1
|
Haines RR, Xi S, Green KJ, Hammer KA. In vitro activity of Western Australian honeys and Manuka honey against clinically important yeasts. Yeast 2024; 41:537-548. [PMID: 39032089 DOI: 10.1002/yea.3974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024] Open
Abstract
With the steady rise in antifungal resistance amongst clinically important yeasts, antifungal drug discovery remains of the utmost importance. To determine the potential of some honeys as alternative antifungal agents, we quantified the antifungal activity of 12 Western Australian honey samples, two Manuka honey samples and an artificial honey against 10 yeast isolates including clinical and reference strains. Results showed that the tested honeys varied in activity, and yeasts species also differed in susceptibility, with minimum inhibitory concentrations (MICs) determined by broth microdilution ranging from 8% to >44% w/v honey. Honeys with the highest overall activity were derived from Blackbutt (Eucalyptus patens), Jarrah (E. marginata), and Karri (E. diversicolor). The optical density of each MIC microtitre plate was determined after incubation and showed that at relatively low concentrations of honey the growth of all yeasts was enhanced compared to the untreated control, whereas at and above approximately 12% w/v, honeys exerted a dose-dependent growth inhibitory effect, the extent of which varied by honey type. Time-kill studies with 64% w/v honey showed that all eight of the natural honeys tested had greater fungicidal activity than the comparator artificial honey. Our findings suggest that the specific nectar-derived phytochemicals present within each honey play an important role in antifungal activity, and support the notion that activity is due to a combination of factors including osmotic activity, hydrogen peroxide and phytochemical compounds. These data indicate that honey is worthy of further investigation as a potential therapeutic agent for superficial yeast infections.
Collapse
Affiliation(s)
- Robbie R Haines
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Crawley, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Crawley, Australia
| | - Shuhui Xi
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
| | - Kathryn J Green
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Crawley, Australia
| | - Katherine A Hammer
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Crawley, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Crawley, Australia
| |
Collapse
|
2
|
Ailli A, Zibouh K, Eddamsyry B, Drioiche A, Fetjah D, Ayyad FZ, Mothana RA, Hawwal MF, Radi M, Tarik R, Elomri A, Mouradi A, Zair T. Physicochemical Characterization of Moroccan Honey Varieties from the Fez-Meknes Region and Their Antioxidant and Antibacterial Properties. Metabolites 2024; 14:364. [PMID: 39057687 PMCID: PMC11279380 DOI: 10.3390/metabo14070364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Honey, with its varied and extensive characteristics, is a complex and diverse biological substance that has been used since ancient times. The aim of this study is to thoroughly characterize the physicochemical, phytochemical, and biological properties of four floral honey varieties from the Fez-Meknes region in Morocco, with the goal of promoting the valorization of Moroccan honey in skincare and cosmetic products. The analyses of their physicochemical characteristics encompass various parameters such as pH, acidity, density, water content, Brix index, conductivity, ash content, hydroxymethylfurfural (HMF) content, and color. The levels of polyphenols range from 22.1 ± 0.4 to 69.3 ± 0.17 mg GAE/100 g of honey, measured using the Folin-Ciocalteu method for polyphenol quantification. Additionally, the estimation of flavonoid quantities in 100 g of honey, conducted using the aluminum trichloride method, reveals values ranging from 3.6 ± 0.2 to 7.2 ± 0.6 mg QE. Furthermore, it is noteworthy that honey exhibits high levels of glucose and relatively low concentrations of proteins. The quantitative evaluation of antioxidant effects, carried out through the 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging method and the ferric-reducing antioxidant power (FRAP) method, highlights the strong antioxidant capacity of multifloral honey, characterized by low inhibitory concentration values (IC50 = 30.43 mg/mL and EC50 = 16.06 mg/mL). Moreover, all honey varieties demonstrate antibacterial and antifungal properties, with multifloral honey standing out for its particularly pronounced antimicrobial activity. The correlation analyses between phytochemical composition and antioxidant and antibacterial activities reveal an inverse relationship between polyphenols and IC50 (DPPH) and EC50 (FRAP) concentrations of honey. The correlation coefficients are established at R2 = -0.97 and R2 = -0.99, respectively. Additionally, a significant negative correlation is observed between polyphenols, flavonoids, and antifungal power (R2 = -0.95 and R2 = -0.96). In parallel, a marked positive correlation is highlighted between antifungal efficacy, DPPH antioxidant activity (R2 = 0.95), and FRAP (R2 = 0.92). These results underscore the crucial importance of phytochemical components in the beneficial properties of honey, meeting international quality standards. Consequently, honey could serve as a natural alternative to synthetic additives.
Collapse
Affiliation(s)
- Atika Ailli
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Khalid Zibouh
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Brahim Eddamsyry
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Dounia Fetjah
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Fatima Zahra Ayyad
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - Mohamed Radi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Redouane Tarik
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Abdelhakim Elomri
- INSA Rouen Normandy and CNRS, Laboratory of Organic, Bioorganic Chemistry, Reactivity and Analysis (COBRA-UMR 6014), Medical University of Rouen Normandy, 76000 Rouen, France;
| | - Aicha Mouradi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (K.Z.); (B.E.); (D.F.); (F.Z.A.); (M.R.); (R.T.); (A.M.)
| |
Collapse
|
3
|
Freitas AS, Oliveira R, Almeida-Aguiar C. Further Insights on Honey and Propolis from Gerês (Portugal) and Their Bioactivities: Unraveling the Impact of Beehive Relocation. Life (Basel) 2024; 14:506. [PMID: 38672776 PMCID: PMC11050790 DOI: 10.3390/life14040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Propolis, a bee product, is known for its variability of chemical and bioactive profiles. However, Portuguese propolis from Gerês, normally obtained by mixing propolis from three places-Bugalho, Felgueiras and Toutelo-has shown similar chemical and biological profiles over the years. Recently, a new propolis place-Roca-was added to the apiary to replace Bugalho, lost to the 2017 wildfires, hence questioning the previously claimed constancy of Gerês propolis. To unravel to what extent the beehive relocation affected this constancy, we studied different Gerês propolis samples collected in three consecutive years (2017-2019) composed of different combinations of source places. Two honey samples, collected before (2017) and after (2018) the occurrence of the wildfire, were also investigated. Total phenolics, flavonoids and ortho-diphenols contents were determined and the antioxidant and antimicrobial activities were evaluated, using the DPPH assay and the agar dilution method, respectively. Although both antimicrobial and antioxidant activities were generally in the ranges usually obtained from Gerês propolis, some variations were detected for the samples, with different compositions when compared to previous years. This work reinforces the importance of the consistency of a combination of several factors for the protection and preservation of the flora near the hives, providing bee products with more constant chemical and biological profiles over the years.
Collapse
Affiliation(s)
- Ana Sofia Freitas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Sonmez E, Kekecoglu M, Sahin H, Bozdeveci A, Karaoglu SA. Comparing the biological properties and chemical profiling of chestnut bee pollen and bee bread collected from Anatolia. Braz J Microbiol 2023; 54:2307-2317. [PMID: 37171533 PMCID: PMC10484894 DOI: 10.1007/s42770-023-00980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/16/2023] [Indexed: 05/13/2023] Open
Abstract
Bee bread (BB) and bee pollen (BP) are accepted as functional food and considered in medical properties due to its important bioactive components. These bee products show different biological properties, but researches on these aspects have not been clear yet. In present study, Anatolian BB and BP extracts were analyzed for the first time for their pollen type, total phenolic (TPC) and flavonoid content (TFC), and antimicrobial and antioxidant properties. Samples were analyzed for their antimicrobial efficacy by the agar well diffusion and MIC methods. HPLC analysis was used to identify the compounds in the BB and BP samples. Antioxidant activity was measured by the FRAP and DPPH methods. As a result of microscopy for pollen identification, Fagaceae family was dominant. Phenolic compound analysis showed that the amounts of p-coumaric acid and rutin were found to be the highest in BB and BP, respectively. Stronger antioxidant activity was obtained from BP. MIC values of BB were range from 250 to 12.5 μg/mL. The most susceptible bacterium was Mycobacterium smegmatis. The extract of BP was effective on all gram-negative bacteria with doses range from 250 μg/mL to 500 μg/mL. The lowest MIC value was detected with the concentration of 12.5 μg/mL against M. smegmatis. Anatolian BB and BP could be considered as a functional foods due to antioxidant activity and may be beneficial in the management and treatment of pathogenic bacteria because of high antimicrobial activity.
Collapse
Affiliation(s)
- Emine Sonmez
- Beekeeping Research Development and Application Centre, Düzce University, 81620, Düzce, Turkey.
| | - Meral Kekecoglu
- Beekeeping Research Development and Application Centre, Düzce University, 81620, Düzce, Turkey
- Faculty of Science, Department of Biology, Düzce University, 81620, Düzce, Turkey
| | - Huseyin Sahin
- Espiye Vocational School, Giresun University, 28600, EspiyeGiresun, Turkey
| | - Arif Bozdeveci
- Faculty of Art and Science, Department of Biology, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Sengul Alpay Karaoglu
- Faculty of Art and Science, Department of Biology, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
5
|
van Riel SJJM, Lardenoije CMJG, Wassen MMLH, van Kuijk SMJ, Cremers NAJ. Efficacy of a medical grade honey formulation (L-Mesitran) in comparison with fluconazole in the treatment of women with recurrent vulvovaginal candidiasis: protocol for a randomised controlled trial (HONEY STUDY). BMJ Open 2023; 13:e070466. [PMID: 37640455 PMCID: PMC10462966 DOI: 10.1136/bmjopen-2022-070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION Recurrent vulvovaginal candidiasis (RVVC) affects up to 9% of women worldwide. This amount is expected to increase due to lifestyle changes, increased fungal resistance and biofilm formation. Treatment options are limited and in 57% of the cases, relapses occur within 12 months after starting fluconazole therapy (golden standard). The pathogenesis of RVVC is multifactorial and includes fungal biology, the vaginal microenvironment and the immune system. Fluconazole is antimicrobial and effective in inducing short-term remission but a long-term cure is hard to achieve. Medical grade honey (MGH) has antimicrobial, protective, antioxidative and immunomodulatory activity and may therefore be a good alternative treatment. This study aims to investigate the clinical cure rate and long-term efficacy of MGH compared with fluconazole in patients with RVVC. METHODS AND ANALYSIS This study is a multicentre, randomised controlled trial (Maastricht University Medical Centre+ and Zuyderland Medical Centre). A total of 252 eligible women will be randomly assigned to the fluconazole group (control) or the MGH group (L-Mesitran, treatment). The primary objective is to investigate the mycological cure rate after 1 month assessed through a vaginal culture. Secondary objectives are the clinical cure rate regarding symptoms, the prophylactic activity after 6 months of maintenance therapy and the number of relapses within 12 months. Moreover, information about side effects, discomfort and quality of life will be collected with the use of questionnaires. ETHICS AND DISSEMINATION Ethical approval from the Medical Ethics Review Committee of the academic hospital Maastricht/University Maastricht has been obtained (NL 73974.068.21, V.7 on 8 February 2022). Additional approval was obtained from the Ethics Committee of the Zuyderland Medical Centre Heerlen (Z2021141 on 4 March 2022). The first patient was randomised on 22 August 2022. Results will be made available to researchers and healthcare professionals via conferences, meetings and peer-reviewed international publications. TRIAL REGISTRATION NUMBER NCT05367089.
Collapse
Affiliation(s)
- Senna J J M van Riel
- Department of Obstetrics & Gynecology, Zuyderland Medical Centre Heerlen, Heerlen, The Netherlands
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Céline M J G Lardenoije
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Martine M L H Wassen
- Department of Obstetrics & Gynecology, Zuyderland Medical Centre Heerlen, Heerlen, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Niels A J Cremers
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Research, Triticum Exploitatie BV, Maastricht, The Netherlands
| |
Collapse
|
6
|
Bazaid AS, Alsolami A, Patel M, Khateb AM, Aldarhami A, Snoussi M, Almusheet SM, Qanash H. Antibiofilm, Antimicrobial, Anti-Quorum Sensing, and Antioxidant Activities of Saudi Sidr Honey: In Vitro and Molecular Docking Studies. Pharmaceutics 2023; 15:2177. [PMID: 37765148 PMCID: PMC10534861 DOI: 10.3390/pharmaceutics15092177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Sidr honey is a valuable source of bioactive compounds with promising biological properties. In the present study, antimicrobial, antioxidant, and anti-quorum sensing properties of Saudi Sidr honey were assessed, along with phytochemical analysis, via gas chromatography-mass spectrometry (GC-MS). In silico study was also carried out to study the drug-likeness properties of the identified compounds and to study their affinity with known target proteins assessed using molecular docking approach. The results showed that Saudi Sidr honey exhibited promising antibacterial activity, with MIC values ranging from 50 to 400 mg/mL and MBC values from 50 to >450 mg/mL. Interestingly, the Saudi Sidr honey was active against Candida auris and Candida neoformans, with an MIC value of about 500 mg/mL. Moreover, the Sidr honey showed important antioxidant activities (ABTS assay: IC50 5.41 ± 0.045 mg/mL; DPPH assay: IC50 7.70 ± 0.065 mg/mL) and β-carotene bleaching test results (IC50 ≥ 20 mg/mL). In addition, the Saudi Sidr honey was able to inhibit biofilm formation on glass slides at 1/2 MIC by 77.11% for Bacillus subtilis, 70.88% for Staphylococcus aureus, 61.79% for Escherichia coli, and 56.64% for Pseudomonas aeruginosa. Similarly, violacein production by Chromobacterium violaceum was reduced by about 56.63%, while the production of pyocyanin by P. aeruginosa was decreased to 46.27% at a low concentration of Saudi Sidr honey. ADMET properties showed that five identified compounds, namely, 1-cyclohexylimidazolidin-2-one, 3-Butyl-3-methylcyclohexanone, 4-butyl-3-methoxy-2-cyclo penten-1-one, 2,2,3,3-Tetramethyl cyclopropane carboxylic acid, and 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl showed promising drug-likeness properties. The compound 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl exhibited the highest binding energy against antimicrobial and antioxidant target proteins (1JIJ, 2VAM, 6B8A, 6F86, 2CDU, and 1OG5). Overall, the obtained results highlighted the promising potential of Saudi Sidr honey as a rich source of bioactive compounds that can be used as food preservatives and antimicrobial, antioxidant, and anti-quorum sensing molecules.
Collapse
Affiliation(s)
- Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India;
| | - Aiah Mustafa Khateb
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 55476, Saudi Arabia;
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | | | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| |
Collapse
|
7
|
Kieliszek M, Piwowarek K, Kot AM, Wojtczuk M, Roszko M, Bryła M, Trajkovska Petkoska A. Recent advances and opportunities related to the use of bee products in food processing. Food Sci Nutr 2023; 11:4372-4397. [PMID: 37576029 PMCID: PMC10420862 DOI: 10.1002/fsn3.3411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 08/15/2023] Open
Abstract
Nowadays, natural foods that can provide positive health effects are gaining more and more popularity. Bees and the products they produce are our common natural heritage that should be developed. In the article, we presented the characteristics of bee products and their use in industry. We described the development and importance of beekeeping in the modern world. Due to their high nutritional value and therapeutic properties, bee products are of great interest and their consumption is constantly growing. The basis for the use of bee products in human nutrition is their properties and unique chemical composition. The conducted research and opinions confirm the beneficial effect of bee products on health. The current consumer awareness of the positive impact of food having a pro-health effect on health and well-being affects the increase in interest and demand for this type of food among various social groups. Enriching the daily diet with bee products may support the functioning of the organism. New technologies have appeared on the market to improve the process of obtaining bee products. The use of bee products plays a large role in many industries; moreover, the consumption of bee products and promotion of their medicinal properties are very important in shaping proper eating habits.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Marta Wojtczuk
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Marek Roszko
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Marcin Bryła
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Anka Trajkovska Petkoska
- Faculty of Technology and Technical Social SciencesSt. Kliment Ohridski University‐BitolaVelesNorth Macedonia
| |
Collapse
|
8
|
Cabezas-Mera FS, Atiencia-Carrera MB, Villacrés-Granda I, Proaño AA, Debut A, Vizuete K, Herrero-Bayo L, Gonzalez-Paramás AM, Giampieri F, Abreu-Naranjo R, Tejera E, Álvarez-Suarez JM, Machado A. Evaluation of the polyphenolic profile of native Ecuadorian stingless bee honeys ( Tribe: Meliponini) and their antibiofilm activity on susceptible and multidrug-resistant pathogens: An exploratory analysis. Curr Res Food Sci 2023; 7:100543. [PMID: 37455680 PMCID: PMC10344713 DOI: 10.1016/j.crfs.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.
Collapse
Affiliation(s)
- Fausto Sebastián Cabezas-Mera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - María Belén Atiencia-Carrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - Irina Villacrés-Granda
- Programa de Doctorado Interuniversitario en Ciencias de la Salud, Universidad de Sevilla, Sevilla, Spain
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - Adrian Alexander Proaño
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Vía a Nayón, Quito, 170124, Ecuador
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Lorena Herrero-Bayo
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Ana M. Gonzalez-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C. Isabel Torres, 21, 39011, Santander, Cantabria, Spain
| | - Reinier Abreu-Naranjo
- Departamento de Ciencias de La Vida, Universidad Estatal Amazónica, Puyo, 160150, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - José M. Álvarez-Suarez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| |
Collapse
|
9
|
Sinha S, Sehgal A, Ray S, Sehgal R. Benefits of Manuka Honey in the Management of Infectious Diseases: Recent Advances and Prospects. Mini Rev Med Chem 2023; 23:1928-1941. [PMID: 37282661 DOI: 10.2174/1389557523666230605120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/08/2023]
Abstract
The benefits of honey have been recognized since ancient times for treating numerous diseases. However, in today's modern era, the use of traditional remedies has been rapidly diminishing due to the complexities of modern lifestyles. While antibiotics are commonly used and effective in treating pathogenic infections, their inappropriate use can lead to the development of resistance among microorganisms, resulting in their widespread prevalence. Therefore, new approaches are constantly required to combat drug-resistant microorganisms, and one practical and useful approach is the use of drug combination treatments. Manuka honey, derived from the manuka tree (Leptospermum scoparium) found exclusively in New Zealand, has garnered significant attention for its biological potential, particularly due to its antioxidant and antimicrobial properties. Moreover, when combined with antibiotics, it has demonstrated the ability to enhance their effectiveness. In this review, we delve into the chemical markers of manuka honey that are currently known, as well as detail the impact of manuka honey on the management of infectious diseases up to the present.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Alka Sehgal
- Department of Obstetrics & Gynaecology, GMCH, Chandigarh, 160030, India
| | - Sudip Ray
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
- New Zealand Institute for Minerals to Materials Research, Greymouth, 7805, New Zealand
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
10
|
Synergic Effect of Honey with Other Natural Agents in Developing Efficient Wound Dressings. Antioxidants (Basel) 2022; 12:antiox12010034. [PMID: 36670896 PMCID: PMC9854511 DOI: 10.3390/antiox12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Honey has been used for therapeutic and nutritional purposes since ancient times. It was considered one of the essential medical assets in wound healing. According to research, honeybees have significant antibacterial, antioxidant, anti-inflammatory, antitumor, and wound-healing properties. Lately, scientific researchers have focused on apitherapy, using bee products to protect and strengthen the immune system. Since honey is the most important natural product rich in minerals, proteins, and vitamins, it has been intensively used in such therapies. Honey has gained significant consideration because of the beneficial role of its antioxidant compounds, such as enzymes, proteins, amino and organic acids, polyphenols, and carotenoids, but mainly due to flavonoids and phenolic acids. It has been proven that phenolic compounds are responsible for honey's biological activity and that its physicochemical properties, antioxidants, and antimicrobial potential are significant for human health. The review also presents some mechanisms of action and the medical applications of honey, such as wound healing dressings, skin grafts, honey-based nanofibers, and cochlear implants, as the most promising wound healing tools. This extensive review has been written to highlight honey's applications in medicine; its composition with the most important bioactive compounds also illustrates its synergistic effect with other natural products having remarkable therapeutic properties in wound healing.
Collapse
|
11
|
Bazaid AS, Aldarhami A, Patel M, Adnan M, Hamdi A, Snoussi M, Qanash H, Imam M, Monjed MK, Khateb AM. The Antimicrobial Effects of Saudi Sumra Honey against Drug Resistant Pathogens: Phytochemical Analysis, Antibiofilm, Anti-Quorum Sensing, and Antioxidant Activities. Pharmaceuticals (Basel) 2022; 15:ph15101212. [PMID: 36297324 PMCID: PMC9607359 DOI: 10.3390/ph15101212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Honey exhibited potential antimicrobial activity against multidrug resistant (MDR) bacteria that continues to be a serious health problem. We reported the in-vitro activity of Saudi Sumra honey against clinical pathogenic bacteria and fungi, antibiofilm, anti-quorum-sensing (QS) and antioxidant activities in relation to its phytochemical composition assessed by gas chromatography-mass spectrometry (GC-MS). Broth dilution method and scavenging activities against 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and β-carotene bleaching assays were performed. The GC-MS analysis of Sumra honey showed that 2,4-dihydroxy-2,5-dimethyl-3(2H)-furan-3-one 1-methylcyclopropanemethanol were the major identified phytoconstituents. Sumra honey showed a minimum inhibitory concentration (MIC) to clinical isolates of Staphylococcus aureus including methicillin-resistant Staphylococcus aureus (MRSA) at 300 mg/mL, Pseudomonas aeruginosa (250 mg/mL), Escherichia coli (350 mg/mL) and Acinetobacter baumannii (250 mg/mL); clinical fungal isolates—Candida auris (600 mg/mL) and Cryptococcus neoformans (>1000 mg/mL); wild type fungal isolates—Candida krusei (>1000 mg/mL) and Candida albicans (700 mg/mL). In addition, Sumra honey demonstrated promising inhibition targeting biofilm formation by 59% for Bacillus subtilis, 48% for S. aureus, 38% for E. coli, and 33.63% for P. aeruginosa. The violacein production in Chromobacterium violaceum was reduced to 68%, whereas pyocyanin production in P. aeruginosa was reduced to 54.86% at ½ MIC. Furthermore, Sumra honey exhibited strong antioxidant activities (DPPH − IC50 = 7.7 mg/mL; ABTS − IC50 = 5.4 mg/mL; β-carotene − IC50 = >20 mg/mL). Overall, obtained data highlighted the promising potential therapeutic use of Sumra honey treating infections caused by MDR bacteria and fungi. Moreover, Sumra honey can be a good candidate as an inhibitor agent for bacterial cellular communication in strains of P. aeruginosa and C. violaceum.
Collapse
Affiliation(s)
- Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
- Correspondence: ; Tel.: +966-16-5358200 (ext. 1713)
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Hail 81451, Saudi Arabia
| | - Assia Hamdi
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Hail 55476, Saudi Arabia
| | - Mohammed Imam
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia
| | - Mohammad Khalil Monjed
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| | - Aiah Mustafa Khateb
- Medical Laboratory Technology Department, College of Applied Medical Science, Taibah University, Madinah 42353, Saudi Arabia
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
12
|
Wiederhold NP, Patterson TF, Rebholz S, Boal CWC, Ehrensberger M, Boyle R, Cushion MT. The Antifungal and Anti-Pneumocystis Activities of the Novel Compound A3IS (Mycosinate). Antimicrob Agents Chemother 2022; 66:e0052122. [PMID: 35852368 PMCID: PMC9380569 DOI: 10.1128/aac.00521-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023] Open
Abstract
A3IS (Mycosinate) is a synthetic product which only contains ingredients found naturally within honey. A3IS is a broad-spectrum antimicrobial product which produces a sustained release of hydrogen peroxide at low but therapeutic levels. The product elicits this release through an enzymatic reaction between glucose oxidase and the substrate glucose once the product is hydrated. As medical uses for different honeys are being re-evaluated, the purpose of this study was to evaluate the in vitro effects of A3IS against a comprehensive panel of human pathogens, including Pneumocystis species, providing a unique assessment against a panel of eukaryotic pathogens. Without exception, A3IS exhibited significant efficacy at 50% and 100% inhibitory concentrations against a broad spectrum of human pathogens including yeasts, molds (both hyaline and dematiaceous), and dimorphic fungi. Notably, A3IS was effective against fungal strains with a high level of resistance to fluconazole or voriconazole. The 50% inhibitory concentrations for Pneumocystis carinii and P. murina (surrogates for P. jirovecii) were considered "Marked" and "Moderate" on an established rank scale, and would be considered for in vivo studies, based on an established in vitro-in vivo pipeline. These results indicate that A3IS is a novel anti-fungal agent against an extensive range of human fungal pathogens.
Collapse
Affiliation(s)
- Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Thomas F. Patterson
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, USA
- South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Sandra Rebholz
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | | | | | - Ryan Boyle
- Nektr Technologies Ltd., Finisklin Business Park, Sligo, Ireland
| | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Antifungal Activity of Honey Samples from Khyber Pakhtunkhwa (Pakistan) as affected by Botanical Origin. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study evaluated the antifungal activity of honey samples collected from different locations at Khyber Pakhtunkhwa (KPK, Pakistan). Disc diffusion method was used to test the antifungal potential of twenty-one (branded, unbranded, and natural comb) honey samples from the different botanical origins at different concentrations (undiluted, 10%, 30%, and 50%, w/v) against Candida albicans and Rhodotorula species. Branded, unbranded, and natural comb honey samples generate different inhibition zones (4-13 mm, 5-15 mm, and 8-17 mm) against Rhodotorula species. Candida albicans showed resistance for all tested honey samples. Minimum inhibitory concentration (MIC) against Candida albicans and Rhodotorula species were 53.33%-88.12% and 1.76%-90.22% for branded, 61.3% – 93.8% and 9.90% – 95.5% for unbranded, and 67.1%-96.8% and 6.39%-98.8% for natural comb honey. In conclusion, natural comb honey from Khyber Pakhtunkhwa may have antifungal therapeutic potential and could be a useful source for generating functional food.
Collapse
|
14
|
Xiong ZR, Cobo M, Whittal RM, Snyder AB, Worobo RW. Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. PLoS One 2022; 17:e0266470. [PMID: 35385565 PMCID: PMC8985968 DOI: 10.1371/journal.pone.0266470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 01/22/2023] Open
Abstract
Raw honey contains a diverse microbiota originating from honeybees, plants, and soil. Some gram-positive bacteria isolated from raw honey are known for their ability to produce secondary metabolites that have the potential to be exploited as antimicrobial agents. Currently, there is a high demand for natural, broad-spectrum, and eco-friendly bio-fungicides in the food industry. Naturally occurring antifungal products from food-isolated bacteria are ideal candidates for agricultural applications. To obtain novel antifungals from natural sources, we isolated bacteria from raw clover and orange blossom honey to evaluate their antifungal-producing potential. Two Bacillus velezensis isolates showed strong antifungal activity against food-isolated fungal strains. Antifungal compound production was optimized by adjusting the growth conditions of these bacterial isolates. Extracellular proteinaceous compounds were purified via ammonium sulfate precipitation, solid phase extraction, and RP-HPLC. Antifungal activity of purified products was confirmed by deferred overlay inhibition assay. Mass spectrometry (MS) was performed to determine the molecular weight of the isolated compounds. Whole genome sequencing (WGS) was conducted to predict secondary metabolite gene clusters encoded by the two antifungal-producing strains. Using MS and WGS data, we determined that the main antifungal compound produced by these two Bacillus velezensis isolates was iturin A, a lipopeptide exhibiting broad spectrum antifungal activity.
Collapse
Affiliation(s)
- Zirui Ray Xiong
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Mario Cobo
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| | - Randy M. Whittal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Abigail B. Snyder
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| | - Randy W. Worobo
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
15
|
Freitas AS, Cunha A, Oliveira R, Almeida‐Aguiar C. Propolis antibacterial and antioxidant synergisms with gentamicin and honey. J Appl Microbiol 2022; 132:2733-2745. [DOI: 10.1111/jam.15440] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Ana Sofia Freitas
- CITAB ‐ Centre for the Research and Technology of Agro‐Environmental and Biological Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- Department of Biology School of Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
| | - Ana Cunha
- CITAB ‐ Centre for the Research and Technology of Agro‐Environmental and Biological Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- Department of Biology School of Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CBMA ‐ Centre of Molecular and Environmental Biology University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CEB ‐ Centre of Biological Engineering University of Minho Campus de Gualtar 4710‐057 Braga Portugal
| | - Rui Oliveira
- CITAB ‐ Centre for the Research and Technology of Agro‐Environmental and Biological Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- Department of Biology School of Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CBMA ‐ Centre of Molecular and Environmental Biology University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CEB ‐ Centre of Biological Engineering University of Minho Campus de Gualtar 4710‐057 Braga Portugal
| | - Cristina Almeida‐Aguiar
- CITAB ‐ Centre for the Research and Technology of Agro‐Environmental and Biological Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- Department of Biology School of Sciences University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CBMA ‐ Centre of Molecular and Environmental Biology University of Minho Campus de Gualtar 4710‐057 Braga Portugal
- CEB ‐ Centre of Biological Engineering University of Minho Campus de Gualtar 4710‐057 Braga Portugal
| |
Collapse
|
16
|
Luo X, Dong Y, Gu C, Zhang X, Ma H. Processing Technologies for Bee Products: An Overview of Recent Developments and Perspectives. Front Nutr 2021; 8:727181. [PMID: 34805239 PMCID: PMC8595947 DOI: 10.3389/fnut.2021.727181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
Increased demand for a more balanced, healthy, and safe diet has accelerated studies on natural bee products (including honey, bee bread, bee collected pollen royal jelly, propolis, beeswax, and bee venom) over the past decade. Advanced food processing techniques, such as ultrasonication and microwave and infrared (IR) irradiation, either has gained popularity as alternatives or combined with conventional processing techniques for diverse applications in apiculture products at laboratory or industrial scale. The processing techniques used for each bee products have comprehensively summarized in this review, including drying (traditional drying, infrared drying, microwave-assisted traditional drying or vacuum drying, and low temperature high velocity-assisted fluidized bed drying), storage, extraction, isolation, and identification; the assessment methods related to the quality control of bee products are also fully mentioned. The different processing techniques applied in bee products aim to provide more healthy active ingredients largely and effectively. Furthermore, improved the product quality with a shorter processing time and reduced operational cost are achieved using conventional or emerging processing techniques. This review will increase the positive ratings of the combined new processing techniques according to the needs of the bee products. The importance of the models for process optimization on a large scale is also emphasized in the future.
Collapse
Affiliation(s)
- Xuan Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
van Riel SJJM, Lardenoije CMJG, Oudhuis GJ, Cremers NAJ. Treating (Recurrent) Vulvovaginal Candidiasis with Medical-Grade Honey-Concepts and Practical Considerations. J Fungi (Basel) 2021; 7:jof7080664. [PMID: 34436203 PMCID: PMC8400673 DOI: 10.3390/jof7080664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is a relapsing vaginal fungal infection caused by Candida species. The prevalence varies among age populations and can be as high as 9%. Treatment options are limited, and in 57% of the cases, relapses occur within six months after fluconazole maintenance therapy, which is the current standard of care. The pathogenesis of RVVC is multifactorial, and recent studies have demonstrated that the vaginal microenvironment and activity of the immune system have a strong influence on the disease. Medical-grade honey (MGH) has protective, antimicrobial, and immunomodulatory activity and forms a putative alternative treatment. Clinical trials have demonstrated that honey can benefit the treatment of bacterial and Candida-mediated vaginal infections. We postulate that MGH will actively fight ongoing infections; eradicate biofilms; and modulate the vaginal microenvironment by its anti-inflammatory, antioxidative, and immunomodulatory properties, and subsequently may decrease the number of relapses when compared to fluconazole. The MGH formulation L-Mesitran Soft has stronger antimicrobial activity against various Candida species than its raw honey. In advance of a planned randomized controlled clinical trial, we present the setup of a study comparing L-Mesitran Soft with fluconazole and its practical considerations.
Collapse
Affiliation(s)
- Senna J. J. M. van Riel
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (S.J.J.M.v.R.); (C.M.J.G.L.)
| | - Celine M. J. G. Lardenoije
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (S.J.J.M.v.R.); (C.M.J.G.L.)
| | - Guy J. Oudhuis
- Department of Medical Microbiology, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Niels A. J. Cremers
- Triticum Exploitatie B.V., Sleperweg 44, 6222 NK Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-325-1773
| |
Collapse
|
18
|
Feás X. Human Fatalities Caused by Hornet, Wasp and Bee Stings in Spain: Epidemiology at State and Sub-State Level from 1999 to 2018. BIOLOGY 2021; 10:biology10020073. [PMID: 33498566 PMCID: PMC7909534 DOI: 10.3390/biology10020073] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Although not frequent, hornet, wasp, and bee stings may be life-threatening. Over the 20-year period studied, a total of 78 fatalities were recorded in Spain, the annual mortality rates ranging from 0.02 to 0.19 per million inhabitants. The fatal events mainly affected men over 65 years of age, and took place in summertime, at “unspecified places”. At regional level, the deaths tended to concentrate in three communities: Galicia, Andalucía, and Castilla y León. Surprisingly, Galicia showed high mortality rates in hornet stings. The implication of the invasive species Vespa velutina, also known as the Asian hornet, is examined. In light of the findings, there is evidence to consider the health-related importance and consequences of Vespa velutina. Abstract Epidemiology of fatalities in Spain due to hornet, wasp, and bee stings (Cause Code of Death: X23) is described. Over a 20-year period (1999–2018), a total of 78 fatalities were recorded, mostly occurring in males (85.9%), of 65 years and older (52.6%), at “unspecified places” (67.9%), and in the months of July and August (50%). The X23 mortality rates (X23MR) expressed in terms of annual rates and per million inhabitants, varied from 0.02 to 0.19 (mean value ± standard deviation = 0.09 ± 0.05), placing Spain at low levels in comparison with other countries. A more detailed and specific breakdown of the distribution of the yearly deaths at the sub-state level and across communities reveals some striking features. They were more concentrated in the communities of Galicia (35.8%), Andalucía (21.7%), and Castilla y León (12.8%). X23MR were estimated in Galicia at 1.82, 1.10, and 2.22 in 2014, 2016, and 2018, respectively; and in Asturias at 1.88 and 0.97, in 2014 and 2017, respectively. The role of the invasive species Vespa velutina (VV) is examined. Due to its habits, abundance, and broader distribution, the risk that VV represents to human health is unmatched by other Hymenoptera native species.
Collapse
Affiliation(s)
- Xesús Feás
- Academy of Veterinary Sciences of Galicia, Edificio EGAP, Rúa Madrid, No. 2-4, 15707 Santiago de Compostela (A Coruña), Spain
| |
Collapse
|
19
|
Liang Y, Duan H, Zhang P, Han H, Gao F, Li Y, Xu Z. Extraction and isolation of the active ingredients of dandelion and its antifungal activity against Candida albicans. Mol Med Rep 2019; 21:229-239. [PMID: 31746416 PMCID: PMC6896398 DOI: 10.3892/mmr.2019.10797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
In this study, six compounds were isolated and purified from dandelion, and only sample I exhibited notable antifungal effect on Candida albicans (CA). high-performance liquid chromatography-diode-array detector-electrospray ionization-tandem mass spectrometry analysis showed that sample I comprised 4-coumaric acid, ferulic acid, quercetin pentoside, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, luteolin, and two unknown compounds, at a relative percent composition of 11.45, 3.96, 10.48, 34.24, 3.91, 11.80, 3.65 and 4.21%, respectively. Further antimicrobial experiments showed that the minimum inhibitory concentration of sample I was 32.0 mg/ml, and sample I mainly acts on bacterial growth in the exponential phase of CA growth. Optical density and infrared analyses conclusively suggested that sample I damages the structure of CA cells, particularly the cell wall and cell membrane, resulting in macromolecule leakage of intracellular nucleic acids and cell metabolism disruption. In conclusion, dandelion sample I was reported to increase CA cell membrane permeability by affecting the glycosidic bond in β-(1–3)-D glucan and destroying the cell wall, ultimately leading CA to death.
Collapse
Affiliation(s)
- Yinku Liang
- Shaanxi Province Key Laboratory of Bio‑Resources, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P.R. China
| | - Hongbo Duan
- Shaanxi Province Key Laboratory of Bio‑Resources, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P.R. China
| | - Ping Zhang
- Shaanxi Province Key Laboratory of Bio‑Resources, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P.R. China
| | - Hao Han
- Shaanxi Province Key Laboratory of Bio‑Resources, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P.R. China
| | - Feixiong Gao
- Shaanxi Province Key Laboratory of Bio‑Resources, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P.R. China
| | - Yunxiang Li
- Shaanxi Province Key Laboratory of Bio‑Resources, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P.R. China
| | - Zhongyang Xu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, P.R. China
| |
Collapse
|
20
|
Ait Abderrahim L, Taïbi K, Ait Abderrahim N, Boussaid M, Rios-Navarro C, Ruiz-Saurí A. Euphorbia honey and garlic: Biological activity and burn wound recovery. Burns 2019; 45:1695-1706. [DOI: 10.1016/j.burns.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/24/2023]
|
21
|
Hermanns R, Cremers NA, Leeming JP, van der Werf ET. Sweet Relief: Determining the Antimicrobial Activity of Medical Grade Honey Against Vaginal Isolates of Candida albicans. J Fungi (Basel) 2019; 5:E85. [PMID: 31505796 PMCID: PMC6787731 DOI: 10.3390/jof5030085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is predicted to increase to almost 158 million cases annually by 2030. Extensive self-diagnosis and easily accessible over-the-counter (OTC) fungistatic drugs contribute to antifungal-resistance, illustrating the need for novel therapies. Honey possesses multiple antimicrobial mechanisms, and there is no antimicrobial resistance towards honey reported. We evaluated the susceptibility of five clinical isolates of Candida albicans and a control strain to regular honey and a medical grade honey (MGH) gel formulation (L-Mesitran, containing 40% honey and vitamins C and E) using an adapted version of the EUCAST protocol at pH 5.2, 4.6, and 4.0. 40% regular honey did not kill or inhibit C. albicans. In contrast, the minimal inhibitory concentration (MIC) of L-Mesitran was 25%-50%, while fungicidal effects occurred at a 50% concentration (MBC) of the MGH formulation, except for one strain which was not killed at pH 4.0. Overall, pH had little effect on antimicrobial activity. MGH formulation L-Mesitran has antimicrobial activity against C. albicans over a relevant pH range. The vitamin supplements or other components of L-Mesitran may enhance the antifungal activity of the honey. This study supports performing clinical trials for conditions, such as RVVC, to find an alternative to available OTC fungistatic drugs.
Collapse
Affiliation(s)
- Renée Hermanns
- Triticum Exploitatie B.V., Sleperweg 44, 6222NK Maastricht, The Netherlands; (R.H.)
| | - Niels A.J. Cremers
- Triticum Exploitatie B.V., Sleperweg 44, 6222NK Maastricht, The Netherlands; (R.H.)
| | - John P. Leeming
- Infection Sciences Department, Severn Pathology, Southmead Hospital, Bristol BS10 5NB, UK;
| | - Esther T. van der Werf
- Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK;
- School of Medicine1, Taylor’s University, Jalan Taylor’s, 47500 Subang Jaya, Selangor D.E., Malaysia
| |
Collapse
|
22
|
Rodrigues CF, Rodrigues ME, Henriques MC. Promising Alternative Therapeutics for Oral Candidiasis. Curr Med Chem 2019; 26:2515-2528. [DOI: 10.2174/0929867325666180601102333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/29/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
:Candida is the main human fungal pathogen causing infections (candidiasis), mostly in the elderly and immunocompromised hosts. Even though Candida spp. is a member of the oral microbiota in symbiosis, in some circumstances, it can cause microbial imbalance leading to dysbiosis, resulting in oral diseases. Alternative therapies are urgently needed to treat oral candidiasis (usually associated to biofilms), as several antifungal drugs’ activity has been compromised. This has occurred especially due to an increasing occurrence of drugresistant in Candida spp. strains. The overuse of antifungal medications, systemic toxicity, cross-reactivity with other drugs and a presently low number of drug molecules with antifungal activity, have contributed to important clinical limitations.:We undertook a structured search of bibliographic databases (PubMed Central, Elsevier’s ScienceDirect, SCOPUS and Springer’s SpringerLink) for peer-reviewed research literature using a focused review in the areas of alternatives to manage oral candidiasis. The keywords used were “candidiasis”, “oral candidiasis”, “biofilm + candida”, “alternative treatment”, “combination therapy + candida” and the reports from the last 10 to 15 years were considered for this review.:This review identified several promising new approaches in the treatment of oral candidiasis: combination anti-Candida therapies, denture cleansers, mouth rinses as alternatives for disrupting candidal biofilms, natural compounds (e.g. honey, probiotics, plant extracts and essential oils) and photodynamic therapy.:The findings of this review confirm the importance and the urgency of the development of efficacious therapies for oral candidal infections.
Collapse
Affiliation(s)
- Célia F. Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Maria E. Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Mariana C.R. Henriques
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Kieliszek M, Piwowarek K, Kot AM, Błażejak S, Chlebowska-Śmigiel A, Wolska I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.021] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Broznić D, Ratkaj I, Malenica Staver M, Kraljević Pavelić S, Žurga P, Bubalo D, Gobin I. Evaluation of the Antioxidant Capacity, Antimicrobial and Antiproliferative Potential of Fir ( Abies alba Mill.) Honeydew Honey Collected from Gorski kotar (Croatia). Food Technol Biotechnol 2018; 56:533-545. [PMID: 30923450 PMCID: PMC6399710 DOI: 10.17113/ftb.56.04.18.5666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The paper examines the antiproliferative, antimicrobial and antioxidative effects of fir (Abies alba Mill.) honeydew honey from mountain region of Croatia (Gorski kotar) as a potential replacement for standard antibiotics and chemotherapeutic agents. Cell viability, annexin V assay and flow cytometry analysis served to analyse the antiproliferative effect on, apoptosis induction in and cell death of cancer cell lines: HeLa, MCF-7, SW620, CFPAC-1, MIA PaCa-2 and normal diploid human fibroblasts (BJ). Antimicrobial activity was tested against Staphylococcus and Acinetobacter strains by agar well diffusion and microdilution assays. The DPPH˙ assay determined the radical scavenging activity, while mathematical models helped to evaluate the kinetic data of DPPH˙ inhibition. Antiproliferative effect on all tested cell lines and the prominent effect on normal diploid human fibroblasts (BJ), colorectal adenocarcinoma (SW620, metastatic) and breast epithelial adenocarcinoma (MCF-7, metastatic) was observable. The mechanisms of antiproliferative effect included accumulation of cells in the sub-G1 phase in all tested cells and induction of apoptosis in SW620 and MCF-7 cells predominantly. The antibacterial assays showed that antibiotic-resistant strains of both bacteria, including multi-resistant strain A. baumannii ATCC® BAA-1605™, were sensitive to all tested honey samples. Radical scavenging assay suggests that antioxidants present in the honey possess different radical suppressing abilities and that they react at different rates with radicals, thereby causing two steps of reaction. The results of the study indicate that Croatian fir honeydew honey has a therapeutic potential due to the strong biological activity and can serve to protect human health.
Collapse
Affiliation(s)
- Dalibor Broznić
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, HR-51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | | | - Sandra Kraljević Pavelić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia.,Department of Biotechnology, Centre for High Throughput Technologies, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Paula Žurga
- Teaching Institute of Public Health of Primorsko-goranska County, Krešimirova 52a, HR-51000 Rijeka, Croatia
| | - Dragan Bubalo
- Faculty of Agriculture, University of Zagreb, Svetošimunska 25, HR-10000 Zagreb, Croatia
| | - Ivana Gobin
- Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, HR-51000 Rijeka, Croatia
| |
Collapse
|
26
|
Banaeian S, Sereshti M, Rafieian M, Farahbod F, Kheiri S. Comparison of vaginal ointment of honey and clotrimazole for treatment of vulvovaginal candidiasis: A random clinical trial. J Mycol Med 2017; 27:494-500. [PMID: 28760590 DOI: 10.1016/j.mycmed.2017.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/13/2017] [Accepted: 07/01/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Vulvovaginal candidiasis (VVC) is the most prevalent vaginitis in women, accounting for 10 million medical referrals a year. Vaginal clotrimazole is a drug of choice for VVC treatment. However, increased drug resistance to this microorganism has led to an interest in naturally derived antifungal drugs. This study was conducted to compare honey vaginal ointment and clotrimazole vaginal ointment for VVC treatment. METHODS Eighty women diagnosed with VVC were assigned to two groups for honey ointment and clotrimazole ointment treatment using a simple randomization rule. The ointments were applied at night for seven days. The disease symptoms including inflammation, vaginal discharge, and irritation at baseline in the fourth and eighth days of treatment were examined and compared between the two groups. The data was analyzed by SPSS version 20 with the Friedman test, Chi-square test, and independent t-test. P<0.05 was considered as the significance. RESULTS The two groups were similar for inflammation severity, irritation, and discharge at baseline. In both the groups, the symptoms disappeared after treatment. On the eighth day of treatment, there was a significant difference in inflammation and vaginal discharge between the two groups. Inflammation (P=0.002) and vaginal discharge (P=0.003) recovered better in the clotrimazole group. But there was no significant difference in irritation severity and satisfaction with treatment between the two groups. In the two groups, no side effects were reported. CONCLUSION Honey contributes to treating VVC. Thanks to the popular positive attitudes of honey, its availability, no need for sterility, and its cost-effectiveness, it is a choice of treatment for VVC.
Collapse
Affiliation(s)
- Sh Banaeian
- Midwifery department, nursing and midwifery faculty, Shahrekord university of medical sciences, Shahrekord, Iran.
| | - M Sereshti
- Midwifery department, nursing and midwifery faculty, Shahrekord university of medical sciences, Shahrekord, Iran
| | - M Rafieian
- Medical plants research center, Basic health sciences institute, Shahrekord university of medical sciences, Shahrekord, Iran
| | - F Farahbod
- Department of obstetrics and gynecology, Shahrecord Hajar hospital, Shahrekord university of medical sciences, Shahrekord, Iran
| | - S Kheiri
- Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
27
|
Henatsch D, Nabuurs CH, van de Goor RM, Wolffs PF, Stokroos RJ. Treatment of Recurrent Eczematous External Otitis with Honey Eardrops: A Proof-of-Concept Study. Otolaryngol Head Neck Surg 2017; 157:696-699. [DOI: 10.1177/0194599817718782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eczematous external otitis is a chronic inflammatory disease and often difficult to treat. Our objective was to investigate the clinical effect and in vitro antibacterial potential of medical honey eardrops as treatment of eczematous external otitis. In a prospective study, 15 patients diagnosed with recurrent eczematous external otitis were treated with medical honey eardrops for 2 weeks. The following clinical outcomes were evaluated: visual analog scale of ear complaints, score of eczema, and eradication of bacterial infection. Furthermore, the antibacterial effect of honey eardrops against different bacterial strains was tested in vitro. Treatment resulted in less discomfort and itching and decreased signs of eczema, with high patient satisfaction and without adverse reactions. Honey eardrops showed a strong in vitro inhibitory activity against all tested strains but did not eradicate Staphylococcus aureus infection in vivo. The results of this preliminary study indicate a possible role of honey eardrops in eczematous ear disease.
Collapse
Affiliation(s)
- Darius Henatsch
- Department of Otorhinolaryngology–Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Cindy H. Nabuurs
- Department of Otorhinolaryngology–Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rens M. van de Goor
- Department of Otorhinolaryngology–Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Petra F. Wolffs
- Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Robert J. Stokroos
- Department of Otorhinolaryngology–Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
28
|
Rodrigues CF, Rodrigues ME, Silva S, Henriques M. Candida glabrata Biofilms: How Far Have We Come? J Fungi (Basel) 2017; 3:E11. [PMID: 29371530 PMCID: PMC5715960 DOI: 10.3390/jof3010011] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Abstract
Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata's biofilms are emerging. In this article, the knowledge available on C. glabrata's resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.
Collapse
Affiliation(s)
- Célia F Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Sónia Silva
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
29
|
Seo WD, Lee DY, Park KH, Kim JH. Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids. ACTA ACUST UNITED AC 2016. [DOI: 10.3839/jabc.2016.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Istasse T, Jacquet N, Berchem T, Haubruge E, Nguyen BK, Richel A. Extraction of Honey Polyphenols: Method Development and Evidence of Cis Isomerization. ANALYTICAL CHEMISTRY INSIGHTS 2016; 11:49-57. [PMID: 27547032 PMCID: PMC4981221 DOI: 10.4137/aci.s39739] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 11/05/2022]
Abstract
Honey polyphenols have been studied with the objective of relating honeys to their floral sources. Initially synthesized by plant, these polyphenols can be found in the plant’s nectar, which are collected by bees, which convert the nectar into honey. Consequently, polyphenols constitute minor components of honey. The development of a solid-phase extraction method for honey polyphenols is presented in this study. The technique employs Amberlite XAD-2 adsorbent and was tested on monofloral honeys from six different plants: acacia, chestnut, eucalyptus, thyme, sunflower, and wild carrot. Analyses were performed using high-performance liquid chromatography coupled with UV detection and mass spectrometry. Several phenolic acids and flavonoids were identified: caffeic and p-coumaric acids, quercetin, kaempferol, naringenin, chrysin, and pinocembrin. Generally, the quantity of a given polyphenol in the honey was around 0.2 mg/100 g of honey, except for chestnut honey, which contained around 3.0 mg of p-coumaric acid/100 g of honey. Analyses highlighted significant formation of cis isomers for phenolic acids during the extraction despite protection from light.
Collapse
Affiliation(s)
- Thibaut Istasse
- Laboratory of Biological and Industrial Chemistry, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Nicolas Jacquet
- Laboratory of Biological and Industrial Chemistry, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Thomas Berchem
- Laboratory of Biological and Industrial Chemistry, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Eric Haubruge
- Laboratory of Biological and Industrial Chemistry, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Bach Kim Nguyen
- Laboratory of Biological and Industrial Chemistry, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Aurore Richel
- Laboratory of Biological and Industrial Chemistry, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
| |
Collapse
|
31
|
Laallam H, Boughediri L, Bissati S, Menasria T, Mouzaoui MS, Hadjadj S, Hammoudi R, Chenchouni H. Modeling the synergistic antibacterial effects of honey characteristics of different botanical origins from the Sahara Desert of Algeria. Front Microbiol 2015; 6:1239. [PMID: 26594206 PMCID: PMC4635208 DOI: 10.3389/fmicb.2015.01239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
Background: Honey has multiple therapeutic properties due to its composition with diverse components. Objectives: This study aims to investigate the antimicrobial efficacy of Saharan honeys against bacterial pathogens, the variation of honey floral origins, and its physicochemical characteristics. Materials and Methods: The antimicrobial activity of 32 samples of honey collected from the Algerian Sahara Desert was tested on four bacteria; Bacillus subtilis, Clostridium perfringens, Escherichia coli, and Staphylococcus aureus. The botanical origin of honeys and their physicochemical properties were determined and their combined antibacterial effects were modeled using a generalized linear mixed model (GLMM). Results: Out of the 32 study samples, 14 were monofloral and 18 were multifloral. The pollen density was on average 7.86 × 106 grains/10 g of honey, water content was 14.6%, electrical conductivity (EC) was 0.5 μS/cm, pH was 4.38 ± 0 50, hydroxymethylfurfural (HMF) content was 82 mg/kg of honey, total sugars = 83%, reducing sugars = 71%, and the concentration of proline = 525.5 ± 550.2 mg/kg of honey. GLMM revealed that the antibacterial effect of honey varied significantly between bacteria and floral origins. This effect increased with increasing of water content and reducing sugars in honey, but it significantly decreased with increase of honey EC. E. coli was the most sensitive species with an inhibition zone of 10.1 ± 4.7 mm, while C. perfringens was the less sensitive. Honeys dominated by pollen of Fabaceae sp. were most effective with an overall antimicrobial activity equals to 13.5 ± 4.7 mm. Conclusion: Saharan honeys, of certain botanical origins, have physicochemical and pollinic characteristics with relevant potential for antibacterial purposes. This encourages a more comprehensive characterization of honeys with in vivo and in vitro investigations.
Collapse
Affiliation(s)
- Hadda Laallam
- Laboratoire de Bioressources Sahariennes, Université Kasdi Merbah Ouargla Ouargla, Algeria
| | - Larbi Boughediri
- Equipe de Palynologie, Laboratoire de Biologie Végétale, University of Annaba Annaba, Algeria
| | - Samia Bissati
- Laboratoire de Bioressources Sahariennes, Université Kasdi Merbah Ouargla Ouargla, Algeria
| | - Taha Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Tebessa Tebessa, Algeria
| | - Mohamed S Mouzaoui
- Laboratoire Régional du Centre Algérien du Contrôle de la Qualité et de l'Emballage Ouargla, Algeria
| | - Soumia Hadjadj
- Laboratoire de Protection des Ecosystèmes en Zones Arides "EcoSys," Université Kasdi Merbah Ouargla Ouargla, Algeria
| | - Rokia Hammoudi
- Laboratory of Biogeochemistry of Desert Environments, Faculty of Natural and Life Sciences, University of Kasdi Merbah Ouargla Ouargla, Algeria
| | - Haroun Chenchouni
- Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Tebessa Tebessa, Algeria ; Department of Ecology and Plant Biotechnology, Faculty of Natural and Life Sciences, University of Batna 2 Batna, Algeria
| |
Collapse
|
32
|
Zhou XJ, Chen J, Shi YP. Rapid and sensitive determination of polyphenols composition of unifloral honey samples with their antioxidant capacities. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/23312009.2015.1100527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xian-Jing Zhou
- Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Juan Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| | - Yan-Ping Shi
- Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| |
Collapse
|
33
|
Behmanesh F, Pasha H, Sefidgar AA, Taghizadeh M, Moghadamnia AA, Adib Rad H, Shirkhani L. Antifungal Effect of Lavender Essential Oil (Lavandula angustifolia) and Clotrimazole on Candida albicans: An In Vitro Study. SCIENTIFICA 2015; 2015:261397. [PMID: 26550521 PMCID: PMC4621348 DOI: 10.1155/2015/261397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 05/25/2023]
Abstract
Background. The treatment of candidiasis infections is an important problem in the health care system. This study aimed to investigate the in vitro effect of lavender essential oil and clotrimazole on isolated C. albicans from vaginal candidiasis. Materials and Methods. In this clinical trial, C. albicans isolated from the vaginal discharge samples was obtained. Results. The pairwise comparison showed that lavender and clotrimazole had a significant difference; this difference in the lavender group was lower than clotrimazole. But, after 48 hours, there was no difference seen between groups. There was a significant difference between clotrimazole and DMSO groups. Comparing the changes between groups based on the same dilution, at 24 h and 48 h in clotrimazole group, showed a significant difference two times in the fungal cell count that its average during 48 h was less than 24 h. A significant difference was observed between the two periods in lavender group, only at the dilutions of 1/20 and 1/80. The average fungal cell count after 48 h was also lower in lavender group. Conclusions. Given that the lavender has antifungal activity, this can be used as an antifungal agent. However, more clinical studies are necessary to validate its use in candida infection.
Collapse
Affiliation(s)
- Fereshteh Behmanesh
- Department of Midwifery, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hajar Pasha
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Asghar Sefidgar
- Department of Parasitology and Microbiology, Babol University of Medical Sciences, Babol, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Akbar Moghadamnia
- Neuroscience Research Center, Department of Pharmacology, Babol University of Medical Sciences, Babol, Iran
| | - Hajar Adib Rad
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Leyla Shirkhani
- Department of Mycology and Parasitology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
34
|
Ning Y, Ling J, Wu CD. Synergistic effects of tea catechin epigallocatechin gallate and antimycotics against oral Candida species. Arch Oral Biol 2015; 60:1565-70. [PMID: 26263544 DOI: 10.1016/j.archoralbio.2015.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 06/25/2015] [Accepted: 07/04/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Epigallocatechin gallate (EGCG), the major antimicrobial tea polyphenol, has been reported to inhibit the growth of Candida albicans planktonic cells and enhance the antifungal activity of antimycotics. We hypothesised that synergism exists between EGCG and conventional antimycotics against biofilms of Candida species. DESIGN The minimal inhibitory concentrations (MIC) of EGCG, miconazole, fluconazole and amphotericin B against planktonic cells and the sessile MIC (SMIC) against biofilms of Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Candida kefyr and Candida krusei were determined by a microdilution method. For assessment of biofilm metabolic activity, the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay was used. The interactions between EGCG and antimycotics were evaluated by checkerboard microdilution assay and determined by fractional inhibitory concentration index (FIC). RESULTS Synergism was observed between EGCG and miconazole, fluconazole or amphotericin B against most test planktonic and biofilm cells of Candida species (FIC≤0.5). All biofilm cells were significantly more resistant to EGCG and antimycotics (20-3200 times higher) compared with their planktonic counterparts. CONCLUSIONS We conclude that EGCG enhances the antifungal effects of miconazole, fluconazole and amphotericin B. Combined treatment with EGCG may lower the dosages of antimycotics, thus preventing adverse effects and the emergence of drug-resistant oral Candida species.
Collapse
Affiliation(s)
- Yang Ning
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chigago, IL, USA; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Junqi Ling
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Christine D Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chigago, IL, USA.
| |
Collapse
|
35
|
Moussa A, Noureddine D, Saad A, Abdelmelek M, Abdelkader B. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp. Asian Pac J Trop Biomed 2015; 2:554-7. [PMID: 23569970 DOI: 10.1016/s2221-1691(12)60096-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 01/25/2012] [Accepted: 03/18/2012] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. METHODS Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. RESULTS The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7-23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09-93.48)% and (4.90-99.70)% v/v, respectively. CONCLUSIONS This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans.
Collapse
Affiliation(s)
- Ahmed Moussa
- Institute of Veterinary Sciences University, Ibn-khaldoun Tiaret (14000), Algeria
| | | | | | | | | |
Collapse
|
36
|
Iglesias A, Pascoal A, Choupina AB, Carvalho CA, Feás X, Estevinho LM. Developments in the fermentation process and quality improvement strategies for mead production. Molecules 2014; 19:12577-90. [PMID: 25153872 PMCID: PMC6271869 DOI: 10.3390/molecules190812577] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 01/17/2023] Open
Abstract
Mead is a traditional alcoholic drink derived from the fermentation of diluted honey in the presence of appropriate yeast. Its modern production, in general terms, involves the addition of nutrients to initial diluted honey, pasteurization, yeast inoculation, fermentation and removal of impurities. Undesirable events along the process have been reported; among them, we highlight: delayed or arrested fermentations, modified and unpleasant sensory and quality parameters of the final product. These problems have been linked to the inability of yeasts to accomplish their role in extreme growth conditions. Emphasis has also been placed on the long fermentation times required, ranging from weeks to months, particularly when traditional procedures are applied and when the honey concentration is low. A series of alterations to the must and technological changes have been proposed in order to optimize the mead production process. In this context, this review examines the evidence that aims to improve meads' quality and make the production process easier and more efficient, by clarifying the source of unexpected events, describing the implementation of different fermentative microorganisms and using new methodologies.
Collapse
Affiliation(s)
- Antonio Iglesias
- Department of Anatomy and Animal Production, Faculty of Veterinary Science, University of Santiago de Compostela, Lugo, Galicia E-27002, Spain.
| | - Ananias Pascoal
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança E 5301-855, Portugal.
| | - Altino Branco Choupina
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança E 5301-855, Portugal.
| | - Carlos Alfredo Carvalho
- Grupo de Pesquisa Insecta, Centro de Ciências Agrárias, Ambientais e Biológicas, Núcleo de Estudo dos Insetos, Universidade Federal do Recôncavo da Bahia, Cruz das Almas BA E 44380-000, Brazil.
| | - Xesús Feás
- Department of Organic Chemistry, Faculty of Sciences, University of Santiago de Compostela, Lugo E-27080, Spain.
| | - Leticia M Estevinho
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança E 5301-855, Portugal.
| |
Collapse
|
37
|
de Almeida-Muradian LB, Stramm KM, Horita A, Barth OM, da Silva de Freitas A, Estevinho LM. Comparative study of the physicochemical and palynological characteristics of honey fromMelipona subnitidaandApis mellifera. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12140] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ligia B. de Almeida-Muradian
- Pharmaceutical Science School; University of Sao Paulo; Av. Prof. Lineu Prestes, 580, bloco 14; CEP 05508-900; São Paulo; Brazil
| | - Klaus M. Stramm
- Pharmaceutical Science School; University of Sao Paulo; Av. Prof. Lineu Prestes, 580, bloco 14; CEP 05508-900; São Paulo; Brazil
| | - Andreia Horita
- Pharmaceutical Science School; University of Sao Paulo; Av. Prof. Lineu Prestes, 580, bloco 14; CEP 05508-900; São Paulo; Brazil
| | - Ortrud M. Barth
- Instituto Oswaldo Cruz; FIOCRUZ; Avenida Brasil 4365; Rio de Janeiro; 21040-900; Brazil
| | | | - Leticia M. Estevinho
- CIMO-Mountain Research Center; Agricultural College of Bragança; Polytechnic Institute of Bragança; Campus Santa Apolónia; Bragança; E 5301-855; Portugal
| |
Collapse
|
38
|
Feás X, Iglesias A, Rodrigues S, Estevinho LM. Effect of Erica sp. honey against microorganisms of clinical importance: study of the factors underlying this biological activity. Molecules 2013; 18:4233-46. [PMID: 23579991 PMCID: PMC6269728 DOI: 10.3390/molecules18044233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/18/2013] [Accepted: 04/01/2013] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the factors (phenolic compounds, flavonoids, sugars or H2O2) that contribute the most to the antimicrobial activity of heather honey samples against four yeasts and four bacteria with medical importance. To discard the effect of H2O2 in the antimicrobial activity, catalase was added. To evaluate the osmotic pressure’s effect, artificial honey was also used. Phenolic compounds and flavonoids were determined and Pearson’s correlation analysis was performed to assess whether these correlated with antimicrobial activity. The amount of phenolic compounds ranged from 630.89 ± 5.21 GAE kg−1 to 718.92 ± 4.41 GAE kg−1, while the flavonoids varied between 450.72 ± 5.67 CAE kg−1 and 673.98 ± 4.33 CAE kg−1. For the bacteria, the minimum inhibitory concentration (MIC) of the honey without catalase ranged from 1.01 ± 0.50% to 10.00 ± 4.72% and was between 2.00 ± 0.94% and 13.27 ± 5.23% for honey with catalase. Concerning the yeasts, the MICs was between 13.16 ± 4.08% and 20.00 ± 5.09% for honey without catalase and between 14.95 ± 4.16% and 25.67 ± 5.50% for honey with catalase. The elucidation of the antimicrobial factors and action mechanisms is essential for the correct use of honey in therapeutic applications.
Collapse
Affiliation(s)
- Xesus Feás
- Department of Organic Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002 Lugo, Galicia, Spain; E-Mail:
| | - Antonio Iglesias
- Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de Compostela, E-27002 Lugo, Galicia, Spain; E-Mail:
| | - Sandra Rodrigues
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, E 5301-855, Bragança, Portugal; E-Mail:
| | - Leticia M. Estevinho
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, E 5301-855, Bragança, Portugal; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +35-1273303342
| |
Collapse
|
39
|
Estevinho M, Vázquez-Tato M, Seijas J, Feás X. Palynological, physicochemical, and microbiological attributes of organic lavender(Lavandula stoechas)honey from Portugal. ACTA ALIMENTARIA 2013. [DOI: 10.1556/aalim.42.2013.1.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Growth-inhibiting effects of Paeonia lactiflora root steam distillate constituents and structurally related compounds on human intestinal bacteria. World J Microbiol Biotechnol 2011; 28:1575-83. [PMID: 22805939 DOI: 10.1007/s11274-011-0961-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022]
Abstract
The growth-inhibiting activities of Paeonia lactiflora (Paeoniaceae) root steam distillate constituents and structurally related compounds against nine harmful intestinal bacteria and eight lactic acid-producing bacteria were compared with those of two antibiotics, amoxicillin and tetracycline. Thymol, α-terpinolene, (-)-perilla alcohol and (1R)-(-)-myrtenol exhibited high to extremely high levels of growth inhibition of all the harmful bacteria, whereas thymol and α-terpinolene (except for Lactobacillus casei ATCC 393) inhibited the growth of all the beneficial bacteria (MIC, both 0.08-0.62 mg mL(-1)). Tetracycline and amoxicillin exhibited extremely high level of growth inhibition of all the test bacteria (MIC, <0.00002-0.001 mg mL(-1)). 1,8-Cineole, geraniol, (-)-borneol, (1S,2S,5S)-(-)-myrtanol, nerol, (S)-(-)-β-citronellol and (±)-lavandulol also exhibited inhibitory activity but with differing specificity and levels of activity. Structure-activity relationship indicates that structural characteristics, such as geometric isomerism, degrees of saturation, types of functional groups and types of carbon skeleton, appear to play a role in determining the growth-inhibiting activity of monoterpenoids. Global efforts to reduce the level of antibiotics justify further studies on naturally occurring P. lactiflora root-derived materials as potential preventive agents against various diseases caused by harmful intestinal bacteria such as clostridia.
Collapse
|