1
|
Singh A, Saini RK, Kumar A, Chawla P, Kaushik R. Mushrooms as Nutritional Powerhouses: A Review of Their Bioactive Compounds, Health Benefits, and Value-Added Products. Foods 2025; 14:741. [PMID: 40077445 PMCID: PMC11899115 DOI: 10.3390/foods14050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Mushrooms are known to be a nutritional powerhouse, offering diverse bioactive compounds that promote and enhance health. Mushrooms provide a distinguishable taste and aroma and are an essential source of vitamin D2, vitamin B complex, hydroxybenzoic acids (HBAs) and hydroxycinnamic acids (HCAs), terpenes, sterols, and β-glucans. Edible mushroom varieties such as Hericium erinaceus, Ganoderma sp., and Lentinula edodes are recognized as functional foods due to their remarkable potential for disease prevention and promotion of overall health and well-being. These varieties have antioxidants, anti-inflammatory, cytoprotective, cholesterol-lowering, antidiabetic, antimicrobial, and anticancer properties, as well as controlling blood pressure, being an immunity booster, and strengthening bone properties. In addition, they contain essential non-digestible oligosaccharides (NDOs) and ergothioneine, a potential substrate for gut microflora. Supplementing our daily meals with those can add value to our food, providing health benefits. Novel edible mushrooms are being investigated to explore their bioactive substances and their therapeutic properties, to benefit human health. The scientific community (mycologists) is currently studying the prospects for unlocking the full health advantages of mushrooms. This review aims to promote knowledge of mushroom culturing conditions, their nutritional potential, and the value-added products of 11 varieties.
Collapse
Affiliation(s)
- Akruti Singh
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Amit Kumar
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Ravinder Kaushik
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| |
Collapse
|
2
|
Guo H, Zang C, Zheng L, Ding L, Yang W, Shan Ren, Guan H. Novel Antioxidant Peptides from Fermented Whey Protein by Lactobacillus rhamnosus B2-1: Separation and Identification by in Vitro and in Silico Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23306-23319. [PMID: 39392363 PMCID: PMC11505895 DOI: 10.1021/acs.jafc.4c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Whey is a byproduct of the dairy industry and is rich in protein. To enhance the significance of such byproducts and find efficacious antioxidants for combating oxidative stress, this study reported on the preparation, purification, and identification of novel peptides with antioxidant activities from whey protein metabolites following fermentation by Lactobacillus rhamnosus B2-1. The isolation and identification processes involved macroporous adsorption resin column chromatography, gel filtration column chromatography, and liquid chromatography-tandem mass spectrometry. Therein, three novel antioxidant peptides (PKYPVEPF, LEASPEVI, and YPFPGPIHNS) were selected to be synthesized, and they demonstrated remarkable antioxidant activities in vitro chemical assays. PKYPVEPF, LEASPEVI, and YPFPGPIHNS (100 μg/mL) displayed a notable cytoprotective impact on HepG2 cells under oxidative stress induced by H2O2, increasing the cell viability from 49.02 ± 3.05% to 88.59 ± 10.49%, 82.38 ± 19.16%, and 85.15 ± 7.19%, respectively. Moreover, the peptides boosted the activities of catalase and superoxide dismutase in damaged cells and reduced reactive oxygen species levels. The molecular docking studies highlighted that these antioxidant peptides efficiently bound to key amino acids in the Kelch domain of Keap1, thereby preventing the interaction between Keap1 and Nrf2. In conclusion, PKYPVEPF, LEASPEVI, and YPFPGPIHNS demonstrated substantial antioxidant activity, suggesting their potential for widespread application as functional food additives and ingredients.
Collapse
Affiliation(s)
- Hao Guo
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Chuangang Zang
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Long Zheng
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Lin Ding
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Wenqin Yang
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Shan Ren
- Basic
Medical Science College, Qiqihar Medical
University, Qiqihar 161006, China
| | - Hong Guan
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
3
|
Promsut K, Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Reamtong O, Nutho B, Karnchanatat A. A novel peptide derived from Zingiber cassumunar rhizomes exhibits anticancer activity against the colon adenocarcinoma cells (Caco-2) via the induction of intrinsic apoptosis signaling. PLoS One 2024; 19:e0304701. [PMID: 38870120 PMCID: PMC11175412 DOI: 10.1371/journal.pone.0304701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.
Collapse
Affiliation(s)
- Kitjasit Promsut
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
4
|
Al Qutaibi M, Kagne SR. Exploring the Phytochemical Compositions, Antioxidant Activity, and Nutritional Potentials of Edible and Medicinal Mushrooms. Int J Microbiol 2024; 2024:6660423. [PMID: 38841191 PMCID: PMC11152763 DOI: 10.1155/2024/6660423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Mushrooms are a valuable source of food and medicine that have been used for centuries in various cultures. They contain a variety of phytochemicals, such as terpenoids and polysaccharides, that exhibit diverse biological activities, such as antioxidant, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and antidiabetic effects. However, mushroom's phytochemical composition and bioactivity vary depending on their species, cultivation conditions, processing methods, and extraction techniques. Therefore, using reliable analytical methods and standardized protocols is important for systematically evaluating the quality and quantity of mushroom phytochemicals and their therapeutic potential. This review provides a bibliometric analysis of the recent literature on biological activities, highlights trends in the field, and highlights the countries and journals with the highest contribution. It also discusses the nutritional value of the total content of phenolic and other phytochemicals in some species of mushrooms.
Collapse
Affiliation(s)
- Mohammed Al Qutaibi
- Department of Medical Microbiology, Faculty of Science, Ibb University, Ibb, Yemen
- Department of Microbiology, Badrinarayan Barwale College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, India
| | - Suresh R. Kagne
- Department of Microbiology, Badrinarayan Barwale College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, India
| |
Collapse
|
5
|
Li H, Gao J, Zhao F, Liu X, Ma B. Bioactive Peptides from Edible Mushrooms-The Preparation, Mechanisms, Structure-Activity Relationships and Prospects. Foods 2023; 12:2935. [PMID: 37569204 PMCID: PMC10417677 DOI: 10.3390/foods12152935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Mushroom bioactive peptides (MBPs) are bioactive peptides extracted directly or indirectly from edible mushrooms. MBPs are known to have antioxidant, anti-aging, antibacterial, anti-inflammatory and anti-hypertensive properties, and facilitate memory and cognitive improvement, antitumour and anti-diabetes activities, and cholesterol reduction. MBPs exert antioxidant and anti-inflammatory effects by regulating the MAPK, Keap1-Nrf2-ARE, NF-κB and TNF pathways. In addition, MBPs exert antibacterial, anti-tumour and anti-inflammatory effects by stimulating the proliferation of macrophages. The bioactivities of MBPs are closely related to their molecular weights, charge, amino acid compositions and amino acid sequences. Compared with animal-derived peptides, MBPs are ideal raw materials for healthy and functional products with the advantages of their abundance of resources, safety, low price, and easy-to-achieve large-scale production of valuable nutrients for health maintenance and disease prevention. In this review, the preparation, bioactivities, mechanisms and structure-activity relationships of MBPs were described. The main challenges and prospects of their application in functional products were also discussed. This review aimed to provide a comprehensive perspective of MBPs.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Ji’an Gao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Fen Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Biao Ma
- Beijing Science Sun Pharmaceutical Co., Ltd., Beijing 100176, China;
| |
Collapse
|
6
|
Ayimbila F, Keawsompong S. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Curr Nutr Rep 2023; 12:290-307. [PMID: 37032416 PMCID: PMC10088739 DOI: 10.1007/s13668-023-00468-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE OF REVIEW Global concerns about population growth, economic, and nutritional transitions and health have led to the search for a low-cost protein alternative to animal origins. This review provides an overview of the viability of exploring mushroom protein as a future protein alternative considering the nutritional value, quality, digestibility, and biological benefits. RECENT FINDINGS Plant proteins are commonly used as alternatives to animal proteins, but the majority of them are low in quality due to a lack of one or more essential amino acids. Edible mushroom proteins usually have a complete essential amino acid profile, meet dietary requirements, and provide economic advantages over animal and plant sources. Mushroom proteins may provide health advantages by eliciting antioxidant, antitumor, angiotensin-converting enzyme (ACE), inhibitory and antimicrobial properties over animal proteins. Protein concentrates, hydrolysates, and peptides from mushrooms are being used to improve human health. Also, edible mushrooms can be used to fortify traditional food to increase protein value and functional qualities. These characteristics highlight mushroom proteins as inexpensive, high-quality proteins that can be used as a meat alternative, as pharmaceuticals, and as treatments to alleviate malnutrition. Edible mushroom proteins are high in quality, low in cost, widely available, and meet environmental and social requirements, making them suitable as sustainable alternative proteins.
Collapse
Affiliation(s)
- Francis Ayimbila
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Suttipun Keawsompong
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand.
| |
Collapse
|
7
|
Xia Y, Wang D, Li J, Chen M, Wang D, Jiang Z, Liu B. Corrigendum: Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front Pharmacol 2023; 13:1081523. [PMID: 36686659 PMCID: PMC9849929 DOI: 10.3389/fphar.2022.1081523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fphar.2022.974794.].
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Li
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
8
|
Zhou T, Li Q, Zhao M, Pan Y, Kong X. A Review on Edible Fungi-Derived Bioactive Peptides: Preparation, Purification and Bioactivities. Int J Med Mushrooms 2023; 25:1-11. [PMID: 37585312 DOI: 10.1615/intjmedmushrooms.2023048464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Edible fungi bioactive peptides (BAPs) are extracted from fruiting bodies and the mycelium of edible fungus. They have various physiological functions such as antioxidant activity, antihypertensive activity, and antibacterial activity. In this paper, the preparation and purification methods of edible fungus BAPs were reviewed, their common biological activities and structure-activity relationships were analyzed, and their application prospects were discussed.
Collapse
Affiliation(s)
- Tiantian Zhou
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Qingwei Li
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Ming Zhao
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Yu Pan
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China; Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
9
|
Berikashvili V, Khardziani T, Kobakhidze A, Kulp M, Kuhtinskaja M, Lukk T, Gargano ML, Venturella G, Kachlishvili E, Metreveli E, Elisashvili VI, Asatiani M. Antifungal Activity of Medicinal Mushrooms and Optimization of Submerged Culture Conditions for Schizophyllum commune (Agaricomycetes). Int J Med Mushrooms 2023; 25:1-21. [PMID: 37830193 DOI: 10.1615/intjmedmushrooms.2023049836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The main goal of the present study was the exploration of the antifungal properties of Agaricomycetes mushrooms. Among twenty-three tested mushrooms against A. niger, B. cinerea, F. oxysporum, and G. bidwellii, Schizophyllum commune demonstrated highest inhibition rates and showed 35.7%, 6.5%, 50.4%, and 66.0% of growth inhibition, respectively. To reveal culture conditions enhancing the antifungal potential of Sch. commune, several carbon (lignocellulosic substrates among them) and nitrogen sources and their optimal concentrations were investigated. Presence of 6% mandarin juice production waste (MJPW) and 6% of peptone in nutrient medium promoted antifungal activity of selected mushroom. It was determined that, extracts obtained in the presence of MJPW effectively inhibited the grow of pathogenic fungi. Moreover, the content of phenolic compounds in the extracts obtained from Sch. commune grown on MJPW was several times higher (0.87 ± 0.05 GAE/g to 2.38 ± 0.08 GAE/g) than the extracts obtained from the mushroom grown on the synthetic (glycerol contained) nutrient medium (0.21 ± 0.03 GAE/g to 0.88 ± 0.05 GAE/g). Flavonoid contents in the extracts from Sch. commune varied from 0.58 ± 0.03 to 27.2 ± 0.8 mg QE/g. Identification of phenolic compounds composition in water and ethanol extracts were provided by mass spectrometry analysis. Extracts demonstrate considerable free radical scavenging activities and the IC50 values were generally low for the extracts, ranging from 1.9 mg/ml to 6.7 mg/ml. All the samples displayed a positive correlation between their concentration (0.05-15.0 mg/ml) and DPPH radical scavenging activity. This investigation revealed that Sch. commune mushroom has great potential to be used as a source of antifungal and antioxidant substances.
Collapse
Affiliation(s)
- Violeta Berikashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Tamar Khardziani
- Durmishidze Institute of Biochemistry and Biotechnology, Academy of Science of Georgia, 10 km Agmashenebeli kheivani, 0159 Tbilisi, Georgia; Institute of Microbial Biotechnology, Agricultural University of Georgia, Tbilisi, Georgia
| | - Aza Kobakhidze
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Maria Kulp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Letizia Gargano
- Departament of Schol, Plant, and Food Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Giuseppe Venturella
- Italian Society of Medicinal Mushrooms, Pisa, Italy; Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Eva Kachlishvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Eka Metreveli
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Vladimir I Elisashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Mikheil Asatiani
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| |
Collapse
|
10
|
Investigating the cellular antioxidant and anti-inflammatory effects of the novel peptides in lingzhi mushrooms. Heliyon 2022; 8:e11067. [PMID: 36303910 PMCID: PMC9593296 DOI: 10.1016/j.heliyon.2022.e11067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The lingzhi mushroom (Ganoderma lucidum) is well known for its medicinal properties and has long played a role in traditional oriental medicine due to its health-giving benefits and potential to extend life expectancy. The mushroom contains a number of highly bioactive compounds and can also act as an excellent source of protein. This research investigated the peptides obtained from the protein hydrolysates of lingzhi mushrooms to assess their free radical scavenging abilities. These peptides were acquired via different proteases (Alcalase, Neutrase, papain, and pepsin-pancreatin) and were tested at a range of different concentrations (1.0%, 2.5%, and 5.0% w/v). The highest levels of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging activities were presented by lingzhi mushroom hydrolysate using 2.5% (w/v) pepsin-pancreatin after 6 h of digestion. The hydrolysate was then fractionated using 10, 5, 3, and 0.65 kDa molecular weight cut-off membranes. The results showed that the MW 0.65 kDa fraction had the highest level of free radical scavenging activity. Further analysis of this MW 0.65 kDa fraction began with another RP-HPLC fractionation technique to obtain three further sub-fractions. De novo peptide sequencing using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) was chosen as the optimum method for studying the F3 sub-fraction. DRVSIYGWG and ALLSISSF were discovered as new peptides with different antioxidant properties. Adenocarcinoma colon (Caco-2) cells showed the antioxidant action of these synthesized peptides. This activity was linked to peptide concentration. The peptides and their pure synthetic counterparts were found to reduce NO generation by RAW 264.7 macrophages without causing cytotoxicity. The results of gene expression reveal that the DRVSIYGWG and ALLSISSF peptides were able to cut the expression of the proinflammatory cytokine genes iNOS, IL-6, TNF-α, and COX-2 in the context of RAW 264.7 macrophages.
Collapse
|
11
|
Pressurized hot water extraction of crude polysaccharides, β-glucan, and phenolic compounds from dried gray oyster mushroom. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Evaluation of bioactive properties of Pleurotus ostreatus mushroom protein hydrolysate of different degree of hydrolysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111768] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Nwachukwu ID, Sarteshnizi RA, Udenigwe CC, Aluko RE. A Concise Review of Current In Vitro Chemical and Cell-Based Antioxidant Assay Methods. Molecules 2021; 26:molecules26164865. [PMID: 34443459 PMCID: PMC8400447 DOI: 10.3390/molecules26164865] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/24/2023] Open
Abstract
Antioxidants remain interesting molecules of choice for suppression of the toxic effects of free radicals in foods and human systems. The current practice involves the use of mainly synthetic molecules as potent antioxidant agents. However, due to the potential negative impact on human health, there is an intensive effort within the research community to develop natural alternatives with similar antioxidant efficacy but without the negative side effects of synthetic molecules. Still, the successful development of new molecules depends on the use of reliable chemical or cell culture assays to screen antioxidant properties. Chemical antioxidant assays include the determination of scavenging ability against free radicals such as DPPH, superoxide anion radicals, hydroxyl radicals, hydrogen peroxide, and nitric oxide. Other antioxidant tests include the ability of compounds to bind and sequester prooxidant metal cations, reduce ferric iron, and attenuate the rate of lipid oxidation. Ex vivo tests utilize cell cultures to confirm entry of the molecules into cells and the ability to quench synthetic intracellular free radicals or to stimulate the increased biosynthesis of endogenous antioxidants. In order to assist researchers in their choice of antioxidant evaluation methods, this review presents background scientific information on some of the most commonly used antioxidant assays with a comparative discussion of the relevance of published literature data to food science and human nutrition applications.
Collapse
Affiliation(s)
| | - Roghayeh Amini Sarteshnizi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.A.S.); (C.C.U.)
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.A.S.); (C.C.U.)
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|