Res Rev 2025; 104:102664. [PMID: 39818235 DOI: 10.1016/j.arr.2025.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The trillions of microbial populations residing in the gut have recently shown that they can be used as a remedy for various diseases. The gut microbiota-brain-axis interface is one unique pathway that the microbiota demonstrates its medicinal value. This medicinal value is further seen when there is a decline in gut microbial diversity (dysbiosis). Dysbiosis leads to neurodegenerative disorders (NDDs). The objective of this review is to ascertain the clinical significance of gut microbiota induced therapeutic strategies. While navigating this important area of interest, we will elucidate the research gaps, the prospects and the potential reverse interventions of the studied NDDs. In addition to our previous work, relevant literature published in English were searched and retrieved from the PubMed database. The 'gut microbiota and Neurodegenerative disorders' were used as keywords during the search period. The Filters applied are: Abstract, Full text, Meta-Analysis, Randomized Controlled Trial, Reviews, in the last 5 years. The articles were analyzed in our unrelenting quest to make sense of the prospects and research gap in gut microbiota-brain-axis. This chapter is a result of this meticulous work. More convincing data from researches on gut microbiota-brain-axis are required to provide clinical significance including neuroimaging studies. Addressing the structural (pathological footprints) and the functional changes (diseases manifestation) involving gut microbiota-brain-axis require a holistic approach. While the pharmacological therapies such as chemotherapeutic and chemobiotic treatment approaches come with low success rates, non-pharmacological interventions are found to be more useful in reversing NDDs. The inability to detect NDDs at an early stage in their clinical history, makes preventive medicinal approaches the must needed and best intervention strategy. Gut-driven treatments have a lot to offer in the management of refractory neurologic diseases.
Collapse
Affiliation(s)
- Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, China
| | - Modou Lamin Jammeh
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Lucette Simbiliyabo
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China
| | - John Nute Jabang
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Mariam Jaw
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Alansana Darboe
- Vaccine & Immunity Theme, Infant Immunology, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine (MRCG@LSHTM), Gambia
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.
| | - Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, China; School of Medicine and Allied Health Sciences, University of The Gambia, Gambia; Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.
| |
Collapse
|
4
|
Lista S, Munafò A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-País M, Crespo-Escobar P, López-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A. Gut microbiota in Alzheimer's disease: Understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 2025; 104:102659. [PMID: 39800223 DOI: 10.1016/j.arr.2025.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks. Additionally, we examine other pathophysiological mechanisms by which GM may influence AD risk, including the production of short-chain fatty acids, secondary bile acids, and tryptophan metabolites. The role of the vagus nerve in gut-brain communication is also addressed. We highlight potential therapeutic implications of targeting GM in AD, focusing on antibiotics, probiotics, prebiotics, postbiotics, phytochemicals, and fecal microbiota transplantation. While preclinical studies showed promise, clinical evidence remains limited and inconsistent. We critically assess clinical trials, emphasizing challenges in translating GM-based therapies to AD patients. The reviewed evidence underscores the need for further research to elucidate precise molecular mechanisms linking GM to AD and determine whether GM dysbiosis is a contributing factor or consequence of AD pathology. Future studies should focus on large-scale clinical trials to validate GM-based interventions' efficacy and safety in AD.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Antonio Munafò
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | | | | | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - María Merino-País
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Rome 00133, Italy.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| |
Collapse
|
5
|
Cui J, Xiao S, Cao Y, Zhang Y, Yang J, Zheng L, Zhao F, Liu X, Liu D, Zhou Z, Wang P. Organophosphate Insecticide Malathion Induces Alzheimer's Disease-Like Cognitive Impairment in Mice: Evidence of the Microbiota-Gut-Brain Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21966-21977. [PMID: 39545844 DOI: 10.1021/acs.est.4c07427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Evidence suggests that exposure to organophosphate pesticides increases the risk of neurodegenerative diseases, but the mechanisms remain unclear. This study investigated the effects of malathion on Alzheimer's disease (AD)-like symptoms at environmentally relevant concentrations using wild-type (WT) and APP/PS1 transgenic mouse models. Results showed that malathion exposure induced AD-like cognitive impairment, amyloid-β (Aβ) accumulation, and neuroinflammation in WT mice, with worsened symptoms in APP/PS1 mice. Mechanistic studies revealed that malathion induced AD-like gut microbiota dysbiosis (reduced Lactobacillus and Akkermansia, and increased Dubosiella), causing gut barrier impairment and tryptophan metabolism disruptions. This resulted in a significant increase in indole derivatives and activation of the colonic aryl hydrocarbon receptor (AhR), promoting the kynurenine (KYN) pathway while inhibiting the serotonin (5-HT) pathway. Increased neurotoxic KYN metabolites (3-hydroxykynurenine and quinolinic acid) triggered gut and systemic inflammation, upregulating hippocampal IL-6 and IL-1β mRNA levels and thereby causing neuroinflammation. Gut tryptophan metabolism disruptions caused hippocampal neurotransmitter imbalances, reducing the levels of 5-HT and its derivatives. These effects promoted AD progression in both WT and APP/PS1 mice. This study highlights the crucial role of the microbiota-gut-brain axis in AD-like cognitive impairment induced by malathion exposure, providing insights into the neurodegenerative disease risks posed by organophosphate pesticides.
Collapse
Affiliation(s)
- Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Yue Cao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Yaru Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Jiaxing Yang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Li Zheng
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Fanrong Zhao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Sharo C, Zhang J, Zhai T, Bao J, Garcia-Epelboim A, Mamourian E, Shen L, Huang Z. Repurposing FDA-Approved Drugs Against Potential Drug Targets Involved in Brain Inflammation Contributing to Alzheimer's Disease. TARGETS (BASEL) 2024; 2:446-469. [PMID: 39897171 PMCID: PMC11786951 DOI: 10.3390/targets2040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Alzheimer's disease is a neurodegenerative disease that continues to have a rising number of cases. While extensive research has been conducted in the last few decades, only a few drugs have been approved by the FDA for treatment, and even fewer aim to be curative rather than manage symptoms. There remains an urgent need for understanding disease pathogenesis, as well as identifying new targets for further drug discovery. Alzheimer's disease (AD) is known to stem from a build-up of amyloid beta (Aβ) plaques as well as tangles of tau proteins. Furthermore, inflammation in the brain is known to arise from the degeneration of tissue and the build-up of insoluble material. Therefore, there is a potential link between the pathology of AD and inflammation in the brain, especially as the disease progresses to later stages where neuronal death and degeneration levels are higher. Proteins that are relevant to both brain inflammation and AD thus make ideal potential targets for therapeutics; however, the proteins need to be evaluated to determine which targets would be ideal for potential drug therapeutic treatments, or 'druggable'. Druggability analysis was conducted using two structure-based methods (i.e., Drug-Like Density analysis and SiteMap), as well as a sequence-based approach, SPIDER. The most druggable targets were then evaluated using single-nuclei sequencing data for their clinical relevance to inflammation in AD. For each of the top five targets, small molecule docking was used to evaluate which FDA approved drugs were able to bind with the chosen proteins. The top targets included DRD2 (inhibits adenylyl cyclase activity), C9 (binds with C5B8 to form the membrane attack complex), C4b (binds with C2a to form C3 convertase), C5AR1 (GPCR that binds C5a), and GABA-A-R (GPCR involved in inhibiting neurotransmission). Each target had multiple potential inhibitors from the FDA-approved drug list with decent binding infinities. Among these inhibitors, two drugs were found as top inhibitors for more than one protein target. They are C15H14N2O2 and v316 (Paracetamol), used to treat pain/inflammation originally for cataracts and relieve headaches/fever, respectively. These results provide the groundwork for further experimental investigation or clinical trials.
Collapse
Affiliation(s)
- Catherine Sharo
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| | - Jiayu Zhang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianhua Zhai
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrés Garcia-Epelboim
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
7
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Cortés Malagón EM, López Ornelas A, Olvera Gómez I, Bonilla Delgado J. The Kynurenine Pathway, Aryl Hydrocarbon Receptor, and Alzheimer's Disease. Brain Sci 2024; 14:950. [PMID: 39335444 PMCID: PMC11429728 DOI: 10.3390/brainsci14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, mainly affecting elderly individuals. AD is characterized by β-amyloid plaques, abnormal tau tangles, neuronal loss, and metabolic disruptions. Recent studies have revealed the involvement of the kynurenine (KP) pathway and the aryl hydrocarbon receptor (AhR) in AD development. The KP pathway metabolizes tryptophan to produce neuroactive substances like kynurenine, kynurenic acid, and quinolinic acid. In AD, high levels of kynurenine and the neurotoxic quinolinic acid are associated with increased neuroinflammation and excitotoxicity; conversely, reduced levels of kynurenic acid, which acts as a glutamate receptor antagonist, compromise neuroprotection. Research has indicated elevated KP metabolites and enzymes in the hippocampus of AD patients and other tissues such as blood, cerebrospinal fluid, and urine. However, the finding that KP metabolites are AD biomarkers in blood, cerebrospinal fluid, and urine has been controversial. This controversy, stemming from the lack of consideration of the specific stage of AD, details of the patient's treatment, cognitive deficits, and psychiatric comorbidities, underscores the need for more comprehensive research. AhR, a ligand-activated transcription factor, regulates immune response, oxidative stress, and xenobiotic metabolism. Various ligands, including tryptophan metabolites, can activate it. Some studies suggest that AhR activation contributes to AD, while others propose that it provides neuroprotection. This discrepancy may be explained by the specific ligands that activate AhR, highlighting the complex relationship between the KP pathway, AhR activation, and AD, where the same pathway can produce both neuroprotective and harmful effects.
Collapse
Affiliation(s)
- Enoc Mariano Cortés Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| | - Adolfo López Ornelas
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| | - Irlanda Olvera Gómez
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Facultad Ciencias de la Salud, Universidad Anáhuac Norte, Estado de México 52786, Mexico
| | - José Bonilla Delgado
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BINESTAR, Ixtapaluca 56530, Mexico
| |
Collapse
|
9
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
10
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
11
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
12
|
Sharo C, Zhai T, Huang Z. Investigation of Potential Drug Targets Involved in Inflammation Contributing to Alzheimer's Disease Progression. Pharmaceuticals (Basel) 2024; 17:137. [PMID: 38276010 PMCID: PMC10819325 DOI: 10.3390/ph17010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease has become a major public health issue. While extensive research has been conducted in the last few decades, few drugs have been approved by the FDA to treat Alzheimer's disease. There is still an urgent need for understanding the disease pathogenesis, as well as identifying new drug targets for further drug discovery. Alzheimer's disease is known to arise from a build-up of amyloid beta (Aβ) plaques as well as tangles of tau proteins. Along similar lines to Alzheimer's disease, inflammation in the brain is known to stem from the degeneration of tissue and build-up of insoluble materials. A minireview was conducted in this work assessing the genes, proteins, reactions, and pathways that link brain inflammation and Alzheimer's disease. Existing tools in Systems Biology were implemented to build protein interaction networks, mainly for the classical complement pathway and G protein-coupled receptors (GPCRs), to rank the protein targets according to their interactions. The top 10 protein targets were mainly from the classical complement pathway. With the consideration of existing clinical trials and crystal structures, proteins C5AR1 and GARBG1 were identified as the best targets for further drug discovery, through computational approaches like ligand-protein docking techniques.
Collapse
Affiliation(s)
| | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
13
|
Pathak S, Nadar R, Kim S, Liu K, Govindarajulu M, Cook P, Watts Alexander CS, Dhanasekaran M, Moore T. The Influence of Kynurenine Metabolites on Neurodegenerative Pathologies. Int J Mol Sci 2024; 25:853. [PMID: 38255925 PMCID: PMC10815839 DOI: 10.3390/ijms25020853] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
As the kynurenine pathway's links to inflammation, the immune system, and neurological disorders became more apparent, it attracted more and more attention. It is the main pathway through which the liver breaks down Tryptophan and the initial step in the creation of nicotinamide adenine dinucleotide (NAD+) in mammals. Immune system activation and the buildup of potentially neurotoxic substances can result from the dysregulation or overactivation of this pathway. Therefore, it is not shocking that kynurenines have been linked to neurological conditions (Depression, Parkinson's, Alzheimer's, Huntington's Disease, Schizophrenia, and cognitive deficits) in relation to inflammation. Nevertheless, preclinical research has demonstrated that kynurenines are essential components of the behavioral analogs of depression and schizophrenia-like cognitive deficits in addition to mediators associated with neurological pathologies due to their neuromodulatory qualities. Neurodegenerative diseases have been extensively associated with neuroactive metabolites of the kynurenine pathway (KP) of tryptophan breakdown. In addition to being a necessary amino acid for protein synthesis, Tryptophan is also transformed into the important neurotransmitters tryptamine and serotonin in higher eukaryotes. In this article, a summary of the KP, its function in neurodegeneration, and the approaches being used currently to target the route therapeutically are discussed.
Collapse
Affiliation(s)
- Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Shannon Kim
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Keyi Liu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Manoj Govindarajulu
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Preston Cook
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
14
|
Zhang M, Niu H, Li Q, Jiao L, Li H, Wu W. Active Compounds of Panax ginseng in the Improvement of Alzheimer's Disease and Application of Spatial Metabolomics. Pharmaceuticals (Basel) 2023; 17:38. [PMID: 38256872 PMCID: PMC10818864 DOI: 10.3390/ph17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is one of the more common traditional Chinese medicines (TCMs). It contains numerous chemical components and exhibits a range of pharmacological effects. An enormous burden is placed on people's health and life by Alzheimer's disease (AD), a neurodegenerative condition. Recent research has shown that P. ginseng's chemical constituents, particularly ginsenosides, have a significant beneficial impact on the prevention and management of neurological disorders. To understand the current status of research on P. ginseng to improve AD, this paper discusses the composition of P. ginseng, its mechanism of action, and its clinical application. The pathogenesis of AD includes amyloid beta protein (Aβ) generation and aggregation, tau protein hyperphosphorylation, oxidant stress, neuroinflammation, mitochondrial damage, and neurotransmitter and gut microbiota disorders. This review presents the key molecular mechanisms and signaling pathways of the active ingredients in P. ginseng involved in improving AD from the perspective of AD pathogenesis. A P. ginseng-related signaling pathway network was constructed to provide effective targets for the treatment of AD. In addition, the application of spatial metabolomics techniques in studying P. ginseng and AD is discussed. In summary, this paper discusses research perspectives for the study of P. ginseng in the treatment of AD, including a systematic and in-depth review of the mechanisms of action of the active substances in P. ginseng, and evaluates the feasibility of applying spatial metabolomics in the study of AD pathogenesis and pharmacological treatment.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| |
Collapse
|
15
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
16
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
17
|
L K, Ng TKS, Wee HN, Ching J. Gut-brain axis through the lens of gut microbiota and their relationships with Alzheimer's disease pathology: Review and recommendations. Mech Ageing Dev 2023; 211:111787. [PMID: 36736919 DOI: 10.1016/j.mad.2023.111787] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Growing evidence suggests that the gut microbiome (GM) plays a pivotal role in the pathogenesis of AD through the microbiota-gut-brain axis (MGB). Alterations in GM composition and diversity have been observed in both animal models and in human patients with AD. GM dysbiosis has been implicated in increased intestinal permeability, blood-brain barrier (BBB) impairment, neuroinflammation and the development of hallmarks of AD. Further elucidation of the role of GM in AD could pave way for the development of holistic predictive methods for determining AD risk and progression of disease. Furthermore, accumulating evidence suggests that GM modulation could alleviate adverse symptoms of AD or serve as a preventive measure. In addition, increasing evidence shows that Type 2 Diabetes Mellitus (T2DM) is often comorbid with AD, with common GM alterations and inflammatory response, which could chart the development of GM-related treatment interventions for both diseases. We conclude by exploring the therapeutic potential of GM in alleviating symptoms of AD and in reducing risk. Furthermore, we also propose future directions in AD research, namely fecal microbiota transplantation (FMT) and precision medicine.
Collapse
Affiliation(s)
- Krishaa L
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Ted Kheng Siang Ng
- Arizona State University, Edson College of Nursing and Health Innovation, USA.
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore; KK Research Centre, KK Women's and Children's Hospital, Singapore.
| |
Collapse
|
18
|
Food for the mind: The journey of probiotics from foods to ANTI-Alzheimer’s disease therapeutics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Ağagündüz D, Gençer Bingöl F, Çelik E, Cemali Ö, Özenir Ç, Özoğul F, Capasso R. Recent developments in the probiotics as live biotherapeutic products (LBPs) as modulators of gut brain axis related neurological conditions. Lab Invest 2022; 20:460. [PMID: 36209124 PMCID: PMC9548122 DOI: 10.1186/s12967-022-03609-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022]
Abstract
Probiotics have been defined as “living microorganisms that create health benefits in the host when taken in sufficient amounts. Recent developments in the understanding of the relationship between the microbiom and its host have shown evidence about the promising potential of probiotics to improve certain health problems. However, today, there are some confusions about traditional and new generation foods containing probiotics, naming and classifications of them in scientific studies and also their marketing. To clarify this confusion, the Food and Drug Administration (FDA) declared that it has made a new category definition called "live biotherapeutic products" (LBPs). Accordingly, the FDA has designated LBPs as “a biological product that: i)contains live organisms, such as bacteria; ii)is applicable to the prevention, treatment, or cure of a disease/condition of human beings; and iii) is not a vaccine”. The accumulated literature focused on LBPs to determine effective strains in health and disease, and often focused on obesity, diabetes, and certain diseases like inflammatory bowel disease (IBD).However, microbiome also play an important role in the pathogenesis of diseases that age day by day in the modern world via gut-brain axis. Herein, we discuss the novel roles of LBPs in some gut-brain axis related conditions in the light of recent studies. This article may be of interest to a broad readership including those interested in probiotics as LBPs, their health effects and safety, also gut-brain axis.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, 06490, Ankara, Emek, Turkey.
| | - Feray Gençer Bingöl
- Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, İstiklal Yerleşkesi, 15030, Burdur, Turkey
| | - Elif Çelik
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, 06490, Ankara, Emek, Turkey
| | - Özge Cemali
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, 06490, Ankara, Emek, Turkey
| | - Çiler Özenir
- Department of Nutrition and Dietetics, Kırıkkale University, 71100, Kırıkkale, Merkez, Turkey
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Balcali, Adana, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, NA, Italy.
| |
Collapse
|
20
|
Li J, Zou B, Cheng XY, Yang XH, Li J, Zhao CH, Ma RX, Tian JX, Yao Y. Therapeutic effects of total saikosaponins from Radix bupleuri against Alzheimer’s disease. Front Pharmacol 2022; 13:940999. [PMID: 35935875 PMCID: PMC9351603 DOI: 10.3389/fphar.2022.940999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by memory loss and cognitive dysfunction in the elderly, with amyloid-beta (Aβ) deposition and hyperphosphorylation of tau protein as the main pathological feature. Nuclear factor 2 (Nrf2) is a transcription factor that primarily exists in the cytosol of hippocampal neurons, and it is considered as an important regulator of autophagy, oxidative stress, and inflammation. Total saikosaponins (TS) is the main bioactive component of Radix bupleuri (Chaihu). In this study, it was found that TS could ameliorate cognitive dysfunction in APP/PS1 transgenic mice and reduce Aβ generation and senile plaque deposition via activating Nrf2 and downregulating the expression of β-secretase 1 (BACE1). In addition, TS can enhance autophagy by promoting the expression of Beclin-1 and LC3-II, increasing the degradation of p62 and NDP52 and the clearance of phosphorylated tau (p-tau), and reducing the expression of p-tau. It can also downregulate the expression of nuclear factor-κB (NF-κB) to inhibit the activation of glial cells and reduce the release of inflammatory factors. In vitro experiments using PC12 cells induced by Aβ, TS could significantly inhibit the aggregation of Aβ and reduce cytotoxicity. It was found that Nrf2 knock-out weakened the inhibitory effect of TS on BACE1 and NF-κB transcription in PC12 cells. Moreover, the inhibitory effect of TS on BACE1 transcription was achieved by promoting the binding of Nrf2 and the promoter of BACE1 ARE1. Results showed that TS downregulated the expression of BACE1 and NF-κB through Nrf2, thereby reducing the generation of Aβ and inhibiting neuroinflammation. Furthermore, TS can ameliorate synaptic loss and alleviate oxidative stress. In gut microbiota analysis, dysbiosis was demonstrated in APP/PS1 transgenic mice, indicating a potential link between gut microbiota and AD. Furthermore, TS treatment reverses the gut microbiota disorder in APP/PS1 mice, suggesting a therapeutic strategy by remodeling the gut microbe. Collectively, these data shows that TS may serve as a potential approach for AD treatment. Further investigation is needed to clarify the detailed mechanisms underlying TS regulating gut microbiota and oxidative stress.
Collapse
Affiliation(s)
- Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin-He Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Chun-Hui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ji-Xiang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yao Yao, ; Ji-Xiang Tian,
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- *Correspondence: Yao Yao, ; Ji-Xiang Tian,
| |
Collapse
|
21
|
De R, Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Front Cell Infect Microbiol 2022; 12:736397. [PMID: 35433495 PMCID: PMC9009446 DOI: 10.3389/fcimb.2022.736397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease COVID-19 is caused by the highly contagious single-stranded RNA virus, SARS-coronavirus 2 (SARS-CoV-2), which has a high rate of evolution like other RNA viruses. The first genome sequences of SARS-CoV-2 were available in early 2020. Subsequent whole-genome sequencing revealed that the virus had accumulated several mutations in genes associated with viral replication and pathogenesis. These variants showed enhanced transmissibility and infectivity. Soon after the first outbreak due to the wild-type strain in December 2019, a genetic variant D614G emerged in late January to early February 2020 and became the dominant genotype worldwide. Thereafter, several variants emerged, which were found to harbor mutations in essential viral genes encoding proteins that could act as drug and vaccine targets. Numerous vaccines have been successfully developed to assuage the burden of COVID-19. These have different rates of efficacy, including, although rarely, a number of vaccinated individuals exhibiting side effects like thrombosis. However, the recent emergence of the Britain strain with 70% more transmissibility and South African variants with higher resistance to vaccines at a time when several countries have approved these for mass immunization has raised tremendous concern regarding the long-lasting impact of currently available prophylaxis. Apart from studies addressing the pathophysiology, pathogenesis, and therapeutic targets of SARS-CoV-2, analysis of the gut, oral, nasopharyngeal, and lung microbiome dysbiosis has also been undertaken to find a link between the microbiome and the pathogenesis of COVID-19. Therefore, in the current scenario of skepticism regarding vaccine efficacy and challenges over the direct effects of currently available drugs looming large, investigation of alternative therapeutic avenues based on the microbiome can be a rewarding finding. This review presents the currently available understanding of microbiome dysbiosis and its association with cause and consequence of COVID-19. Taking cues from other inflammatory diseases, we propose a hypothesis of how the microbiome may be influencing homeostasis, pro-inflammatory condition, and the onset of inflammation. This accentuates the importance of a healthy microbiome as a protective element to prevent the onset of COVID-19. Finally, the review attempts to identify areas where the application of microbiome research can help in reducing the burden of the disease.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| |
Collapse
|
22
|
Role of Cholinergic Signaling in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061816. [PMID: 35335180 PMCID: PMC8949236 DOI: 10.3390/molecules27061816] [Citation(s) in RCA: 283] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer’s disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Collapse
|
23
|
Sharma VK, Singh TG, Prabhakar NK, Mannan A. Kynurenine Metabolism and Alzheimer's Disease: The Potential Targets and Approaches. Neurochem Res 2022; 47:1459-1476. [PMID: 35133568 DOI: 10.1007/s11064-022-03546-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
L-tryptophan, an essential amino acid, regulates protein homeostasis and plays a role in neurotransmitter-mediated physiological events. It also influences age-associated neurological alterations and neurodegenerative changes. The metabolism of tryptophan is carried majorly through the kynurenine route, leading to the production of several pharmacologically active enzymes, substrates, and metabolites. These metabolites and enzymes influence a variety of physiological and pathological outcomes of the majority of systems, including endocrine, haemopoietic, gastrointestinal, immunomodulatory, inflammatory, bioenergetic metabolism, and neuronal functions. An extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the kynurenine metabolites that influence cellular redox potential, immunoregulatory mechanisms, inflammatory pathways, cell survival channels, and cellular communication in close association with several neurodegenerative changes. The imbalanced state of kynurenine pathways has found a close association to several pathological disorders, including HIV infections, cancer, autoimmune disorders, neurodegenerative and neurological disorders including Parkinson's disease, epilepsy and has found special attention in Alzheimer's disease (AD). Kynurenine pathway (KP) is intricately linked to AD pathogenesis owing to the influence of kynurenine metabolites on excitotoxic neurotransmission, oxidative stress, uptake of neurotransmitters, and modulation of neuroinflammation, amyloid aggregation, microtubule disruption, and their ability to induce a state of dysbiosis. Pharmacological modulation of KP pathways has shown encouraging results, indicating that it may be a viable and explorable target for the therapy of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | | | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
24
|
Meng J, Zhu Y, Ma H, Wang X, Zhao Q. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114464. [PMID: 34329715 DOI: 10.1016/j.jep.2021.114464] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic cognitive dysfunction (DCD) is mainly one of the complications of type 2 diabetes mellitus (T2DM) with complex and obscure pathogenesis. Extensive evidence has demonstrated the effectiveness and safety of traditional Chinese medicine (TCM) for DCD management. AIM OF THE STUDY This review attempted to systematically summarize the possible pathogenesis of DCD and the current Chinese medicine on the treatment of DCD. MATERIALS AND METHODS We acquired information of TCM on DCD treatment from PubMed, Web of Science, Science Direct and CNKI databases. We then dissected the potential mechanisms of currently reported TCMs and their active ingredients for the treatment of DCD by discussing the deficiencies and giving further recommendations. RESULTS Most TCMs and their active ingredients could improve DCD through alleviating insulin resistance, microvascular dysfunction, abnormal gut microbiota composition, inflammation, and the damages of the blood-brain barrier, cerebrovascular and neurons under hyperglycemia conditions. CONCLUSIONS TCM is effective in the treatment of DCD with few adverse reactions. A large number of in vivo and in vitro, and clinical trials are still needed to further reveal the potential quality markers of TCM on DCD treatment.
Collapse
Affiliation(s)
- Jinni Meng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- College of Basic Medicine, Ningxia Medical University, Ningxia, China
| | - Huixia Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
25
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
26
|
Zhang M, He P, Bian Z. Long Noncoding RNAs in Neurodegenerative Diseases: Pathogenesis and Potential Implications as Clinical Biomarkers. Front Mol Neurosci 2021; 14:685143. [PMID: 34421536 PMCID: PMC8371338 DOI: 10.3389/fnmol.2021.685143] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are progressive and ultimately fatal. NDD onset is influenced by several factors including heredity and environmental cues. Long noncoding RNAs (lncRNAs) are a class of noncoding RNA molecules with: (i) lengths greater than 200 nucleotides, (ii) diverse biological functions, and (iii) highly conserved structures. They directly interact with molecules such as proteins and microRNAs and subsequently regulate the expression of their targets at the genetic, transcriptional, and post-transcriptional levels. Emerging studies indicate the important roles of lncRNAs in the progression of neurological diseases including NDDs. Additionally, improvements in detection technologies have enabled quantitative lncRNA detection and application to circulating fluids in clinical settings. Here, we review current research on lncRNAs in animal models and patients with NDDs. We also discuss the potential applicability of circulating lncRNAs as biomarkers in NDD diagnostics and prognostics. In the future, a better understanding of the roles of lncRNAs in NDDs will be essential to exploit these new therapeutic targets and improve noninvasive diagnostic methods for diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Białecka-Dębek A, Granda D, Szmidt MK, Zielińska D. Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge. Nutrients 2021; 13:2514. [PMID: 34444674 PMCID: PMC8401879 DOI: 10.3390/nu13082514] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in the composition and proportions of the gut microbiota may be associated with numerous diseases, including cognitive impairment. Over the recent years, the growing interest in this relation is observed, but there are still many unknowns, especially in the elderly. To the best of our knowledge, this is the first work that synthesizes and critically evaluates existing evidence on the possible association between human gut microbiota and cognitive function in the elderly. For this purpose, comprehensive literature searches were conducted using the electronic databases PubMed, Google Scholar, and ScienceDirect. The gut microbiota of cognitively healthy and impaired elderly people may differ in the diversity and abundance of individual taxes, but specific taxes cannot be identified. However, some tendencies to changing the Firmicutes/Bacteroidetes ratio can be identified. Currently, clinical trials involving probiotics, prebiotics, and synbiotics supplementation have shown that there are premises for the claim that these factors can improve cognitive functions, however there is no single intervention beneficial to the elderly population. More reliable evidence from large-scale, long-period RCT is needed. Despite proposing several potential mechanisms of the gut microbiota's influence on the cognitive function impairment, prospective research on this topic is extremely difficult to conduct due to numerous confounding factors that may affect the gut microbiota. Heterogeneity of research outcomes impairs insight into these relations.
Collapse
Affiliation(s)
- Agata Białecka-Dębek
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dominika Granda
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Maria Karolina Szmidt
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
28
|
Chen C, Zhou Y, Wang H, Alam A, Kang SS, Ahn EH, Liu X, Jia J, Ye K. Gut inflammation triggers C/EBPβ/δ-secretase-dependent gut-to-brain propagation of Aβ and Tau fibrils in Alzheimer's disease. EMBO J 2021; 40:e106320. [PMID: 34260075 DOI: 10.15252/embj.2020106320] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/11/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Some evidence suggests that misfolded protein aggregates found in AD brains may have originated from the gut, but the mechanism underlying this phenomenon is not fully understood. C/EBPβ/δ-secretase signaling in the colon was investigated in a 3xTg AD mouse model in an age-dependent manner. We applied chronic administration of 1% dextran sodium sulfate (DSS) to trigger gut leakage or colonic injection of Aβ or Tau fibrils or AD patient brain lysates in 3xTg mice and combined it with excision/cutting of the gut-brain connecting vagus nerve (vagotomy), in order to explore the role of the gut-brain axis in the development of AD-like pathologies and to monitor C/EBPβ/δ-secretase signaling under those conditions. We found that C/EBPβ/δ-secretase signaling is temporally activated in the gut of AD patients and 3xTg mice, initiating formation of Aβ and Tau fibrils that spread to the brain. DSS treatment promotes gut leakage and facilitates AD-like pathologies in both the gut and the brain of 3xTg mice in a C/EBPβ/δ-secretase-dependent manner. Vagotomy selectively blunts this signaling, attenuates Aβ and Tau pathologies, and restores learning and memory. Aβ or Tau fibrils or AD patient brain lysates injected into the colon propagate from the gut into the brain via the vagus nerve, triggering AD pathology and cognitive dysfunction. The results indicate that inflammation activates C/EBPβ/δ-secretase and initiates AD-associated pathologies in the gut, which are subsequently transmitted to the brain via the vagus nerve.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunzhe Zhou
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hualong Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Ashfaqul Alam
- Department of Neurology, The First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Heibei Province, Shijiazhuang, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
29
|
Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Luo Y, Huang S, Xiao T, Liu S, Li X, Shang D, Wen Y. Comprehensive Bibliometric Analysis of the Kynurenine Pathway in Mood Disorders: Focus on Gut Microbiota Research. Front Pharmacol 2021; 12:687757. [PMID: 34239441 PMCID: PMC8258344 DOI: 10.3389/fphar.2021.687757] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Emerging evidence implicates the dysregulated kynurenine pathway (KP), an immune-inflammatory pathway, in the pathophysiology of mood disorders (MD), including depression and bipolar disorder characterized by a low-grade chronic pro-inflammatory state. The metabolites of the KP, an important part of the microbiota-gut-brain axis, serve as immune system modulators linking the gut microbiota (GM) with the host central nervous system. Aim: This bibliometric analysis aimed to provide a first glimpse into the KP in MD, with a focus on GM research in this field, to guide future research and promote the development of this field. Methods: Publications relating to the KP in MD between the years 2000 and 2020 were retrieved from the Scopus and Web of Science Core Collection (WoSCC), and analyzed in CiteSpace (5.7 R5W), biblioshiny (using R-Studio), and VOSviewer (1.6.16). Results: In total, 1,064 and 948 documents were extracted from the Scopus and WoSCC databases, respectively. The publications have shown rapid growth since 2006, partly owing to the largest research hotspot appearing since then, “quinolinic acid.” All the top five most relevant journals were in the neuropsychiatry field, such as Brain Behavior and Immunity. The United States and Innsbruck Medical University were the most influential country and institute, respectively. Journal co-citation analysis showed a strong tendency toward co-citation of research in the psychiatry field. Reference co-citation analysis revealed that the top four most important research focuses were “kynurenine pathway,” “psychoneuroimmunology,” “indoleamine 2,3-dioxygenase,” and “proinflammatory cytokines,” and the most recent focus was “gut-brain axis,” thus indicating the role of the KP in bridging the GM and the host immune system, and together reflecting the field’s research foundations. Overlap analysis between the thematic map of keywords and the keyword burst analysis revealed that the topics “Alzheimer’s disease,” “prefrontal cortex,” and “acid,” were research frontiers. Conclusion: This comprehensive bibliometric study provides an updated perspective on research associated with the KP in MD, with a focus on the current status of GM research in this field. This perspective may benefit researchers in choosing suitable journals and collaborators, and aid in the further understanding of the field’s hotspots and frontiers, thus facilitating future research.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yayan Luo
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
30
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
31
|
Jiang F, Wang T, Li S, Jiang Y, Chen Z, Liu W. Effect of Fluorofenidone Against Paraquat-Induced Pulmonary Fibrosis Based on Metabolomics and Network Pharmacology. Med Sci Monit 2021; 27:e930166. [PMID: 33790218 PMCID: PMC8023277 DOI: 10.12659/msm.930166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fluorofenidone (AKF-PD) is an anti-fibrotic small-molecule compound. Its mechanism of action on paraquat (PQ)-induced pulmonary fibrosis is still unclear. MATERIAL AND METHODS Forty-eight SD rats were divided into 4 groups: control group, PQ group, PQ+AKF-PD group, and AKF-PD group. The pathological changes of lung tissues were observed by Masson and HE staining. The UPLC-QTOF-MS analysis was performed to detect the differences in metabolites among groups, then the possible mechanisms of the anti-pulmonary fibrosis effects of fluorofenidone were further revealed by network pharmacology analysis. Biological methods were used to verify the results of the network pharmacology analysis. RESULTS The results showed that fluorofenidone treatment significantly alleviated paraquat-induced pulmonary fibrosis. Metabolomics analysis showed that 18 metabolites were disordered in the serum of paraquat-poisoned rats, of which 13 were restored following fluorofenidone treatment. Network pharmacology analysis showed that the drug screened a total of 12 targets and mainly involved multiple signaling pathways and metabolic pathways to jointly exert anti-pulmonary fibrosis effects. Autophagy is the main pathway of fluorofenidone in treatment pulmonary fibrosis. The western blot results showed that fluorofenidone upregulated the expression of LC3-II/I and E-cadherin, and downregulated the expression of p62, alpha-SMA, and TGF-ß1, which validated that fluorofenidone could inhibit the development of paraquat-induced pulmonary fibrosis by increasing autophagy. CONCLUSIONS In conclusion, metabolomics combined with network pharmacology research strategy revealed that fluorofenidone has a multi-target and multi-path mechanism of action in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Feiya Jiang
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Tongtong Wang
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Sha Li
- Department of Pharmacy, Changsha Stomatological Hospital, Changsha, Hunan, China (mainland)
| | - Yu Jiang
- Emergency Medical Research Institute, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Zhuo Chen
- Xiangya College of Pharmacy, Central South University, Changsha, Hunan, China (mainland)
| | - Wen Liu
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| |
Collapse
|
32
|
Więdłocha M, Marcinowicz P, Janoska-Jaździk M, Szulc A. Gut microbiota, kynurenine pathway and mental disorders - Review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110145. [PMID: 33203568 DOI: 10.1016/j.pnpbp.2020.110145] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
The intestine and the gut-associated limphoid tissue constitute the largest immunity organ of the human body. Among several possible tryptophan metabolism routes, the kynurenine pathway can be influenced by the gut microbiota. Disturbances of gut biodiversity may cause increased gut permeability and cause systemic inflammation, also related to central nervous system. Proinflammatory cytokines induce kynurenine pathway enzymes resulting in formation of neuroactive metabolites, which are being associated with several psychiatric disorders. The kynurenine pathway may also be influenced by certain bacteria species directly. The aim of this review is to highlight the current knowledge on the interaction of gut microbiota and the central nervous system with the kynurenine pathway taken into special account. Up to date study results on specific psychiatric disorders such as schizophrenia, bipolar disorder, Alzheimer's disease, autism spectrum disorders, depression and alcoholism are presented. Available evidence suggests that toxicity of kynurenine metabolites may be reduced by adjunction of probiotics which can affect proinflammatory cytokines. Due to their potential for modulation of the kynurenine pathway, gut microbiota pose an interesting target for future therapies.
Collapse
Affiliation(s)
- Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland.
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| | | | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| |
Collapse
|
33
|
Tang W, Meng Z, Li N, Liu Y, Li L, Chen D, Yang Y. Roles of Gut Microbiota in the Regulation of Hippocampal Plasticity, Inflammation, and Hippocampus-Dependent Behaviors. Front Cell Infect Microbiol 2021; 10:611014. [PMID: 33585279 PMCID: PMC7873527 DOI: 10.3389/fcimb.2020.611014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
The study of the gut microbiota-brain axis has become an intriguing field, attracting attention from both gastroenterologists and neurobiologists. The hippocampus is the center of learning and memory, and plays a pivotal role in neurodegenerative diseases, such as Alzheimer’s disease (AD). Previous studies using diet administration, antibiotics, probiotics, prebiotics, germ-free mice, and fecal analysis of normal and specific pathogen-free animals have shown that the structure and function of the hippocampus are affected by the gut microbiota. Furthermore, hippocampal pathologies in AD are positively correlated with changes in specific microbiota. Genomic and neurochemical analyses revealed significant alterations in genes and amino acids in the hippocampus of AD subjects following a remarkable shift in the gut microbiota. In a recent study, when young animals were transplanted with fecal microbiota derived from AD patients, the recipients showed significant impairment of cognitive behaviors, AD pathologies, and changes in neuronal plasticity and cytokines. Other studies have demonstrated the side effects of antibiotic administration along with the beneficial effects of probiotics, prebiotics, and specific diets on the composition of the gut microbiota and hippocampal functions, but these have been mostly preliminary with unclear mechanisms. Since some specific gut bacteria are positively or negatively correlated to the structure and function of the hippocampus, it is expected that specific gut bacteria administration and other microbiota-based interventions could be potentially applied to prevent or treat hippocampus-based memory impairment and neuropsychiatric disorders such as AD.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ning Li
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiyan Liu
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Li Li
- Department of Gastroenterology, The First People's Hospital in Chongqing Liangjiang New Area, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yang Yang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
34
|
Garcez ML, Tan VX, Heng B, Guillemin GJ. Sodium Butyrate and Indole-3-propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-induced Human Primary Astrocytes. Int J Tryptophan Res 2021; 13:1178646920978404. [PMID: 33447046 PMCID: PMC7780186 DOI: 10.1177/1178646920978404] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between central nervous system (CNS) and gut microbiota plays key roles in neuroinflammation and chronic immune activation that are common features of all neurodegenerative diseases. Imbalance in the microbiota can lead to an increase in the intestinal permeability allowing toxins to diffuse and reach the CNS, as well as impairing the production of neuroprotective metabolites such as sodium butyrate (SB) and indole-3-propionic acid (IPA). The aim of the present study was to evaluate the effect of SB and IPA on LPS-induced production of cytokines and tryptophan metabolites in human astrocytes. Primary cultures of human astrocytes were pre-incubated with SB or IPA for 1 hour before treatment with LPS. Cell viability was not affected at 24, 48 or 72 hours after pre-treatment with SB, IPA or LPS treatment. SB was able to significantly prevent the increase of GM-CSF, MCP-1, IL-6 IL-12, and IL-13 triggered by LPS. SB and IPA also prevented inflammation indicated by the increase in kynurenine and kynurenine/tryptophan ratio induced by LPS treatment. IPA pre-treatment prevented the LPS-induced increase in MCP-1, IL-12, IL-13, and TNF-α levels 24 hours after pre-treatment, but had no effect on tryptophan metabolites. The present study showed for the first time that bacterial metabolites SB and IPA have potential anti-inflammatory effect on primary human astrocytes with potential therapeutic benefit in neurodegenerative disease characterized by the presence of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Michelle L Garcez
- Neurochemistry Laboratory, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa X Tan
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,PANDIS.org, Little Collins St, Melbourne VIC, Australia
| |
Collapse
|
35
|
Romanenko M, Kholin V, Koliada A, Vaiserman A. Nutrition, Gut Microbiota, and Alzheimer's Disease. Front Psychiatry 2021; 12:712673. [PMID: 34421687 PMCID: PMC8374099 DOI: 10.3389/fpsyt.2021.712673] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Nutrition is known to play an important role in the pathogenesis of Alzheimer's disease. Evidence is obtained that the gut microbiota is a key player in these processes. Dietary changes (both adverse and beneficial) may influence the microbiome composition, thereby affecting the gut-brain axis and the subsequent risk for Alzheimer's disease progression. In this review, the research findings that support the role of intestinal microbiota in connection between nutritional factors and the risk for Alzheimer's disease onset and progression are summarized. The mechanisms potentially involved in these processes as well as the potential of probiotics and prebiotics in therapeutic modulation of contributed pathways are discussed.
Collapse
Affiliation(s)
- Mariana Romanenko
- Laboratory of Dietetics, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | - Victor Kholin
- Department of Age Physiology and Pathology of the Nervous System, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | | | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
36
|
Braidy N, Alicajic H, Pow D, Smith J, Jugder BE, Brew BJ, Nicolazzo JA, Guillemin GJ. Potential Mechanism of Cellular Uptake of the Excitotoxin Quinolinic Acid in Primary Human Neurons. Mol Neurobiol 2020; 58:34-54. [PMID: 32894500 DOI: 10.1007/s12035-020-02046-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 01/18/2023]
Abstract
In Alzheimer's disease (AD), excessive amounts of quinolinic acid (QUIN) accumulate within the brain parenchyma and dystrophic neurons. QUIN also regulates glutamate uptake into neurons, which may be due to modulation of Na+-dependent excitatory amino acid transporters (EAATs). To determine the biological relationships between QUIN and glutamate dysfunction, we first quantified the functionality and kinetics of [3H]QUIN uptake in primary human neurons using liquid scintillation. We then measured changes in the protein expression of the glutamate transporter EAAT3 and EAAT1b in primary neurons treated with QUIN and the EAAT inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (2,4-PDC) using western blotting and immunohistochemistry. Immunohistochemistry was further used to elucidate intracellular transport of exogenous QUIN and the lysosomal-associated membrane protein 2 (LAMP2). Structural insights into the binding between QUIN and EAAT3 were further investigated using molecular docking techniques. We report significant temperature-dependent high-affinity transport leading to neuronal uptake of [3H]QUIN with a Km of 42.2 μM, and a Vmax of 9.492 pmol/2 min/mg protein, comparable with the uptake of glutamate. We also found that QUIN increases expression of the EAAT3 monomer while decreasing the functional trimer. QUIN uptake into primary neurons was shown to involve EAAT3 as uptake was significantly attenuated following EAAT inhibition. We also demonstrated that QUIN increases the expression of aberrant EAAT1b protein in neurons further implicating QUIN-induced glutamate dysfunction. Furthermore, we demonstrated that QUIN is metabolised exclusively in lysosomes. The involvement of EAAT3 as a modulator for QUIN uptake was further confirmed using molecular docking. This study is the first to characterise a mechanism for QUIN uptake into primary human neurons involving EAAT3, opening potential targets to attenuate QUIN-induced excitotoxicity in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.
- School of Medicine, Huzhou University, Wuxing District, Huzhou, Zhejiang, China.
| | - Hayden Alicajic
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, 2019, Australia
| | - David Pow
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason Smith
- Department of Chemistry and Biomolecular sciences, Macquarie University, Sydney, NSW, Australia
| | - Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Bruce J Brew
- St Vincent's Centre for Applied Medical Research, Sydney, Australia
- Department of Neurology and HIV Medicine, St Vincent's Hospital, Sydney, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gilles J Guillemin
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, 2019, Australia.
| |
Collapse
|
37
|
Essa MM, Hamdan H, Chidambaram SB, Al-Balushi B, Guillemin GJ, Ojcius DM, Qoronfleh MW. Possible role of tryptophan and melatonin in COVID-19. Int J Tryptophan Res 2020; 13:1178646920951832. [PMID: 32913393 PMCID: PMC7443751 DOI: 10.1177/1178646920951832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Hamdan Hamdan
- Department of Physiology, College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Buthainah Al-Balushi
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - David M Ojcius
- Biomedical Sciences Department, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco CA, USA
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
38
|
Jaggar M, Rea K, Spichak S, Dinan TG, Cryan JF. You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Front Neuroendocrinol 2020; 56:100815. [PMID: 31805290 DOI: 10.1016/j.yfrne.2019.100815] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Sex is a critical factor in the diagnosis and development of a number of mental health disorders including autism, schizophrenia, depression, anxiety, Parkinson's disease, multiple sclerosis, anorexia nervosa and others; likely due to differences in sex steroid hormones and genetics. Recent evidence suggests that sex can also influence the complexity and diversity of microbes that we harbour in our gut; and reciprocally that our gut microbes can directly and indirectly influence sex steroid hormones and central gene activation. There is a growing emphasis on the role of gastrointestinal microbiota in the maintenance of mental health and their role in the pathogenesis of disease. In this review, we introduce mechanisms by which gastrointestinal microbiota are thought to mediate positive health benefits along the gut-brain axis, we report how they may be modulated by sex, the role they play in sex steroid hormone regulation, and their sex-specific effects in various disorders relating to mental health.
Collapse
Affiliation(s)
- Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
39
|
Synergistic effects of APOE and sex on the gut microbiome of young EFAD transgenic mice. Mol Neurodegener 2019; 14:47. [PMID: 31861986 PMCID: PMC6923910 DOI: 10.1186/s13024-019-0352-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a fatal neurodegenerative disease. APOE4 is the greatest genetic risk factor for AD, increasing risk up to 15-fold compared to the common APOE3. Importantly, female (♀) APOE4 carriers have a greater risk for developing AD and an increased rate of cognitive decline compared to male (♂) APOE4 carriers. While recent evidence demonstrates that AD, APOE genotype, and sex affect the gut microbiome (GM), how APOE genotype and sex interact to affect the GM in AD remains unknown. Methods This study analyzes the GM of 4-month (4 M) ♂ and ♀ E3FAD and E4FAD mice, transgenic mice that overproduce amyloid-β 42 (Aβ42) and express human APOE3+/+ or APOE4+/+. Fecal microbiotas were analyzed using high-throughput sequencing of 16S ribosomal RNA gene amplicons and clustered into operational taxonomic units (OTU). Microbial diversity of the EFAD GM was compared across APOE, sex and stratified by APOE + sex, resulting in 4-cohorts (♂E3FAD, ♀E3FAD, ♂E4FAD and ♀E4FAD). Permutational multivariate analysis of variance (PERMANOVA) evaluated differences in bacterial communities between cohorts and the effects of APOE + sex. Mann-Whitney tests and machine-learning algorithms identified differentially abundant taxa associated with APOE + sex. Results Significant differences in the EFAD GM were associated with APOE genotype and sex. Stratification by APOE + sex revealed that APOE-associated differences were exhibited in ♂EFAD and ♀EFAD mice, and sex-associated differences were exhibited in E3FAD and E4FAD mice. Specifically, the relative abundance of bacteria from the genera Prevotella and Ruminococcus was significantly higher in ♀E4FAD compared to ♀E3FAD, while the relative abundance of Sutterella was significantly higher in ♂E4FAD compared to ♂E3FAD. Based on 29 OTUs identified by the machine-learning algorithms, heatmap analysis revealed significant clustering of ♀E4FAD separate from other cohorts. Conclusions The results demonstrate that the 4 M EFAD GM is modulated by APOE + sex. Importantly, the effect of APOE4 on the EFAD GM is modulated by sex, a pattern similar to the greater AD pathology associated with ♀E4FAD. While this study demonstrates the importance of interactive effects of APOE + sex on the GM in young AD transgenic mice, changes associated with the development of pathology remain to be defined.
Collapse
|