1
|
Xie D, Li G, Zheng Z, Zhang X, Wang S, Jiang B, Li X, Wang X, Wu G. The molecular code of kidney cancer: A path of discovery for gene mutation and precision therapy. Mol Aspects Med 2025; 101:101335. [PMID: 39746268 DOI: 10.1016/j.mam.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Renal cell carcinoma (RCC) is a malignant tumor with highly heterogeneous and complex molecular mechanisms. Through systematic analysis of TCGA, COSMIC and other databases, 24 mutated genes closely related to RCC were screened, including VHL, PBRM1, BAP1 and SETD2, which play key roles in signaling pathway transduction, chromatin remodeling and DNA repair. The PI3K/AKT/mTOR signaling pathway is particularly important in the pathogenesis of RCC. Mutations in genes such as PIK3CA, MTOR and PTEN are closely associated with metabolic abnormalities and tumor cell proliferation. Clinically, mTOR inhibitors and VEGF-targeted drugs have shown significant efficacy in personalized therapy. Abnormal regulation of metabolic reprogramming, especially glycolysis and glutamine metabolic pathways, provides tumor cells with continuous energy supply and survival advantages, and GLS1 inhibitors have shown promising results in preclinical studies. This paper also explores the potential of immune checkpoint inhibitors in combination with other targeted drugs, as well as the promising application of nanotechnology in drug delivery and targeted therapy. In addition, unique molecular mechanisms are revealed and individualized therapeutic strategies are explored for specific subtypes such as TFE3, TFEB rearrangement type and SDHB mutant type. The review summarizes the common gene mutations in RCC and their molecular mechanisms, emphasizes their important roles in tumor diagnosis, treatment and prognosis, and looks forward to the application prospects of multi-pathway targeted therapy, metabolic targeted therapy, immunotherapy and nanotechnology in RCC treatment, providing theoretical support and clinical guidance for individualized treatment and new drug development.
Collapse
Affiliation(s)
- Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Zunwen Zheng
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China.
| |
Collapse
|
2
|
Wang Y, Song J, Zheng S, Wang S. Advancements in understanding the molecular mechanisms and clinical implications of Von Hippel-Lindau syndrome: A comprehensive review. Transl Oncol 2025; 51:102193. [PMID: 39571489 PMCID: PMC11617254 DOI: 10.1016/j.tranon.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/06/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024] Open
Abstract
Von Hippel-Lindau Syndrome (VHL) is a rare genetic disorder characterized by tumors in multiple organs, including the kidneys, pancreas, and central nervous system. This comprehensive review discusses the genetic basis and clinical manifestations of VHL, as well as recent advancements in understanding the molecular mechanisms that lead to tumor formation. The authors highlight the role of hypoxia-inducible factors and the ubiquitin-proteasome system in VHL-associated cancer development .The review also discusses the potential clinical implications of these findings, such as the development of targeted therapies for VHL-associated cancers. However, the authors note the challenges associated with developing effective treatments for this complex disease, including limited patient availability for clinical trials due to its rarity .Overall, this review provides valuable insights into our current understanding of VHL and offers important avenues for future research aimed at improving the diagnosis, treatment, and management of VHL patients. By illuminating the molecular underpinnings of VHL-associated cancers, this work may ultimately help to develop more effective treatments and improve outcomes for patients with this challenging disease.
Collapse
Affiliation(s)
- Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Jingzhuo Song
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuxing Zheng
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuhong Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China.
| |
Collapse
|
3
|
Liang L, Liang X, Yu X, Xiang W. Bioinformatic Analyses and Integrated Machine Learning to Predict prognosis and therapeutic response Based on E3 Ligase-Related Genes in colon cancer. J Cancer 2024; 15:5376-5395. [PMID: 39247594 PMCID: PMC11375543 DOI: 10.7150/jca.98723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose: Colorectal cancer is the third most common cause of cancer death worldwide. We probed the correlations between E3 ubiquitin ligase (E3)-related genes (ERGs) and colon cancer prognosis and immune responses. Methods: Gene expression profiles and clinical data of patients with colon cancer were acquired from the TCGA, GTEx, GSE17537 and GSE29621 databases. ERGs were identified by coexpression analysis. WGCNA and differential expression analysis were subsequently conducted. Consensus clustering identified two molecular clusters. Differential analysis of the two clusters and Cox regression were then conducted. A prognostic model was constructed based on 10 machine learning algorithms and 92 algorithm combinations. The CIBERSORT, ssGSEA and TIMER algorithms were used to estimate immune infiltration. The OncoPredict algorithm and The Cancer Immunome Atlas (TCIA) predicted susceptibility to chemotherapeutic and targeted drugs and immunotherapy sensitivity. CCK-8, scratch-wound and RT‒PCR assays were subsequently conducted. Results: Two ERG-associated clusters were identified. The prognosis and immune function of patients in cluster A were superior to those of patients in cluster B. We constructed a prognostic model with perfect predictive capability and validated it in internal and external colon cancer datasets. We discovered significant discrepancies in immune infiltration and immune checkpoints between different risk groups. The group with high-risk had a reduced half-maximal inhibitory concentration (IC50) for some routine antitumor drugs and reduced susceptibility to immunotherapy. In vitro experiments demonstrated that the ectopic expression of PRELP inhibited the migration and proliferation of CRC cells. Conclusions: In summary, we identified novel molecular subtypes and developed a prognostic model, which will help a lot in the advancement of better forecasting and therapeutic approaches.
Collapse
Affiliation(s)
- Lunxi Liang
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Liang
- School of Clinical Medicine, Changsha Medical University, Changsha, China
| | - Xueke Yu
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Wanting Xiang
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
4
|
Wu L, Bai L, Dai W, Wu Y, Xi P, Zhang J, Zheng L. Ginsenoside Rg3: A Review of its Anticancer Mechanisms and Potential Therapeutic Applications. Curr Top Med Chem 2024; 24:869-884. [PMID: 38441023 DOI: 10.2174/0115680266283661240226052054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has a long history of treating various diseases and is increasingly being recognized as a complementary therapy for cancer. A promising natural compound extracted from the Chinese herb ginseng is ginsenoside Rg3, which has demonstrated significant anticancer effects. It has been tested in a variety of cancers and tumors and has proven to be effective in suppressing cancer. OBJECTIVES This work covers various aspects of the role of ginsenoside Rg3 in cancer treatment, including its biological functions, key pathways, epigenetics, and potential for combination therapies, all of which have been extensively researched and elucidated. The study aims to provide a reference for future research on ginsenoside Rg3 as an anticancer agent and a support for the potential application of ginsenoside Rg3 in cancer treatment.
Collapse
Affiliation(s)
- Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Bai
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshu Dai
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontier Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaping Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengjun Xi
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lily Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Wu D. The Cullin-RING Ligase Family in Immune Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:81-87. [PMID: 39546136 DOI: 10.1007/978-981-97-7288-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The Cullin-RING ligase (CRL) E3 family is the largest ubiquitin ligase family and consists of a catalytic subunit, a scaffold protein, an adaptor, and a substrate receptor. Each component is different in the different members of the CRL family. CRLs affect the ubiquitination and stability of multiple substrates and regulate many biological processes. In immune regulation, components of CRLs also play critical roles in different types of immune cells and under different physical or pathological conditions. In this review, we summarized the recent advances in research about the functions of CRLs in immune regulation. Different components of the CRL family are associated with the regulation of different immunological processes.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Bo Q, Xie Y, Lin Q, Fu L, Hu C, Zhang Z, Meng Q, Xu F, Wang G, Miao Z, Wang H, Xu D. Docosahexaenoic acid protects against lipopolysaccharide-induced fetal growth restriction via inducing the ubiquitination and degradation of NF-κB p65 in placental trophoblasts. J Nutr Biochem 2023; 118:109359. [PMID: 37085060 DOI: 10.1016/j.jnutbio.2023.109359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/17/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Lipopolysaccharide (LPS) could induce adverse birth outcomes by evoking inflammation. We investigated the effect and mechanism of docosahexaenoic acid (DHA) on LPS-induced placental inflammation and fetal growth restriction (FGR). In vivo, pregnant CD-1 mice were divided into four groups: Ctrl, DHA, LPS and DHA+LPS group. We found that DHA pretreatment reduced the incidence of FGR induced by LPS and activated the expression of peroxisome proliferators-activated receptor gamma (PPARγ) in placental tissue. Moreover, the LPS-induced increase of mRNA levels of Tnf-α, Il-6, Il-1β, Mip-2 and Kc in placental tissue was significantly attenuated by DHA pretreatment. A similar effect of DHA was observed in serum of pregnant mice and amniotic fluid. In contrast, the levels of the IL-10 were significantly increased after DHA pretreatment. In vitro, we clarified that DHA antagonized the activation of the NF-κB signaling pathway induced by LPS, which was dependent on PPARγ. Subsequently, CHX (translation inhibitor) was used to indicated that PPARγ significantly increased the degradation rate of p65, an effect that was inhibited by MG132 (proteasome inhibitor) treatment. Finally, it was confirmed that the activation of PPARγ could significantly promote the ubiquitination and degradation of p65. Our results suggested that DHA alleviated LPS-induced inflammatory responses and FGR by activating PPARγ expression, leading to p65 ubiquitination and degradation.
Collapse
Affiliation(s)
- Qingli Bo
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Yali Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Qiulin Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Fu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Chunqiu Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Zhiqiang Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Qingchong Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Feixiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China;; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Guoxiu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ziyang Miao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China;; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China;; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China.
| |
Collapse
|
7
|
A Plasmodium falciparum RING Finger E3 Ubiquitin Ligase Modifies the Roles of PfMDR1 and PfCRT in Parasite Drug Responses. Antimicrob Agents Chemother 2023; 67:e0082122. [PMID: 36625569 PMCID: PMC9933707 DOI: 10.1128/aac.00821-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein ubiquitination is an important posttranslational regulation mechanism that mediates Plasmodium development and modifies parasite responses to antimalarial drugs. Although mutations in several parasite ubiquitination enzymes have been linked to increased drug tolerance, the molecular mechanisms by which ubiquitination pathways mediate these parasite responses remain largely unknown. Here, we investigate the roles of a Plasmodium falciparum ring finger ubiquitin ligase (PfRFUL) in parasite development and in responses to antimalarial drugs. We engineered a transgenic parasite having the Pfrful gene tagged with an HA-2A-NeoR-glmS sequence to knockdown (KD) Pfrful expression using glucosamine (GlcN). A Western blot analysis of the proteins from GlcN-treated pSLI-HA-NeoR-glmS-tagged (PfRFULg) parasites, relative to their wild-type (Dd2) controls, showed changes in the ubiquitination of numerous proteins. PfRFUL KD rendered the parasites more sensitive to multiple antimalarial drugs, including mefloquine, piperaquine, amodiaquine, and dihydroartemisinin. PfRFUL KD also decreased the protein level of the P. falciparum multiple drug resistance 1 protein (PfMDR1) and altered the ratio of two bands of the P. falciparum chloroquine resistance transporter (PfCRT), suggesting contributions to the changed drug responses by the altered ubiquitination of these two molecules. The inhibition of proteasomal protein degradation by epoxomicin increased the PfRFUL level, suggesting the degradation of PfRFUL by the proteasome pathways, whereas the inhibition of E3 ubiquitin ligase activities by JNJ26854165 reduced the PfRFUL level. This study reveals the potential mechanisms of PfRFUL in modifying the expression of drug transporters and their roles in parasite drug responses. PfRFUL could be a potential target for antimalarial drug development.
Collapse
|
8
|
Immunological Aspects of Von Hippel-Lindau Disease: A Focus on Neuro-Oncology and Myasthenia Gravis. Diagnostics (Basel) 2023; 13:diagnostics13010144. [PMID: 36611440 PMCID: PMC9818211 DOI: 10.3390/diagnostics13010144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominant condition that predisposes affected individuals to a variety of malignant and benign neoplasms. The pathogenetic turning point of this illness is the accumulation of hypoxia-inducible factor (HIF)-1α, a transcription factor of several genes involved in oncogenesis, angiogenesis, tissue regeneration, metabolic regulation, hematopoiesis, and inflammatory responses. From an oncological perspective, increased awareness of the molecular pathways underlying this disease is bringing us closer to the development of specific and targeted therapies. Meanwhile, on the surgical side, improved understanding can help to better identify the patients to be treated and the surgical timing. Overall, pathogenesis research is crucial for developing patient-tailored therapies. One of the actual key topics of interest is the link between the VHL/HIF axis and inflammation. The present study aims to outline the fundamental mechanisms that link VHL disease and immune disorders, as well as to explore the details of the overlap between VHL disease and myasthenia gravis (MG) pathogenetic pathways. As a result, MG becomes a paradigm for autoimmune disorders that might be related with VHL disease.
Collapse
|
9
|
Zhong T, Lei K, Lin X, Xie Z, Luo S, Zhou Z, Zhao B, Li X. Protein ubiquitination in T cell development. Front Immunol 2022; 13:941962. [PMID: 35990660 PMCID: PMC9386135 DOI: 10.3389/fimmu.2022.941962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
As an important form of posttranslational modification, protein ubiquitination regulates a wide variety of biological processes, including different aspects of T cell development and differentiation. During T cell development, thymic seeding progenitor cells (TSPs) in the thymus undergo multistep maturation programs and checkpoints, which are critical to build a functional and tolerant immune system. Currently, a tremendous amount of research has focused on the transcriptional regulation of thymocyte development. However, in the past few years, compelling evidence has revealed that the ubiquitination system also plays a crucial role in the regulation of thymocyte developmental programs. In this review, we summarize recent findings on the molecular mechanisms and cellular pathways that regulate thymocyte ubiquitination and discuss the roles of E3 ligases and deubiquitinating enzymes (DUBs) involved in these processes. Understanding how T cell development is regulated by ubiquitination and deubiquitination will not only enhance our understanding of cell fate determination via gene regulatory networks but also provide potential novel therapeutic strategies for treating autoimmune diseases and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Zhao
- *Correspondence: Bin Zhao, ; Xia Li,
| | - Xia Li
- *Correspondence: Bin Zhao, ; Xia Li,
| |
Collapse
|
10
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
11
|
Tan L, Fu L, Zheng L, Fan W, Tan H, Tao Z, Xu Y. TET2 Regulates 5-Hydroxymethylcytosine Signature and CD4 + T-Cell Balance in Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:254-272. [PMID: 35255541 PMCID: PMC8914607 DOI: 10.4168/aair.2022.14.2.254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/23/2022]
Abstract
Purpose Previous studies have shown the role of ten-eleven translocation 2 (TET2) in CD4+ T cells. However, its function in CD4+ T cells under allergic inflammation is unclear. We aimed to investigate the epigenomic distribution of DNA 5-hydroxymethylcytosine (5hmC) and the role of TET2 in CD4+ T cells of allergic rhinitis (AR). Methods The hMeDIP-seq was performed to identify sequences with 5hmC deposition in CD4+ T cells of AR patients. Tet2-deficient or wild type mice were stimulated with ovalbumin (OVA) to develop an AR mouse model. The histopathology in nasal mucosae, Th1/Th2/Treg/Th17 cell percentage, concentrations of Th-related cytokines, expression of Tet and differential hydroxymethylated genes (DhMG), and the global deposition of 5hmC in sorted CD4+ T cells were detected. Results Epigenome-wide 5hmC landscape and DhMG in the CD4+ T cells of AR patients were identified. Tet2 depletion did not led to spontaneous inflammation. However, under the stimulation of allergen, OVA, loss of Tet2 resulted in the exacerbation of allergic inflammation, which was characterized by severer allergic symptoms, more inflammatory cells infiltrating the nasal lamina propria, sharper imbalances between Th1/Th2 and Treg/Th17 cells, and excessive secretion of OVA-specific IgE and Th2-related cytokines. Moreover, altered mRNA production of several DhMG and sharp decrease in 5hmC deposition were also observed in Tet2-deficient OVA-exposed mice. Conclusions TET2 may regulate DNA 5hmC, DhMG expressions, and CD4+ T cell balance in AR.
Collapse
Affiliation(s)
- Lu Tan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lisheng Fu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanyu Tan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Ruan T, Sun Y, Zhang J, Sun J, Liu W, Prinz RA, Peng D, Liu X, Xu X. H5N1 infection impairs the alveolar epithelial barrier through intercellular junction proteins via Itch-mediated proteasomal degradation. Commun Biol 2022; 5:186. [PMID: 35233032 PMCID: PMC8888635 DOI: 10.1038/s42003-022-03131-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
The H5N1 subtype of the avian influenza virus causes sporadic but fatal infections in humans. H5N1 virus infection leads to the disruption of the alveolar epithelial barrier, a pathologic change that often progresses into acute respiratory distress syndrome (ARDS) and pneumonia. The mechanisms underlying this remain poorly understood. Here we report that H5N1 viruses downregulate the expression of intercellular junction proteins (E-cadherin, occludin, claudin-1, and ZO-1) in several cell lines and the lungs of H5N1 virus-infected mice. H5N1 virus infection activates TGF-β-activated kinase 1 (TAK1), which then activates p38 and ERK to induce E3 ubiquitin ligase Itch expression and to promote occludin ubiquitination and degradation. Inhibition of the TAK1-Itch pathway restores the intercellular junction structure and function in vitro and in the lungs of H5N1 virus-infected mice. Our study suggests that H5N1 virus infection impairs the alveolar epithelial barrier by downregulating the expression of intercellular junction proteins at the posttranslational level.
Collapse
Affiliation(s)
- Tao Ruan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yuling Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jingting Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, 60201, USA
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
13
|
Kava R, Peripolli E, Berton MP, Lemos M, Lobo RB, Stafuzza NB, Pereira AS, Baldi F. Genome-wide structural variations in Brazilian Senepol cattle, a tropically adapted taurine breed. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Hu L, Wu H, Jiang T, Kuang M, Liu B, Guo X, He D, Chen M, Gu J, Gu J, Chang L, Feng M, Ruan Y. pVHL promotes lysosomal degradation of YAP in lung adenocarcinoma. Cell Signal 2021; 83:110002. [PMID: 33823241 DOI: 10.1016/j.cellsig.2021.110002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/09/2022]
Abstract
Yes-associated protein (YAP) is a vital transcriptional co-activator that activates cell proliferation and evasion of apoptosis for the promotion of tumorigenesis. The von Hippel-Lindau tumor suppressor protein (pVHL), as a critical component of E3 ubiquitin ligase, targets various substrates to regulate tumor progression. However, the precise molecular mechanisms of pVHL during tumorigenesis remain largely unclear. Herein, we found that there was a significant negative correlation between pVHL and YAP at protein level in the TCGA-LUAD dataset and our cohort. Over-expression of pVHL decreased YAP protein expression and reduced its transcriptional activity. Further study indicated that pVHL did not affect YAP mRNA level but decreased YAP protein stability in a lysosome-dependent manner. In addition, the pVHL-mediated degradation of YAP inhibited cellular proliferation, migration, and enhanced chemosensitivity to cisplatin in lung adenocarcinoma cells. Interestingly, the pVHL-mediated YAP degradation was blocked by elevated O-GlcNAcylation. Collectively, our findings demonstrate that pVHL modulates the lysosomal degradation of YAP, and may provide more clues to better understanding the tumor suppressive effects of pVHL.
Collapse
Affiliation(s)
- Lan Hu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengzhen Kuang
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bo Liu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinying Guo
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Daochuan He
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengqian Chen
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Gu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Novelli G, Liu J, Biancolella M, Alonzi T, Novelli A, Patten JJ, Cocciadiferro D, Agolini E, Colona VL, Rizzacasa B, Giannini R, Bigio B, Goletti D, Capobianchi MR, Grelli S, Mann J, McKee TD, Cheng K, Amanat F, Krammer F, Guarracino A, Pepe G, Tomino C, Tandjaoui-Lambiotte Y, Uzunhan Y, Tubiana S, Ghosn J, Notarangelo LD, Su HC, Abel L, Cobat A, Elhanan G, Grzymski JJ, Latini A, Sidhu SS, Jain S, Davey RA, Casanova JL, Wei W, Pandolfi PP. Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death Dis 2021; 12:310. [PMID: 33762578 PMCID: PMC7987752 DOI: 10.1038/s41419-021-03513-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy.
- IRCCS Neuromed, Pozzilli, (IS), Italy.
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Tonino Alonzi
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - J J Patten
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Barbara Rizzacasa
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Rosalinda Giannini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133, Rome, Italy
| | | | | | - Ke Cheng
- HistoWiz Inc, Brooklyn, NY, 11226, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn school of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn school of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gerardo Pepe
- Department of Biology, Tor Vergata University, 00133, Rome, Italy
| | - Carlo Tomino
- San Raffaele University of Rome, 00166, Rome, Italy
| | - Yacine Tandjaoui-Lambiotte
- Intensive Care Unit, Avicenne Hospital, APHP, Bobigny, France
- INSERM U1272 Hypoxia & Lung, Bobigny, France
| | - Yurdagul Uzunhan
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Hôpital Avicenne, APHP, Bobigny; INSERM UMR1272, Université Paris 13, Bobigny, France
| | - Sarah Tubiana
- Hôpital Bichat Claude Bernard, APHP, Paris, France
- Centre d'investigation Clinique, Inserm CIC, 1425, Paris, France
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMRS1137, University of Paris, Paris, France
- AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Disease Department, Paris, France
| | | | - Helen C Su
- Laboratory of Clinical Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Gai Elhanan
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, 89502, USA
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA
| | - Joseph J Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, 89502, USA
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA
| | - Andrea Latini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada, M5S 3E1 416-946-0863
| | | | - Robert A Davey
- Department of Microbiology Boston University, National Emerging Infectious Diseases Laboratories, Boston, MA, 02118, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Pier Paolo Pandolfi
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA.
- MBC, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, TO, 10126, Italy.
| |
Collapse
|
16
|
Wang L, Han X, Zheng X, Zhou Y, Hou H, Chen W, Li X, Zhao L. [Ginsenoside 20(S)-Rg3 upregulates tumor suppressor VHL gene expression by suppressing DNMT3A-mediated promoter methylation in ovarian cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:100-106. [PMID: 33509760 DOI: 10.12122/j.issn.1673-4254.2021.01.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To explore the mechanism by which ginsenoside 20(S)-Rg3 upregulates the expression of tumor suppressor von Hippel-Lindau (VHL) gene in ovarian cancer cells. METHODS Ovarian cancer cell line SKOV3 treated with 20(S)-Rg3 were examined for mRNA and protein levels of VHL, DNMT1, DNMT3A and DNMT3B by real-time PCR and Western blotting, respectively. The changes in VHL mRNA expression in SKOV3 cells in response to treatment with 5-Aza-CdR, a DNA methyltransferase inhibitor, were detected using real-time PCR. VHL gene promoter methylation was examined with methylation-specific PCR and VHL expression levels were determined with real-time PCR and Western blotting in non-treated or 20(S)-Rg3-treated SKOV3 cells and in 20(S)-Rg3-treated DNMT3A-overexpressing SKOV3 cells. VHL and DNMT3A protein levels were detected by immunohistochemistry in subcutaneous SKOV3 cell xenografts in nude mice. RESULTS Treatment of SKOV3 cells with 20(S)-Rg3 significantly upregulated VHL and downregulated DNMT3A expressions at both the mRNA and protein levels (P < 0.05) and upregulated DNMT3B expression only at the mRNA level, but did not cause significant changes in either the mRNA or protein level of DNMT1. Treatment of the cells with 2 and 5 μmol/L 5-Aza-CdR obviously increased VHL mRNA expression by by over 3 folds (P < 0.05). 20(S)-Rg3 significantly decreased the methylation level in the promoter region of VHL gene, and this effect was abrogated by DNMT3A overexpression in the cells (P < 0.05). Immunohistochemisty showed a significantly increased VHL expression but a lowered DNMT3A expression in subcutaneous SKOV3 cell xenografts in 20 (S)-Rg3-treated nude mice. CONCLUSIONS Ginsenoside 20(S)-Rg3 upregulates VHL expression in ovarian cancer cells by suppressing DNMT3A-mediated DNA methylation.
Collapse
Affiliation(s)
- Lijie Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Gynecology, Lanzhou University Second Hospital, Lan Zhou 730030, China
| | - Xi Han
- Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xia Zheng
- the Second Affiliated Hospital of Zhejiang University School of medicine, Hangzhou 310009, China
| | - Yuanyuan Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huilian Hou
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Chen
- Center for Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Le Zhao
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
17
|
Wu Y, Zhang W. The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:1168. [PMID: 33503896 PMCID: PMC7865285 DOI: 10.3390/ijms22031168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are derived from early embryos and can differentiate into any type of cells in living organisms. Induced pluripotent stem cells (iPSCs) resemble ESCs, both of which serve as excellent sources to study early embryonic development and realize cell replacement therapies for age-related degenerative diseases and other cell dysfunction-related illnesses. To achieve these valuable applications, comprehensively understanding of the mechanisms underlying pluripotency maintenance and acquisition is critical. Ubiquitination modifies proteins with Ubiquitin (Ub) at the post-translational level to monitor protein stability and activity. It is extensively involved in pluripotency-specific regulatory networks in ESCs and iPSCs. Ubiquitination is achieved by sequential actions of the Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. Compared with E1s and E2s, E3s are most abundant, responsible for substrate selectivity and functional diversity. In this review, we focus on E3 ligases to discuss recent progresses in understanding how they regulate pluripotency and somatic cell reprogramming through ubiquitinating core ESC regulators.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
18
|
Zhang W, Qiu W. OTUB1 Recruits Tumor Infiltrating Lymphocytes and Is a Prognostic Marker in Digestive Cancers. Front Mol Biosci 2020; 7:212. [PMID: 33240928 PMCID: PMC7677501 DOI: 10.3389/fmolb.2020.00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background The deubiquitinating enzyme (DUB) OTUB1 can regulate the process of ubiquitination, but the influence of OTUB1 on immunity, apoptosis, autophagy, and the prognosis of digestive cancers requires further exploration. Methods OTUB1 expression was analyzed with the Oncomine and TIMER database. Kaplan-Meier plotter was used to calculate the association between OTUB1 and clinical prognosis. The regulation of OTUB1 on cancer immunocyte infiltration was determined by the TIMER database. The interaction between OTUB1 and immune genes, gene expression profiling (GEP), key genes of apoptosis and autophagy were analyzed via GEPIA. Protein-protein interaction (PPI), gene expression profiling (GEP), and functional pathway enrichment were also performed with the STRING and Pathway Common databases, respectively. Results High OTUB1 expression was found in CHOL, LIHC, READ, ESCA, and COAD, which was significantly associated with the poorer OS of LIHC (HR = 2.07, 95% CI = 1.30-3.30, P = 0.002), with modifications by sex, stage, grade, and mutant burden. OTUB1 can promote the recruitment of B cells, CD8 + T cells, macrophages in ESCA, B cells, and neutrophils in LIHC. We determined a significant interaction between OTUB1 and USP8, RNF128, LRIG1, UBB, UBC, STAM2, RNF41, EGFR, RPS27A, and HGS by PPI. This functional pathway indicates the regulatory role of OTUB1on immune, apoptosis, and autophagy through its interaction with TP53 and ATG. Conclusions OTUB1 performed as a molecular indicator of poor prognosis in digestive cancers, regulated the infiltration of tumor immunocytes, and exerted a significant influence on apoptosis and autophagy. OTUB1 is a potential antitumor target for digestive tumors.
Collapse
Affiliation(s)
- Wenhao Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Qiu
- Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
Celebi G, Kesim H, Ozer E, Kutlu O. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. Int J Mol Sci 2020; 21:ijms21176335. [PMID: 32882786 PMCID: PMC7503467 DOI: 10.3390/ijms21176335] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a multi-step enzymatic process that involves the marking of a substrate protein by bonding a ubiquitin and protein for proteolytic degradation mainly via the ubiquitin–proteasome system (UPS). The process is regulated by three main types of enzymes, namely ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Under physiological conditions, ubiquitination is highly reversible reaction, and deubiquitinases or deubiquitinating enzymes (DUBs) can reverse the effect of E3 ligases by the removal of ubiquitin from substrate proteins, thus maintaining the protein quality control and homeostasis in the cell. The dysfunction or dysregulation of these multi-step reactions is closely related to pathogenic conditions; therefore, understanding the role of ubiquitination in diseases is highly valuable for therapeutic approaches. In this review, we first provide an overview of the molecular mechanism of ubiquitination and UPS; then, we attempt to summarize the most common diseases affecting the dysfunction or dysregulation of these mechanisms.
Collapse
Affiliation(s)
- Gizem Celebi
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Hale Kesim
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ebru Ozer
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
- Correspondence: ; Tel.: +90-216-483-9000 (ext. 2413)
| |
Collapse
|
20
|
Chitrakar A, Budda SA, Henderson JG, Axtell RC, Zenewicz LA. E3 Ubiquitin Ligase Von Hippel-Lindau Protein Promotes Th17 Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1009-1023. [PMID: 32690659 PMCID: PMC8167928 DOI: 10.4049/jimmunol.2000243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Von Hippel-Lindau (VHL) is an E3 ubiquitin ligase that targets proteins, including HIF-1α, for proteasomal degradation. VHL and HIF regulate the balance between glycolysis and oxidative phosphorylation, which is critical in highly dynamic T cells. HIF-1α positively regulates Th17 differentiation, a complex process in which quiescent naive CD4 T cells undergo transcriptional changes to effector cells, which are commonly dysregulated in autoimmune diseases. The role of VHL in Th17 cells is not known. In this study, we hypothesized VHL negatively regulates Th17 differentiation and deletion of VHL in CD4 T cells would elevate HIF-1α and increase Th17 differentiation. Unexpectedly, we found that VHL promotes Th17 differentiation. Mice deficient in VHL in their T cells were resistant to an autoimmune disease, experimental autoimmune encephalomyelitis, often mediated by Th17 cells. In vitro Th17 differentiation was impaired in VHL-deficient T cells. In the absence of VHL, Th17 cells had decreased activation of STAT3 and SMAD2, suggesting that VHL indirectly or directly regulates these critical signaling molecules. Gene expression analysis revealed that in Th17 cells, VHL regulates many cellular pathways, including genes encoding proteins involved indirectly or directly in the glycolysis pathway. Compared with wild-type, VHL-deficient Th17 cells had elevated glycolysis and glycolytic capacity. Our finding has implications on the design of therapeutics targeting the distinct metabolic needs of T cells to combat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Alisha Chitrakar
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Scott A Budda
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Jacob G Henderson
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Lauren A Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
21
|
Role of RING-Type E3 Ubiquitin Ligases in Inflammatory Signalling and Inflammatory Bowel Disease. Mediators Inflamm 2020; 2020:5310180. [PMID: 32848509 PMCID: PMC7436281 DOI: 10.1155/2020/5310180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/22/2020] [Indexed: 01/05/2023] Open
Abstract
Ubiquitination is a three-step enzymatic cascade for posttranslational protein modification. It includes the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). RING-type E3 ubiquitin ligases catalyse the posttranslational proteolytic and nonproteolytic functions in various physiological and pathological processes, such as inflammation-associated signal transduction. Resulting from the diversity of substrates and functional mechanisms, RING-type ligases regulate microbe recognition and inflammation by being involved in multiple inflammatory signalling pathways. These processes also occur in autoimmune diseases, especially inflammatory bowel disease (IBD). To understand the importance of RING-type ligases in inflammation, we have discussed their functional mechanisms in multiple inflammation-associated pathways and correlation between RING-type ligases and IBD. Owing to the limited data on the biology of RING-type ligases, there is an urgent need to analyse their potential as biomarkers and therapeutic targets in IBD in the future.
Collapse
|