1
|
Zhou D, Qiang L, Ren G, Fang S, Hou Z. Characterization of tannic acid-intravenous immunoglobulin (IVIG) protein complex and impact on drug-induced cytotoxicity in MDA-MB-468 breast cancer cells. Int J Biol Macromol 2025:144545. [PMID: 40409658 DOI: 10.1016/j.ijbiomac.2025.144545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
In this study, we investigated the molecular interaction between intravenous immunoglobulin (IVIG) and tannic acid (TA), a natural polyphenol, to assess the potential impact of this interaction on cellular responses relevant to cancer. Binding analysis revealed that the IVIG-TA complex forms through a single binding site on the protein with lgKa = 3.08-4.20, driven by hydrogen bonding and van der Waals interactions. Spectroscopic studies, including CD, UV-visible, and fluorescence analysis, indicated that TA induces partial changes in the secondary structure of IVIG and alters the microenvironment around specific tyrosine residues (TYR33, TYR98, TYR99). Molecular dynamics simulations further supported these findings, showing that TA binding leads to partial folding of the protein's heavy chain. Functional assays in breast cancer cell lines demonstrated that the IVIG-TA complex, which exhibited IC50 values nearly comparable to those of TA, was associated with increased intracellular ROS and LDH release, indicating enhanced oxidative stress and membrane disruption. However, caspase-3 activity remained relatively unchanged, suggesting that the observed cellular damage was induced through non-apoptotic mechanisms, potentially sensitizing cells to further damage from TA or other treatments. Although the extent of anticancer modulation under the current conditions was limited due to the relatively weak interaction between TA and IVIG, these findings suggest that further exploration of the IVIG-ligand interaction could lead to enhanced specificity in binding and modulation of small molecule activity. This work lays the foundation for future studies investigating the structural and biological implications of IVIG-ligand interactions in therapeutic contexts.
Collapse
Affiliation(s)
- Dongdong Zhou
- Department of Breast Medical Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Ling Qiang
- Department of Breast Medical Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Guohua Ren
- Department of Breast Medical Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Shu Fang
- Department of Breast Medical Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Zhenyu Hou
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Raja KD, Singh A, Akhtar S, Singh P, Seth A, Kaushal S, Sharma A. Phenotypic Diversity of Immunosuppressive B Cells Associated in Urothelial Carcinoma of the Bladder. Clin Genitourin Cancer 2025:102351. [PMID: 40413097 DOI: 10.1016/j.clgc.2025.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/19/2024] [Accepted: 04/07/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Urothelial carcinoma of the bladder presents a complex tumor microenvironment, with tumor-infiltrating B cells (TIL-Bs) playing a significant role in disease progression. Although their presence is acknowledged, the phenotypic diversity of regulatory TIL-Bs in bladder cancer remain underexplored. MATERIALS AND METHODS In this study, we evaluated core B cell subsets and their immunosuppressive phenotypes in both peripheral blood (n=40) and bladder tumor tissues (n=40) to evaluate their relationship with disease severity. RESULTS Our findings revealed that high-grade bladder tumors are enriched with B cells and their subsets, particularly transitional B cells and plasmacytes (plasmablasts and plasma cells). However, total memory B cells were reduced in the tumor microenvironment compared to non-tumor tissues. It was further revealed that the high-grade tumors demonstrated significant infiltration of regulatory B cells (Breg), with elevated levels of IL10+ and TGFβ+ Breg cells as well as IL-10+TGF-β+ dual-cytokine-secreting Breg cells, suggesting their role in fostering an immunosuppressive microenvironment. Memory B cells demonstrated the highest frequency of Breg phenotypes among the B cell subsets. Additionally, Tertiary Lymphoid Structure formation and frequency were associated with disease severity, the differentiated B cells and IL10+ Breg cell counts, emphasizing the importance of these structures in bladder cancer progression and the potential involvement in Breg cells formation. CONCLUSION This study demonstrates the enrichment of the bladder cancer tumor microenvironment with diverse B cell subsets, including functional Breg cells, which correlates with disease severity.
Collapse
Affiliation(s)
| | - Aishwarya Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shamima Akhtar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhjot Singh
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Ding M, Lin J, Qin C, Fu Y, Du Y, Qiu X, Wei P, Xu T. Novel CAR-T Cells Specifically Targeting SIA-CIgG Demonstrate Effective Antitumor Efficacy in Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400156. [PMID: 39178136 PMCID: PMC11516049 DOI: 10.1002/advs.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Indexed: 08/25/2024]
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy is a promising cancer treatment method. However, its application in bladder cancer (BC) remains limited, partially because of the absence of appropriate target molecules. Sialylated cancer-derived IgG (SIA-CIgG) is highly expressed in BC and is closely associated with malignant biological behavior. However, its potential as a target for CAR-T cell therapy to treat BC is yet to be established. Here, it is found that SIA-CIgG is highly expressed in most BC samples but displayed limited expression in normal tissues. CAR-T cells specifically targeting SIA-CIgG can effectively lyse BC cells and the cytotoxicity depends on SIA-CIgG expression. Furthermore, SIA-CIgG CAR-T cells demonstrate milder tumor cell lysis and enhanced persistence compared with human epidermal growth factor receptor 2 (HER2) CAR-T cells, which have undergone extensive clinical trials. After repeated tumor antigen challenges, SIA-CIgG CAR-T cells display substantial alterations in both the transcriptome and chromatin accessibility. When combining SIA-CIgG CAR-T cell therapy with FDA-approved drugs to treat BC, the histone deacetylase inhibitor (HDACi), vorinostat, is found to enhance the ablility of CAR-T cells for tumor cell lysis. Therefore, the combination of SIA-CIgG CAR-T cells and vorinostat is promising for BC treatment.
Collapse
Affiliation(s)
- Mengting Ding
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Jiaxing Lin
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Caipeng Qin
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Yuhao Fu
- Center for Cell and Gene Circuit DesignCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yiqing Du
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Xiaoyan Qiu
- Department of ImmunologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Ping Wei
- Center for Cell and Gene Circuit DesignCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Tao Xu
- Department of UrologyPeking University People's HospitalBeijing100044China
| |
Collapse
|
4
|
Xu M, Zhang S, Zhang Y, Qiu X, Wang X. High Expression of Cancer-Derived Sialylated Immunoglobulin G: A Novel Biomarker for Poor Prognosis in Laryngeal Squamous Cell Carcinoma. Oncology 2024; 103:227-236. [PMID: 39134010 DOI: 10.1159/000540465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/17/2024] [Indexed: 03/08/2025]
Abstract
INTRODUCTION Laryngeal squamous cell carcinoma (LSCC) is the most common type of laryngeal cancer, with around 60% of patients being diagnosed at an advanced stage. Recently, cancer-derived sialylated immunoglobulin G (SIA-IgG) has been suggested to play a role in the progression of various epithelial tumors, but its significance in LSCC remains unknown. This study aimed to investigate the clinical significance of SIA-IgG as a novel biomarker in relation to the initiation, progression, and prognostication of LSCC. METHODS Immunohistochemistry (IHC) was utilized to assess SIA-IgG expression in tumor samples from 75 LSCC patients, aiming to investigate its correlation with clinical prognosis. In vitro functional experiments were conducted to explore the impact of SIA-IgG expression on the proliferative and migratory abilities of laryngocarcinoma cells. RESULTS High expression of SIA-IgG was associated with pT stage, pN stage, TNM stage, and recurrence during follow-up and was correlated with poor disease-free survival (DFS) and overall survival (OS). Multivariate Cox analysis demonstrated that SIA-IgG served as an independent risk factor for OS and DFS. Knocking down SIA-IgG significantly weakened laryngocarcinoma cells' proliferation, clonogenesis, and migration abilities. CONCLUSIONS The frequent expression of SIA-IgG in LSCC is significantly associated with poor prognosis. High levels of SIA-IgG can enhance proliferation and migration in laryngocarcinoma cells. These findings suggest that SIA-IgG has potential as a novel biomarker for LSCC.
Collapse
Affiliation(s)
- Meng Xu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ye Zhang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaolei Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Huang J, Zhang J, Zhang L, Wang Z, Fan T, Yin S. The Structure Characteristics and Function of Non B Cell-Derived Immunoglobulin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:59-71. [PMID: 38967750 DOI: 10.1007/978-981-97-0511-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
According to classical immunology theory, immunoglobulin (Ig) is exclusively produced by differentiated B lymphocytes, which exhibit a typical tetrapeptide chain structure and are predominantly present on the surface of B cells and in bodily fluids. B-Ig is one of the critical effector molecules for humoral immune responses specifically recognising antigens and eliminating them. However, mounting evidence has demonstrated that Ig is widely expressed in non B lineage cells, especially malignant ones (referred to as non B-Ig). Interestingly, non B-Ig mainly resides in the cytoplasm and secretion, but to some extent on the cell surface. Furthermore non B-Ig not only displays a tetrapeptide chain structure but also shows free heavy chains and free light chains (FLCs). Additionally, Ig derived from non B cancer cell typically displays unique glycosylation modifications. Functionally, non B-Ig demonstrated diversity and versatility, showing antibody activity and cellular biological activity, such as promoting cell proliferation and survival, and it is implicated in cancer progression and some immune-related diseases, such as renal diseases.
Collapse
Affiliation(s)
- Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Jingxuan Zhang
- Platform Biology, Suzhou Abogen Biosciences, Suzhou, Jiangsu, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zihan Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Tianrui Fan
- Shanghai Discovery and Development Center, Abiosciences, Shanghai, China
| | - Sha Yin
- Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Deng Z, Wang Y, Qin C, Sheng Z, Xu T, Qiu X. Expression and Clinical Significance of Non B Cell-Derived Immunoglobulins in the Urinary System and Male Reproductive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:101-117. [PMID: 38967753 DOI: 10.1007/978-981-97-0511-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The urinary system comprises kidneys, ureters, bladder, and urethra with its primary function being excretion, referring to the physiological process of transporting substances that are harmful or surplus out of the body. The male reproductive system consists of gonads (testis), vas deferens, and accessory glands such as the prostate. According to classical immunology theory, the tissues and organs mentioned above are not thought to produce immunoglobulins (Igs), and any Ig present in the relevant tissues under physiological and pathological conditions is believed to be derived from B cells. For instance, most renal diseases are associated with uncontrolled inflammation caused by pathogenic Ig deposited in the kidney. Generally, these pathological Igs are presumed to be produced by B cells. Recent studies have demonstrated that renal parenchymal cells can produce and secrete Igs, including IgA and IgG. Glomerular mesangial cells can express and secrete IgA, which is associated with cell survival and adhesion. Likewise, human podocytes demonstrate the ability to produce and secrete IgG, which is related to cell survival and adhesion. Furthermore, renal tubular epithelial cells also express IgG, potentially involved in the epithelial-mesenchymal transition (EMT). More significantly, renal cell carcinoma, bladder cancer, and prostate cancer have been revealed to express high levels of IgG, which promotes tumour progression. Given the widespread Ig expression in the urinary and male reproductive systems, continued efforts to elucidate the roles of Igs in renal physiological and pathological processes are necessary.
Collapse
Affiliation(s)
- Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Yue Wang
- Peking University Third Hospital, Beijing, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Zhengzuo Sheng
- Department of Thoracic Surgery, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Zheng J, Li G, Liu W, Deng Y, Xu X. The Expression of Non B Cell-Derived Immunoglobulins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:11-36. [PMID: 38967747 DOI: 10.1007/978-981-97-0511-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Although V(D)J recombination and immunoglobulin (Ig) production are traditionally recognised to occur only in B lymphocytes and plasma cells, the expression of Igs in non-lymphoid cells, which we call non B cell-derived Igs (non B Igs), has been documented by growing studies. It has been demonstrated that non B-Igs can be widely expressed in most cell types, including, but not limited to, epithelial cells, cardiomyocytes, hematopoietic stem/progenitor cells, myeloid cells, and cells from immune-privileged sites, such as neurons and spermatogenic cells. In particular, malignant tumour cells express high level of IgG. Moreover, different from B-Igs that mainly localised on the B cell membrane and in the serum and perform immune defence function mainly, non B-Igs have been found to distribute more widely and play critical roles in immune defence, maintaining cell proliferation and survival, and promoting progression. The findings of non B-Igs may provide a wealthier breakthrough point for more therapeutic strategies for a wide range of immune-related diseases.
Collapse
Affiliation(s)
- Jie Zheng
- Hematologic Disease Laboratory, Department of Stem Cell Transplantation, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Guohui Li
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Wei Liu
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - XiaoJun Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Xu X, Delves PJ, Huang J, Shao W, Qiu X. Comparison of Non B-Ig and B-Ig. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:73-88. [PMID: 38967751 DOI: 10.1007/978-981-97-0511-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Peter J Delves
- Division of Infection and Immunity, Department of Immunology, UCL (University College London), London, UK
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Wang J, Huang J, Ding H, Ma J, Zhong H, Wang F, Chen Y, Peng H. Functional analysis of tumor-derived immunoglobulin lambda and its interacting proteins in cervical cancer. BMC Cancer 2023; 23:929. [PMID: 37784026 PMCID: PMC10544594 DOI: 10.1186/s12885-023-11426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Immunoglobulin lambda (Igλ) has been reported to be expressed in many normal and tumor tissues and cells. However, the function and clinical significance of tumor-derived Igλ remain unclear. METHODS The differential expressions of Immunoglobulin Lambda Constants (IGLCs) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) were examined with The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) databases. The effects of IGLCs on patient clinical phenotypes and prognosis were explored via bioinformatics analyses based on the TCGA databases. We used the bioinformatics analyses based on the TCGA and GTEx databases to elucidate the correlations among IGLC expressions, immunomodulator expressions, tumor stemness, and infiltration scores of tumor infiltrating immune cells. Co-immunoprecipitation (Co-IP) and silver staining combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to obtain potential tumor-derived Igλ-interacting proteins. Functional annotation of candidate proteins identified by LC-MS/MS was performed in Database for Annotation, Visualization and Integrated Discovery (DAVID). The bioinformatics analyses of 7 IGLCs in CESC and normal cervical tissues were performed based on TCGA, GTEx, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases. Protein-protein interaction (PPI) network was analyzed based on tumor-derived Igλ-interacting proteins in Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Immunohistochemistry (IHC) was used to validate the expressions of IGLCs in CESC. RESULTS We found that the expressions of the majority of IGLCs (IGLC1, IGLC2, IGLC3, IGLC4, IGLC5, IGLC6, and IGLC7) were upregulated in CESC tissues, compared with those in normal cervical tissues. The expressions of IGLC5 and IGLC7 had significant difference in different pathologic metastasis (M), one of tumor, node, and metastasis (TNM) staging system, categories of CESC. Except for disease-free interval (DFI), 4 IGLC (IGLC1, IGLC2, IGLC3, and IGLC7) expression levels were positively associated with patient overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) respectively in CESC tissues. 5 IGLC (IGLC1, IGLC2, IGLC3, IGLC6, and IGLC7) expressions were positively correlated with the expressions of a majority of immunomodulators respectively in CESC tissues. Tumor stemness was negatively correlated with the expressions of 4 IGLCs (IGLC1, IGLC2, IGLC3, and IGLC7) respectively in CESC tissues. Except for IGLC4, IGLC5, and IGLC7, 4 IGLC (IGLC1, IGLC2, IGLC3, and IGLC6) expressions were positively correlated with infiltration scores of 6 tumor-infiltrating immune cells (B cell, T cell CD4, T cell CD8, neutrophil, macrophage, and DC). After analyses of the above bioinformatics data of tumor-derived Igλ, Co-IP and LC-MS/MS were used to confirm that 4 proteins (RPL7, RPS3, H1-5, and H1-6) might interact with tumor-derived Igλ in cervical cancer cells. Functional analyses of these candidate proteins showed that they interacted with many proteins and were involved in various cellular biological processes. Finally, IHC was used to further confirm the above bioinformatics results, it was indicated that the expression level of Igλ in cervical adenocarcinoma and cervical squamous cell carcinoma was higher than that in normal cervical tissue. CONCLUSION This study comprehensively investigated the functions of tumor-derived Igλ and its interacting proteins based on bioinformatics analysis and the potential value of Igλ as a prognostic and therapeutic marker for CESC, providing new direction and evidence for CESC therapy.
Collapse
Affiliation(s)
- Juping Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Department of Pathology, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Jiangni Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Hao Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jing Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Haohua Zhong
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Fanlu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Yupeng Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hui Peng
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Neurosurgery, The First Affiliated Hospital, Neurosurgery Research Institute, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
10
|
Zhang M, Zheng J, Guo J, Zhang Q, Du J, Zhao X, Wang Z, Liao Q. SIA-IgG confers poor prognosis and represents a novel therapeutic target in breast cancer. Bioengineered 2022; 13:10072-10087. [PMID: 35473571 PMCID: PMC9208471 DOI: 10.1080/21655979.2022.2063593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The incidence rate of breast cancer is the highest in the world, and major problem in the clinical treatment is the therapy resistance of breast cancer stem cells (CSCs). Thus, new therapeutic approaches targeting breast CSCs are needed. Our previous study demonstrated cancer-derived sialylated IgG (SIA-IgG) is highly expressed in cancer cells with stem/progenitor features. Furthermore, a high frequency of SIA-IgG in breast cancer tissue predicted metastasis and correlated with poor prognosis factors, and depletion of IgG in breast cancer leads to lower malignancy of cancer cells, suggesting SIA-IgG could be a potential therapeutic target in breast cancer. In this study, we first investigated the relationship of SIA-IgG expression with the clinicopathological characteristics and clinical prognosis of breast carcinoma patients, and the data confirmed that the expression of SIA-IgG confers poor prognosis in breast cancer. Successively, by using a monoclonal antibody specifically against SIA-IgG, we targeted SIA-IgG on the surface of MDA-MB-231 cells and detected their functional changes, and the results suggested SIA-IgG to be a promising antibody therapeutic target in breast cancer. In addition, we explored the mechanism of action at the molecular level of SIA-IgG on breast cancer cell, the findings suggest that SIA-IgG promotes proliferation, metastasis, and invasion of breast cancer cells through the Wnt/β-catenin signaling pathway. Developing therapeutic antibody needs effective therapeutic target, and the antibody should better be a monoclonal antibody with high affinity and high specificity. This study provides a potential prognostic marker and a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Man Zhang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Jinhua Zheng
- Department of Pathology, Guilin Medical University Affiliated Hospital, Guilin, Guangxi province, China
| | - Junying Guo
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Juan Du
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Zhihua Wang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| |
Collapse
|
11
|
Tumour- associated autoantibodies as prognostic cancer biomarkers- a review. Autoimmun Rev 2022; 21:103041. [DOI: 10.1016/j.autrev.2022.103041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
|
12
|
Kdimati S, Mullins CS, Linnebacher M. Cancer-Cell-Derived IgG and Its Potential Role in Tumor Development. Int J Mol Sci 2021; 22:11597. [PMID: 34769026 PMCID: PMC8583861 DOI: 10.3390/ijms222111597] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
Human immunoglobulin G (IgG) is the primary component of the human serum antibody fraction, representing about 75% of the immunoglobulins and 10-20% of the total circulating plasma proteins. Generally, IgG sequences are highly conserved, yet the four subclasses, IgG1, IgG2, IgG3, and IgG4, differ in their physiological effector functions by binding to different IgG-Fc receptors (FcγR). Thus, despite a similarity of about 90% on the amino acid level, each subclass possesses a unique manner of antigen binding and immune complex formation. Triggering FcγR-expressing cells results in a wide range of responses, including phagocytosis, antibody-dependent cell-mediated cytotoxicity, and complement activation. Textbook knowledge implies that only B lymphocytes are capable of producing antibodies, which recognize specific antigenic structures derived from pathogens and infected endogenous or tumorigenic cells. Here, we review recent discoveries, including our own observations, about misplaced IgG expression in tumor cells. Various studies described the presence of IgG in tumor cells using immunohistology and established correlations between high antibody levels and promotion of cancer cell proliferation, invasion, and poor clinical prognosis for the respective tumor patients. Furthermore, blocking tumor-cell-derived IgG inhibited tumor cells. Tumor-cell-derived IgG might impede antigen-dependent cellular cytotoxicity by binding antigens while, at the same time, lacking the capacity for complement activation. These findings recommend tumor-cell-derived IgG as a potential therapeutic target. The observed uniqueness of Ig heavy chains expressed by tumor cells, using PCR with V(D)J rearrangement specific primers, suggests that this specific part of IgG may additionally play a role as a potential tumor marker and, thus, also qualify for the neoantigen category.
Collapse
Affiliation(s)
| | | | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany; (S.K.); (C.S.M.)
| |
Collapse
|
13
|
Zhao J, Peng H, Gao J, Nong A, Hua H, Yang S, Chen L, Wu X, Zhang H, Wang J. Current insights into the expression and functions of tumor-derived immunoglobulins. Cell Death Discov 2021; 7:148. [PMID: 34226529 PMCID: PMC8257790 DOI: 10.1038/s41420-021-00550-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have reported expressions of immunoglobulins (Igs) in many human tumor tissues and cells. Tumor-derived Igs have displayed multiple significant functions which are different from classical Igs produced by B lymphocytes and plasma cells. This review will concentrate on major progress in expressions, functions, and mechanisms of tumor-derived Igs, similarities and differences between tumor-derived Igs and B-cell-derived Igs. We also discuss the future research directions of tumor-derived Igs, including their structural characteristics, physicochemical properties, mechanisms for rearrangement and expression regulation, signaling pathways involved, and clinical applications.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hui Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Jie Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Anna Nong
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Haoming Hua
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shulin Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Liying Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xiangsheng Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Juping Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China.
| |
Collapse
|
14
|
Cui M, Huang J, Zhang S, Liu Q, Liao Q, Qiu X. Immunoglobulin Expression in Cancer Cells and Its Critical Roles in Tumorigenesis. Front Immunol 2021; 12:613530. [PMID: 33841396 PMCID: PMC8024581 DOI: 10.3389/fimmu.2021.613530] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Traditionally, immunoglobulin (Ig) was believed to be produced by only B-lineage cells. However, increasing evidence has revealed a high level of Ig expression in cancer cells, and this Ig is named cancer-derived Ig. Further studies have shown that cancer-derived Ig shares identical basic structures with B cell-derived Ig but exhibits several distinct characteristics, including restricted variable region sequences and aberrant glycosylation. In contrast to B cell-derived Ig, which functions as an antibody in the humoral immune response, cancer-derived Ig exerts profound protumorigenic effects via multiple mechanisms, including promoting the malignant behaviors of cancer cells, mediating tumor immune escape, inducing inflammation, and activating the aggregation of platelets. Importantly, cancer-derived Ig shows promising potential for application as a diagnostic and therapeutic target in cancer patients. In this review, we summarize progress in the research area of cancer-derived Ig and discuss the perspectives of applying this novel target for the management of cancer patients.
Collapse
Affiliation(s)
- Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Cancer-derived sialylated IgG promotes tumor immune escape by binding to Siglecs on effector T cells. Cell Mol Immunol 2019; 17:1148-1162. [PMID: 31754235 DOI: 10.1038/s41423-019-0327-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
To date, IgG in the tumor microenvironment (TME) has been considered a product of B cells and serves as an antitumor antibody. However, in this study, using a monoclonal antibody against cancer-derived IgG (Cancer-IgG), we found that cancer cells could secrete IgG into the TME. Furthermore, Cancer-IgG, which carries an abnormal sialic acid modification in the CH1 domain, directly inhibited effector T-cell proliferation and significantly promoted tumor growth by reducing CD4+ and CD8+ T-cell infiltration into tumor tissues. Mechanistic studies showed that the immunosuppressive effect of sialylated Cancer-IgG is dependent on its sialylation and binding to sialic acid-binding immunoglobulin-type lectins (Siglecs) on effector CD4+ and CD8+ T cells. Importantly, we show that several Siglecs are overexpressed on effector T cells from cancer patients, but not those from healthy donors. These findings suggest that sialylated Cancer-IgG may be a ligand for Siglecs, which may serve as potential checkpoint proteins and mediate tumor immune evasion.
Collapse
|
16
|
Geng ZH, Ye CX, Huang Y, Jiang HP, Ye YJ, Wang S, Zhou Y, Shen ZL, Qiu XY. Human colorectal cancer cells frequently express IgG and display unique Ig repertoire. World J Gastrointest Oncol 2019; 11:195-207. [PMID: 30918593 PMCID: PMC6425329 DOI: 10.4251/wjgo.v11.i3.195] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND There is growing evidence proving that many human carcinomas, including colon cancer, can overexpress immunoglobulin (Ig); the non B cancer cell-derived Ig usually displayed unique V(D)J rearrangement pattern that are distinct from B cell-derived Ig. Especially, the cancer-derived Ig plays important roles in cancer initiation, progression, and metastasis. However, it still remains unclear if the colon cancer-derived Ig can display unique V(D)J pattern and sequencing, which can be used as novel target for colon cancer therapy.
AIM To investigate the Ig repertoire features expressed in human colon cancer cells.
METHODS Seven cancerous tissue samples of colon adenocarcinoma and corresponding noncancerous tissue samples were sorted by fluorescence-activated cell sorting using epithelial cell adhesion molecule as a marker for epithelial cells. Ig repertoire sequencing was used to analyze the expression profiles of all 5 classes of Ig heavy chains (IgH) and the Ig repertoire in colon cancer cells and corresponding normal epithelial cells.
RESULTS We found that all 5 IgH classes can be expressed in both colon cancer cells and normal epithelial cells. Surprisingly, unlike the normal colonic epithelial cells that expressed 5 Ig classes, our results suggested that cancer cells most prominently express IgG. Next, we found that the usage of Ig in cancer cells caused the expression of some unique Ig repertoires compared to normal cells. Some VH segments, such as VH3-7, have been used in cancer cells, and VH3-74 was frequently present in normal epithelial cells. Moreover, compared to the normal cell-derived Ig, most cancer cell-derived Ig showed unique VHDJH patterns. Importantly, even if the same VHDJH pattern was seen in cancer cells and normal cells, cancer cell-derived IgH always displayed distinct hypermutation hot points.
CONCLUSION We found that colon cancer cells could frequently express IgG and unique IgH repertoires, which may be involved in carcinogenesis of colon cancer. The unique IgH repertoire has the potential to be used as a novel target in immune therapy for colon cancer.
Collapse
Affiliation(s)
- Zi-Han Geng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- NHC Key Laboratory of Medical Immunology (Peking University), Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Chun-Xiang Ye
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing 100044, China
| | - Yan Huang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
| | - Hong-Peng Jiang
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing 100044, China
| | - Ying-Jiang Ye
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing 100044, China
| | - Shan Wang
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing 100044, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing 100191, China
| | - Zhan-Long Shen
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing 100044, China
| | - Xiao-Yan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- NHC Key Laboratory of Medical Immunology (Peking University), Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| |
Collapse
|
17
|
Li H, Li Q, Ma Z, Zhou Z, Fan J, Jin Y, Wu Y, Cheng F, Liang P. AID modulates carcinogenesis network via DNA demethylation in bladder urothelial cell carcinoma. Cell Death Dis 2019; 10:251. [PMID: 30874539 PMCID: PMC6420503 DOI: 10.1038/s41419-019-1472-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
Bladder cancer is one of the most common malignant diseases in the urinary system, with poor survival after metastasis. Activation-induced cytidine deaminase (AID), a versatile enzyme involved in antibody diversification, is an oncogenic gene that induces somatic hypermutation and class-switch recombination (CSR). However, the contribution of AID-mediated DNA demethylation to bladder urothelial cell carcinoma (BUCC) remains unclear. Herein, we evaluated the impact on BUCC caused by AID and explored the gene network downstream of AID by using a proteomic approach. Lentiviral vector containing AID-specific shRNA significantly reduced AID expression in T24 and 5637 cells. Silencing AID expression remarkably inhibited tumour malignancies, including cell proliferation, invasion and migration. We used Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics analysis technology to study the underpinning mechanism in monoclonal T24 cells, with or without AID knockdown. Among the 6452 proteins identified, 99 and 142 proteins in shAICDA-T24 cells were significantly up- or downregulated, respectively (1.2-fold change) compared with the NC-T24 control. After a pipeline of bioinformatics analyses, we identified three tumour-associated factors, namely, matrix metallopeptidase 14 (MMP14), C–X–C motif chemokine ligand 12 and wntless Wnt ligand secretion mediator, which were further confirmed in human BUCC tissues. Nonetheless, only MMP14 was sensitive to the DNA demethylation molecule 5-aza-2’-deoxycytidine (5-azadC; 5 μM), which reversed the inhibition of carcinogenesis by AID silence in T24 and 5637 cells. Overall, AID is an oncogene that mediates tumourigenesis via DNA demethylation. Our findings provide novel insights into the clinical treatment for BUCC.
Collapse
Affiliation(s)
- Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Zhe Ma
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Zhiyan Zhou
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Jinfeng Fan
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Yingxia Jin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yaoxi Wu
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Peiyu Liang
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China.
| |
Collapse
|
18
|
Gong X, Liu J, Zhang X, Dong F, Liu Y, Wang P. Rab11 Functions as an Oncoprotein via Nuclear Factor kappa B (NF-κB) Signaling Pathway in Human Bladder Carcinoma. Med Sci Monit 2018; 24:5093-5101. [PMID: 30032159 PMCID: PMC6067026 DOI: 10.12659/msm.911454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Elevated expression of Rab11 has been reported in different human cancers, including human bladder carcinoma. This study, we investigated the biological effects and mechanism of Rab11 overexpression in human bladder carcinoma for the first time. Material/Methods Rab11 expression in bladder cancer tissues was detected using immunohistochemistry and Western blot analysis. Then, Rab11 expression was inhibited in T24 cells and it was overexpressed in BIU-87 cells. The effects of Rab11 perturbations on cell growth rate and invasion were analyzed by CCK8, cell cycle assay, and matrix gel invasion assay. MMP-9, cyclin E, and cyclin D1 levels were studied using Western blot and qPCR. NF-κB activity was studied by luciferase assay. Results High expression of Rab11 was detected in 41.5% (66/159) of tumor specimens. We found a significant correlation between high Rab11 expression and depth of tumor invasion (P=0.004). Rab11 overexpression was observed to promote the growth rate and invasiveness of cancer cells through upregulation of MMP9, cyclin E, and cyclin D1 levels. Rab11 overexpression further elevated NF-κB reporter activity and enhanced p-IκB expression. Use of BAY 11-7082, a noted NF-κB inhibitor, partially abolished overexpression of MMP9 and cyclin D1 by Rab11. Conclusions Our research proved that high Rab11 expression enhances cellular multiplication and invasiveness of bladder cancer, possibly by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xue Gong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jia Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiling Zhang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Fengming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (mainland)
| |
Collapse
|
19
|
Khowal S, Naqvi SH, Monga S, Jain SK, Wajid S. Assessment of cellular and serum proteome from tongue squamous cell carcinoma patient lacking addictive proclivities for tobacco, betel nut, and alcohol: Case study. J Cell Biochem 2018; 119:5186-5221. [PMID: 29236289 DOI: 10.1002/jcb.26554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
The intriguing molecular pathways involved in oral carcinogenesis are still ambiguous. The oral squamous cell carcinoma (OSCC) ranks as the most common type constituting more than 90% of the globally diagnosed oral cancers cases. The elevation in the OSCC incidence rate during past 10 years has an alarming impression on human healthcare. The major challenges associated with OSCC include delayed diagnosis, high metastatic rates, and low 5-year survival rates. The present work foundations on reverse genetic strategy and involves the identification of genes showing expressional variability in an OSCC case lacking addictive proclivities for tobacco, betel nut, and/or alcohol, major etiologies. The expression modulations in the identified genes were analyzed in 16 patients comprising oral pre-cancer and cancer histo-pathologies. The genes SCCA1 and KRT1 were found to down regulate while DNAJC13, GIPC2, MRPL17, IG-Vreg, SSFA2, and UPF0415 upregulated in the oral pre-cancer and cancer pathologies, implicating the genes as crucial players in oral carcinogenesis.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Samar H Naqvi
- Molecular Diagnostics, Genetix Biotech Asia (P) Ltd., New Delhi, India
| | - Seema Monga
- Department of ENT, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Swatantra K Jain
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
20
|
Deng H, Ma J, Jing Z, Deng Z, Liang Y, A L, Liu Y, Qiu X, Wang Y. Expression of immunoglobulin A in human mesangial cells and its effects on cell apoptosis and adhesion. Mol Med Rep 2018; 17:5272-5282. [PMID: 29393471 PMCID: PMC5865995 DOI: 10.3892/mmr.2018.8544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
IgA nephropathy (IgAN) is characterized by predominant IgA deposition in the glomerular mesangium. It has been considered that the deposited IgA is synthesized by B cells, although recent reports have suggested the implication of other cell types. Therefore, the present study investigated whether glomerular mesangial cells could produce IgA by themselves. Semi‑quantitative reverse transcription-polymerase chain reaction, and immunostaining analysis revealed that the IgA protein and gene transcripts were expressed in primary human renal mesangial cells (HRMCs). Furthermore, the IgA heavy chain (α1 and α2) and the light chain (κ and λ) were localized in the cytoplasm or were located on the cell membranes of human mesangial cells (HMCs). Mass spectrometry results indicated that Ig α1 and Ig α2 were secreted in the culture media of HMCs. The transcripts of Ig α, Ig κ and Ig λ constant regions were detected. The predominant rearrangement pattern of the variable region of Ig κ, was Vκ3‑20*01/Jκ1*01 in HMCs and Vκ1‑12*01/Jκ4*01 in HRMCs. In addition, knockdown of Ig α1 expression by small interfering RNA (siRNA) inhibited cell adhesion and promoted apoptosis. Our findings demonstrate that HMCs can express IgA, and that this expression is associated with cell functions, which may contribute to the deposition of IgA in patients with IgAN.
Collapse
Affiliation(s)
- Hui Deng
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Junfan Ma
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Ziyang Jing
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yaoxian Liang
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lata A
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yang Liu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Xiaoyan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
21
|
Yang X, Zhao L, Li M, Yan L, Zhang S, Mi Z, Ren L, Xu J. Lidocaine enhances the effects of chemotherapeutic drugs against bladder cancer. Sci Rep 2018; 8:598. [PMID: 29330444 PMCID: PMC5766619 DOI: 10.1038/s41598-017-19026-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate whether lidocaine, alone or in combination with other chemotherapeutic agents, inhibits the growth of human bladder cancer cells in vitro and orthotopically transplanted bladder tumors in vivo. The effects of lidocaine (1.25, 2.5 or 5 mg/mL), mitomycin C (MMC, 0.66 mg/mL), pirarubicin (0.75 mg/mL) and Su Fu’ning lotion (SFN, 0.0625 mg/mL) on the proliferation of human bladder cancer (BIU-87) cells were studied using the MTT assay. A Balb/c nude mouse model of bladder cancer was developed by orthotopic transplantation of BIU-87 cells, and the effects of intravesical instillation of lidocaine and MMC on bladder wet weight (a measure of tumor size) and survival (over 60 days) were studied. Lidocaine inhibited proliferation of BIU-87 cells in a concentration-dependent manner and (when given in combination) enhanced the actions of each of the other antiproliferative agents. In tumor-bearing mice, MMC alone had no effect on mean survival or bladder wet weight. However, the combination of 0.66 mg/mL MMC and 5 mg/mL lidocaine prolonged survival (from 34.62 ± 6.49 to 49.30 ± 6.72 days; n = 8, P < 0.05) and reduced bladder wet weight (from 68.94 ± 53.61 to 20.26 ± 6.07; n = 8, P < 0.05). Intravesical instillation of lidocaine combined with other chemotherapeutic agents potentially could be an effective therapy for bladder cancer.
Collapse
Affiliation(s)
- Xihua Yang
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Zhao
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meiping Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Lei Yan
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shengwan Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Zhenguo Mi
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Liansheng Ren
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jun Xu
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
22
|
Liu J, Gong X, Zhu X, Xue D, Liu Y, Wang P. Rab27A overexpression promotes bladder cancer proliferation and chemoresistance through regulation of NF-κB signaling. Oncotarget 2017; 8:75272-75283. [PMID: 29088864 PMCID: PMC5650419 DOI: 10.18632/oncotarget.20775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/29/2017] [Indexed: 11/25/2022] Open
Abstract
Overexpression of Rab27A has been found in human cancers. However, the clinical significance and biological effects of Rab27A in bladder cancer tissues and cell lines have not been investigated. Here, we checked Rab27A protein in 87 cases of bladder cancer using immunohistochemistry. We found that Rab27A was overexpressed in 39 of 87 (44.8%) cancer cases. Significant association was found between Rab27 and invading depth (p=0.0083). We knocked down Rab27A in 5637 cell line and transfected Rab27A plasmid in BIU-87 cell line. Rab27A depletion inhibited cell growth rate and invasion while its overexpression induced cell growth and invasion. Rab27A also promoted cancer cell growth in vivo. Cell viability and Annexin V/PI staining demonstrated that Rab27A maintained cancer cell survival and reduced apoptosis rate when treated with cisplatin. JC-1 staining showed that Rab27A upregulated mitochondrial membrane potential. Western blot demonstrated that Rab27A overexpression upregulated cyclin D1, cyclin E, p-IκB, p-p65, Bcl-2, cIAP1, cIAP2 protein expression. NF-κB inhibitor BAY 11-7082 abolished the effects of Rab27 on cisplatin resistance and Bcl-2 protein. In conclusion, the present study demonstrated that Rab27A overexpression facilitates bladder cancer growth, invasion and chemoresistance in bladder cancer, possibly through regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jia Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Gong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xingwang Zhu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Comparative Proteomic Analysis of Breast Cancer Tissue and the Adjacent Normal Tissue in Iranian Patients with HER2 Negative Ductal Carcinoma of Breast. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.6019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
邓 煜, 郭 凯, 曾 颖, 吴 凯, 唐 晨, 郑 少. [Effect of androgen receptor on IgG expression, proliferation and migration of prostate cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:388-392. [PMID: 28377358 PMCID: PMC6780428 DOI: 10.3969/j.issn.1673-4254.2017.03.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effect of androgen receptor (AR) on IgG protein expression and the proliferation and migration of prostate cancer cells. METHODS Western blotting was used to detect the expression of AR protein and IgG in androgen-dependent prostate cancer LNCap cells and castration-resistant prostate cancer PC-3 cells. In AR-overexpressing cells (PC-3-AR cells) established by transfecting PC-3 with AR gene (pCDNA3.1) and LNCap cells with small interfering RNA-mediated AR silencing (LNCap-siAR cells) were analyzed for expressions of AR protein and IgG with Western blotting; the expression of IgG mRNA was detected by Q-PCR, and the cell proliferation and migration were assessed with MTT assay and wound healing assay, respectively. RESULTS Compared with PC-3 cells, LNCap cells expressed a higher level of AR protein and a lower level of IgG (P<0.05). PC-3-AR cells showed attenuated proliferation and migration with a lowered expression of IgG (P<0.01), while LNCap-siAR cells showed enhanced proliferation and migration with increased expression of IgG (P<0.01). CONCLUSION The expression of AR is inversely correlated with IgG and is associated with the proliferation and migration of prostate cancer cells in vitro.
Collapse
Affiliation(s)
- 煜麟 邓
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 凯 郭
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 颖科 曾
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 凯辉 吴
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 晨 唐
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 少波 郑
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
25
|
Sheng Z, Liu Y, Qin C, Liu Z, Yuan Y, Yin H, Qiu X, Xu T. Involvement of cancer-derived IgG in the proliferation, migration and invasion of bladder cancer cells. Oncol Lett 2016; 12:5113-5121. [PMID: 28105218 PMCID: PMC5228517 DOI: 10.3892/ol.2016.5350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/11/2016] [Indexed: 01/10/2023] Open
Abstract
It is widely accepted that immunoglobulin (Ig), the classical immune molecule, is extensively expressed in many cell types other than B-cells (non-B-IgG), including some malignant cells. The expression of Ig in malignant cells has been associated with a poor prognosis. In the present study, immunohistochemical analysis detected strong positive staining of IgG in three bladder cancer cell lines, the cancer cells in 77 bladder cancer patient samples and the cells in 3 cystitis glandularis tissue samples, while negative staining was observed in 4 specimens of normal transitional epithelial tissues. Importantly, functional transcripts of IgG with unique VHDJH rearrangement patterns were also found in bladder cancer cells. The knockdown of IgG in bladder cancer cell lines using small interfering RNA significantly inhibited the proliferation, migration and invasion of the cells. Notably, high IgG expression, as determined by immunostaining, was significantly correlated with a high histological grade and recurrence. The results of the present study suggested that IgG expression is involved in the malignant biological behavior and poor prognosis of bladder cancer. Therefore, IgG may serve as a novel target for bladder cancer therapy.
Collapse
Affiliation(s)
- Zhengzuo Sheng
- Department of Urology, 2nd Clinical Medical College of Peking University, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yang Liu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
- Peking University Center for Human Disease Genomics, Beijing 100191, P.R. China
| | - Caipeng Qin
- Department of Urology, 2nd Clinical Medical College of Peking University, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zhenhua Liu
- Department of Urology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Yeqing Yuan
- Department of Urology, 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Huaqi Yin
- Department of Urology, 2nd Clinical Medical College of Peking University, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xiaoyan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
- Peking University Center for Human Disease Genomics, Beijing 100191, P.R. China
| | - Tao Xu
- Department of Urology, 2nd Clinical Medical College of Peking University, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
26
|
Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion. Tumour Biol 2015; 37:8131-8. [PMID: 26715272 DOI: 10.1007/s13277-015-4590-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022] Open
Abstract
Rab23 overexpression has been implicated in several human cancers. However, its expression pattern and biological roles in human bladder cancer have not been elucidated. In this study, we examined Rab23 expression in 93 bladder cancer specimens and analyzed its correlation with clinicopathological parameters. We found that Rab23 was overexpressed in 45 of 93 (48.3 %) cancer specimens. Significant association was found between Rab23 overexpression and tumor invasion depth (p = 0.0027). Rab23 overexpression also negatively correlated with FGFR3 protein expression (p = 0.021). We found that Rab23 expression was lower in normal bladder transitional cell line SV-HUC-1 than in bladder cancer cell lines BIU-87, 5637, and T24. We knocked down Rab23 expression in T24 cancer cells and transfected a Rab23 plasmid in the BIU-87 cell line. Rab23 depletion inhibited cell growth rate and invasion, while its overexpression resulted in increased cell growth and invasion. In addition, we demonstrated that Rab23 depletion decreased and its transfection upregulated expression of cyclin E, c-myc, and MMP-9. Furthermore, we showed that Rab23 knockdown inhibited NF-κB signaling and its overexpression upregulated NF-κB signaling. BAY 11-7082 (NF-κB inhibitor) partly inhibited the effect of Rab23 on cyclin E and MMP-9 expression. In conclusion, the present study demonstrated that Rab23 overexpression facilitates malignant cell growth and invasion in bladder cancer through the NF-κB pathway.
Collapse
|
27
|
Liao Q, Liu W, Liu Y, Wang F, Wang C, Zhang J, Chu M, Jiang D, Xiao L, Shao W, Sheng Z, Tao X, Huo L, Yin CC, Zhang Y, Lee G, Huang J, Li Z, Qiu X. Aberrant high expression of immunoglobulin G in epithelial stem/progenitor-like cells contributes to tumor initiation and metastasis. Oncotarget 2015; 6:40081-94. [PMID: 26472025 PMCID: PMC4741881 DOI: 10.18632/oncotarget.5542] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
High expression of immunoglobulin G (IgG) in many non-B cell malignancies and its non-conventional roles in promoting proliferation and survival of cancer cells have been demonstrated. However, the precise function of non-B IgG remains incompletely understood. Here we define the antigen specificity of RP215, a monoclonal antibody that specifically recognizes the IgG in cancer cells. Using RP215, our study shows that IgG is overexpressed in cancer cells of epithelial lineage, especially cells with cancer stem/progenitor cell-like features. The RP215-recognized IgG is primarily localized on the cell surface, particularly lamellipodia-like structures. Cells with high IgG display higher migration, increased invasiveness and metastasis, and enhanced self-renewal and tumorgenecity ability in vitro and in vivo. Importantly, depletion of IgG in breast cancer leads to reduced adhesion, invasion and self-renewal and increased apoptosis of cancer cells. We conclude that high expression of IgG is a novel biomarker of tumor progression, metastasis and cancer stem cell maintenance and demonstrate the potential therapeutic benefits of RP215-recognized IgG targeted strategy.
Collapse
Affiliation(s)
- Qinyuan Liao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Wei Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Fulin Wang
- Department of Pathology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chong Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Jingxuan Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, 100191, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Dongyang Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Lin Xiao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Wenwei Shao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Zhengzuo Sheng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xia Tao
- Department of Gynecology, Peking University First Hospital, Beijing, 100034, China
| | - Lei Huo
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Youhui Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Science, Beijing, 100021, China
| | - Gregory Lee
- Andrology Lab, University of British Columbia Centre for Reproductive Health, Vancouver, BC V5Z 4H4, Canada
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, 100191, China
| |
Collapse
|
28
|
|
29
|
IgG and IgA with potential microbial-binding activity are expressed by normal human skin epidermal cells. Int J Mol Sci 2015; 16:2574-90. [PMID: 25625513 PMCID: PMC4346852 DOI: 10.3390/ijms16022574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/25/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
The innate immune system of the skin is thought to depend largely on a multi-layered mechanical barrier supplemented by epidermis-derived antimicrobial peptides. To date, there are no reports of antimicrobial antibody secretion by the epidermis. In this study, we report the expression of functional immunoglobulin G (IgG) and immunoglobulin A (IgA), previously thought to be only produced by B cells, in normal human epidermal cells and the human keratinocyte line HaCaT. While B cells express a fully diverse Ig, epidermal cell-expressed IgG or IgA showed one or two conservative VHDJH rearrangements in each individual. These unique VDJ rearrangements in epidermal cells were found neither in the B cell-derived Ig VDJ databases published by others nor in our positive controls. IgG and IgA from epidermal cells of the same individual had different VDJ rearrangement patterns. IgG was found primarily in prickle cells, and IgA was mainly detected in basal cells. Both epidermal cell-derived IgG and IgA showed potential antibody activity by binding pathogens like Staphylococcus aureus, the most common pathogenic skin bacteria, but the microbial-binding profile was different. Our data indicates that normal human epidermal cells spontaneously express IgG and IgA, and we speculate that these Igs participate in skin innate immunity.
Collapse
|
30
|
Gakis G. The role of inflammation in bladder cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:183-96. [PMID: 24818724 DOI: 10.1007/978-3-0348-0837-8_8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this book chapter is to present the latest basic research developments on the role of inflammation in bladder cancer and provide insights into their future clinical significance in preventing bladder carcinogenesis and progression. Bladder cancer is a highly immunogenic malignancy. Urothelial cancer cells aim to manipulate the immune system by inhibiting its cytotoxic function while stimulating the secretion of growth promoting factors. Cytokine-induced imbalances in the distribution and differentiation of tumor-infiltrating cytotoxic cells can boost bladder cancer cell proliferation. Tumor-induced release of excessive amount of cytokines causes an "inflammatory storm" which drives metastasis formation via degradation of extracellular matrix proteins. Tumor-related selective cyclooxygenase-2 (COX-2) upregulation suppresses the cell-mediated immune response via aberrant prostaglandin metabolism resulting in failure of differentiation of myeloid cell progenitors into mature antigen-presenting cells. T cells are capable of increasing the oxidative stress on bladder cancer cells via induction of COX-2 and STEAP expression. Some evidence also suggests that COX-2 activation may be also involved in inflammation-mediated cancer stem cell proliferation. Antibodies against the VEGF-co-receptor neuropilin decrease the angiogenetic potential of bladder cancer cells. Inflammation-based predictive bladder cancer models have demonstrated to accurately predict response to treatment both in the curative and palliative setting. While randomized trials do not support a clinical benefit for the use of anti-inflammatory drugs (i.e., celecoxib, atorvastatin) in preventing recurrence of low-grade bladder cancer, further investigations are warranted in the setting of high-grade tumors since the immune response to cancer stimuli is most probably more pronounced in advanced stages.
Collapse
Affiliation(s)
- Georgios Gakis
- Department of Urology, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany,
| |
Collapse
|
31
|
Jiang C, Huang T, Wang Y, Huang G, Wan X, Gu J. Immunoglobulin G expression in lung cancer and its effects on metastasis. PLoS One 2014; 9:e97359. [PMID: 24853685 PMCID: PMC4031068 DOI: 10.1371/journal.pone.0097359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is one of the leading malignancies worldwide, but the regulatory mechanism of its growth and metastasis is still poorly understood. We investigated the possible expression of immunoglobulin G (IgG) genes in squamous cell carcinomas and adenocarcinomas of the lung and related cancer cell lines. Abundant mRNA of IgG and essential enzymes for IgG synthesis, recombination activation genes 1, 2 (RAG1, 2) and activation-induced cytidine deaminase (AID) were detected in the cancer cells but not in adjacent normal lung tissue or normal lung epithelial cell line. The extents of IgG expression in 86 lung cancers were found to associate with clinical stage, pathological grade and lymph node metastasis. We found that knockdown of IgG with siRNA resulted in decreases of cellular proliferation, migration and attachment for cultured lung cancer cells. Metastasis-associated gene 1 (MTA1) appeared to be co-expressed with IgG in lung cancer cells. Statistical analysis showed that the rate of IgG expression was significantly correlated to that of MTA1 and to lymph node metastases. Inhibition of MTA1 gene expression with siRNA also led to decreases of cellular migration and attachment for cultured lung cancer cells. These evidences suggested that inhibition of cancer migration and attachment induced by IgG down-regulation might be achieved through MTA1 regulatory pathway. Our findings suggest that lung cancer-produced IgG is likely to play an important role in cancer growth and metastasis with significant clinical implications.
Collapse
Affiliation(s)
- Chunfan Jiang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Guowei Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Wan
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Translational Medicine Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
32
|
Han B, Luan L, Xu Z, Wu B. Clinical significance and biological roles of CRKL in human bladder carcinoma. Tumour Biol 2013; 35:4101-6. [PMID: 24375195 DOI: 10.1007/s13277-013-1536-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022] Open
Abstract
CRKL encodes an adaptor protein that has been recently reported to be overexpressed in various cancers and associate with the malignant behavior of cancer cells. However, the expression pattern of CRKL protein and its clinical significance in human bladder cancer have not been well characterized to date. In the present study, CRKL expression was analyzed in 82 archived bladder cancer specimens using immunohistochemistry, and the correlations between CRKL expression and clinicopathological parameters were evaluated. We found that CRKL was overexpressed in 31 of 82 (37.8%) bladder cancer specimens. A significant association was observed between CRKL overexpression and tumor status (p = 0.019). To further explore the biological functions of CRKL in bladder cancer, we overexpressed CRKL in BIU-87 and 5637 cell lines. Using CCK8 assay and colony formation assay, we showed that CRKL upregulation increased cell proliferation. In addition, transwell assay showed that CRKL could also facilitate invasion. Further study demonstrated that CRKL upregulation increased cyclin D1 expression and ERK phosphorylation. In conclusion, CRKL is overexpressed in bladder cancer and regulates malignant cell growth and invasion, which makes CRKL a candidate therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Bin Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | |
Collapse
|