1
|
El Jaddaoui I, Sehli S, Al Idrissi N, Bakri Y, Belyamani L, Ghazal H. The Gut Mycobiome for Precision Medicine. J Fungi (Basel) 2025; 11:279. [PMID: 40278100 PMCID: PMC12028274 DOI: 10.3390/jof11040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
The human gastrointestinal tract harbors a vast array of microorganisms, which play essential roles in maintaining metabolic balance and immune function. While bacteria dominate the gut microbiome, fungi represent a much smaller, often overlooked fraction. Despite their relatively low abundance, fungi may significantly influence both health and disease. Advances in next-generation sequencing, metagenomics, metatranscriptomics, metaproteomics, metabolomics, and computational biology have provided novel opportunities to study the gut mycobiome, shedding light on its composition, functional genes, and metabolite interactions. Emerging evidence links fungal dysbiosis to various diseases, including inflammatory bowel disease, colorectal cancer, metabolic disorders, and neurological conditions. The gut mycobiome also presents a promising avenue for precision medicine, particularly in biomarker discovery, disease diagnostics, and targeted therapeutics. Nonetheless, significant challenges remain in effectively integrating gut mycobiome knowledge into clinical practice. This review examines gut fungal microbiota, highlighting analytical methods, associations with human diseases, and its potential role in precision medicine. It also discusses pathways for clinical translation, particularly in diagnosis and treatment, while addressing key barriers to implementation.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco; (I.E.J.); (Y.B.)
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Sofia Sehli
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Najib Al Idrissi
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco; (I.E.J.); (Y.B.)
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
| | - Lahcen Belyamani
- School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco;
| | - Hassan Ghazal
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
- Laboratory of Sports Sciences and Performance Optimization, Royal Institute of Executive Management, Salé 10102, Morocco
- National Center for Scientific and Technical Research, Rabat 10102, Morocco
| |
Collapse
|
2
|
Rozera T, Pasolli E, Segata N, Ianiro G. Machine Learning and Artificial Intelligence in the Multi-Omics Approach to Gut Microbiota. Gastroenterology 2025:S0016-5085(25)00526-8. [PMID: 40118220 DOI: 10.1053/j.gastro.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 03/23/2025]
Abstract
The gut microbiome is involved in human health and disease, and its comprehensive understanding is necessary to exploit it as a diagnostic or therapeutic tool. Multi-omics approaches, including metagenomics, metatranscriptomics, metabolomics, and metaproteomics, enable depiction of the gut microbial ecosystem's complexity. However, these tools generate a large data stream in which integration is needed to produce clinically useful readouts, but, in turn, might be difficult to carry out with conventional statistical methods. Artificial intelligence and machine learning have been increasingly applied to multi-omics datasets in several conditions associated with microbiome disruption, from chronic disorders to cancer. Such tools have potential for clinical implementation, including discovery of microbial biomarkers for disease classification or prediction, prediction of response to specific treatments, and fine-tuning of microbiome-modulating therapies. The state of the art, potential, and limits, of artificial intelligence and machine learning in the multi-omics approach to gut microbiome are discussed.
Collapse
Affiliation(s)
- Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, L'Unità Operativa Complessa Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy; Department of Medical and Surgical Sciences, L'Unità Operativa Complessa Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Edoardo Pasolli
- University of Naples Federico II, Department of Agricultural Sciences, Piazza Carlo di Borbone 1, Portici, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; Department of Experimental Oncology, European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, L'Unità Operativa Complessa Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy; Department of Medical and Surgical Sciences, L'Unità Operativa Complessa Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| |
Collapse
|
3
|
Parhizkar E, Vosough P, Baneshi M, Keshavarzi A, Lohrasbi P, Taghizadeh S, Savardashtaki A. Probiotics and gut microbiota modulation: implications for skin health and disease management. Arch Microbiol 2025; 207:68. [PMID: 39988585 DOI: 10.1007/s00203-025-04267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The gut microbiota, consisting of a varied population of microorganisms in the digestive tract, is essential for sustaining overall human health, encompassing skin health. This review explored the intricate relationship between gut microbiota and various skin disorders, investigating the pathways through which gut dysbiosis may have impacted the development and progression of these conditions. We focused on the impact of gut microbiota on atopic dermatitis, psoriasis, acne vulgaris, acne rosacea, and melanoma. The review highlighted the potential of probiotics as a therapeutic strategy for modulating gut microbiota composition and, consequently, improving skin health. We discussed the evidence supporting the use of probiotics in managing these skin disorders and explored the mechanisms by which probiotics delivered their positive effects. Finally, we discussed the potential role of gut microbiota in other skin diseases, emphasizing the need for further research to unravel the complex interplay between the gut and the skin. Significant gaps remain in understanding the gut-skin axis, how microbial interactions contribute to skin disorders, and how to effectively manipulate the microbiome for therapeutic purposes. This review provided extensive research on the gut-skin axis, highlighting the promising prospects of modulating gut microbiota as a therapeutic strategy for various dermatological conditions.
Collapse
Affiliation(s)
- Elahe Parhizkar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baneshi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Parvin Lohrasbi
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Rook O, Zwart H. Awareness of human microbiome may promote healthier lifestyle and more positive environmental attitudes. COMMUNICATIONS MEDICINE 2025; 5:39. [PMID: 39930028 PMCID: PMC11811053 DOI: 10.1038/s43856-025-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The human microbiome is an essential factor of physical and mental health, yet the general population has little knowledge about it. This survey explores public familiarity with the human microbiome and (potential) public preferences related to monitoring and improving one's microbiome health. The study also examines whether recognizing the importance of one's microbiome may promote a more ecosystem-aware perspective towards microorganisms. METHODS We conducted an online survey with nationally representative samples from France, Germany, South Korea, and Taiwan (N = 2860). The results were interpreted using descriptive statistics and network analysis. We also performed a t-test to compare perceptions of microorganisms before and after a short reflection on the role of human microbiome for one's body and health. RESULTS In our data, most respondents express willingness to monitor the health of their microbiome (especially, in the European countries) and to adjust their lifestyle such as diet and exercise to improve it. A paired samples t-test shows a slight positive shift in perceptions of microorganisms and the microbial world after the reflection exercise compared to baseline. CONCLUSIONS The study shows that the public recognize the essential role of the human microbiome in health and are willing to take care of it, which may have implications for public health policy. Our findings also suggest that stronger awareness of the human microbiome may promote lifestyle change and a more encompassing environmental outlook.
Collapse
Affiliation(s)
- Olga Rook
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Pezeshki B, Abdulabbas HT, Alturki AD, Mansouri P, Zarenezhad E, Nasiri-Ghiri M, Ghasemian A. Synergistic Interactions Between Probiotics and Anticancer Drugs: Mechanisms, Benefits, and Challenges. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10462-0. [PMID: 39873952 DOI: 10.1007/s12602-025-10462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy. Probiotics employ various mechanisms to inhibit cancer initiation and progression. These include colonizing and protecting the gastrointestinal tract (GIT), producing metabolites, inducing apoptosis and autophagy, exerting anti-inflammatory properties, preventing metastasis, enhancing the effectiveness of immune checkpoint inhibitors (ICIs), promoting cancer-specific T cell infiltration, arresting the cell cycle, and exhibiting direct or indirect synergistic effects with anticancer drugs. Additionally, probiotics have been shown to activate tumor suppressor genes and inhibit pro-inflammatory transcription factors. They also increase reactive oxygen species production within cancer cells. Synergistic interactions between probiotics and various anticancer drugs, such as cisplatin, cyclophosphamide, 5-fluorouracil, trastuzumab, nivolumab, ipilimumab, apatinib, gemcitabine, tamoxifen, sorafenib, celecoxib and irinotecan have been observed. The combination of probiotics with anticancer drugs holds promise in overcoming drug resistance, reducing recurrence, minimizing side effects, and lowering treatment costs. In addition, fecal microbiota transplantation (FMT) and prebiotics supplementation has increased cytotoxic T cells within tumors. However, probiotics may leave some adverse effects such as risk of infection and gastrointestinal effects, antagonistic effects with drugs, and different responses among patients. These findings highlight insights for considering specific strains and engineered probiotic applications, preferred doses and timing of treatment, and personalized therapies to enhance the efficacy of cancer therapy. Accordingly, targeted interventions and guidelines establishment needs extensive randomized controlled trials as probiotic-based cancer therapy has not been approved by Food and Drug Administration (FDA).
Collapse
Affiliation(s)
- Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Samawah, Al Muthanna, Iraq
| | - Ahmed D Alturki
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Samawah, Al-Muthanna, Iraq
| | - Pegah Mansouri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri-Ghiri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
6
|
Zhu W, Zhang X, Wang D, Yao Q, Ma GL, Fan X. Simulator of the Human Intestinal Microbial Ecosystem (SHIME ®): Current Developments, Applications, and Future Prospects. Pharmaceuticals (Basel) 2024; 17:1639. [PMID: 39770481 PMCID: PMC11677124 DOI: 10.3390/ph17121639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The human gastrointestinal microbiota plays a vital role in maintaining host health and preventing diseases, prompting the creation of simulators to replicate this intricate system. The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), a multicompartment dynamic simulator, has emerged as a pivotal in vitro model for studying the interactions and interferences within the human gut microbiota. The continuous and real-time monitoring hallmarks, along with the programmatically flexible setup, bestow SHIME® with the ability to mimic the entire human intestinal ecosystem with high dynamics and stability, allowing the evaluation of various treatments on the bowel microbiota in a controlled environment. This review outlines recent developments in SHIME® systems, including the M-SHIME®, Twin-SHIME®, Triple-SHIME®, and Toddle SHIME® models, highlighting their applications in the fields of food and nutritional science, drug development, gut health research, and traditional Chinese medicine. Additionally, the prospect of SHIME® integrating with other advanced technologies is also discussed. The findings underscore the versatility of SHIME® technology, demonstrating its significant contributions to current gut ecosystem research and its potential for future innovation in microbiome-related fields.
Collapse
Affiliation(s)
- Wei Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (G.-L.M.)
| | - Xiaoyong Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, China;
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China;
| | - Qinghua Yao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310005, China;
| | - Guang-Lei Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (G.-L.M.)
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (G.-L.M.)
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
- The Joint-Laboratory of Clinical Multi-Omics Research Between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo 315010, China
| |
Collapse
|
7
|
Belnap N, Ramsey K, Carvalho ST, Nearman L, Haas H, Huentelman M, Lee K. Exploring the Frontier: The Human Microbiome's Role in Rare Childhood Neurological Diseases and Epilepsy. Brain Sci 2024; 14:1051. [PMID: 39595814 PMCID: PMC11592123 DOI: 10.3390/brainsci14111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging research into the human microbiome, an intricate ecosystem of microorganisms residing in and on our bodies, reveals that it plays a pivotal role in maintaining our health, highlighting the potential for microbiome-based interventions to prevent, diagnose, treat, and manage a myriad of diseases. The objective of this review is to highlight the importance of microbiome studies in enhancing our understanding of rare genetic epilepsy and related neurological disorders. Studies suggest that the gut microbiome, acting through the gut-brain axis, impacts the development and severity of epileptic conditions in children. Disruptions in microbial composition can affect neurotransmitter systems, inflammatory responses, and immune regulation, which are all critical factors in the pathogenesis of epilepsy. This growing body of evidence points to the potential of microbiome-targeted therapies, such as probiotics or dietary modifications, as innovative approaches to managing epilepsy. By harnessing the power of the microbiome, we stand to develop more effective and personalized treatment strategies for children affected by this disease and other rare neurological diseases.
Collapse
Affiliation(s)
- Newell Belnap
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | | | - Lexi Nearman
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ 86011, USA
- TGen Integrated Microbiomics Center, Translational Genomics Research Institute (TGen), Flagstaff, AZ 86011, USA
| | - Hannah Haas
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
- Barrett, the Honors College, Arizona State University, Tempe, AZ 85281, USA
| | - Matt Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | - Keehoon Lee
- TGen Integrated Microbiomics Center, Translational Genomics Research Institute (TGen), Flagstaff, AZ 86011, USA
| |
Collapse
|
8
|
Reddy N, Chiwhane A, Acharya S, Kumar S, Parepalli A, Nelakuditi M. Harnessing the Power of the Gut Microbiome: A Review of Supplementation Therapies for Metabolic Syndrome. Cureus 2024; 16:e69682. [PMID: 39429422 PMCID: PMC11489520 DOI: 10.7759/cureus.69682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex condition characterized by abdominal obesity, insulin resistance, dyslipidemia, and hypertension, all of which increase the risk of cardiovascular disease and type 2 diabetes. The gut microbiome plays a significant role in metabolic health, influencing digestion, immune function, and energy metabolism. When the gut microbiota becomes imbalanced due to poor diet and antibiotic use, it can lead to systemic inflammation, insulin resistance, and abnormal lipid metabolism, which are central features of MetS. This review explores the connection between gut microbial imbalances and MetS, focusing on the impact of the gut microbiome on metabolic health. Supplementation therapies targeting the gut microbiome, such as probiotics, prebiotics, synbiotics, and postbiotics, are evaluated for their potential to improve metabolic parameters in MetS patients. These interventions hold promise for enhancing insulin sensitivity, reducing inflammation, and improving lipid profiles. However, further research is needed to optimize these approaches for managing MetS. Understanding how to leverage the gut microbiome could lead to innovative, non-invasive treatments for this growing global health concern.
Collapse
Affiliation(s)
- Nikhil Reddy
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Anjalee Chiwhane
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sourya Acharya
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sunil Kumar
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Avinash Parepalli
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Manikanta Nelakuditi
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
9
|
Murovec B, Deutsch L, Osredkar D, Stres B. MetaBakery: a Singularity implementation of bioBakery tools as a skeleton application for efficient HPC deconvolution of microbiome metagenomic sequencing data to machine learning ready information. Front Microbiol 2024; 15:1426465. [PMID: 39139377 PMCID: PMC11321593 DOI: 10.3389/fmicb.2024.1426465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
In this study, we present MetaBakery (http://metabakery.fe.uni-lj.si), an integrated application designed as a framework for synergistically executing the bioBakery workflow and associated utilities. MetaBakery streamlines the processing of any number of paired or unpaired fastq files, or a mixture of both, with optional compression (gzip, zip, bzip2, xz, or mixed) within a single run. MetaBakery uses programs such as KneadData (https://github.com/bioBakery/kneaddata), MetaPhlAn, HUMAnN and StrainPhlAn as well as integrated utilities and extends the original functionality of bioBakery. In particular, it includes MelonnPan for the prediction of metabolites and Mothur for calculation of microbial alpha diversity. Written in Python 3 and C++ the whole pipeline was encapsulated as Singularity container for efficient execution on various computing infrastructures, including large High-Performance Computing clusters. MetaBakery facilitates crash recovery, efficient re-execution upon parameter changes, and processing of large data sets through subset handling and is offered in three editions with bioBakery ingredients versions 4, 3 and 2 as versatile, transparent and well documented within the MetaBakery Users' Manual (http://metabakery.fe.uni-lj.si/metabakery_manual.pdf). It provides automatic handling of command line parameters, file formats and comprehensive hierarchical storage of output to simplify navigation and debugging. MetaBakery filters out potential human contamination and excludes samples with low read counts. It calculates estimates of alpha diversity and represents a comprehensive and augmented re-implementation of the bioBakery workflow. The robustness and flexibility of the system enables efficient exploration of changing parameters and input datasets, increasing its utility for microbiome analysis. Furthermore, we have shown that the MetaBakery tool can be used in modern biostatistical and machine learning approaches including large-scale microbiome studies.
Collapse
Affiliation(s)
- Boštjan Murovec
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Leon Deutsch
- University of Ljubljana, Department of Animal Science, Biotechnical Faculty, Ljubljana, Slovenia
- The NU, The Nu B.V., Leiden, Netherlands
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- University of Ljubljana, Medical Faculty, Ljubljana, Slovenia
| | - Blaž Stres
- University of Ljubljana, Department of Animal Science, Biotechnical Faculty, Ljubljana, Slovenia
- D13 Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
10
|
Alverdy JC, Polcari A, Benjamin A. Social determinants of health, the microbiome, and surgical injury. J Trauma Acute Care Surg 2024; 97:158-163. [PMID: 38441071 PMCID: PMC11199116 DOI: 10.1097/ta.0000000000004298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
ABSTRACT Postinjury infection continues to plague trauma and emergency surgery patients fortunate enough to survive the initial injury. Rapid response systems, massive transfusion protocols, and the development of level 1 trauma centers, among others, have improved the outcome for millions of patients worldwide. Nonetheless, despite this excellent initial care, patients still remain vulnerable to postinjury infections that can result in organ failure, prolonged critical illness, and even death. While risk factors have been identified (degree of injury, blood loss, time to definitive care, immunocompromise, etc.), they remain probabilistic, not deterministic, and do not explain outcome variability at the individual case level. Here, we assert that analysis of the social determinants of health, as reflected in the patient's microbiome composition (i.e., community structure, membership) and function (metabolomic output), may offer a "window" with which to define individual variability following traumatic injury. Given emerging knowledge in the field, a more comprehensive evaluation of biomarkers within the patient's microbiome, from stool-based microbial metabolites to those in plasma and those present in exhaled breath, when coupled with clinical metadata and machine learning, could lead to a more deterministic assessment of an individual's risk for a poor outcome and those factors that are modifiable. The aim of this piece is to examine how measurable elements of the social determinants of health and the life history of the patient may be buried within the ecologic memory of the gut microbiome. Here we posit that interrogation of the gut microbiome in this manner may be used to inform novel approaches to drive recovery following a surgical injury.
Collapse
Affiliation(s)
- John C Alverdy
- From the Department of Surgery, University of Chicago, Chicago, Illinois
| | | | | |
Collapse
|
11
|
Shang Z, Pai L, Patil S. Unveiling the dynamics of gut microbial interactions: a review of dietary impact and precision nutrition in gastrointestinal health. Front Nutr 2024; 11:1395664. [PMID: 38873568 PMCID: PMC11169903 DOI: 10.3389/fnut.2024.1395664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
The human microbiome, a dynamic ecosystem within the gastrointestinal tract, plays a pivotal role in shaping overall health. This review delves into six interconnected sections, unraveling the intricate relationship between diet, gut microbiota, and their profound impact on human health. The dance of nutrients in the gut orchestrates a complex symphony, influencing digestive processes and susceptibility to gastrointestinal disorders. Emphasizing the bidirectional communication between the gut and the brain, the Brain-Gut Axis section highlights the crucial role of dietary choices in physical, mental, and emotional well-being. Autoimmune diseases, particularly those manifesting in the gastrointestinal tract, reveal the delicate balance disrupted by gut microbiome imbalances. Strategies for reconciling gut microbes through diets, precision nutrition, and clinical indications showcase promising avenues for managing gastrointestinal distress and revolutionizing healthcare. From the Low-FODMAP diet to neuro-gut interventions, these strategies provide a holistic understanding of the gut's dynamic world. Precision nutrition, as a groundbreaking discipline, holds transformative potential by tailoring dietary recommendations to individual gut microbiota compositions, reshaping the landscape of gastrointestinal health. Recent advancements in clinical indications, including exact probiotics, fecal microbiota transplantation, and neuro-gut interventions, signify a new era where the gut microbiome actively participates in therapeutic strategies. As the microbiome takes center stage in healthcare, a paradigm shift toward personalized and effective treatments for gastrointestinal disorders emerges, reflecting the symbiotic relationship between the human body and its microbial companions.
Collapse
Affiliation(s)
- Zifang Shang
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Liu Pai
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
12
|
Yadav A, Kaushik M, Tiwari P, Dada R. From microbes to medicine: harnessing the gut microbiota to combat prostate cancer. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:187-197. [PMID: 38803512 PMCID: PMC11129862 DOI: 10.15698/mic2024.05.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiome (GM) has been identified as a crucial factor in the development and progression of various diseases, including cancer. In the case of prostate cancer, commensal bacteria and other microbes are found to be associated with its development. Recent studies have demonstrated that the human GM, including Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectale, and Mycoplasma genitalium, are involved in prostate cancer development through both direct and indirect interactions. However, the pathogenic mechanisms of these interactions are yet to be fully understood. Moreover, the microbiota influences systemic hormone levels and contributes to prostate cancer pathogenesis. Currently, it has been shown that supplementation of prebiotics or probiotics can modify the composition of GM and prevent the onset of prostate cancer. The microbiota can also affect drug metabolism and toxicity, which may improve the response to cancer treatment. The composition of the microbiome is crucial for therapeutic efficacy and a potential target for modulating treatment response. However, their clinical application is still limited. Additionally, GM-based cancer therapies face limitations due to the complexity and diversity of microbial composition, and the lack of standardized protocols for manipulating gut microbiota, such as optimal probiotic selection, treatment duration, and administration timing, hindering widespread use. Therefore, this review provides a comprehensive exploration of the GM's involvement in prostate cancer pathogenesis. We delve into the underlying mechanisms and discuss their potential implications for both therapeutic and diagnostic approaches in managing prostate cancer. Through this analysis, we offer valuable insights into the pivotal role of the microbiome in prostate cancer and its promising application in future clinical settings.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | | | - Prabhakar Tiwari
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | - Rima Dada
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| |
Collapse
|
13
|
Ugwu OPC, Alum EU, Okon MB, Obeagu EI. Mechanisms of microbiota modulation: Implications for health, disease, and therapeutic interventions. Medicine (Baltimore) 2024; 103:e38088. [PMID: 38728472 PMCID: PMC11081615 DOI: 10.1097/md.0000000000038088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Microbiota modulation, the intentional change in the structure and function of the microbial community, is an emerging trajectory that holds the promise to mitigate an infinite number of health issues. The present review illustrates the underlying principles of microbiota modulation and the various applications of this fundamental process to human health, healthcare management, and pharmacologic interventions. Different strategies, directing on dietary interventions, fecal microbiota transplantation, treatment with antibiotics, bacteriophages, microbiome engineering, and modulation of the immune system, are described in detail. This therapeutic implication is reflected in clinical applications to gastrointestinal disorders and immune-mediated diseases for microbiota-modulating agents. In addition to this, the review outlines the challenges of translating researched outcomes into clinical practice to consider safety and provides insights into future research directions of this rapidly developing area.
Collapse
Affiliation(s)
| | - Esther Ugo Alum
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Michael Ben Okon
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Emmanuel I. Obeagu
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| |
Collapse
|
14
|
Alexander CC, Gaudier-Diaz MM, Kleinschmit AJ, Dihle PJ, Salger SA, Vega N, Robertson SD. A case study to engage students in the research design and ethics of high-throughput metagenomics. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0007423. [PMID: 38661414 PMCID: PMC11044643 DOI: 10.1128/jmbe.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/03/2023] [Indexed: 04/26/2024]
Abstract
Case studies present students with an opportunity to learn and apply course content through problem solving and critical thinking. Supported by the High-throughput Discovery Science & Inquiry-based Case Studies for Today's Students (HITS) Research Coordination Network, our interdisciplinary team designed, implemented, and assessed two case study modules entitled "You Are What You Eat." Collectively, the case study modules present students with an opportunity to engage in experimental research design and the ethical considerations regarding microbiome research and society. In this manuscript, we provide instructors with tools for adopting or adapting the research design and/or the ethics modules. To date, the case has been implemented using two modalities (remote and in-person) in three courses (Microbiology, Physiology, and Neuroscience), engaging over 200 undergraduate students. Our assessment data demonstrate gains in content knowledge and students' perception of learning following case study implementation. Furthermore, when reflecting on our experiences and student feedback, we identified ways in which the case study could be modified for different settings. In this way, we hope that the "You Are What You Eat" case study modules can be implemented widely by instructors to promote problem solving and critical thinking in the traditional classroom or laboratory setting when discussing next-generation sequencing and/or metagenomics research.
Collapse
Affiliation(s)
| | | | | | | | | | - Nic Vega
- Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
15
|
Vidal-Gallardo A, Méndez Benítez JE, Flores Rios L, Ochoa Meza LF, Mata Pérez RA, Martínez Romero E, Vargas Beltran AM, Beltran Hernandez JL, Banegas D, Perez B, Martinez Ramirez M. The Role of Gut Microbiome in the Pathogenesis and the Treatment of Inflammatory Bowel Diseases. Cureus 2024; 16:e54569. [PMID: 38516478 PMCID: PMC10957260 DOI: 10.7759/cureus.54569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic condition characterized by inflammation of the gastrointestinal tract. Its exact cause is unknown, but it's thought to result from a dysregulated immune response influenced by various factors, including changes in the intestinal microbiota, diet, lifestyle, and genetics. The gut microbiome, consisting of diverse microorganisms, plays a crucial role in maintaining physiological balance, with its disruption leading to inflammatory responses typical of IBD. Treatments primarily aim at symptom control, employing immunomodulators, corticosteroids, and newer approaches like probiotics, prebiotics, fecal transplants, and dietary modifications, all focusing on leveraging the microbiota's potential in disease management. These strategies aim to restore the delicate balance of the gut microbiome, typically altered in IBD, marked by a decrease in beneficial bacteria and an increase in harmful pathogens. This review underscores the importance of the gut microbiome in the pathogenesis and treatment of IBD, highlighting the shift towards personalized medicine and the necessity for further research in understanding the complex interactions between the gut microbiota, immune system, and genetics in IBD. It points to the potential of emerging treatments and the importance of a multifaceted approach in managing this complex and challenging disease.
Collapse
Affiliation(s)
| | | | | | - Luis F Ochoa Meza
- General Surgery, Hospital General ISSSTE Presidente General Lázaro Cárdenas, Chihuahua, MEX
| | - Rodrigo A Mata Pérez
- General Practice, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, MEX
| | | | | | | | - Douglas Banegas
- General Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Brenda Perez
- Nutrition, Universidad ICEL, Ciudad de México, MEX
| | | |
Collapse
|
16
|
Abstract
The human microbiome plays an integral role in health. In particular, it is important for the development, differentiation, and maturation of the immune system, 70% of which resides in the intestinal mucosa. Microbiome studies conducted to date have revealed an association between disturbances in the microbiota (dysbiosis) and various pathological disorders, including changes in host immune status. Autoimmune thyroid diseases are one of the most common organ-specific autoimmune disorders, with a worldwide prevalence higher than 5%. The predominant autoimmune thyroid diseases are Hashimoto's thyroiditis and Grave's disease. Several factors, such as genetic and environmental ones, have been studied. In accordance with recent studies, it is assumed that the gut microbiome might play a significant role in triggering autoimmune diseases of the thyroid gland. However, the exact etiology has not yet been elucidated. The present review aims to describe the work carried out so far regarding the role of gut microflora in the pathogenesis of autoimmune thyroid diseases and its involvement in the appearance of benign nodules and papillary thyroid cancer. It appears that future work is needed to elucidate more precisely the mechanism for gut microbiota involvement in the development of autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Ioannis Legakis
- Endocrinology and Metabolism, European University Cyprus, Nicosia, Cyprus
| | - George P Chrousos
- First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | | |
Collapse
|
17
|
Hu M, Caldarelli G, Gili T. Inflammatory bowel disease biomarkers revealed by the human gut microbiome network. Sci Rep 2023; 13:19428. [PMID: 37940667 PMCID: PMC10632483 DOI: 10.1038/s41598-023-46184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are complex medical conditions in which the gut microbiota is attacked by the immune system of genetically predisposed subjects when exposed to yet unclear environmental factors. The complexity of this class of diseases makes them suitable to be represented and studied with network science. In this paper, the metagenomic data of control, Crohn's disease, and ulcerative colitis subjects' gut microbiota were investigated by representing this data as correlation networks and co-expression networks. We obtained correlation networks by calculating Pearson's correlation between gene expression across subjects. A percolation-based procedure was used to threshold and binarize the adjacency matrices. In contrast, co-expression networks involved the construction of the bipartite subjects-genes networks and the monopartite genes-genes projection after binarization of the biadjacency matrix. Centrality measures and community detection were used on the so-built networks to mine data complexity and highlight possible biomarkers of the diseases. The main results were about the modules of Bacteroides, which were connected in the control subjects' correlation network, Faecalibacterium prausnitzii, where co-enzyme A became central in IBD correlation networks and Escherichia coli, whose module has different patterns of integration within the whole network in the different diagnoses.
Collapse
Affiliation(s)
- Mirko Hu
- Department of Medicine and Surgery, University of Parma, 43121, Parma, Italy
| | - Guido Caldarelli
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, 30123, Venice, Italy.
- Institute of Complex Systems, National Research Council (ISC-CNR), 00185, Rome, Italy.
- Fondazione per il Futuro delle Città, FFC, 50133, Firenze, Italy.
- European Centre for Living Technology, (ECLT), 30123, Venice, Italy.
| | - Tommaso Gili
- Networks Unit, IMT School for Advanced Studies Lucca, 55100, Lucca, Italy
| |
Collapse
|
18
|
Lawal SA, Voisin A, Olof H, Bording-Jorgensen M, Armstrong H. Diversity of the microbiota communities found in the various regions of the intestinal tract in healthy individuals and inflammatory bowel diseases. Front Immunol 2023; 14:1242242. [PMID: 38022505 PMCID: PMC10654633 DOI: 10.3389/fimmu.2023.1242242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The severe and chronic inflammatory bowel diseases (IBD), Crohn disease and ulcerative colitis, are characterized by persistent inflammation and gut damage. There is an increasing recognition that the gut microbiota plays a pivotal role in IBD development and progression. However, studies of the complete microbiota composition (bacteria, fungi, viruses) from precise locations within the gut remain limited. In particular, studies have focused primarily on the bacteriome, with available methods limiting evaluation of the mycobiome (fungi) and virome (virus). Furthermore, while the different segments of the small and large intestine display different functions (e.g., digestion, absorption, fermentation) and varying microenvironment features (e.g., pH, metabolites), little is known about the biogeography of the microbiota in different segments of the intestinal tract or how this differs in IBD. Here, we highlight evidence of the differing microbiota communities of the intestinal sub-organs in healthy and IBD, along with method summaries to improve future studies.
Collapse
Affiliation(s)
- Samuel Adefisoye Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hana Olof
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Heather Armstrong
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
West ML, Hart S, Loughman A, Jacka FN, Staudacher HM, Abbaspour A, Phillipou A, Ruusunen A, Rocks T. Challenges and priorities for researching the gut microbiota in individuals living with anorexia nervosa. Int J Eat Disord 2023; 56:2001-2011. [PMID: 37548294 DOI: 10.1002/eat.24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE The gut microbiota is implicated in several symptoms and biological pathways relevant to anorexia nervosa (AN). Investigations into the role of the gut microbiota in AN are growing, with a specific interest in the changes that occur in response to treatment. Findings suggest that microbial species may be associated with some of the symptoms common in AN, such as depression and gastrointestinal disturbances (GID). Therefore, researchers believe the gut microbiota may have therapeutic relevance. Whilst research in this field is rapidly expanding, the unique considerations relevant to conducting gut microbiota research in individuals with AN must be addressed. METHOD We provide an overview of the published literature investigating the relationship between the gut microbiota and symptoms and behaviors present in AN, discuss important challenges in gut microbiota research, and offer recommendations for addressing these. We conclude by summarizing research design priorities for the field to move forward. RESULTS Several ways exist to reduce participant burden and accommodate challenges when researching the gut microbiota in individuals with AN. DISCUSSION Recommendations from this article are foreseen to encourage scientific rigor and thoughtful protocol planning for microbiota research in AN, including ways to reduce participant burden. Employing such methods will contribute to a better understanding of the role of the gut microbiota in AN pathophysiology and treatment. PUBLIC SIGNIFICANCE The field of gut microbiota research is rapidly expanding, including the role of the gut microbiota in anorexia nervosa. Thoughtful planning of future research will ensure appropriate data collection for meaningful interpretation while providing a positive experience for the participant. We present current challenges, recommendations for research design and priorities to facilitate the advancement of research in this field.
Collapse
Affiliation(s)
- Madeline L West
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Susan Hart
- Eating and Nutrition Research Group, School of Medicine, Western Sydney University, Cambelltown, Australia
- Nutrition Services, St Vincent's Health Network, Darlinghurst, Australia
- Translational Health Research Institute, Eating Disorders and Body Image, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Amy Loughman
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
- James Cook University, Townsville, Queensland, Australia
| | - Heidi M Staudacher
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Afrouz Abbaspour
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutetet, Solna, Stockholm, Sweden
| | - Andrea Phillipou
- Orygen, Melbourne, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychological Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Mental Health, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Mental Health, Austin Health, Melbourne, Victoria, Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Tetyana Rocks
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Translational Health Research Institute, Eating Disorders and Body Image, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
20
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
21
|
Ejtahed HS, Parsa M, Larijani B. Ethical challenges in conducting and the clinical application of human microbiome research. J Med Ethics Hist Med 2023; 16:5. [PMID: 37753524 PMCID: PMC10518636 DOI: 10.18502/jmehm.v16i5.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 09/28/2023] Open
Abstract
The Article Abstract is not available.
Collapse
Affiliation(s)
- Hanieh Sadat Ejtahed
- AssistantProfessor, Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran;Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Parsa
- AssistantProfessor, Medical Ethics and History of Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for War-affected People, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Professor, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran;Medical Ethics and History of Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Ma Y, Ke D, Li D, Zhang Q. Donors' experiences and attitudes of fecal microbiota transplantation: An empirical bioethics study from China. IMETA 2022; 1:e62. [PMID: 38867907 PMCID: PMC10989884 DOI: 10.1002/imt2.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/12/2022] [Accepted: 10/22/2022] [Indexed: 06/14/2024]
Abstract
Donor participation is a critical part of ensuring the development of human microbiome research and the clinical application of fecal microbiota transplantation (FMT). Most FMT donors are still not sufficiently aware of the risks associated with the act of donating gut microbiota, especially the risk of data privacy disclosure. Enhanced awareness of the moral responsibility of the researchers and ethical oversight by ethics committees are needed.
Collapse
Affiliation(s)
- Yonghui Ma
- Medical Humanities and Bioethics Center, School of MedicineXiamen UniversityXiamenChina
| | - Dawei Ke
- Medical Humanities and Bioethics Center, School of MedicineXiamen UniversityXiamenChina
| | - Danyi Li
- R Institute Co. Ltd.BeijingChina
| | - Quan Zhang
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamenChina
| |
Collapse
|
23
|
Thompson JC, Ren Y, Romero K, Lew M, Bush AT, Messina JA, Jung SH, Siamakpour-Reihani S, Miller J, Jenq RR, Peled JU, van den Brink MRM, Chao NJ, Shrime MG, Sung AD. Financial incentives to increase stool collection rates for microbiome studies in adult bone marrow transplant patients. PLoS One 2022; 17:e0267974. [PMID: 35507633 PMCID: PMC9067695 DOI: 10.1371/journal.pone.0267974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/19/2022] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION In order to study the role of the microbiome in hematopoietic stem cell transplantation (HCT), researchers collect stool samples from patients at various time points throughout HCT. However, stool collection requires active subject participation and may be limited by patient reluctance to handling stool. METHODS We performed a prospective study on the impact of financial incentives on stool collection rates. The intervention group consisted of allogeneic HCT patients from 05/2017-05/2018 who were compensated with a $10 gas gift card for each stool sample. The intervention group was compared to a historical control group of allogeneic HCT patients from 11/2016-05/2017 who provided stool samples before the incentive was implemented. To control for possible changes in collections over time, we also compared a contemporaneous control group of autologous HCT patients from 05/2017-05/2018 with a historical control group of autologous HCT patients from 11/2016-05/2017; neither autologous HCT group was compensated. The collection rate was defined as the number of samples provided divided by the number of time points we attempted to obtain stool. RESULTS There were 35 allogeneic HCT patients in the intervention group, 19 allogeneic HCT patients in the historical control group, 142 autologous HCT patients in the contemporaneous control group (that did not receive a financial incentive), and 75 autologous HCT patients in the historical control group. Allogeneic HCT patients in the intervention group had significantly higher average overall collection rates when compared to the historical control group allogeneic HCT patients (80% vs 37%, p<0.0001). There were no significant differences in overall average collection rates between the autologous HCT patients in the contemporaneous control and historical control groups (36% vs 32%, p = 0.2760). CONCLUSION Our results demonstrate that a modest incentive can significantly increase collection rates. These results may help to inform the design of future studies involving stool collection.
Collapse
Affiliation(s)
- Jillian C. Thompson
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Yi Ren
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kristi Romero
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Meagan Lew
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Amy T. Bush
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Julia A. Messina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sin-Ho Jung
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sharareh Siamakpour-Reihani
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Julie Miller
- Center for Advanced Hindsight, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert R. Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Jonathan U. Peled
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Marcel R. M. van den Brink
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Mark G. Shrime
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anthony D. Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
24
|
Wu S, Hugerth LW, Schuppe-Koistinen I, Du J. The right bug in the right place: opportunities for bacterial vaginosis treatment. NPJ Biofilms Microbiomes 2022; 8:34. [PMID: 35501321 PMCID: PMC9061781 DOI: 10.1038/s41522-022-00295-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial vaginosis (BV) is a condition in which the vaginal microbiome presents an overgrowth of obligate and facultative anaerobes, which disturbs the vaginal microbiome balance. BV is a common and recurring vaginal infection among women of reproductive age and is associated with adverse health outcomes and a decreased quality of life. The current recommended first-line treatment for BV is antibiotics, despite the high recurrence rate. Live biopharmaceutical products/probiotics and vaginal microbiome transplantation (VMT) have also been tested in clinical trials for BV. In this review, we discuss the advantages and challenges of current BV treatments and interventions. Furthermore, we provide our understanding of why current clinical trials with probiotics have had mixed results, which is mainly due to not administering the correct bacteria to the correct body site. Here, we propose a great opportunity for large clinical trials with probiotic strains isolated from the vaginal tract (e.g., Lactobacillus crispatus) and administered directly into the vagina after pretreatment.
Collapse
Affiliation(s)
- Shengru Wu
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Luisa Warchavchik Hugerth
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Juan Du
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Höll D, Bossert LN. Introducing the microbiome: Interdisciplinary perspectives. ENDEAVOUR 2022; 46:100817. [PMID: 35667903 PMCID: PMC9412664 DOI: 10.1016/j.endeavour.2022.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Davina Höll
- Institute for Ethics and History of Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen.
| | - Leonie N Bossert
- International Center for Ethics in the Sciences and Humanities (IZEW), University of Tübingen
| |
Collapse
|
26
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
27
|
Jurek L, Sevil M, Jay A, Schröder C, Baghdadli A, Héry-Arnaud G, Geoffray MM. Is there a dysbiosis in individuals with a neurodevelopmental disorder compared to controls over the course of development? A systematic review. Eur Child Adolesc Psychiatry 2021; 30:1671-1694. [PMID: 32385698 DOI: 10.1007/s00787-020-01544-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Many scientific papers reported that an unbalanced gut microbiota could lead to or worsen neurodevelopmental disorders (NDD). A dysbiosis may then be observed in the course of development and mark a dysfunction within what is called the gut-brain axis. The aim of this systematic review is to investigate potential evidence of dysbiosis in children and young adults with NDD compared to controls. Using the PRISMA guidelines we systematically reviewed studies that compared the gut microbiota in NDD participants (with an age inferior to thirty) to the gut microbiota of controls, regardless of the data analysis methods used. The MEDLINE, Scopus and PsycINFO databases were searched up to September 2018. 31 studies with a total sample size of 3002 ASD (Autism Spectrum Disorder) and 84 ADHD (Attention Deficit Hyperactivity Disorder) participants were included in this systematic review. Independent data extraction and quality assessment were conducted. The quality of the studies was rated from low to high. Population characterization and experimental methods were highly heterogeneous in terms of the data available, selection of criteria, and dysbiosis measurement. A dysbiosis was reported in 28 studies in terms of either diversity, bacterial composition or metabolome dysfunction. Due to heterogeneity, a quantitative synthesis was not applicable. In this paper, we discuss the different biases to understand the complexity of microbiota and neurodevelopmental disorders to provide leads for future cohort studies looking to answer the questions raised by the trillions of microorganisms that inhabit key body niches.
Collapse
Affiliation(s)
- Lucie Jurek
- Child and Adolescent Psychiatry Departement, Center for Assessment and Diagnostic of Autism, Le Vinatier Hospital, Bron, France.
- Health Services and Performance Research EA7425, Claude Bernard Lyon 1 University (CBL1), Lyon, France.
| | - Marine Sevil
- Child and Adolescent Psychiatry Departement, Center for Assessment and Diagnostic of Autism, Le Vinatier Hospital, Bron, France
| | - Agathe Jay
- Child and Adolescent Psychiatry Departement, Center for Assessment and Diagnostic of Autism, Le Vinatier Hospital, Bron, France
| | - Carmen Schröder
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospital, Strasbourg, France
- CNRS UPR 3212, Team 9 Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Amaria Baghdadli
- Child and Adolescent Psychiatry Departement, Montpellier University Hospital, Montpellier, France
- INSERM U1178 Centre de Recherche en Epidémiologie Et Santé Des Populations (CESP), Paris Sud University (UPS) Et Versailles Saint Quentin University (UVSQ), Versailles, France
| | - Geneviève Héry-Arnaud
- UMR1078, Génétique, Génomique Fonctionnelle Et Biotechnologies, INSERM, Université de Brest, EFS, IBSAM, Brest, France
- Unité de Bactériologie, Pôle de Biologie-Pathologie, Hôpital La Cavale Blanche, CHRU de Brest, Brest, France
| | - Marie-Maude Geoffray
- Child and Adolescent Psychiatry Departement, Center for Assessment and Diagnostic of Autism, Le Vinatier Hospital, Bron, France
- Health Services and Performance Research EA7425, Claude Bernard Lyon 1 University (CBL1), Lyon, France
| |
Collapse
|
28
|
Abstract
In this article, we argue that a careful examination of human microbiome science's relationship with race and racism is necessary to foster equitable social and ecological relations in the field. We point to the origins and evolution of the problematic use of race in microbiome literature by demonstrating the increased usage of race both explicitly and implicitly in and beyond the human microbiome sciences. We demonstrate how these uses limit the future of rigorous and just microbiome research. We conclude with an outline of alternative actionable ways to build a more effective, antiracist microbiome science.
Collapse
|
29
|
Abstract
OBJECTIVE Extensive research and important discoveries on the microbiome have led to a growth in media coverage. This study explores how the microbiome has been portrayed in press sources popular among American and Canadian audiences. DESIGN Content analysis. METHODS Using the FACTIVA Database, we compiled a finalised data set of (N=830) articles from press sources popular among American and Canadian audiences which were published between 1 January 2018 and 11 October 2019 and which contained at least one of the following search terms: 'microbiome', 'microbiota', 'gut health', 'healthy gut', 'unhealthy gut', 'gut bacteria', 'probiotic' or 'probiotics.' We performed content analysis on the articles to determine how often ideas of the microbiome were presented as beneficial, in which health contexts, and whether actions could be taken to reap stated benefits. We compared this portrayal of benefits with critical portrayals of the microbiome. RESULTS Almost all of the articles (94%) described health benefits associated with the microbiome with many (79%) describing actions which could be taken to reap stated benefits. Articles most often described health benefits in more broad, general context (34%) and most commonly outlined actions related to food/drug (45%) as well as probiotic (27%) intake. Only some articles (19%) provided microbiome-related critiques or limitations. Some of the articles (22%) were focused on highlighting specific research developments, and in these articles, critiques or limitations were more common. CONCLUSIONS Articles discussing the microbiome published for American and Canadian audiences typically hype the microbiome's impact and popularise gut health trends while only offering a little in the way of communicating microbiome science. Lifestyle choices including nutrition, taking probiotics, stress management and exercise are often promoted as means of reaping the microbiome-related health benefits. The trend of actionable 'gut health' is foregrounded over more evidence-based descriptions of microbiome science.
Collapse
Affiliation(s)
| | - Stuart Turvey
- Division of Allergy and Immunology, Department of Pediatrics Faculty of Medicine, University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
30
|
Parke EC. Trivial, Interesting, or Overselling? The Microbiome and “What It Means to Be Human”. Bioscience 2021. [DOI: 10.1093/biosci/biab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Discussions of microbiome research increasingly refer to the microbiome's impact on what it means to be human. These claims are rarely carefully explained or justified. Given the increasing importance of microbiome research across the life sciences, philosophy, and the public sphere, it is worth exercising more care in these discussions. This article offers a guide for doing so. There are many different ways to interpret the details of ambiguous claims about the microbiome and what it means to be human. I discuss some possible interpretations and show how the resulting claims can range from trivial to suggestive of interesting research to controversial and overhyped. I recommend greater caution and clarity in ongoing discussions of microbiome research and its implications.
Collapse
Affiliation(s)
- Emily C Parke
- Department of Philosophy, School of Humanities, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Al-Bakri AG, Akour AA, Al-Delaimy WK. Knowledge, attitudes, ethical and social perspectives towards fecal microbiota transplantation (FMT) among Jordanian healthcare providers. BMC Med Ethics 2021; 22:19. [PMID: 33639935 PMCID: PMC7912465 DOI: 10.1186/s12910-021-00587-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fecal microbiota transplant (FMT) is a treatment modality that involves the introduction of stool from a healthy pre-screened donor into the gastrointestinal tract of a patient. It exerts its therapeutic effects by remodeling the gut microbiota and treating microbial dysbiosis-imbalance. FMT is not regulated in Jordan, and regulatory effort for FMT therapy in Jordan, an Islamic conservative country, might be faced with unique cultural, social, religious, and ethical challenges. We aimed to assess knowledge, attitudes, and perceptions of ethical and social issues of FMT use among Jordanian healthcare professionals. METHODS An observational, cross-sectional study design was used to assess knowledge, attitudes, and perceptions of ethical and social issues of FMT among 300 Jordanian healthcare professionals. RESULTS A large proportion (39 %) thought that the safety and efficacy of this technique are limited and 29.3 % thought there is no evidence to support its use. Almost all (95 %) responded that they would only perform it in certain cases, if ethically justified, and 48.3 % would use it due to treatment failure of other approaches. When reporting about reasons for not using it, 40 % reported that they would not perform it due to concerns about medical litigation, fear of infections (38 %), and lack of knowledge of long safety and efficacy (31.3 %). Interestingly, all practitioners said they would perform this procedure through the lower rather than upper gastrointestinal tract modality and the majority will protect the patient's confidentiality via double-blinding (43.3 %). For a subset of participants (n = 100), the cultural constraints that might affect the choice of performing FMT were mainly due to donor's religion, followed by dietary intake, and alcohol consumption. CONCLUSIONS Our healthcare practitioners are generally reluctant to use the FMT modality due to religious and ethical reasons but would consider it if there was a failure of other treatment and after taking into consideration many legislative, social, ethical and practice-based challenges including safety, efficacy and absence of guidelines.
Collapse
Affiliation(s)
- Amal G. Al-Bakri
- School of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The University of Jordan, Amman, 11942 Jordan
| | - Amal A. Akour
- School of Pharmacy, Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, 11942 Jordan
| | - Wael K. Al-Delaimy
- Department of Family Medicine and Public Health, University of California San Diego-School of Medicine, La Jolla, USA
| |
Collapse
|
32
|
Researchers using environmental DNA must engage ethically with Indigenous communities. Nat Ecol Evol 2020; 5:146-148. [PMID: 33184485 DOI: 10.1038/s41559-020-01351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Smith HJ. An ethical investigation into the microbiome: the intersection of agriculture, genetics, and the obesity epidemic. Gut Microbes 2020; 12:1760712. [PMID: 32432992 PMCID: PMC7524164 DOI: 10.1080/19490976.2020.1760712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 02/03/2023] Open
Abstract
There is growing evidence of the interconnectivity between animals, humans, and the environment, which has manifested in the One Health perspective that takes all three into account for a more comprehensive vision of health. Over the past century, agriculture has become increasingly industrialized with a particular rise in the amount of livestock raised and meat produced. In order to fulfill such market demands, livestock farmers and agricultural corporations have artificially selected for and bred their cash animals to be more and more metabolically efficient via genetic and human-driven means. However, by selecting for more metabolically efficient animals, we may have inadvertently been selecting for obesogenic gut microbiota. This is further compounded by the potential obesogenic and microbiome-altering role antibiotics play in livestock. Evidence suggests that there is the potential for interspecies gut microbe transmissibility. It is notable that there has been a concurrent multispecies obesity epidemic across the same timeframe, which raises questions about potential connections between these epidemics. If it is the case that humans have inadvertently influenced their own obesity epidemic via the artificial selection of and antibiotic administration to livestock, then this holds significant ethical implications. This analysis considers current meat consumption trends, the impacts of livestock on climate change, and animal ethics. The paper concludes that due to the potential significant impact yet tenuous nature of the evidence on this subject stemming from research silos, there is a definitive ethical impetus for researchers to bridge these silos to better understand the true nature of the issue. This case is emblematic of an overarching ethics-driven need for deeper collaboration between isolated but related research disciplines to better characterize issues of public health relevance. It also raises concerns regarding inherent value-driven strife that may arise between competing One Health domains.
Collapse
Affiliation(s)
- Hunter Jackson Smith
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD, USA
- Johns Hopkins Berman Institute of Bioethics, Baltimore, MD, USA
| |
Collapse
|
34
|
Barker M, Adelson P, Peters MDJ, Steen M. Probiotics and human lactational mastitis: A scoping review. Women Birth 2020; 33:e483-e491. [PMID: 32146088 DOI: 10.1016/j.wombi.2020.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
PROBLEM Lactational mastitis is a common condition amongst breastfeeding women. It is associated with decreased breastfeeding rates and often treated with antibiotics. BACKGROUND The anti-inflammatory effects of probiotics have been identified as a potential treatment or prevention strategy for lactational mastitis leading to increased commercial and public interest. Despite the marketing of probiotics to women, evidence is still emerging as to its efficacy. AIM/METHODS This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) to identify and examine the evidence around probiotic consumption and lactational mastitis. The review addressed the question; what is the evidence regarding probiotic consumption and human lactational mastitis? Studies were critically appraised using the Joanna Briggs Institute checklist for randomised control trials (RCTs). FINDINGS Five RCTs met the inclusion criteria; three concerned probiotic consumption for the treatment of mastitis, two for the prevention of mastitis. All reported a lower incidence of mastitis in the probiotic groups. DISCUSSION Although potentially promising results were reported across all studies there were significant methodological limitations concerning; appropriately described baseline characteristics, study hypotheses, lack of power calculations, definitional issues, and potential conflicts of interest. CONCLUSION Probiotics may have utility for the treatment or prevention of lactational mastitis. However only a few studies with significant limitations have been published to date. Well designed and conducted studies are needed before evidence-based recommendations can be made for use of probiotics in the treatment or prevention of lactational mastitis.
Collapse
Affiliation(s)
- Melissa Barker
- Rosemary Bryant AO Research Centre, Division of Health Sciences, University of South Australia, Adelaide, South Australia; The Women's and Children's Hospital, North Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia.
| | - Pamela Adelson
- Rosemary Bryant AO Research Centre, Division of Health Sciences, University of South Australia, Adelaide, South Australia
| | - Micah D J Peters
- Rosemary Bryant AO Research Centre, Division of Health Sciences, University of South Australia, Adelaide, South Australia; Adelaide Nursing School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Centre for Evidence-based Practice South Australia (CEPSA): a Joanna Briggs Institute Centre of Excellence, Adelaide, Australia
| | - Mary Steen
- Rosemary Bryant AO Research Centre, Division of Health Sciences, University of South Australia, Adelaide, South Australia; The Women's and Children's Hospital, North Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia
| |
Collapse
|
35
|
Zelaya AJ, Gerardo NM, Blumer LS, Beck CW. The Bean Beetle Microbiome Project: A Course-Based Undergraduate Research Experience in Microbiology. Front Microbiol 2020; 11:577621. [PMID: 33042093 PMCID: PMC7522406 DOI: 10.3389/fmicb.2020.577621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Course-based undergraduate research experiences (CUREs) are an effective means of transforming the learning and teaching of science by involving students in the scientific process. The potential importance of the microbiome in shaping both environmental health and disease makes investigations of microbiomes an excellent teaching tool for undergraduate microbiology. Here, we present a CURE based on the microbiome of the bean beetle (Callosobruchus maculatus), a model system for undergraduate laboratory education. Despite the extensive research literature on bean beetles, little is known about their microbiome, making them an ideal system for a discovery-based CURE. In the CURE, students acquire microbiological technical skills by characterizing both culturable and unculturable members of the beetle gut-microbial community. Students plate beetle gut homogenates on different media, describe the colonies that are formed to estimate taxonomic diversity, extract DNA from colonies of interest, PCR amplify the16S rRNA gene for Sanger sequencing, and use the NCBI-nBLAST database to taxonomically classify sequences. Additionally, students extract total DNA from beetle gut homogenates for high-throughput paired-end sequencing and perform bioinformatic and statistical analyses of bacterial communities using a combination of open-access data processing software. Each activity allows students to engage with studies of microbiomes in a real-world context, to apply concepts and laboratory techniques to investigate either student or faculty-driven research questions, and to gain valuable experiences working with large high-throughput datasets. The CURE is designed such that it can be implemented over either 6-weeks (half semester) or 12-weeks (full semester), allowing for flexibility within the curriculum. Furthermore, student-generated data from the CURE (including bacterial colony phenotypic data, full-length 16S rRNA gene sequences from cultured isolates, and bacterial community sequences from gut homogenates) has been compiled in a continuously curated open-access database on the Bean Beetle Microbiome Project website, facilitating the generation of broader research questions across laboratory classrooms.
Collapse
Affiliation(s)
- Anna J Zelaya
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Nicole M Gerardo
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Lawrence S Blumer
- Department of Biology, Morehouse College, Atlanta, GA, United States
| | | |
Collapse
|
36
|
Mikail M, O'Doherty KC, Poutanen SM, Hota SS. Ethical implications of recruiting universal stool donors for faecal microbiota transplantation. THE LANCET. INFECTIOUS DISEASES 2020; 20:e44-e49. [DOI: 10.1016/s1473-3099(19)30569-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
|
37
|
Scheeler A. Where Stool is a Drug: International Approaches to Regulating the use of Fecal Microbiota for Transplantation. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2019; 47:524-540. [PMID: 31957572 DOI: 10.1177/1073110519897729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulatory agencies vary widely in their classification of FMT, with significant impact on patient access. This article conducts a global survey of national regulations and collates existing FMT classification statuses, ultimately suggesting that the human cell and tissue product designation best fits FMT's characteristics and that definitional objectives to that classification may be overcome.
Collapse
Affiliation(s)
- Alexandra Scheeler
- Alexandra Scheeler, M.T.S., is a M.B.A. student at the Georgetown McDonough School of Business, and also holds degrees from Princeton University and Harvard Divinity School. She was previously the Regulatory Affairs Manager at OpenBiome, a non-profit stool bank in Cambridge, MA
| |
Collapse
|
38
|
Abstract
The diet-microbiome interaction can positively or negatively affect our health depending on dietary habits. In this issue of Cell Host & Microbe, Wolf et al. (2019) highlight the beneficial roles of gut commensal Collinsella in degrading potentially toxic food contaminants, called Maillard reaction products, found in processed foods.
Collapse
Affiliation(s)
- Melissa C Kordahi
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - R William DePaolo
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Center for Microbiome Sciences & Therapeutics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Yeo SK, Sun Y, McKasy M, Shugart EC. Disgusting microbes: The effect of disgust on perceptions of risks related to modifying microbiomes. PUBLIC UNDERSTANDING OF SCIENCE (BRISTOL, ENGLAND) 2019; 28:433-448. [PMID: 30827192 DOI: 10.1177/0963662519832200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Research on perceived risks of scientific issues has largely overlooked the influence of disgust as a predictor. Here, we examine the impact of disgust on perceived risks of modifying microbiomes using a 2 (emotion) × 2 (focus) experiment embedded in an online survey. We find evidence of moderated mediation where individuals exposed to an article about microbiome research and therapies with explicit references to disgusting stimuli perceived greater risk through a mediating variable, elicited disgust. This indirect effect is moderated by the focus of the article; those who viewed a human-focused article experienced greater disgust and reported greater perceived risks. These findings have implications for assessing and addressing lay audiences' reactions to an emerging issue that has significant societal implications.
Collapse
|
40
|
|
41
|
Shi YC, Wang ZK, Yang YS. Consensus on standard biobanking of gut microbiota. J Dig Dis 2019; 20:114-121. [PMID: 30677249 DOI: 10.1111/1751-2980.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Chao Shi
- Department of Gastroenterology and Hepatology, Institute of Digestive Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zi Kai Wang
- Department of Gastroenterology and Hepatology, Institute of Digestive Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yun Sheng Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Diseases, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
42
|
Fang X. Microbial treatment: the potential application for Parkinson's disease. Neurol Sci 2018; 40:51-58. [PMID: 30415447 DOI: 10.1007/s10072-018-3641-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Alterations in the composition of the intestinal flora are associated with the pathophysiology of Parkinson's disease (PD). More importantly, the possible cause-effect links between gut flora and PD pathogenesis have been identified using PD animal models. Recent studies have found that probiotics improve the symptoms associated with constipation in PD patients. In addition, fecal microbiota transplantation (FMT) was recently shown to provide a protective effect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. Effective microbial therapy for PD includes probiotics and FMT. Therefore, microbial therapy may be a useful and novel approach for treatment of PD. In this review, I discuss the use of microbial treatment in PD.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
43
|
The Immunologic Role of Gut Microbiota in Patients with Chronic HBV Infection. J Immunol Res 2018; 2018:2361963. [PMID: 30148173 PMCID: PMC6083645 DOI: 10.1155/2018/2361963] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B can cause acute or chronic liver damage due to hepatitis B virus (HBV) infection. Cirrhosis or hepatocellular carcinoma (HCC) caused by chronic HBV infection often leads to increased mortality. However, the gut and liver have the same embryonic origin; therefore, a close relationship must exist in terms of anatomy and function, and the gut microbiota plays an important role in host metabolic and immune modulation. It is believed that structural changes in the gut microbiota, bacterial translocation, and the resulting immune injury may affect the occurrence and development of liver inflammation caused by chronic HBV infection based on the in-depth cognition of the concept of the “gut-liver axis” and the progress in intestinal microecology. This review aims to summarize and discuss the immunologic role of the gut microbiota in chronic HBV infection.
Collapse
|