1
|
Tullii G, Gutierrez-Fernandez E, Ronchi C, Bellacanzone C, Bondi L, Criado-Gonzalez M, Lagonegro P, Moccia F, Cramer T, Mecerreyes D, Martín J, Antognazza MR. Bimodal modulation of in vitro angiogenesis with photoactive polymer nanoparticles. NANOSCALE 2023; 15:18716-18726. [PMID: 37953671 DOI: 10.1039/d3nr02743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Angiogenesis is a fundamental process in biology, given the pivotal role played by blood vessels in providing oxygen and nutrients to tissues, thus ensuring cell survival. Moreover, it is critical in many life-threatening pathologies, like cancer and cardiovascular diseases. In this context, conventional treatments of pathological angiogenesis suffer from several limitations, including low bioavailability, limited spatial and temporal resolution, lack of specificity and possible side effects. Recently, innovative strategies have been explored to overcome these drawbacks based on the use of exogenous nano-sized materials and the treatment of the endothelial tissue with optical or electrical stimuli. Here, conjugated polymer-based nanoparticles are proposed as exogenous photo-actuators, thus combining the advantages offered by nanotechnology with those typical of optical stimulation. Light excitation can achieve high spatial and temporal resolution, while permitting minimal invasiveness. Interestingly, the possibility to either enhance (≈+30%) or reduce (up to -65%) the angiogenic capability of model endothelial cells is demonstrated, by employing different polymer beads, depending on the material type and the presence/absence of the light stimulus. In vitro results reported here represent a valuable proof of principle of the reliability and efficacy of the proposed approach and should be considered as a promising step towards a paradigm shift in therapeutic angiogenesis.
Collapse
Affiliation(s)
- Gabriele Tullii
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| | - Edgar Gutierrez-Fernandez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Carlotta Ronchi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| | - Christian Bellacanzone
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| | - Luca Bondi
- DiFA University of Bologna, Viale Carlo Berti Pichat 6/2 Bologna, 40127, Italy
| | - Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Paola Lagonegro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Tobias Cramer
- DiFA University of Bologna, Viale Carlo Berti Pichat 6/2 Bologna, 40127, Italy
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jaime Martín
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Campus Esteiro S/N, 15403 Ferrol, Spain
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy.
| |
Collapse
|
2
|
Jo S, Lee H, Park JH, Yang JK, Lee WJ, Lim J, Kim S, Lee S, Lee TS. Silica-Based Platform Decorated with Conjugated Polymer Dots and Prussian Blue for Improved Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43455-43467. [PMID: 37682242 DOI: 10.1021/acsami.3c08404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
To advance cancer treatment, we have developed a novel composite material consisting of conjugated polymer dots (CPDs) and Prussian blue (PB) particles, which were immobilized on, and encapsulated within, silica particles, respectively. The CPDs functioned as both a photosensitizer and a photodynamic agent, and the PB acted as a photothermal agent. The silica platform provided a biocompatible matrix that brought the two components into close proximity. Under laser irradiation, the fluorescence from the CPDs in the composite material enabled cell imaging and was subsequently converted to thermal energy by PB. This efficient energy transfer was accomplished because of the spectral overlap between the emission of donor CPDs and the absorbance of acceptor PB. The increase in local temperature in the cells resulted in a significant increase in the amount of reactive oxygen species (ROS) generated by CPDs, in which their independent use did not produce sufficient ROS for cancer cell treatment. To assess the impact of the enhanced ROS generation by the composite material, we conducted experiments using cancer cells under 532 nm laser irradiation. The results showed that with the increase in local temperature, the generated ROS increased by 30% compared with the control, which did not contain PB. When the silica-based composite material was positioned at the periphery of the tumor for 120 h, it led to a much slower tumor growth than other materials tested. By using a CPD-based photodynamic therapy platform, a new simplified approach to designing and preparing cancer treatments could be achieved, which included photothermal PB-assisted enhanced ROS generation using a single laser. This advancement opens up an exciting new opportunity for effective cancer treatment.
Collapse
Affiliation(s)
- Seonyoung Jo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Hyeonhee Lee
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Ji Hwan Park
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jin-Kyoung Yang
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Won-Jong Lee
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Soojin Lee
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Taek Seung Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
3
|
Zhao M, Uzunoff A, Green M, Rakovich A. The Role of Stabilizing Copolymer in Determining the Physicochemical Properties of Conjugated Polymer Nanoparticles and Their Nanomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091543. [PMID: 37177088 PMCID: PMC10180373 DOI: 10.3390/nano13091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Conjugated polymer nanoparticles (CPNs) are a promising class of nanomaterials for biomedical applications, such as bioimaging, gene and drug delivery/release, photodynamic therapy (PDT), photothermal therapy (PTT), and environmental sensing. Over the past decade, many reports have been published detailing their synthesis and their various potential applications, including some very comprehensive reviews of these topics. In contrast, there is a distinct lack of overview of the role the stabilizing copolymer shells have on the properties of CPNs. This review attempts to correct this oversight by scrutinizing reports detailing the synthesis and application of CPNs stabilized with some commonly-used copolymers, namely F127 (Pluronic poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) diacrylate), PSMA (poly(styrene-co-maleic anhydride)), PLGA (poly(D, L-lactide-co-glycolide)) and PEG (polyethylene glycol) derivatives. The analysis of the reported physicochemical properties and biological applications of these CPNs provides insights into the advantages of each group of copolymers for specific applications and offers a set of guidance criteria for the selection of an appropriate copolymer when designing CPNs-based probes. Finally, the challenges and outlooks in the field are highlighted.
Collapse
Affiliation(s)
- Miao Zhao
- Physics Department, King's College London, London WC2R 2LS, UK
| | - Anton Uzunoff
- Physics Department, King's College London, London WC2R 2LS, UK
| | - Mark Green
- Physics Department, King's College London, London WC2R 2LS, UK
| | | |
Collapse
|
4
|
Zhang H, Nie C, Cao D, Cheng X, Guan R. Constructing unconventional fluorescent molecules by imidazoline ring and its salt of carboxylic acid and their application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Li CH, Wang WF, Stanislas N, Yang JL. Facile preparation of fluorescent water-soluble non-conjugated polymer dots and fabricating an acetylcholinesterase biosensor. RSC Adv 2022; 12:7911-7921. [PMID: 35424765 PMCID: PMC8982230 DOI: 10.1039/d1ra07854b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/26/2022] [Indexed: 11/26/2022] Open
Abstract
Acetylcholinesterase (AChE) has been demonstrated as a crucial enzyme in the development and treatment of Alzheimer's disease (AD). The present work reported the preparation of high fluorescence emission, water-soluble, non-conjugated polymer dots (NCPDs) via Schiff base reaction, and its self-assembly between hyperbranched poly(ethylenimine) (PEI) and pyrogallol in aqueous solutions. A one-pot method was introduced, which made the preparation process of the NCPDs more convenient, energy-efficient, and environmentally friendly. The mechanism of the inherent fluorescence of NCPDs and its fluorescence properties were investigated. This study, for the first time, explored the application of NCPDs to a nanoquencher biosensing system, discovering the reversible quenching effect of MnO2 nanosheets for NCPDs. Furthermore, the quenching mechanism of MnO2 for NCPDs was demonstrated to be an inner filter effect (IFE). The NCPDs-MnO2 biosensing system showed a broader detection range from 12.3 to 3675 U L-1 for AChE and the limit of detection (LOD) was as low as 4.9 U L-1. The sensing system has been applied to screen AChE inhibitors, and the result of the positive drug was highly consistent with previous studies. The established method showed a promising prospect in screening for leading compounds in new drug discoveries for AD.
Collapse
Affiliation(s)
- Cai-Hong Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
| | - Nsanzamahoro Stanislas
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
| |
Collapse
|
6
|
Schüller M, Meister A, Green M, Dailey LA. Investigating conjugated polymer nanoparticle formulations for lateral flow immunoassays. RSC Adv 2021; 11:29816-29825. [PMID: 35479543 PMCID: PMC9040913 DOI: 10.1039/d1ra05212h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Lateral flow immunoassays (LFI) are valuable tools for point-of-care testing. However, their sensitivity is limited and can be further improved. Nanoparticles (NP) of conjugated polymers (CPNs), also known as Pdots, are reported to be highly sensitive fluorescent probes, but a direct comparison with conventional colloidal gold-based (Au-NP) LFI using the same antibody-antigen pair is missing to date. Furthermore, the influence of brightness and Stokes shift of CPs on the signal : background ratio (SBR) needs to be evaluated. In this study, we encapsulated two different CPs, poly-(9,9-di-n-octyl-fluorenyl-2,7-diyl) (PDOF) and poly-(2,5-di-hexyloxy-cyanoterephthalylidene) (CN-PPV) in silica shell-crosslinked Pluronic© micelles (Si-NP) and Pdots and investigated the NP brightness with respect to CP loading dose. The brightest formulation of each NP system was conjugated to rabbit IgG as a model antigen and the SBR was investigated in an ELISA-like microplate assay and LFI. Two reference particles, Au-NP and a polystyrene NP (PS-NP) loaded with a small-molecule fluorescent dye were conjugated to IgG and compared to the Si-NP and Pdots. The mass of Pdots required for detection in LFI was at least two orders of magnitude lower than that of Si-NP and the reference NP. The SBR of CN-PPV (moderate brightness, large Stokes shift) was two to three times higher than the SBR of PDOF (high brightness, small Stokes shift). To combine the favourable properties of both CPs, a polymer blend of PDOF and CN-PPV was encapsulated in Pdots, and resulted in further increase of SBR in the microplate assay and LFI. In summary, combining two CPs with different properties can lead to fluorescent signal-transducers for applications such as ELISA and LFIs, which can enhance the detection limit of the assay by 2-3 orders of magnitude.
Collapse
Affiliation(s)
- Moritz Schüller
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Annette Meister
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Mark Green
- Department of Physics, King's College London London UK
| | - Lea Ann Dailey
- Department of Pharmaceutical Science, University of Vienna Vienna Austria
| |
Collapse
|
7
|
Gwon Y, Jo S, Lee HJ, Park SY, Lee TS. Synthesis of donor-acceptor-type conjugated polymer dots as organic photocatalysts for dye degradation and hydrogen evolution. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Wilson JF, Zahradník B, Šrom O, Jaquet B, Hassouna F, Hrdlička Z, Kosek J, Šoóš M. Study of the Shear-Thinning Effect between Polymer Nanoparticle Surfaces during Shear-Induced Aggregation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José Francisco Wilson
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Boleslav Zahradník
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Ondřej Šrom
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Baptiste Jaquet
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Fatima Hassouna
- Department of Computing and Control Engineering, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Zdeněk Hrdlička
- Department of Polymers, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Juraj Kosek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Miroslav Šoóš
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
9
|
Haehnle B, Jathavedan KK, Schuster PA, Karg M, Kuehne AJC. Elucidating the Nucleation Event in the C–C Cross-Coupling Step-Growth Dispersion Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bastian Haehnle
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kiran Kaithakkal Jathavedan
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp A. Schuster
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander J. C. Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
10
|
Zhang W, Zhang H, Wang M, Li P, Ding C, Zhang W, Wang H, Tang B. Copolymer-Based Fluorescence Nanosensor for In Situ Imaging of Homocysteine in the Liver and Kidney of Diabetic Mice. Anal Chem 2020; 92:16221-16228. [PMID: 33210902 DOI: 10.1021/acs.analchem.0c04068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homocysteine (Hcy) is one of the important biomarkers of clinical diagnosis, which is closely related to the occurrence and development of many diseases. Current analysis methods have difficulties in detecting Hcy in cells and living organisms. As a powerful technique, fluorescence methods combined the laser confocal imaging technology can achieve real-time visual tracking in cells and in vivo. Herein, we establish a conjugated copolymer-based fluorescence nanosensor (DPA-PFNP-Cu(II)) using the connected 2,7-dibromofluorene and 4,7-bis (2-bromothiophen-5-yl)-2-1-3-benzothiadiazole as the main chain. The competitive coordination between Hcy and Cu(II) allows the fluorescence of the polymer off to on. Finally, the nanosensor is applied for in situ imaging of Hcy levels in the kidney and liver of diabetic mice and is found that Hcy levels were positively correlated with the degree of diabetes. Notably, the depth of tissue penetration of the nanosensor enables Hcy detection of the liver and kidney through in vivo imaging without damage. Two-photon imaging and in vivo imaging achieve consistent results, which correct each other, improving the accuracy of the test result. The present works provide a new imaging technique for studying the occurrence and development of diabetes and screening of new drugs for treatment at the living level.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengqi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
11
|
Karges J, Li J, Zeng L, Chao H, Gasser G. Polymeric Encapsulation of a Ruthenium Polypyridine Complex for Tumor Targeted One- and Two-Photon Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54433-54444. [PMID: 33238711 DOI: 10.1021/acsami.0c16119] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photodynamic therapy is a medical technique, which is gaining increasing attention to treat various types of cancer. Among the investigated classes of photosensitizers (PSs), the use of Ru(II) polypyridine complexes is gaining momentum. However, the currently investigated compounds generally show poor cancer cell selectivity. As a consequence, high drug doses are needed, which can cause side effects. To overcome this limitation, there is a need for the development of a suitable drug delivery system to increase the amount of PS delivered to the tumor. Herein, we report the encapsulation of a promising Ru(II) polypyridyl complex into polymeric nanoparticles with terminal biotin groups. Thanks to this design, the particles showed much higher selectivity for cancer cells in comparison to noncancerous cells in a 2D monolayer and 3D multicellular tumor spheroid model. As a highlight, upon intravenous injection of an identical amount of the Ru(II) polypyridine complex of the nanoparticle formulation, an improved accumulation inside an adenocarcinomic human alveolar basal epithelial tumor of a mouse up to a factor of 8.7 compared to the Ru complex itself was determined. The nanoparticles were found to have a high phototoxic effect upon one-photon (500 nm) or two-photon (800 nm) excitation with eradication of adenocarcinomic human alveolar basal epithelial tumor inside a mouse model. Overall, this work describes, to the best of our knowledge, the first in vivo study demonstrating the cancer cell selectivity of a very promising Ru(II)-based PDT photosensitizer encapsulated into polymeric nanoparticles with terminal biotin groups.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Jia Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
- Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
12
|
Dong S, Yi L, Cheng L, Li S, Yang W, Wang Z, Jiang S. High-purity foam-like micron-sized gold cage material with tunable plasmon properties. Sci Rep 2020; 10:16555. [PMID: 33024150 PMCID: PMC7538574 DOI: 10.1038/s41598-020-72831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/07/2020] [Indexed: 11/19/2022] Open
Abstract
Herein, by growing mono dispersed gold nanoparticles (MNPAu) on the surface of polystyrene (PS)/nanogold (Au) core–shell composites (PS@Au), we successfully synthesized a micron-sized gold cage (2.6–10.7 μm), referred to as PS@Au@MNPAu for the first time. The new micron-gold cage materials exhibit broadband absorption range from near-ultraviolet to near-infrared, which is unlike the conventional nanogold core–shell structure. The uniform growth of MNPAu on the surface forms a new photonic crystal spectrum. The strong coupling of the spectra causes anomalous absorption in the ultraviolet-near infrared band (400–900 nm). Furthermore, by removing the PS core, a nanogold cavity structure referred to as Au@MNPAu was prepared. This structure demonstrated a high purity (> 97 wt%), low density (9–223 mg/cm3), and high specific surface area (854 m2/g). As the purification process progressed, the MNPAu coupling on the surface of the micro-gold cage strengthened, resulting in the formation of peaks around 370 nm, plasma resonant peaks around 495 nm, and structural bands of photonic crystal peaks around 850 nm. The micron-sized gold cage provides hybridized and tunable plasmonic systems. The theoretical simulations indicate that this plasmon anomalous absorption phenomena can be understood as the novel form of the topological structural transitions near the percolation threshold, which is consistent experimental measurements.
Collapse
Affiliation(s)
- Shuo Dong
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lin Yi
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Lexiao Cheng
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Shijian Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Weiming Yang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, China
| | - Zhebin Wang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, China
| | - Shaoen Jiang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, China
| |
Collapse
|
13
|
Wilson JF, Trunov D, Šrom O, Štětina J, Hassouna F, Kosek J, Šoóš M. Temperature modulated polymer nanoparticle bonding: A numerical and experimental study. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
A novel colloidal deposition method to prepare copper nanoparticles/polystyrene nanocomposite with antibacterial activity and its comparison to the liquid-phase in situ reduction method. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Kim J, Lee J, Lee TS. Size-dependent fluorescence of conjugated polymer dots and correlation with the fluorescence in solution and in the solid phase of the polymer. NANOSCALE 2020; 12:2492-2497. [PMID: 31916550 DOI: 10.1039/c9nr09380j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three conjugated polymers (CPs) were synthesized to obtain CPs with the same backbone but with different compositions of repeat units (phenylene and benzoselenadiazole (BSD)). The dominant composition of phenylene units and a smaller amount of BSD in the CP backbone enabled the CPs to emit different fluorescence colors according to their condition (solution or solid), which was caused by the difference in intermolecular electron transfer between CP backbones. Inspired by this, we fabricated polymer dots (Pdots) with various sizes using the CPs to control the number of CP chains within a spherical Pdot. This implied that smaller Pdots, where the chance of intermolecular electron transfer would be at a minimum, would accommodate fewer polymer chains than larger ones. The minimum chance for intermolecular electron transfer resulted in a short-wavelength emission, which was the identical emission color encountered in liquid CP solution. A more frequent intermolecular electron transfer was expected in larger Pdots, exhibiting long-wavelength emission, which was the same as observed in solid CPs. White-light-emitting Pdots that showed Commission Internationale de 1'Eclairage (CIE) coordinates of (0.34, 0.31) were fabricated simply by controlling the Pdot size.
Collapse
Affiliation(s)
- Jongho Kim
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
| | - Jaemin Lee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
16
|
Park J. Functional Fibers, Composites and Textiles Utilizing Photothermal and Joule Heating. Polymers (Basel) 2020; 12:E189. [PMID: 31936785 PMCID: PMC7022820 DOI: 10.3390/polym12010189] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the mechanism of adjusting the thermal environment surrounding the human body via textiles. Recently highlighted technologies for thermal management are based on the photothermal conversion principle and Joule heating for wearable electronics. Recent innovations in this technology are described, with a focus on reports in the last three years and are categorized into three subjects: (1) thermal management technologies of a passive type using light irradiation of the outside environment (photothermal heating), (2) those of an active type employing external electrical circuits (Joule heating), and (3) biomimetic structures. Fibers and textiles from the design of fibers and textiles perspective are also discussed with suggestions for future directions to maximize thermal storage and to minimize heat loss.
Collapse
Affiliation(s)
- Juhyun Park
- School of Chemical Engineering and Materials Science, Institute of Energy-Converting Soft Materials, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
17
|
Kim HJ, Min KH, Lee HJ, Hwang YS, Lee SC. Fenton-like reaction performing mineralized nanocarriers as oxidative stress amplifying anticancer agents. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Zhang H, Dong X, Wang J, Guan R, Cao D, Chen Q. Fluorescence Emission of Polyethylenimine-Derived Polymer Dots and Its Application to Detect Copper and Hypochlorite Ions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32489-32499. [PMID: 31393690 DOI: 10.1021/acsami.9b09545] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer dots with nonconjugated groups that are facile to synthesize and environmentally friendly generally attract substantial interest. However, their fluorescence-emitting mechanisms are not clear. In this paper, nonconjugated polymer dots (N-PDs) are synthesized by amidation reaction between polyethylenimine (PEI) and citric acid (CA), then self-assemble into rice-like dots in aqueous phase with a high fluorescence quantum yield. Such nitrogen-containing nonconjugated compounds N-PDs are believed to be inherently fluorescent, and the reported reasons for fluorescence-emitting are discussed. Importantly, these N-PDs can be used as an excellent fluorescent probe to detect Cu2+ and ClO- in aqueous solutions. Cu2+ could combine with the PEI moiety of the N-PDs to form a copper amine complex and then quench the fluorescence by an internal filtration effect. ClO- could oxidize the hydroxyl groups on the surface of the N-PDs to form a positive charge, blocking electron transfer between the hydroxyl groups and the chromophore groups. Finally, the sensor was successfully applied to the detection of Cu2+ and ClO- in environmental water samples.
Collapse
Affiliation(s)
- Hao Zhang
- School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , China
| | - Xuezhe Dong
- School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , China
| | - Jiahui Wang
- School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , China
| | - Ruifang Guan
- School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , China
| | - Duxia Cao
- School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , China
| | - Qifeng Chen
- School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , China
| |
Collapse
|
19
|
Aqueous dispersions of thienoisoindigo-based semiconductor nanorods assembled with 2-bromobenzaldehyde and a phospholipid. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Galland M, Le Bahers T, Banyasz A, Lascoux N, Duperray A, Grichine A, Tripier R, Guyot Y, Maynadier M, Nguyen C, Gary‐Bobo M, Andraud C, Monnereau C, Maury O. A “Multi‐Heavy‐Atom” Approach toward Biphotonic Photosensitizers with Improved Singlet‐Oxygen Generation Properties. Chemistry 2019; 25:9026-9034. [DOI: 10.1002/chem.201901047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Margaux Galland
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182Université Claude Bernard Lyon 1 69342 Lyon France
| | - Tangui Le Bahers
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182Université Claude Bernard Lyon 1 69342 Lyon France
| | - Akos Banyasz
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182Université Claude Bernard Lyon 1 69342 Lyon France
| | - Noëlle Lascoux
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182Université Claude Bernard Lyon 1 69342 Lyon France
| | - Alain Duperray
- INSERM, U1209Université Grenoble Alpes, IAB 38000 Grenoble France
| | - Alexei Grichine
- INSERM, U1209Université Grenoble Alpes, IAB 38000 Grenoble France
| | - Raphaël Tripier
- UFR des Sciences et TechniquesUniv Brest, UMR CNRS-UBO 6521 CEMCA, IBSAM 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest, Cedex 3 France
| | - Yannick Guyot
- Univ. LyonInstitut Lumière Matière, UMR 5306 CNRS-Université Claude Bernard Lyon 1 10 rue Ada Byron 69622 Villeurbanne Cedex France
| | | | - Christophe Nguyen
- Faculté de PharmacieInstitut de Biomolécules Max Mousseron, UMR 5247 CNRS-UM 15 Avenue Charles Flahault 34093 Montpellier Cedex 05 France
| | - Magali Gary‐Bobo
- Faculté de PharmacieInstitut de Biomolécules Max Mousseron, UMR 5247 CNRS-UM 15 Avenue Charles Flahault 34093 Montpellier Cedex 05 France
| | - Chantal Andraud
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182Université Claude Bernard Lyon 1 69342 Lyon France
| | - Cyrille Monnereau
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182Université Claude Bernard Lyon 1 69342 Lyon France
| | - Olivier Maury
- Laboratoire de Chimie de l'ENS de Lyon, Univ Lyon, ENS de Lyon, CNRS UMR 5182Université Claude Bernard Lyon 1 69342 Lyon France
| |
Collapse
|
21
|
Phosphate-Functionalized Stabilized F127 Nanoparticles: Introduction of Discrete Surface Charges and Electrophoretic Determination of Aggregation Number. Macromol Res 2019. [DOI: 10.1007/s13233-019-7100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Qu J, Wang R, Peng S, Shi M, Yang ST, Luo JB, Lin J, Zhou QH. Stepwise dual pH and redox-responsive cross-linked polypeptide nanoparticles for enhanced cellular uptake and effective cancer therapy. J Mater Chem B 2019; 7:7129-7140. [DOI: 10.1039/c9tb01773a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The systemic toxicity, reduced cellular internalization, and uncontrollable intracellular drug release of smart nanoparticles (NPs) still need to be overcome for effective cancer therapy.
Collapse
Affiliation(s)
- Jing Qu
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Rui Wang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Si Peng
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Mengyao Shi
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Sheng-Tao Yang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Jian-bin Luo
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Juan Lin
- School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No. 783
- Chengdu
- China
| | - Qing-han Zhou
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| |
Collapse
|
23
|
Lee D, Sang JS, Yoo PJ, Shin TJ, Oh KW, Park J. Machine-Washable Smart Textiles with Photothermal and Antibacterial Activities from Nanocomposite Fibers of Conjugated Polymer Nanoparticles and Polyacrylonitrile. Polymers (Basel) 2018; 11:polym11010016. [PMID: 30960000 PMCID: PMC6402031 DOI: 10.3390/polym11010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/04/2022] Open
Abstract
Smart textiles based on conjugated polymers have been highlighted as promising fabrics that can intelligently respond to environmental stimuli based on the electrical properties of polymer semiconductors. However, there has been limited interest in the photothermal properties of conjugated polymers that can be applied to smart textiles. We prepared nanoparticles by assembling a conjugated polymer with a fatty acid via an emulsion process and nanocomposite fibers by distributing the conjugated polymer nanoparticles in a polyacrylonitrile matrix. We then fabricated the textiles using the fibers. The resulting fabrics based on nanocomposite fibers show a temperature increase to 50 °C in 10 min under white light irradiation because of efficient photothermal conversion by the conjugated polymer light harvester, while the temperature of a pristine polyacrylonitrile fabric increases to only 35 °C. In addition, excellent antimicrobial activity was confirmed by a 99.9% decrease in the populations of Staphylococcus aureus and Escherichia coli over 24 h because of the effect of the fatty acid in the nanocomposite films and fabrics. Furthermore, the fabric showed efficient durability after a laundry test, suggesting the usefulness of these smart textiles based on conjugated polymer nanoparticles for practical applications.
Collapse
Affiliation(s)
- Dabin Lee
- School of Chemical Engineering and Materials Science, Institute of Energy Converting Soft Materials, Chung-Ang University, Seoul 06974, Korea.
| | - Jeong Seon Sang
- Industry Academic-Cooperation Foundation, Chung-Ang University, Seoul 06974, Korea.
| | - Pil J Yoo
- School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 16419, Korea.
| | - Tae Joo Shin
- UNIST Central Research Facilities and School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Kyung Wha Oh
- Department of Fashion Design, College of Art, Chung-Ang University, Seoul 06974, Korea.
| | - Juhyun Park
- School of Chemical Engineering and Materials Science, Institute of Energy Converting Soft Materials, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
24
|
Conjugated polymer nano-ellipsoids assembled with octanoic acid and their polyurethane nanocomposites with simultaneous thermal storage and antibacterial activity. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
BSA/Chitosan Polyelectrolyte Complex: A Platform for Enhancing the Loading and Cancer Cell-Uptake of Resveratrol. Macromol Res 2018. [DOI: 10.1007/s13233-018-6112-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Kim C, Gwon YJ, Kim J, Lee TS. Synthesis of fluorescent conjugated polymer nanoparticles and their immobilization on a substrate for white light emission. Polym Chem 2018. [DOI: 10.1039/c8py01314d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fluorescent conjugated polymers (CPs) for blue, green, and red emission were polymerized via the Suzuki coupling reaction.
Collapse
Affiliation(s)
- Choongho Kim
- Organic and Optoelectronic Materials Laboratory
- Department of Organic Materials Engineering
- Chungnam National University
- Daejeon 34134
- Korea
| | - Young Jin Gwon
- Organic and Optoelectronic Materials Laboratory
- Department of Organic Materials Engineering
- Chungnam National University
- Daejeon 34134
- Korea
| | - Jongho Kim
- Organic and Optoelectronic Materials Laboratory
- Department of Organic Materials Engineering
- Chungnam National University
- Daejeon 34134
- Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory
- Department of Organic Materials Engineering
- Chungnam National University
- Daejeon 34134
- Korea
| |
Collapse
|