1
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
2
|
Xie X, Zhai Y, Cheng H, Wei WH, Ren M. From Taxus to paclitaxel: Opportunities and challenges for urban agriculture to promote human health. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109502. [PMID: 39813759 DOI: 10.1016/j.plaphy.2025.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Conifers of the genus Taxus are environmentally friendly plants with significant medicinal and ecological value, contributing to the enhancement of urban living environments. Paclitaxel, a compound found in Taxus, has garnered particular research interest owing to its potent anti-cancer effects. However, traditional methods of extracting paclitaxel from Taxus are not only inefficient, but also destructive and unsustainable, posing the major risk of Taxus extinction. To address this, sustainable production using modern biotechnology is crucial for the mass production of paclitaxel. Therefore, this review revisits the potential of Taxus and sustainable paclitaxel production in the context of urban agriculture. It provides a comprehensive review of widespread research efforts targeting efficient and cost-effective paclitaxel biosynthesis. We also discuss a set of innovative strategies for paclitaxel biosynthesis and suggest approaches for its industrial production based on Taxus cell-based approaches.
Collapse
Affiliation(s)
- Xiulan Xie
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yaohua Zhai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Cheng
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China
| | - Wen-Hua Wei
- Centre for Biostatistics, School of Health Sciences, University of Manchester, Manchester, M13 9PL, UK.
| | - Maozhi Ren
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Yu Y, Wang Z, Xiong D, Zhou L, Kong F, Wang Q. New Secondary Metabolites of Mangrove-Associated Strains. Mar Drugs 2024; 22:372. [PMID: 39195488 DOI: 10.3390/md22080372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Positioned at the dynamic interface between terrestrial and marine realms, mangroves embody a vibrant tapestry of biodiversity, encompassing an array of plants, animals, and microorganisms. These microbial inhabitants of mangrove habitats have emerged as a pivotal resource for antimicrobials and a plethora of pharmaceutically valuable compounds, spanning enzymes, antineoplastic agents, pesticides, immunosuppressants, and immunomodulators. This review delves into the recent landscape (January 2021 to May 2024, according to the time of publication) of novel secondary metabolites isolated from mangrove-associated microorganisms, analyzing 41 microbial strains that collectively yielded 165 distinct compounds. Our objective is to assess the productivity and potential of natural products derived from microbial populations within mangrove ecosystems in recent times. Notably, fungi stand out as the preeminent contributors to the emergence of these novel natural products, underscoring their pivotal role in the bioprospecting endeavors within these unique environments.
Collapse
Affiliation(s)
- Yunxia Yu
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou 570206, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Zimin Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Dingmi Xiong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Liman Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Fandong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Qi Wang
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou 570206, China
| |
Collapse
|
4
|
Gärditz KF, Czesnick H. Paclitaxel - a Product of Fungal Secondary Metabolism or an Artefact? PLANTA MEDICA 2024; 90:726-735. [PMID: 38754434 PMCID: PMC11254485 DOI: 10.1055/a-2309-6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Taxol (common name: paclitaxel) is an extremely important component of drugs for the treatment of various cancers. Thirty years after the discovery of its effectiveness, a metabolic precursor of Taxol (10-deacetylbaccatin III) is still primarily extracted from needles of European yew trees. In order to meet the considerable demand, hopes were pinned on the possibilities of biotechnological production from the very beginning. In 1993, as if by chance, Taxol was supposedly discovered in fungi that grow endobiotically in yew trees. This finding aroused hopes of biotechnological use to produce fungal Taxol in large quantities in fermenters. It never came to that. Instead, a confusing flood of publications emerged that claimed to have detected Taxol in more and more eukaryotic and even prokaryotic species. However, researchers never reproduced these rather puzzling results, and they could certainly not be applied on an industrial scale. This paper will show that some of the misguided approaches were apparently based on a seemingly careless handling of sparse evidence and on at least questionable publications. Apparently, the desired gold rush of commercial exploitation was seductive. Scientific skepticism as an indispensable core of good scientific practice was often neglected, and the peer review process has not exerted its corrective effect. Self-critical reflection and more healthy skepticism could help to reduce the risk of such aberrations in drug development. This article uses this case study as a striking example to show what can be learned from the Taxol case in terms of research ethics and the avoidance of questionable research practices.
Collapse
Affiliation(s)
- Klaus Ferdinand Gärditz
- Institute of Public Law, University of Bonn, Bonn, Germany
- Ombudsman for suspected cases of scientific misconduct, University of Bonn, Bonn, Germany
| | | |
Collapse
|
5
|
Liu S, Hou Y, Zheng K, Ma Q, Wen M, Shao S, Wu S. Exploring the diversity, bioactivity of endophytes, and metabolome in Synsepalum dulcificum. Front Microbiol 2024; 15:1258208. [PMID: 38476934 PMCID: PMC10929569 DOI: 10.3389/fmicb.2024.1258208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Synsepalum dulcificum exhibits high edible and medicinal value; however, there have been no reports on the exploration of its endophyte resources. Here, we conducted analyses encompassing plant metabolomics, microbial diversity, and the biological activities of endophytic metabolites in S. dulcificum. High-throughput sequencing identified 4,913 endophytic fungal amplicon sequence variants (ASVs) and 1,703 endophytic bacterial ASVs from the roots, stems, leaves, flowers, and fruits of S. dulcificum. Fungi were classified into 5 phyla, 24 classes, 75 orders, 170 families, and 313 genera, while bacteria belonged to 21 phyla, 47 classes, 93 orders, 145 families, and 232 genera. Furthermore, there were significant differences in the composition and content of metabolites in different tissues of S. dulcificum. Spearman's correlation analysis of the differential metabolites and endophytes revealed that the community composition of the endophytes correlated with plant-rich metabolites. The internal transcribed spacer sequences of 105 isolates were determined, and phylogenetic analyses revealed that these fungi were distributed into three phyla (Ascomycota, Basidiomycota, and Mucoromycota) and 20 genera. Moreover, 16S rDNA sequencing of 46 bacteria revealed they were distributed in 16 genera in three phyla: Actinobacteria, Proteobacteria, and Firmicutes. The antimicrobial activities (filter paper method) and antioxidant activity (DPPH and ABTS assays) of crude extracts obtained from 68 fungal and 20 bacterial strains cultured in different media were evaluated. Additionally, the α-glucosidase inhibitory activity of the fungal extracts was examined. The results showed that 88.6% of the strains exhibited antimicrobial activity, 55.7% exhibited antioxidant activity, and 85% of the fungi exhibited α-glucosidase inhibitory activity. The research suggested that the endophytes of S. dulcificum are highly diverse and have the potential to produce bioactive metabolites, providing abundant species resources for developing antibiotics, antioxidants and hypoglycemic drugs.
Collapse
Affiliation(s)
- Sisi Liu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
| | - Yage Hou
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
| | - Kaixuan Zheng
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
| | - Qian Ma
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
| | - Meng Wen
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
| | - Shicheng Shao
- Department of Gardening and Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Yunnan, China
| | - Shaohua Wu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Sonowal S, Gogoi U, Buragohain K, Nath R. Endophytic fungi as a potential source of anti-cancer drug. Arch Microbiol 2024; 206:122. [PMID: 38407579 DOI: 10.1007/s00203-024-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/27/2024]
Abstract
Endophytes are considered one of the major sources of bioactive compounds used in different aspects of health care including cancer treatment. When colonized, they either synthesize these bioactive compounds as a part of their secondary metabolite production or augment the host plant machinery in synthesising such bioactive compounds. Hence, the study of endophytes has drawn the attention of the scientific community in the last few decades. Among the endophytes, endophytic fungi constitute a major portion of endophytic microbiota. This review deals with a plethora of anti-cancer compounds derived from endophytic fungi, highlighting alkaloids, lignans, terpenes, polyketides, polyphenols, quinones, xanthenes, tetralones, peptides, and spirobisnaphthalenes. Further, this review emphasizes modern methodologies, particularly omics-based techniques, asymmetric dihydroxylation, and biotic elicitors, showcasing the dynamic and evolving landscape of research in this field and describing the potential of endophytic fungi as a source of anticancer drugs in the future.
Collapse
Affiliation(s)
- Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Urvashee Gogoi
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
7
|
Qin X, Xu J, An X, Yang J, Wang Y, Dou M, Wang M, Huang J, Fu Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit Rev Biotechnol 2024; 44:78-99. [PMID: 36592988 DOI: 10.1080/07388551.2022.2129579] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.
Collapse
Affiliation(s)
- Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoli An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Meijia Dou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Minggang Wang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jin Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
8
|
Subban K, Kempken F. Insights into Taxol® biosynthesis by endophytic fungi. Appl Microbiol Biotechnol 2023; 107:6151-6162. [PMID: 37606790 PMCID: PMC10560151 DOI: 10.1007/s00253-023-12713-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
There have been two hundred reports that endophytic fungi produce Taxol®, but its production yield is often rather low. Although considerable efforts have been made to increase Taxol/taxanes production in fungi by manipulating cocultures, mutagenesis, genome shuffles, and gene overexpression, little is known about the molecular signatures of Taxol biosynthesis and its regulation. It is known that some fungi have orthologs of the Taxol biosynthetic pathway, but the overall architecture of this pathway is unknown. A biosynthetic putative gene homology approach, combined with genomics and transcriptomics analysis, revealed that a few genes for metabolite residues may be located on dispensable chromosomes. This review explores a number of crucial topics (i) finding biosynthetic pathway genes using precursors, elicitors, and inhibitors; (ii) orthologs of the Taxol biosynthetic pathway for rate-limiting genes/enzymes; and (iii) genomics and transcriptomics can be used to accurately predict biosynthetic putative genes and regulators. This provides promising targets for future genetic engineering approaches to produce fungal Taxol and precursors. KEY POINTS: • A recent trend in predicting Taxol biosynthetic pathway from endophytic fungi. • Understanding the Taxol biosynthetic pathway and related enzymes in fungi. • The genetic evidence and formation of taxane from endophytic fungi.
Collapse
Affiliation(s)
- Kamalraj Subban
- Department of Genetics & Molecular Biology in Botany, Botanical Institute and Botanical Garden, Christian-Albrecht University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany
| | - Frank Kempken
- Department of Genetics & Molecular Biology in Botany, Botanical Institute and Botanical Garden, Christian-Albrecht University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany.
| |
Collapse
|
9
|
Natarajan S, Pucker B, Srivastava S. Genomic and transcriptomic analysis of camptothecin producing novel fungal endophyte: Alternaria burnsii NCIM 1409. Sci Rep 2023; 13:14614. [PMID: 37670002 PMCID: PMC10480469 DOI: 10.1038/s41598-023-41738-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Camptothecin is an important anticancer alkaloid produced by particular plant species. No suitable synthetic route has been established for camptothecin production yet, imposing a stress on plant-based production systems. Endophytes associated with these camptothecin-producing plants have been reported to also produce camptothecin and other high-value phytochemicals. A previous study identified a fungal endophyte Alternaria burnsii NCIM 1409, isolated from Nothapodytes nimmoniana, to be a sustainable producer of camptothecin. Our study provides key insights on camptothecin biosynthesis in this recently discovered endophyte. The whole genome sequence of A. burnsii NCIM 1409 was assembled and screened for biosynthetic gene clusters. Comparative studies with related fungi supported the identification of candidate genes involved in camptothecin synthesis and also helped to understand some aspects of the endophyte's defense against the toxic effects of camptothecin. No evidence for horizontal gene transfer of the camptothecin biosynthetic genes from the host plant to the endophyte was detected suggesting an independent evolution of the camptothecin biosynthesis in this fungus.
Collapse
Affiliation(s)
- Shakunthala Natarajan
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Brunswick, Germany
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Brunswick, Germany.
| | - Smita Srivastava
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
10
|
Prescott TAK, Hill R, Mas-Claret E, Gaya E, Burns E. Fungal Drug Discovery for Chronic Disease: History, New Discoveries and New Approaches. Biomolecules 2023; 13:986. [PMID: 37371566 DOI: 10.3390/biom13060986] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal-derived drugs include some of the most important medicines ever discovered, and have proved pivotal in treating chronic diseases. Not only have they saved millions of lives, but they have in some cases changed perceptions of what is medically possible. However, now the low-hanging fruit have been discovered it has become much harder to make the kind of discoveries that have characterised past eras of fungal drug discovery. This may be about to change with new commercial players entering the market aiming to apply novel genomic tools to streamline the discovery process. This review examines the discovery history of approved fungal-derived drugs, and those currently in clinical trials for chronic diseases. For key molecules, we discuss their possible ecological functions in nature and how this relates to their use in human medicine. We show how the conservation of drug receptors between fungi and humans means that metabolites intended to inhibit competitor fungi often interact with human drug receptors, sometimes with unintended benefits. We also plot the distribution of drugs, antimicrobial compounds and psychoactive mushrooms onto a fungal tree and compare their distribution to those of all fungal metabolites. Finally, we examine the phenomenon of self-resistance and how this can be used to help predict metabolite mechanism of action and aid the drug discovery process.
Collapse
Affiliation(s)
| | - Rowena Hill
- Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | | | - Ester Gaya
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| | - Edie Burns
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| |
Collapse
|
11
|
Rutkowska N, Drożdżyński P, Ryngajłło M, Marchut-Mikołajczyk O. Plants as the Extended Phenotype of Endophytes-The Actual Source of Bioactive Compounds. Int J Mol Sci 2023; 24:10096. [PMID: 37373241 PMCID: PMC10298476 DOI: 10.3390/ijms241210096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
For thousands of years, plants have been used for their medicinal properties. The industrial production of plant-beneficial compounds is facing many drawbacks, such as seasonal dependence and troublesome extraction and purification processes, which have led to many species being on the edge of extinction. As the demand for compounds applicable to, e.g., cancer treatment, is still growing, there is a need to develop sustainable production processes. The industrial potential of the endophytic microorganisms residing within plant tissues is undeniable, as they are often able to produce, in vitro, similar to or even the same compounds as their hosts. The peculiar conditions of the endophytic lifestyle raise questions about the molecular background of the biosynthesis of these bioactive compounds in planta, and the actual producer, whether it is the plant itself or its residents. Extending this knowledge is crucial to overcoming the current limitations in the implementation of endophytes for larger-scale production. In this review, we focus on the possible routes of the synthesis of host-specific compounds in planta by their endophytes.
Collapse
Affiliation(s)
- Natalia Rutkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (P.D.); (M.R.); (O.M.-M.)
| | | | | | | |
Collapse
|
12
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
13
|
Ramezanpour A, Ansari L, Rahimkhoei V, Sharifi S, Bigham A, Lighvan ZM, Rezaie J, Szafert S, Mahdavinia G, Akbari A, Jabbari E. Recent advances in carbohydrate-based paclitaxel delivery systems. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
14
|
Wang J, Suo X, Zhang H. P-glycoprotein antibody-conjugated paclitaxel liposomes targeted for multidrug-resistant lung cancer. Nanomedicine (Lond) 2023; 18:819-831. [PMID: 37306214 DOI: 10.2217/nnm-2023-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Aims: To overcome the resistance of lung cancer to paclitaxel. Methods: P-glycoprotein antibody-conjugated paclitaxel PEG-coated immunoliposomes (Pab-PTX-L) were prepared, and a series of quality evaluations, in vitro cell evaluation and assessment of their in vivo antitumor effect in mice were conducted. Results: The results showed that Pab-PTX-L was nano-sized with high encapsulation efficiency of paclitaxel. For the paclitaxel-resistant lung cancer A549/T cells, the cellular uptake and cell viability inhibition and apoptosis of Pab-PTX-L-treated cells were higher than those of the control groups. More importantly, Pab-PTX-L showed a good targeting and antitumor effect on tumor tissue in mouse experiments. Conclusion: This study will provide a new insight on enhanced paclitaxel delivery into paclitaxel-resistant cancer cells.
Collapse
Affiliation(s)
- Jianfei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xubin Suo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Han Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
15
|
Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. PLANT BIOTECHNOLOGY REPORTS 2023; 17:1-31. [PMID: 37359493 PMCID: PMC10013304 DOI: 10.1007/s11816-023-00824-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
Resistance in micro-organisms against antimicrobial compounds is an emerging phenomenon in the modern era as compared to the traditional world which brings new challenges to discover novel antimicrobial compounds from different available sources, such as, medicinal plants, various micro-organisms, like, bacteria, fungi, algae, actinomycetes, and endophytes. Endophytes reside inside the plants without exerting any harmful impact on the host plant along with providing ample of benefits. In addition, they are capable of producing diverse antimicrobial compounds similar to their host, allowing them to serve as useful micro-organism for a range of therapeutic purposes. In recent years, a large number of studies on the antimicrobial properties of endophytic fungi have been carried out globally. These antimicrobials have been used to treat various bacterial, fungal, and viral infections in humans. In this review, the potential of fungal endophytes to produce diverse antimicrobial compounds along with their various benefits to their host have been focused on. In addition, classification systems of endophytic fungi as well as the need for antimicrobial production with genetic involvement and some of the vital novel antimicrobial compounds of endophytic origin can further be utilized in the pharmaceutical industries for various formulations along with the role of nanoparticles as antimicrobial agents have been highlighted.
Collapse
Affiliation(s)
- Shivani Digra
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| | - Skarma Nonzom
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| |
Collapse
|
16
|
Perez-Matas E, Hidalgo-Martinez D, Escrich A, Alcalde MA, Moyano E, Bonfill M, Palazon J. Genetic approaches in improving biotechnological production of taxanes: An update. FRONTIERS IN PLANT SCIENCE 2023; 14:1100228. [PMID: 36778697 PMCID: PMC9909606 DOI: 10.3389/fpls.2023.1100228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Paclitaxel (PTX) and its derivatives are diterpene alkaloids widely used as chemotherapeutic agents in the treatment of various types of cancer. Due to the scarcity of PTX in nature, its production in cell cultures and plant organs is a major challenge for plant biotechnology. Although significant advances have been made in this field through the development of metabolic engineering and synthetic biology techniques, production levels remain insufficient to meet the current market demand for these powerful anticancer drugs. A key stumbling block is the difficulty of genetically transforming the gymnosperm Taxus spp. This review focuses on the progress made in improving taxane production through genetic engineering techniques. These include the overexpression of limiting genes in the taxane biosynthetic pathway and transcription factors involved in its regulation in Taxus spp. cell cultures and transformed roots, as well as the development and optimization of transformation techniques. Attempts to produce taxanes in heterologous organisms such as bacteria and yeasts are also described. Although promising results have been reported, the transfer of the entire PTX metabolic route has not been possible to date, and taxane biosynthesis is still restricted to Taxus cells and some endophytic fungi. The development of a synthetic organism other than Taxus cells capable of biotechnologically producing PTX will probably have to wait until the complete elucidation of its metabolic pathway.
Collapse
Affiliation(s)
- Edgar Perez-Matas
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Diego Hidalgo-Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ainoa Escrich
- Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel Angel Alcalde
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elisabeth Moyano
- Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J Fungi (Basel) 2023; 9:jof9010072. [PMID: 36675893 PMCID: PMC9860820 DOI: 10.3390/jof9010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.
Collapse
|
18
|
Xiao J, Ma Q, Cai R, Miao J, Yan Z, Yang X, Chen Y. Acute Anti-Cancer Activity of Crude Extracts from two Endophytic Fungi Chaetomium cochliodes and Penicillium Sp. in Cancer Cell Lines and Mice. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1583.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiol Res 2022; 266:127256. [DOI: 10.1016/j.micres.2022.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
20
|
An Overview on Taxol Production Technology and Its Applications as Anticancer Agent. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Sharma A, Kaushik N, Sharma A, Marzouk T, Djébali N. Exploring the potential of endophytes and their metabolites for bio-control activity. 3 Biotech 2022; 12:277. [PMID: 36275362 PMCID: PMC9470801 DOI: 10.1007/s13205-022-03321-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/19/2022] [Indexed: 11/01/2022] Open
Abstract
In the current scenario, extensive use of synthetic chemicals in agriculture is creating notable problems such as disease and pest resistance, residues, yield loss, and soil unproductiveness. These harmful chemicals are eventually reaching our food plate through bioaccumulation and biomagnification in a crop. As a result, beneficial microorganisms are regularly being explored as a safer option in the agriculture sector for their ability to produce valuable bioactive secondary metabolites, particularly for crop protection. Such natural (bio) products are harmless to plants, humans, and the environment. In our quest for the search of the sources of bioactive constituents from the microorganisms, endophytes are the front-runner. They mutually reside inside the plant providing support against phytopathogens by releasing an array of bioactive secondary metabolites building climate reliance of the host plant. The purpose of this review is to examine the biocontrol potential of endophytes against bacterial and fungal pathogens in sustainable agriculture. We also attempt to explain the structure and activity of the secondary metabolites produced by bacterial and fungal endophytes in conjunction with their biocontrol function. Additionally, we address potential future research directions for endophytes as biopesticides.
Collapse
Affiliation(s)
- Ayushi Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313 India
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201313 India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313 India
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313 India
| | - Takwa Marzouk
- Centre of Biotechnology of Borj Cedria (CBBC), Laboratory of Bioactive Substances, BP 901, Hammam-lif 2050, Tunisia
| | - Naceur Djébali
- Centre of Biotechnology of Borj Cedria (CBBC), Laboratory of Bioactive Substances, BP 901, Hammam-lif 2050, Tunisia
| |
Collapse
|
22
|
Cheng T, Kolařík M, Quijada L, Stadler M. A re-assessment of Taxomyces andreanae, the alleged taxol-producing fungus, using comparative genomics. IMA Fungus 2022; 13:17. [PMID: 36163041 PMCID: PMC9511726 DOI: 10.1186/s43008-022-00103-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
The monotypic "bulbilliferous hyphomycete" genus Taxomyces was erected in 1993 for a fungal endophyte isolated from the Yew tree Taxus brevifolia and named Taxomyces andreanae. This fungus was reported to produce the plant-derived anti-cancer drug taxol. The original description of the fungus was not conclusive as to its taxonomic position because no sporulation or other salient morphological features were reported. Consequently, the taxonomic affinities of this fungus have remained obscure. However, a full genome sequence of this strain was generated by a German research group in 2013, in an unsuccessful attempt to detect the biosynthesis genes encoding for taxol. This prompted us to search for phylogenetic marker genes and compare those with the data that recently have become available from state-of-the-art polyphasic taxonomic studies. Surprisingly, the strain turned out to belong to the phlebioid clade of wood-destroying Basidiomycota as inferred from a comparison of its partial ITS, the 28S rDNA (LSU), the RNA polymerase II largest subunit (rpb1), the RNA polymerase II second largest subunit (rpb2), and the translation elongation factor 1-α (tef1) sequences. A multi gene genealogy based on these loci revealed that the closest relative is Ceriporiopsis (syn. Mycoacia) gilvescens. Even though such wood-destroying Basidiomycota are regularly encountered among the endophytic isolates after surface-disinfection of plant organs, the vast majority of the reported endophytic fungi belong to the Ascomycota. Nevertheless, the data available now allow for synonymizing Taxomyces with Ceriporiopsis, and the necessary new combination is made.
Collapse
Affiliation(s)
- Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.,Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, 14220, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, 14220, Prague, Czech Republic
| | - Luis Quijada
- Department of Organismic and Evolutionary Biology, The Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany. .,Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
| |
Collapse
|
23
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
24
|
Salvi P, Mahawar H, Agarrwal R, Kajal, Gautam V, Deshmukh R. Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants. Front Microbiol 2022; 13:981355. [PMID: 36118190 PMCID: PMC9478035 DOI: 10.3389/fmicb.2022.981355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Change in global climate has started to show its effect in the form of extremes of temperatures and water scarcity which is bound to impact adversely the global food security in near future. In the current review we discuss the impact of drought on plants and highlight the ability of endophytes, microbes that inhabit the plants asymptomatically, to confer stress tolerance to their host. For this we first describe the symbiotic association between plant and the endophytes and then focus on the molecular and physiological strategies/mechanisms adopted by these endophytes to confer stress tolerance. These include root alteration, osmotic adjustment, ROS scavenging, detoxification, production of phytohormones, and promoting plant growth under adverse conditions. The review further elaborates on how omics-based techniques have advanced our understanding of molecular basis of endophyte mediated drought tolerance of host plant. Detailed analysis of whole genome sequences of endophytes followed by comparative genomics facilitates in identification of genes involved in endophyte-host interaction while functional genomics further unveils the microbial targets that can be exploited for enhancing the stress tolerance of the host. Thus, an amalgamation of endophytes with other sustainable agricultural practices seems to be an appeasing approach to produce climate-resilient crops.
Collapse
|
25
|
Haddad R, Alrabadi N, Altaani B, Masadeh M, Li T. Hydroxypropyl Beta Cyclodextrin as a Potential Surface Modifier for Paclitaxel Nanocrystals. AAPS PharmSciTech 2022; 23:219. [PMID: 35945468 DOI: 10.1208/s12249-022-02373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Paclitaxel (PTX) is a hydrophobic chemotherapeutic agent cytotoxic against many serious cancers. This study aimed at designing novel PTX nanocrystals (PTX-NCs) coated with the biocompatible and biodegradable hydroxypropyl-beta-cyclodextrin (HPβCD) polymer with specific characteristics through the formation of a non-inclusion complex. Briefly, PTX-NCs were prepared by the anti-solvent method followed by homogenization. Then, the surface of the prepared PTX-NCs was modified using the HPβCD coat (HPβCD-PTX-NCs). The prepared nanocrystals, both coated and uncoated, were characterized in terms of size, polydispersity index, charge, morphology, and stability. Moreover, the nanocrystals were investigated using powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR). As well, the in vitro release of PTX from the nanocrystals was determined under conditions similar to the IV route of administration. Furthermore, the tendency of the nanocrystals to induce hemolysis was investigated. Results indicated that the size was about 241.4 and 310.5 nm, the polydispersity index was 0.14 and 0.21, and the zeta potential was about - 22.6 and - 16.4 mV for PTX-NCs and HPβCD-PTX-NCs, respectively. Additionally, the PXRD, FTIR, and DSC profiles can be explained by the NCs' integrity and coat formation. The SEM images showed that both PTX-NCs and HPβCD-PTX-NCs have rod-like structures. Moreover, HPβCD-PTX-NCs had significantly superior in vitro release than both PTX-NCs and PTX. Interestingly, the hemolytic assay showed that HPβCD-PTX-NCs had a more efficient and safer profile than PTX-NCs. This study emphasized that HPβCD could be an interesting candidate for the surface modification of PTX-NCs providing superior properties such as release and safety profiles.
Collapse
Affiliation(s)
- Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Bashar Altaani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Majed Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
26
|
Singh D, Thapa S, Mahawar H, Kumar D, Geat N, Singh SK. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie van Leeuwenhoek 2022; 115:699-730. [PMID: 35460457 DOI: 10.1007/s10482-022-01736-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/26/2022] [Indexed: 01/13/2023]
Abstract
Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan, Uttar Pradesh, 275103, India
| | - Himanshu Mahawar
- ICAR-Directorate of Weed Research (DWR), Maharajpur, Jabalpur, Madhya Pradesh, 482004, India
| | - Dharmendra Kumar
- ICAR- Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Neelam Geat
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - S K Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| |
Collapse
|
27
|
Anderson VM, Wendt KL, Caughron JB, Matlock HP, Rangu N, Najar FZ, Miller AN, Luttenton MR, Cichewicz RH. Assessing Microbial Metabolic and Biological Diversity to Inform Natural Product Library Assembly. JOURNAL OF NATURAL PRODUCTS 2022; 85:1079-1088. [PMID: 35416663 DOI: 10.1021/acs.jnatprod.1c01197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pressing need for novel chemical matter to support bioactive compound discovery has led natural product researchers to explore a wide range of source organisms and environments. One of the implicit guiding principles behind those efforts is the notion that sampling different environments is critical to accessing unique natural products. This idea was tested by comparing fungi from disparate biomes: aquatic sediments from Lake Michigan (USA) and terrestrial samples taken from the surrounding soils. Matched sets of Penicillium brevicompactum, Penicillium expansum, and Penicillium oxalicum from the two source environments were compared, revealing modest differences in physiological performance and chemical output. Analysis of LC-MS/MS-derived molecular feature data showed no source-dependent differences in chemical richness. High levels of scaffold homogeneity were also observed with 78-83% of scaffolds shared among the terrestrial and aquatic Penicillium spp. isolates. A comparison of the culturable fungi from the two biomes indicated that certain genera were more strongly associated with aquatic sediments (e.g., Trichoderma, Pseudeurotium, Cladosporium, and Preussia) versus the surrounding terrestrial environment (e.g., Fusarium, Pseudogymnoascus, Humicola, and Acremonium). Taken together, these results suggest that focusing efforts on sampling the microbial resources that are unique to an environment may have a more pronounced effect on enhancing the sought-after natural product diversity needed for chemical discovery and screening collections.
Collapse
Affiliation(s)
- Victoria M Anderson
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - James B Caughron
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Hagan P Matlock
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nitin Rangu
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Fares Z Najar
- Chemistry and Biochemistry Bioinformatics Core, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, Illinois 61820, United States
| | - Mark R Luttenton
- R. B. Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan 49441, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
28
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
29
|
Abdel-Fatah SS, El-Sherbiny GM, khalaf M, Baz AFE, El-Sayed ASA, El-Batal AI. Boosting the Anticancer Activity of Aspergillus flavus "endophyte of Jojoba" Taxol via Conjugation with Gold Nanoparticles Mediated by γ-Irradiation. Appl Biochem Biotechnol 2022; 194:3558-3581. [PMID: 35438406 PMCID: PMC9270289 DOI: 10.1007/s12010-022-03906-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Taxol production by fungi is one of the promising alternative approaches, regarding to the natural and semisynthetic sources; however, the lower yield and rapid loss of Taxol productivity by fungi are the major challenges that halt their further industrial implementation. Thus, searching for fungal isolates with affordable Taxol-production stability, in addition to enhance its anticancer activity via conjugation with gold nanoparticles, is the main objectives of this study. Twenty-four endophytic fungal isolates were recovered from the barks, twigs, and leaves of jojoba plant, among these fungi, Aspergillus flavus MW485934.1 was the most potent Taxol producer (88.6 µg/l). The chemical identity of the extracted Taxol of A. flavus was verified by the TLC, HPLC, HNMR, and FTIR analyses. The yield of Taxol produced by A. flavus was optimized by the response surface methodology (RSM) using Plackett-Burman (PBD) and faced central composite designs (FCCD). The yield of Taxol by A. flavus was increased by about 3.2 folds comparing to the control cultures (from 96.5 into 302.7 µg/l). The highest Taxol yield by was obtained growing A. flavus on a modified malt extract medium (g/l) (malt extract 20.0, peptone 2.0, sucrose 20.0, soytone 2.0, cysteine 0.5, glutamine 0.5, and beef extract 1.0 adjusted to pH 6.0) and incubated at 30 °C for 16 days. From the FCCD design, the significant variables affecting Taxol production by A. flavus were cysteine, pH, and incubation time. Upon A. flavus γ-irradiation at 1.0 kGy, the Taxol yield was increased by about 1.25 fold (375.9 µg/l). To boost its anticancer activity, the purified Taxol was conjugated with gold nanoparticles (AuNPs) mediated by γ-rays irradiation (0.5 kGy), and the physicochemical properties of Taxol-AuNPs composite were evaluated by UV-Vis, DLS, XRD, and TEM analyses. The IC50 values of the native-Taxol and Taxol-AuNPs conjugates towards HEPG-2 cells were 4.06 and 2.1 µg/ml, while the IC50 values against MCF-7 were 6.07 and 3.3 µg/ml, respectively. Thus, the anticancer activity of Taxol-AuNPs composite was increased by 2 folds comparing to the native Taxol towards HEPG-2 and MCF-7 cell lines. Also, the antimicrobial activity of Taxol against the multidrug resistant bacteria was dramatically increased upon conjugation with AuNPs comparing to authentic AuNPs and Taxol, ensuring the higher solubility, targetability, and efficiency of Taxol upon AuNPs conjugation.
Collapse
Affiliation(s)
- Sobhy S. Abdel-Fatah
- grid.429648.50000 0000 9052 0245Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gamal M. El-Sherbiny
- grid.411303.40000 0001 2155 6022Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud khalaf
- grid.429648.50000 0000 9052 0245Microbiology Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ashraf F. El Baz
- Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat University City, Sadat City, Egypt
| | - Ashraf S. A. El-Sayed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Ahmed I. El-Batal
- grid.429648.50000 0000 9052 0245Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
30
|
Zhang X, Guan G, Wang Z, Lv L, Chávez-Madero C, Chen M, Yan Z, Yan S, Wang L, Li Q. Drug release evaluation of Paclitaxel/Poly-L-Lactic acid nanoparticles based on a microfluidic chip. Biomed Microdevices 2021; 23:57. [PMID: 34762163 DOI: 10.1007/s10544-021-00596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/22/2022]
Abstract
Paclitaxel is a commonly used drug in the medical field because of its strong anticancer effect. However, it may produce relatively severe side effects (i.e., allergic reactions). A major characteristic of paclitaxel is low solubility in water. Special solvents are used for dissolving paclitaxel and preparing the paclitaxel drugs, while the solvents themselves will cause certain effects. Polyoxyethylene castor oil, for example, can cause severe allergic reactions in some people, and the clinical use is limited. In this study, we developed a new Paclitaxel/Poly-L-Lactic Acid (PLLA) nanoparticle drug, which is greatly soluble in water, and carried out in vitro drug sustained release research on it and the original paclitaxel drug. However, because the traditional polymer drug carrier usually uses dialysis bag and thermostatic oscillation system to measure the drug release degree in vitro, the results obtained are greatly different from the actual drug release results in human body. Therefore, this paper adopts the microfluidic chip we previously developed to mimic the human blood vessels microenvironment to study the sustained-release of Paclitaxel/PLLA nanoparticles to make the results closer to the release value in human body. The experimental results showed that compared with the original paclitaxel drug, Paclitaxel/PLLA nanoparticles have a long-sustained release time and a slow drug release, realizing the sustained low-dose release of paclitaxel, a cell cycle-specific anticancer drug, and provided certain reference significance and theoretical basis for the research and development of anticancer drugs.
Collapse
Affiliation(s)
- Xiang Zhang
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA. .,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China. .,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guotao Guan
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenxing Wang
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Lv
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Carolina Chávez-Madero
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Departamento de Ingeniería Mecatrónica Y Electrónica, Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Monterrey, 64849, NL, México
| | - Mo Chen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Zhenhao Yan
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Yan
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Wang
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Li
- School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China. .,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, China. .,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Purification and Biochemical Characterization of Taxadiene Synthase from Bacillus koreensis and Stenotrophomonas maltophilia. Sci Pharm 2021. [DOI: 10.3390/scipharm89040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Taxadiene synthase (TDS) is the rate-limiting enzyme of Taxol biosynthesis that cyclizes the geranylgeranyl pyrophosphate into taxadiene. Attenuating Taxol productivity by fungi is the main challenge impeding its industrial application; it is possible that silencing the expression of TDS is the most noticeable genomic feature associated with Taxol-biosynthetic abolishing in fungi. As such, the characterization of TDS with unique biochemical properties and autonomous expression that is independent of transcriptional factors from the host is the main challenge. Thus, the objective of this study was to kinetically characterize TDS from endophytic bacteria isolated from different plants harboring Taxol-producing endophytic fungi. Among the recovered 23 isolates, Bacillus koreensis and Stenotrophomonas maltophilia achieved the highest TDS activity. Upon using the Plackett–Burman design, the TDS productivity achieved by B. koreensis (18.1 µmol/mg/min) and S. maltophilia (14.6 µmol/mg/min) increased by ~2.2-fold over the control. The enzyme was purified by gel-filtration and ion-exchange chromatography with ~15 overall folds and with molecular subunit structure 65 and 80 kDa from B. koreensis and S. maltophilia, respectively. The chemical identity of taxadiene was authenticated from the GC-MS analyses, which provided the same mass fragmentation pattern of authentic taxadiene. The tds gene was screened by PCR with nested primers of the conservative active site domains, and the amplicons were sequenced, displaying a higher similarity with tds from T. baccata and T. brevifolia. The highest TDS activity by both bacterial isolates was recorded at 37–40 °C. The Apo-TDSs retained ~50% of its initial holoenzyme activities, ensuring their metalloproteinic identity. The activity of purified TDS was completely restored upon the addition of Mg2+, confirming the identity of Mg2+ as a cofactor. The TDS activity was dramatically reduced upon the addition of DTNB and MBTH, ensuring the implementation of cysteine-reactive thiols and ammonia groups on their active site domains. This is the first report exploring the autonomous robust expression TDS from B. koreensis and S. maltophilia with a higher affinity to cyclize GGPP into taxadiene, which could be a novel platform for taxadiene production as intermediary metabolites of Taxol biosynthesis.
Collapse
|
32
|
Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. BIORESOURCE TECHNOLOGY 2021; 339:125589. [PMID: 34304098 DOI: 10.1016/j.biortech.2021.125589] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Worldwide, heavy metals pollution is mostly caused by rapid population growth and industrial development which is accumulated in food webs causing a serious public health risk. Endophytic microorganisms have a variety of mechanisms for metal sequestration having metal biosorption capacities.Endophytic organisms like bacteria and fungi provide beneficial qualities that help plants to improve their health, reduce stress, and detoxify metals. Endophytes have a higher proclivity for improving metal and mineral solubility by cells that secrete low-molecular-weight organic acids and metal-specific ligands like siderophores, which change the pH of the soil and improve binding activity. Protein-related approaches like chromatin immunoprecipitation sequencing (ChIP-Seq) and modified enzyme-linked immunosorbent assay (ELISA test) can represent endophytic bacterial community and DNA-protein interactions during metal reduction. This review explored the role of endophytes in bioremediation approaches that can help in analyzing the potential and prospects in response to industrial effluents' detoxification.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
33
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
34
|
Chen Y, Wu J, Yu D, Du X. Advances in steroidal saponins biosynthesis. PLANTA 2021; 254:91. [PMID: 34617240 DOI: 10.1007/s00425-021-03732-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
This work reviews recent advances in the pathways and key enzymes of steroidal saponins biosynthesis and sets the foundation for the biotechnological production of these useful compounds through transformation of microorganisms. Steroidal saponins, due to their specific chemical structures and active effects, have long been important natural products and that are irreplaceable in hormone production and other pharmaceutical industries. This article comprehensively reviewed the previous and current research progress and summarized the biosynthesis pathways and key biosynthetic enzymes of steroidal saponins that have been discovered in plants and microoganisms. On the basis of the general biosynthetic pathway in plants, it was found that the starting components, intermediates and catalysing enzymes were diverse between plants and microorganisms; however, the functions of their related enzymes tended to be similar. The biosynthesis pathways of steroidal saponins in microorganisms and marine organisms have not been revealed as clearly as those in plants and need further investigation. The elucidation of biosynthetic pathways and key enzymes is essential for understanding the synthetic mechanisms of these compounds and provides researchers with important information to further develop and implement the massive production of steroidal saponins by biotechnological approaches and methodologies.
Collapse
Affiliation(s)
- Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Junkai Wu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
35
|
Rai N, Kumari Keshri P, Verma A, Kamble SC, Mishra P, Barik S, Kumar Singh S, Gautam V. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 2021; 12:139-159. [PMID: 34552808 PMCID: PMC8451683 DOI: 10.1080/21501203.2020.1870579] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Endophytes are a potent source of bioactive compounds that mimic plant-based metabolites. The relationship of host plant and endophyte is significantly associated with alteration in fungal colonisation and the extraction of endophyte-derived bioactive compounds. Screening of fungal endophytes and their relationship with host plants is essential for the isolation of bioactive compounds. Numerous bioactive compounds with antioxidant, antimicrobial, anticancer, and immunomodulatory properties are known to be derived from fungal endophytes. Bioinformatics tools along with the latest techniques such as metabolomics, next-generation sequencing, and metagenomics multilocus sequence typing can potentially fill the gaps in fungal endophyte research. The current review article focuses on bioactive compounds derived from plant-associated fungal endophytes and their pharmacological importance. We conclude with the challenges and opportunities in the research area of fungal endophytes.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyanka Kumari Keshri
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swapnil C Kamble
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Pradeep Mishra
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Suvakanta Barik
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
36
|
Raeispour Shirazi M, Rahpeyma SA, Rashidi Monfared S, Zolala J, Lohrasbi-Nejad A. Identification and in-silico characterization of taxadien-5α-ol-O-acetyltransferase (TDAT) gene in Corylus avellana L. PLoS One 2021; 16:e0256704. [PMID: 34449796 PMCID: PMC8396717 DOI: 10.1371/journal.pone.0256704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
Paclitaxel® (PC) is one of the most effective and profitable anti-cancer drugs. The most promising sources of this compound are natural materials such as tissue cultures of Taxus species and, more recently, hazelnut (Corylus avellana L.). A large part of the PC biosynthetic pathway in the yew tree and a few steps in the hazelnut have been identified. Since understanding the biosynthetic pathway of plant-based medicinal metabolites is an effective step toward their development and engineering, this paper aimed to identify taxadiene-5α-ol-O-acetyltransferase (TDAT) in hazelnut. TDAT is one of the key genes involved in the third step of the PC biosynthetic pathway. In this study, the TDAT gene was isolated using the nested-PCR method and then characterized. The cotyledon-derived cell mass induced with 150 μM of methyl jasmonate (MeJA) was utilized to isolate RNA and synthesize the first-strand cDNA. The full-length cDNA of TDAT is 1423 bp long and contains a 1302 bp ORF encoding 433 amino acids. The phylogenetic analysis of this gene revealed high homology with its ortholog genes in Quercus suber and Juglans regia. Bioinformatics analyses were used to predict the secondary and tertiary structures of the protein. Due to the lack of signal peptide, protein structure prediction suggested that this protein may operate at the cytoplasm. The homologous superfamily of the T5AT protein, encoded by TDAT, has two domains. The highest and lowest hydrophobicity of amino acids were found in proline 142 and lysine 56, respectively. T5AT protein fragment had 24 hydrophobic regions. The tertiary structure of this protein was designed using Modeler software (V.9.20), and its structure was verified based on the results of the Verify3D (89.46%) and ERRAT (90.3061) programs. The T5AT enzyme belongs to the superfamily of the transferase, and the amino acids histidine 164, cysteine 165, leucine 166, histidine 167, and Aspartic acid 168 resided at its active site. More characteristics of TDAT, which would aid PC engineering programs and maximize its production in hazelnut, were discussed.
Collapse
Affiliation(s)
- Mona Raeispour Shirazi
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sara Alsadat Rahpeyma
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
- * E-mail:
| | - Sajad Rashidi Monfared
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Jafar Zolala
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
37
|
El-Sayed ASA, Shindia AA, AbouZeid A, Koura A, Hassanein SE, Ahmed RM. Triggering the biosynthetic machinery of Taxol by Aspergillus flavipes via cocultivation with Bacillus subtilis: proteomic analyses emphasize the chromatin remodeling upon fungal-bacterial interaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39866-39881. [PMID: 33768456 DOI: 10.1007/s11356-021-13533-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Attenuating the Taxol biosynthesis by fungi with storage and subculturing is the major challenge that limits their further industrial applications. Aspergillus flavipes has been reported as a potent Taxol producer, with plausible increasing to its Taxol yield upon coculturing with the microbiome of Podocarpus gracilior (El-Sayed et al., Process Biochemistry 76:55-67, 2019a; Scientific Reports 9, 2019b; Enzyme and Microbial Technology 131, 2019c); however, the identity of these microbial inducers remains ambiguous. Thus, this study was to assess the potency of individual microbes to trigger the Taxol biosynthesis by A. flavipes and to unravel the differentially expressed protein in response to bacterial interaction. Among the 25 bacterial endophytes of P. gracilior, Bacillus subtilis was the potent isolate enhancing the Taxol yield of A. flavipes by ~1.6-fold. Strikingly, this bacterial elicitor displayed a reliable inhibition to the growth of A. flavipes, so the released antifungal compound by B. subtilis could be the same signals for triggering the expression of A. flavipes Taxol synthesis. The highest Taxol yield by A. flavipes was obtained with the viable cells of B. subtilis, ensuring the pivotality of physical intimate bacterial-fungal interaction. Differential proteome of the cocultures A. flavipes and B. subtilis as well as the axenic A. flavipes was conducted by LC-MS/MS. From the total of 106 identified proteins, 50 proteins were significantly expressed, 47 were upregulated ones, and 59 were downregulated ones for the cocultures normalizing to the axenic one. From the Gene Ontology (GO) and KEGG enrichment analyses, the cellular process, primary metabolic process, and nitrogen compound metabolic process were significantly changed in the coculture normalizing to monoculture of A. flavipes. The molecular function terms (histones H2B, H2A, peptidyl-prolyl cis-trans isomerase, and nucleoside-diphosphate kinase (NDPK)) were the highly significantly expressed proteins of A. flavipes in response to B. subtilis, with strong correlation to triggering of Taxol biosynthesis. The intimate interaction of A. flavipes with B. subtilis strongly modulates the Taxol biosynthetic machinery of A. flavipes by modulating the chromatin remodeling.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Azza AbouZeid
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa Koura
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sameh E Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Cairo, Egypt
| | - Rania M Ahmed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
38
|
Dhakshinamoorthy M, Kilavan Packiam K, Kumar PS, Saravanakumar T. Endophytic fungus Diaporthe caatingaensis MT192326 from Buchanania axillaris: An indicator to produce biocontrol agents in plant protection. ENVIRONMENTAL RESEARCH 2021; 197:111147. [PMID: 33844965 DOI: 10.1016/j.envres.2021.111147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 05/23/2023]
Abstract
The study aims at the Isolation, screening and antibacterial evaluation of Camptothecin (CPT) and its derivatives, an anticancer molecule from endophytic fungus Diaporthe caatingaensis MT192326 of the medicinal plant, Buchanania axillaris. Plant parts were collected from Sathyamangalam Tiger Reserve forest, Tamil Nadu. The fungus was isolated using DEKM07 medium was used as the screening medium for the presence of CPT. The strain with the highest yield of CPT was identified at the molecular level by 18S rDNA sequencing. CPT was isolated and analyzed by UV-Vis spectrophotometry, Thin layer chromatography, High-Performance Liquid Chromatography, Fourier Transform Infrared spectroscopy, and Electron spray ionization-mass spectrometry. The compounds identified by ESI-MS from the fungal extract were studied for their antibacterial assays against procured MTCC bacterial pathogens. The maximum yield of 0.681 mg/L of CPT was produced by the fungus D.caatingaensis. CPT derivatives were identified at m/z of 305, 348 and 389 through ESI-MS analysis. Antibacterial studies revealed that the endophytic fungal extract compounds were studied for antibacterial activities of disc diffusion assay, exhibiting a growth inhibition range of 15-22 mm in nutrient agar plate medium. The Minimum Inhibitory Concentration revealed the antibacterial potential at a lower concentration of 12.5-25 μg/ml with all bacteria studied. The relatively lower antimicrobial efficacy of partially purified bio-metabolites than the positive control streptomycin (3.125) concentration could be due to the presence of derivatives of the compounds that hinder the activity of the biometabolite. This is the first initiative to screen, isolate and analyze the antibacterial assays of CPT and derivatives from endophytic fungus D.caatingaensis of ethnopharmacologically important B.axillaris plant from STRF.
Collapse
Affiliation(s)
- Madhankumar Dhakshinamoorthy
- Endophytic Fungal Metabolite Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode District, Tamil Nadu, India
| | - Kannan Kilavan Packiam
- Endophytic Fungal Metabolite Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode District, Tamil Nadu, India.
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India
| | - Tamilselvi Saravanakumar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode District, Tamil Nadu, India
| |
Collapse
|
39
|
Chen Y, Hu B, Xing J, Li C. Endophytes: the novel sources for plant terpenoid biosynthesis. Appl Microbiol Biotechnol 2021; 105:4501-4513. [PMID: 34047817 PMCID: PMC8161352 DOI: 10.1007/s00253-021-11350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Terpenoids are natural compounds predominantly present in plants. They have many pharmaceutical and/or nutritional functions, and have been widely applied in medical, food, and cosmetics industries. Recently, terpenoids have been used in the clinical treatment of COVID-19 due to the good antiviral activities. The increasing demand for terpenoids in international markets poses a serious threat to many plant species. For environmentally sustainable development, microbial cell factories have been utilized as the promising platform to produce terpenoids. Nevertheless, the bioproduction of most terpenoids cannot meet commercial requirements due to the low cost-benefit ratio until now. The biosynthetic potential of endophytes has gained attention in recent decades owing to the continual discovery of endophytes capable of synthesizing plant bioactive compounds. Accordingly, endophytes could be alternative sources of terpenoid-producing strains or terpenoid synthetic genes. In this review, we summarized the research progress describing the main and supporting roles of endophytes in terpenoid biosynthesis and biotransformation, and discussed the current problems and challenges which may prevent the further exploitation. This review will improve our understanding of endophyte resources for terpenoid production in industry in the future. The four main research interests on endophytes for terpenoid production. A: Isolation of terpenoid-producing endophytes; B: The heterologous expression of endophyte-derived terpenoid synthetic genes; C: Endophytes promoting their hosts' terpenoid production. The blue dashed arrows indicate signal transduction; D: Biotransformation of terpenoids by endophytes or their enzymes. Key points• The mechanisms employed by endophytes in terpenoid synthesis in vivo and in vitro.• Endophytes have the commercial potentials in terpenoid bioproduction and biotransformation.• Synthetic biology and multiomics will improve terpenoid bioproduction in engineered cell factories.
Collapse
Affiliation(s)
- Yachao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing Hu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
Abdel-Fatah SS, El-Batal AI, El-Sherbiny GM, Khalaf MA, El-Sayed AS. Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endophyte from Ginko biloba. ACTA ACUST UNITED AC 2021; 30:e00623. [PMID: 34026575 PMCID: PMC8120861 DOI: 10.1016/j.btre.2021.e00623] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Twenty-eight fungal endophytes were recovered from the different parts of Ginkgo biloba and screened for their Taxol producing potency. Among these isolates, Penicillium polonicum AUMC14487 was reported as the potent Taxol producer (90.53 μg/l). The chemical identity of the extracted Taxol was verified from the TLC, HPLC, NMR, EDX, and FTIR analyses. The extracted Taxol displayed a strong antiproliferative activity against HEPG2 (IC50 4.06 μM) and MCF7 (IC50 6.07 μM). The yield of Taxol by P. polonicum was optimized by nutritional optimization with the Response Surface Methodology (RSM) using Plackett-Burman and Central Composite Designs. In addition to nutritional optimization, the effect of γ-irradiation of the spores of P. polonicum on its Taxol producing potency was evaluated. The yield of Taxol by P. polonicum was increased via nutritional optimization by response surface methodology with Plackett-Burman and FCCD designs, and γ-irradiation by about 4.5 folds, comparing to the control culture. The yield of Taxol was increased by about 1.2 folds (401.2 μg/l) by γ -irradiation of the isolates at 0.5-0.75 kGy, comparing to the control cultures (332.2 μg/l). The highest Taxol yield was obtained by growing P. polonicum on modified Czapek's- Dox medium (sucrose 40.0 g/l, malt extract 20.0 g/l, peptone 2.0 g/l, K2PO4 2.0 g/l, KCl 1.0 g/l, NaNO3 2.0 g/l, MgSO4. 5H2O 1.0 g/l) of pH 7.0 at 30.0 °C for 7.0 days. From the FCCD design, sucrose, malt extract and incubation time being the highest significant variables medium components affecting the Taxol production by P. polonicum.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud A Khalaf
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.,Microbiology Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ashraf S El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| |
Collapse
|
41
|
Daley SK, Cordell GA. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi. JOURNAL OF NATURAL PRODUCTS 2021; 84:871-897. [PMID: 33534564 DOI: 10.1021/acs.jnatprod.0c01195] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A selection of the established and recently characterized alkaloids from the exploration of plant- and some marine-associated endophytic fungi is reviewed, with reference to alkaloids of biological significance.
Collapse
Affiliation(s)
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
42
|
Sagita R, Quax WJ, Haslinger K. Current State and Future Directions of Genetics and Genomics of Endophytic Fungi for Bioprospecting Efforts. Front Bioeng Biotechnol 2021; 9:649906. [PMID: 33791289 PMCID: PMC8005728 DOI: 10.3389/fbioe.2021.649906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
The bioprospecting of secondary metabolites from endophytic fungi received great attention in the 1990s and 2000s, when the controversy around taxol production from Taxus spp. endophytes was at its height. Since then, hundreds of reports have described the isolation and characterization of putative secondary metabolites from endophytic fungi. However, only very few studies also report the genetic basis for these phenotypic observations. With low sequencing cost and fast sample turnaround, genetics- and genomics-based approaches have risen to become comprehensive approaches to study natural products from a wide-range of organisms, especially to elucidate underlying biosynthetic pathways. However, in the field of fungal endophyte biology, elucidation of biosynthetic pathways is still a major challenge. As a relatively poorly investigated group of microorganisms, even in the light of recent efforts to sequence more fungal genomes, such as the 1000 Fungal Genomes Project at the Joint Genome Institute (JGI), the basis for bioprospecting of enzymes and pathways from endophytic fungi is still rather slim. In this review we want to discuss the current approaches and tools used to associate phenotype and genotype to elucidate biosynthetic pathways of secondary metabolites in endophytic fungi through the lens of bioprospecting. This review will point out the reported successes and shortcomings, and discuss future directions in sampling, and genetics and genomics of endophytic fungi. Identifying responsible biosynthetic genes for the numerous secondary metabolites isolated from endophytic fungi opens the opportunity to explore the genetic potential of producer strains to discover novel secondary metabolites and enhance secondary metabolite production by metabolic engineering resulting in novel and more affordable medicines and food additives.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Groningen Institute of Pharmacy, Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
43
|
Isolation of endophytic fungi with antimicrobial activity from medicinal plant Zanthoxylum simulans Hance. Folia Microbiol (Praha) 2021; 66:385-397. [PMID: 33544301 DOI: 10.1007/s12223-021-00854-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Fungal endophytes have been found to exist in many plant species and appear to be important to their plant hosts. However, the diversity and biological activities of these fungi remain largely unknown. Zanthoxylum simulans Hance, a popular natural spice and medicinal plant, commonly known as Szechuan pepper or Chinese-pepper, grows on Kinmen Island, Taiwan. In this study, leaf and stem samples of Z. simulans, collected in summer and winter, were screened for antimicrobial and anti-inflammatory metabolite-producing endophytic fungi. A total of 113 endophytic strains were isolated and cultured from Z. simulans, among which 23 were found to possess antimicrobial activity, belonging to six fungal genera: Penicillium (26.09%, 6), Colletotrichum (21.74%, 5), Diaporthe (21.74%, 5), Daldinia (17.39%, 4), Alternaria (8.70%, 2), and Didymella (4.34%, 1). We also found that the number of species with antimicrobial activity and their compositions differed between summer and winter. Our study demonstrated that Z. simulans might contain large and diverse communities of endophytic fungi, and its community composition varies seasonally. In addition, fungal endophytes produce antimicrobial agents, which may protect their hosts against pathogens and could be a potential source of natural antibiotics.
Collapse
|
44
|
Zhao D, Huang X, Zhang Z, Ding J, Cui Y, Chen X. Engineered nanomedicines for tumor vasculature blockade therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1691. [PMID: 33480163 DOI: 10.1002/wnan.1691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Tumor vasculature blockade therapy (TVBT), including angiogenesis inhibition, vascular disruption, and vascular infarction, provides a promising treatment modality for solid tumors. However, low selectivity, drug resistance, and possible severe side effects have limited the clinical transformation of TVBT. Engineered nanoparticles offer potential solutions, including prolonged circulation time, targeted transportation, and controlled release of TVBT agents. Moreover, engineered nanomedicines provide a promising combination platform of TVBT with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, ultrasound therapy, and gene therapy. In this article, we offer a comprehensive summary of the current progress of engineered nanomedicines for TVBT and also discuss current deficiencies and future directions for TVBT development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xu Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
45
|
|
46
|
Zhang X, Xu Z, Ma J, Zhou D, Xu J. Phylogenetic Diversity, Antimicrobial and Antioxidant Potential and Identification of Bioactive Compounds from Culturable Endophytic Fungi Associated with Mangrove Bruguiera sexangula (Lour.) Poir. Curr Microbiol 2021; 78:479-489. [PMID: 33386937 DOI: 10.1007/s00284-020-02314-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
A total of 96 isolates were obtained from 375 segments, isolated from the healthy roots, stems, leaves, hypocotyls and flowers of Bruguiera sexangula (Lour.) Poir. collected at the Dong Zhai Gang Mangrove Garden on Hainan Island, and 20 independent representative isolates were identified using a combination of morphological and molecular approaches. The most frequent endophytic fungal species isolated were Diaporthe phaseolorum (relative frequency = 31.2%). The Shannon-Wiener diversity and Simpson's diversity index both showed that stems possessed the highest diversity compared to the other tissues estimated. Ethyl acetate extracts and the isolated metabolites were tested for antimicrobial activity using the serial dilution technique and for antioxidant activity using 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical-scavenging capacity assays, respectively. The fungal isolate HL18 (Gelasinospora endodonta) cultured on Czapek's agar (CA) displayed a broad spectrum of antimicrobial activities and was significantly active against Escherichia coli (MIC = 0.0625 mg ml-1). Antioxidant assays showed that most of the fungal isolates (60.0%) exhibited some degree of antioxidant capacity (%RSA > 50%). The stain HL14 (Pestalotiopsis mangiferae) grown on potato dextrose agar (PDA) exhibited the highest DPPH and ABTS radical-scavenging capability with IC50 values of 0.717 ± 0.012 mg ml-1 and 0.787 ± 0.027 mg ml-1, respectively. Furthermore, five known secondary metabolites 1-5 were isolated and identified from HL-14. Compounds 1 and 5 exhibited weak antioxidant activity.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Zhiyong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.,School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, People's Republic of China
| | - Jiankun Ma
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Dongdong Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Jing Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China. .,School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
47
|
Madbouly AK. Biodiversity of Genus Trichoderma and Their Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Kouipou Toghueo RM, Youmbi DY, Boyom FF. Endophytes from Panax species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
49
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
50
|
Zhang CB, Ren CH, Wang YL, Wang QQ, Wang YS, Weng QB. Uncovering fungal community composition in natural habitat of Ophiocordyceps sinensis using high-throughput sequencing and culture-dependent approaches. BMC Microbiol 2020; 20:331. [PMID: 33138775 PMCID: PMC7607863 DOI: 10.1186/s12866-020-01994-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approaches. Results A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices, Ophiocordyceps, Sebacinia and Archaeorhizomyces were predominant genera with the abundance of 95.86, 1.14, 0.85%, respectively. A total of 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, unclassified Ascomycota and unclassified fungi were predominant genera with an average abundance of 53.32, 8.69, 8.12, 8.12, 7.21, 4.6, 3.08 and 3.05%, respectively. The fungal communities in external mycelial cortices were significantly distinct from soil microhabitat. Meanwhile, seven types of culture media were used to isolate culturable fungi at 16 °C, resulted in 77 fungal strains identified by rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora and Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera. Conclusions The significantly differences and overlap in fungal community structure between two approaches highlight that the integration of high-throughput sequencing and culture-dependent approaches would generate more information. Our result reveal a comprehensive understanding of fungal community structure of natural O. sinensis, provide new insight into O. sinensis associated fungi, and support that microbiota of natural O. sinensis is an untapped source for novel bioactive metabolites discovery.
Collapse
Affiliation(s)
- Chuan-Bo Zhang
- School of Life Sciences, Guizhou Normal University, Huaxi University Town, Gui'an New District, Guiyang, 550025, China.
| | - Chao-Hui Ren
- School of Life Sciences, Guizhou Normal University, Huaxi University Town, Gui'an New District, Guiyang, 550025, China
| | - Yan-Li Wang
- School of Life Sciences, Guizhou Normal University, Huaxi University Town, Gui'an New District, Guiyang, 550025, China
| | - Qi-Qi Wang
- School of Life Sciences, Guizhou Normal University, Huaxi University Town, Gui'an New District, Guiyang, 550025, China
| | - Yun-Sheng Wang
- School of Life Sciences, Guizhou Normal University, Huaxi University Town, Gui'an New District, Guiyang, 550025, China
| | - Qing-Bei Weng
- School of Life Sciences, Guizhou Normal University, Huaxi University Town, Gui'an New District, Guiyang, 550025, China
| |
Collapse
|