1
|
Qi Z, Li Q, Yang S, Fu C, Hu B. Mendelian Randomization Reveals Potential Causal Relationships Between DNA Damage Repair-Related Genes and Inflammatory Bowel Disease. Biomedicines 2025; 13:231. [PMID: 39857814 PMCID: PMC11761251 DOI: 10.3390/biomedicines13010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
DNA damage repair (DDR) plays a key role in maintaining genomic stability and developing inflammatory bowel disease (IBD). However, no report about the causal association between DDR and IBD exists. Whether DDR-related genes are the precise causal association to IBD in etiology remains unclear. Herein, we employed a multi-omics summary data-based Mendelian randomization (SMR) approach to ascertain the potential causal effects of DDR-related genes in IBD. Methods: Summary statistics from expression quantitative trait loci (eQTL), DNA methylation QTL (mQTL), and protein QTL (pQTL) on European descent were included. The GWAS summarized data for IBD and its two subtypes, Crohn's disease (CD) and ulcerative colitis (UC), were acquired from the FinnGen study. We elected from genetic variants located within or near 2000 DDR-related genes in cis, which are closely associated with DDR-related gene changes. Variants were selected as instrumental variables (IVs) and assessed for causality with IBD and its subtypes using both SMR and two-sample MR (TSMR) approaches. Colocalization analysis was employed to evaluate whether a single genetic variant simultaneously influences two traits, thereby validating the pleiotropy hypothesis. Results: We identified seven DDR-related genes (Arid5b, Cox5a, Erbb2, Ube2l3, Gpx1, H2bcl2, and Mapk3), 33 DNA methylation genes, and two DDR-related proteins (CD274 and FCGR2A) which were all causally associated with IBD and its subtypes. Beyond causality, we integrated the multi-omics data between mQTL-eQTL and conducted druggability values. We found that DNA methylation of Erbb2 and Gpx1 significantly impacted their gene expression levels offering insights into the potential regulatory mechanisms of risk variants on IBD. Meanwhile, CD247 and FCGR2A could serve as targets for potential pharmacological interventions in IBD. Conclusions: Our study demonstrates the causal role of DDR in IBD based on the data-driven MR. Moreover, we found potential regulatory mechanisms of risk variants on IBD and potential pharmacological targets.
Collapse
Affiliation(s)
- Zhihao Qi
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Quan Li
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Shuhua Yang
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Chun Fu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Burong Hu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
2
|
Gök G, Küçük T, Cimen S, Gök A, Göktuğ G, Erel Ö, İmamoğlu MA. The Effect of Glutathione on Development and Prognosis in Non-Muscle-Invasive Bladder Cancer. J Clin Med 2024; 13:5483. [PMID: 39336970 PMCID: PMC11432633 DOI: 10.3390/jcm13185483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Glutathione, along with its related enzymes, constitutes a key antioxidant defense mechanism against oxidative stress and cancer formation in the body. Among urological malignancies, bladder cancer ranks second following prostate cancer. Oxidative stress has significant involvement in the development and prognosis of bladder cancer. This investigation aimed to examine the impact of glutathione on prognosis in patients with non-muscle-invasive bladder cancer. Methods: This study included 98 patients with high grade non-muscle-invasive bladder cancer who had undergone intravesical Bacillus Calmette-Guérin therapy and 30 healthy controls with no history of uroepithelial carcinoma of the bladder. The patients with bladder cancer were evaluated in three subgroups. Group 1 consisted of 41 patients who did not experience recurrence during follow-up, Group 2 included 28 patients who had recurrent tumors, and Group 3 consisted of 29 patients who progressed to muscle-invasive stages. Blood samples were collected from all participants. Blood levels of reduced, oxidized, and total glutathione were measured spectrophotometrically. Results: Reduced glutathione levels significantly differed among the groups (p < 0.001), attributed to the control group exhibiting higher reduced glutathione levels compared with Groups 1, 2, and 3 (p < 0.001). There were no significant differences in reduced glutathione levels between Groups 1 and 2, Groups 1 and 3, or Groups 2 and 3 (p > 0.05). Total glutathione levels varied significantly among the groups (p < 0.001), with the control group having higher levels than Groups 1, 2, and 3 (p < 0.001). No significant differences were detected between any of the paired patient groups in terms of total glutathione levels (p > 0.05). Regarding oxidized glutathione levels, the difference was statistically significant (p < 0.001), with the control group showing lower levels than the remaining three groups (p < 0.001). Paired comparisons revealed no significant differences in oxidized glutathione levels (p > 0.05). Conclusions: This study revealed that glutathione had an effect on the emergence of bladder cancer but did not affect its prognosis. Nevertheless, we recommend that future studies with larger bladder cancer patient cohorts should be conducted to comprehensively determine the impact of glutathione on the prognosis of this cancer.
Collapse
Affiliation(s)
- Gamze Gök
- Department of Biochemistry, Ankara Bilkent City Hospital, Ankara 06800, Turkey; (G.G.); (Ö.E.)
| | - Tarık Küçük
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| | - Sertac Cimen
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| | - Alper Gök
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| | - Göksel Göktuğ
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| | - Özcan Erel
- Department of Biochemistry, Ankara Bilkent City Hospital, Ankara 06800, Turkey; (G.G.); (Ö.E.)
| | - Muhammet Abdurrahim İmamoğlu
- Department of Urology, Diskapi Yildirim Beyazit Training and Research Hospital, Faculty of Medicine, University of Health Sciences, Ankara 06110, Turkey; (T.K.); (S.C.); (G.G.); (M.A.İ.)
- Department of Urology, Etlik City Hospital, Ankara 06010, Turkey
| |
Collapse
|
3
|
Kourie HR, Zouein J, Succar B, Mardirossian A, Ahmadieh N, Chouery E, Mehawej C, Jalkh N, kattan J, Nemr E. Genetic Polymorphisms Involved in Bladder Cancer: A Global Review. Oncol Rev 2023; 17:10603. [PMID: 38025894 PMCID: PMC10657888 DOI: 10.3389/or.2023.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bladder cancer (BC) has been associated with genetic susceptibility. Single peptide polymorphisms (SNPs) can modulate BC susceptibility. A literature search was performed covering the period between January 2000 and October 2020. Overall, 334 articles were selected, reporting 455 SNPs located in 244 genes. The selected 455 SNPs were further investigated. All SNPs that were associated with smoking and environmental exposure were excluded from this study. A total of 197 genes and 343 SNPs were found to be associated with BC, among which 177 genes and 291 SNPs had congruent results across all available studies. These genes and SNPs were classified into eight different categories according to their function.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph Zouein
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Bahaa Succar
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Avedis Mardirossian
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nizar Ahmadieh
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph kattan
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Elie Nemr
- Urology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
4
|
Grębowski R, Saluk J, Bijak M, Szemraj J, Wigner-Jeziorska P. The role of SOD2 and NOS2 genes in the molecular aspect of bladder cancer pathophysiology. Sci Rep 2023; 13:14491. [PMID: 37660159 PMCID: PMC10475080 DOI: 10.1038/s41598-023-41752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Bladder cancer (BC) is a severe health problem of the genitourinary system and is characterised by a high risk of recurrence. According to the recent GLOBOCAN report, bladder cancer accounts for 3% of diagnosed cancers in the world, taking 10th place on the list of the most common cancers. Despite numerous studies, the full mechanism of BC development remains unknown. Nevertheless, precious results suggest a crucial role of oxidative stress in the development of BC. Therefore, this study explores whether the c. 47 C > T (rs4880)-SOD2, (c. 1823 C > T (rs2297518) and g.-1026 C > A (rs2779249)-NOS2(iNOS) polymorphisms are associated with BC occurrence and whether the bladder carcinogenesis induces changes in SOD2 and NOS2 expression and methylation status in peripheral blood mononuclear cells (PBMCs). In this aim, the TaqMan SNP genotyping assay, TaqMan Gene Expression Assay, and methylation-sensitive high-resolution melting techniques were used to genotype profiling and evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that heterozygote of the g.-1026 C > A SNP was associated with a decreased risk of BC. Moreover, we detected that BC development influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs. Concluding, our results confirmed that oxidative stress, especially NOS2 polymorphisms and changes in the expression and methylation of the promoters of SOD2 and NOS2 are involved in the cancer transformation initiation of the cell urinary bladder.
Collapse
Affiliation(s)
- Radosław Grębowski
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland, Mazowiecka 6/8, 90-001
- Department of Urology, Provincial Integrated Hospital in Plock, Plock, Poland, Medyczna 19, 09-400
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland, Mazowiecka 6/8, 90-001
| | - Paulina Wigner-Jeziorska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236.
| |
Collapse
|
5
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
6
|
Polymorphisms of Antioxidant Enzymes SOD2 (rs4880) and GPX1 (rs1050450) Are Associated with Bladder Cancer Risk or Its Aggressiveness. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010131. [PMID: 36676755 PMCID: PMC9860962 DOI: 10.3390/medicina59010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023]
Abstract
Background and Objectives: Oxidative stress induced by increased reactive oxygen species (ROS) production plays an important role in carcinogenesis. The entire urinary tract is continuously exposed to numerous potentially mutagenic environmental agents which generate ROS during their biotransformation. In first line defense against free radicals, antioxidant enzymes superoxide dismutase (SOD2) and glutathione peroxidase (GPX1) both have essential roles. Altered enzyme activity and decreased ability of neutralizing free oxygen radicals as a consequence of genetic polymorphisms in genes encoding these two enzymes are well described so far. This study aimed to investigate the association of GPX1 (rs1050450) and SOD2 (rs4880) genetic variants with the urothelial bladder cancer (UBC) risk independently and in combination with smoking. Furthermore, we aimed to determine whether the UBC stage and pathological grade were influenced by GPX1 and SOD2 polymorphisms. Material and Methods: The study population included 330 patients with UBC (mean age 65 ± 10.3 years) and 227 respective controls (mean age 63.4 ± 7.9 years). Single nucleotide polymorphism (SNP) of GPX1 (rs1050450) was analyzed using the PCR-RFLP, while SOD2 (rs4880) SNP was analyzed using the q-PCR method. Results: Our results showed that UBC risk was significantly increased among carriers of at least one variant SOD2 Val allele compared to the SOD2 Ala16Ala homozygotes (OR = 1.55, p = 0.03). Moreover, this risk was even more pronounced in smokers with at least one variant SOD2 Val allele, since they have even 7.5 fold higher UBC risk (OR = 7.5, p < 0.001). Considering GPX1 polymorphism, we have not found an association with UBC risk. However, GPX1 genotypes distribution differed significantly according to the tumor stage (p ˂ 0.049) and pathohistological grade (p ˂ 0.018). Conclusion: We found that SOD2 genetic polymorphism is associated with the risk of UBC development independently and in combination with cigarette smoking. Furthermore, we showed that GPX1 genetic polymorphism is associated with the aggressiveness of the disease.
Collapse
|
7
|
Chen X, Fu G, Li L, Zhao Q, Ke Z, Zhang R. Selenoprotein GPX1 is a prognostic and chemotherapy-related biomarker for brain lower grade glioma. J Trace Elem Med Biol 2022; 74:127082. [PMID: 36155420 DOI: 10.1016/j.jtemb.2022.127082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Glutathione peroxidase 1 (GPX1) is a major selenoprotein in most animal tissues, primarily expressed in the cytoplasm and mitochondria of cells and peroxidase structures of certain cells. GPX1 expression is highly correlated with carcinogenesis and disease progression. The goal of the study was to determine the association between GPX1 expression and tumor therapy, and to identify GPX1 prognostic value in various malignancies. METHODS The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) databases were used to detect the levels of GPX1 expression in human tumor tissues and normal tissues. Indeed, correlations between GPX1 and tumor purity, tumor mutation burden (TMB), microsatellite instability (MSI), and DNA mismatch repair genes (MMRs) were explored using the TCGA cohort. Functional and enrichment analyses were performed by the GeneMANIA database and Gene Set Enrichment Analysis (GSEA), respectively. Cox regression models and Kaplan - Meier curves were used to screen for independent risk factors and estimate brain lower-grade glioma (LGG) survival probability. The Chinese Glioma Genome Atlas (CGGA) database was used to determine whether GPX1 had a race-specific effect on overall survival (OS) in LGG. The cross-interaction between GPX1 and chemoradiotherapy on LGG OS was determined by Kaplan - Meier curves. Logistic regression models of multiplicative interactions were constructed. Furthermore, the relationship between GPX1 and LGG treatment regimens was also explored through the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS GPX1 was highly expressed in various tumors, GPX1 overexpression was significantly correlated with the poor prognosis of LGG. GPX1 was found to be an independent predictive factor for LGG in both univariate and multivariate Cox models. The nomogram showed a high predictive accuracy (C-index: 0.804, 95% CI: 0.74-0.86). In addition, GPX1 was significantly associated with TMB, MSI, and MMRs in diverse cancers. GPX1 was involved in IL6/JAK/STAT3, inflammatory response, and apoptosis signaling pathways. Besides, non-radiotherapy, chemotherapy, and low GPX1 expression were important factors affecting the better prognosis of LGG. GPX1 acted as a tumor promoter, which has taken the worst effect on LGG survival, but a multiplicative interaction of GPX1*chemoradiotherapy may improve the poor clinical outcome. GPX1 was negatively correlated with the half inhibition concentration (IC50) of temozolomide (TMZ) (Spearman = -0.44, P = 4.52 ×10-26). CONCLUSION In LGG patients, high GPX1 expression was linked to a shorter OS. The interaction between GPX1 and chemoradiotherapy exhibits a beneficial clinical effect and chemotherapy was recommended for LGG patients, especially for those with high GPX1 expression. Besides, high GPX1 expression can predict TMZ sensitivity in LGG, providing potential evidence for chemotherapy. On the whole, this study presents a wealth of biological as well as clinical significance for the roles of GPX1 in human tumors, particularly in LGG.
Collapse
Affiliation(s)
- Xueqin Chen
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Guotao Fu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Linglan Li
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Qianqian Zhao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Zunhua Ke
- Neurosurgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi 712046, PR China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China.
| |
Collapse
|
8
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Zhao Y, Wang H, Zhou J, Shao Q. Glutathione Peroxidase GPX1 and Its Dichotomous Roles in Cancer. Cancers (Basel) 2022; 14:cancers14102560. [PMID: 35626163 PMCID: PMC9139801 DOI: 10.3390/cancers14102560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
As the first identified selenoprotein, glutathione peroxidase 1 (GPX1) is a widely and abundantly expressed antioxidant enzyme. GPX1 utilizes glutathione as a substrate to catalyze hydrogen peroxide, lipid peroxide, and peroxynitrite, thereby reducing intracellular oxidative stress. The GPX1 gene is regulated at transcriptional, post-transcriptional, and translational levels. Numerous case-control studies and meta-analyses have assessed the association between a functional genetic polymorphism of the GPX1 gene, named Pro198Leu (rs1050450 C>T), and cancer susceptibility in different populations. GPX1 polymorphism has type-specific effects as a candidate marker for cancer risk, but the association between GPX1 variants and cancer susceptibility remains controversial in different studies. GPX1 is abnormally elevated in most types of cancer but has complex dichotomous roles as tumor suppressor and promoter in different cancers. GPX1 can participate in various signaling pathways to regulate tumor biological behaviors, including cell proliferation, apoptosis, invasion, immune response, and chemoresistance. In this review, we comprehensively summarize the controversial associations between GPX1 polymorphism and cancer risks and further discuss the relationships between the aberrant expressions of GPX1 and tumorigenesis. Further studies are needed to elucidate the clinical significance of GPX1 as a potential prognostic biomarker and novel therapeutic target in various malignancies.
Collapse
Affiliation(s)
- Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Jingdong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China
- Correspondence: (J.Z.); (Q.S.)
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an 223005, China
- Correspondence: (J.Z.); (Q.S.)
| |
Collapse
|
10
|
Janowska M, Potocka N, Paszek S, Skrzypa M, Żulewicz K, Kluz M, Januszek S, Baszuk P, Gronwald J, Lubiński J, Zawlik I, Kluz T. An Assessment of GPX1 (rs1050450), DIO2 (rs225014) and SEPP1 (rs7579) Gene Polymorphisms in Women with Endometrial Cancer. Genes (Basel) 2022; 13:genes13020188. [PMID: 35205233 PMCID: PMC8871918 DOI: 10.3390/genes13020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Numerous studies indicate a relationship between the presence of GPX1 (rs1050450), DIO2 (rs225014) and SEPP1 (rs7579) gene polymorphisms and the development of chronic or neoplastic diseases. However, there are no reports on the influence of these polymorphisms on the development of endometrial cancer. Methods: 543 women participated in the study. The study group consisted of 269 patients with diagnosed endometrial cancer. The control group consisted of 274 healthy women. Blood samples were drawn from all the participants. The PCR-RFLP method was used to determine polymorphisms in the DIO2 (rs225014) and GPX1 (rs1050450) genes. The analysis of polymorphisms in the SEPP1 (rs7579) gene was performed by means of TaqMan probes. Results: There was a 1.99-fold higher risk of developing endometrial cancer in CC homozygotes, DIO2 (rs225014) polymorphism (95% Cl 1.14–3.53, p = 0.017), compared to TT homozygotes. There was no correlation between the occurrence of GPX1 (rs1050450) and SEPP1 (rs7579) polymorphisms and endometrial cancer. Conclusion: Carriers of the DIO2 (rs225014) polymorphism may be predisposed to the development of endometrial cancer. Further research confirming this relationship is recommended.
Collapse
Affiliation(s)
- Magdalena Janowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Kamila Żulewicz
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland;
| | - Sławomir Januszek
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Correspondence:
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
11
|
Arora C, Kaur D, Raghava GPS. Universal and cross-cancer prognostic biomarkers for predicting survival risk of cancer patients from expression profile of apoptotic pathway genes. Proteomics 2021; 22:e2000311. [PMID: 34637591 DOI: 10.1002/pmic.202000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/25/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Numerous cancer-specific prognostic models have been developed in the past, wherein one model is applicable for only one type of cancer. In this study, an attempt has been made to identify universal or multi-cancer prognostic biomarkers and develop models for predicting survival risk across different types of cancer patients. In order to accomplish this, we gauged the prognostic role of mRNA expression of 165 apoptosis-related genes across 33 cancers in the context of patient survival. Firstly, we identified specific prognostic biomarker genes for 30 cancers. The cancer-specific prognostic models achieved a minimum Hazard Ratio, HRSKCM = 1.99 and maximum HRTHCA = 41.59. Secondly, a comprehensive analysis was performed to identify universal biomarkers across many cancers. Our best prognostic model consisted of 11 genes (TOP2A, ISG20, CD44, LEF1, CASP2, PSEN1, PTK2, SATB1, SLC20A1, EREG, and CD2) and stratified risk groups across 27 cancers (HROV = 1.53-HRUVM = 11.74). The model was validated on eight independent cancer cohorts and exhibited a comparable performance. Further, we clustered cancer-types on the basis of shared survival related apoptosis genes. This approach proved helpful in development of cross-cancer prognostic models. To show its efficacy, a prognostic model consisting of 15 genes was thereby developed for LGG-KIRC pair (HRKIRC = 3.27, HRLGG = 4.23). Additionally, we predicted potential therapeutic candidates for LGG-KIRC high risk patients.
Collapse
Affiliation(s)
- Chakit Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
12
|
Minato A, Noguchi H, Ohnishi R, Tomisaki I, Nakayama T, Fujimoto N. Reduced Expression Level of GPX2 in T1 Bladder Cancer and its Role in Early-phase Invasion of Bladder Cancer. In Vivo 2021; 35:753-759. [PMID: 33622868 DOI: 10.21873/invivo.12316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The role of glutathione peroxidase 2 (GPX2) expression in urothelial carcinoma (UC) is rarely reported. The aim of this study was to assess the expression status of GPX2 in UC of the bladder. MATERIALS AND METHODS We collected samples from 112 patients treated with radical cystectomy for immunohistochemical study. RESULTS Following immunohistochemical analysis of the specimens, 86 (76.8%) had weak GPX2 expression. In cases with consistent GPX2 expression within the same lesion, the levels of GPX2 showed significant decreases from pTa to pT1 (47.1%) compared to those from pT1 to pT2 (5.9%) (p=0.017). Specimens obtained with transurethral resection before cancer progressed to muscle invasive bladder cancer showed that pT1 had a lower expression for GPX2 than that of pTa (63.3% vs. 93.3%; p=0.009). CONCLUSION The decrease in GPX2 expression among those with UC of the bladder may be involved in the early step of cancer invasion.
Collapse
Affiliation(s)
- Akinori Minato
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan;
| | - Hirotsugu Noguchi
- Department of Pathology, Field of Oncology Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Rei Ohnishi
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ikko Tomisaki
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
13
|
Hausman-Cohen SR, Hausman-Cohen LJ, Williams GE, Bilich CE. Genomics of Detoxification: How Genomics can be Used for Targeting Potential Intervention and Prevention Strategies Including Nutrition for Environmentally Acquired Illness. J Am Coll Nutr 2021; 39:94-102. [PMID: 32027241 DOI: 10.1080/07315724.2020.1713654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Due to their genomic variants, some individuals are more highly affected by toxicants than others. Toxicant metabolizing and activating variants have been linked with a wide variety of health issues including an increased risk of miscarriages, birth defects, Alzheimer's, benzene toxicity, mercury toxicity and cancer. The study of genomics allows a clinician to identify pathways that are less effective and then gives the clinician the opportunity to counsel their patients about diet, supplements and lifestyle modifications that can improve the function of these pathways or compensate to some extent for their deficits. This article will review a few of these critical pathways relating to phase I and phase 2 detox such as GSTP1, GPX1, GSTT1 deletions, PON1 and some of the CYP 450 system as examples of how an individual's genomic vulnerabilities to toxicants can be addressed by upregulating or downregulating specific pathways via genomically targeted use of foods, supplements and lifestyle changes.
Collapse
Affiliation(s)
| | | | | | - Carol E Bilich
- Resilient Health Austin and IntellxxDNATM, Austin, Texas, USA
| |
Collapse
|
14
|
The Association of Polymorphisms in Nrf2 and Genes Involved in Redox Homeostasis in the Development and Progression of Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6617969. [PMID: 33953831 PMCID: PMC8068539 DOI: 10.1155/2021/6617969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/28/2020] [Accepted: 04/03/2021] [Indexed: 01/07/2023]
Abstract
Deleterious effects of SNPs found in genes encoding transcriptional factors, as well as antioxidant and detoxification enzymes, are disputable; however, their functional significance seems to modify the risk for clear cell renal cell carcinoma (ccRCC) development and progression. We investigated the effect of specific Nrf2, SOD2, GPX1 gene variants and GSTP1ABCD haplotype on ccRCC risk and prognosis and evaluated the association between GSTP1 and regulatory (JNK1/2) and executor (caspase-3) apoptotic molecule expression in ccRCC tissue samples and the presence of GSTP1 : JNK1/2 protein : protein interactions. Genotyping was performed in 223 ccRCC patients and 336 matched controls by PCR-CTTP and qPCR. Protein expression was analyzed using immunoblot, while the existence of GSTP1 : JNK1 protein : protein interactions was investigated by immunoprecipitation experiments. An increased risk of ccRCC development was found among carriers of variant genotypes of both SOD2 rs4880 and GSTP1 rs1695 polymorphisms. Nrf2 rs6721961 genetic polymorphism in combination with both rs4880 and rs1695 showed higher ccRCC risk as well. Haplotype analysis revealed significant risk of ccRCC development in carriers of the GSTP1C haplotype. Furthermore, GSTP1 variant forms seem to affect the overall survival in ccRCC patients, and the proposed molecular mechanism underlying the GSTP1 prognostic role might be the presence of GSTP1 : JNK1/2 protein : protein interactions.
Collapse
|
15
|
Al Zoubi M, Aljabali A. Polymorphisms, antioxidant genes, and cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
He H, Zhang H, Li Q, Fan J, Pan Y, Zhang T, Robert N, Zhao L, Hu X, Han X, Yang S, Cui Y, Yu S. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology 2020; 156:46-58. [PMID: 32673901 DOI: 10.1016/j.theriogenology.2020.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Mammalian oocyte maturation and early embryo development are highly sensitive to the in vitro culture environment, and oxygen concentration is one of the important factors. In the present study, we aimed to explore the effects of different oxygen concentrations (20%, 10%, 5% or 1% O2) on yak oocyte maturation, in vitro fertilization (IVF), and embryo development competence, as well as its effects on the oxidative response, metabolism, and apoptosis in cumulus-oocyte complexes (COCs) and the embryo. The results revealed that the maturation rate of oocytes, blastocysts rate and hatched blastocysts rate in the group with 5% oxygen concentration were significantly higher (P < 0.05) than other groups, but the cleavage rate with 5% oxygen concentration was significantly lower (P < 0.05) than the 20% and 10% oxygen concentrations. The maturation rate of oocytes, the cleavage rate, blastocysts rate and hatched blastocysts rate with the 1% oxygen concentration were the lowest. The blastocyst cultured with 5% oxygen concentration had significantly greater (P < 0.05) numbers of total cells, inner cell mass (ICM) cells and trophectoderm (TE) cells compared to the other groups. Analysis of the apoptosis index of oocytes and blastocyst cells by transferase dUTP nick end labeling (TUNEL) showed that the number of apoptotic cells significantly reduced (P < 0.05) with 5% oxygen concentration, but increased significantly (P < 0.05) in the 1% oxygen concentration group. Also, the qRT-PCR and western immunoblotting analysis confirmed that the transcription levels of the metabolism genes, antioxidant response genes, apoptosis genes, oocyte competence genes and embryonic developmental markers showed significant differences (P < 0.05) in the COCs or blastocysts matured in 5% oxygen concentration group compared to the other groups. In summary, our findings demonstrate that 5% oxygen concentration improves oocyte maturation and blastocyst development in the yak, increases blastocyst cell numbers, reduces apoptosis rate in the oocyte and blastocyst as well as reduces embryo cleavage rate.
Collapse
Affiliation(s)
- Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huizhu Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qin Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuequan Hu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
17
|
Varlamova EG, Maltseva VN. Micronutrient Selenium: Uniqueness and Vital Functions. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Teimoori B, Moradi-Shahrebabak M, Razavi M, Rezaei M, Harati-Sadegh M, Salimi S. The effect of GPx-1 rs1050450 and MnSOD rs4880 polymorphisms on PE susceptibility: a case- control study. Mol Biol Rep 2019; 46:6099-6104. [PMID: 31512047 DOI: 10.1007/s11033-019-05045-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022]
Abstract
Preeclampsia (PE) is a serious pregnancy complication whose etiology is not fully understood. However, previous reports have suggested that oxidative stress and genetic variants may contribute to the development of PE. This study aimed to examine the relationship between the Glutathione peroxidase-1(GPx-1) and Manganese Superoxide dismutase (MnSOD) polymorphisms and preeclampsia (PE) risk in Iranian women. Genotyping of the studied women, including 179 preeclamptic cases and 202 controls, for GPx-1 rs1050450 and MnSOD rs4880 polymorphisms was conducted using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our results showed a 1.7- to 1.6-fold increased risk of PE in the rs1050450 CT and CT + TT (dominant model) genotypes compared to CC genotype (OR = 1.7, 95%CI 1.1-2.7; P = 0.01 and OR = 1.6, 95%CI 1.1-2.4; P = 0.02; respectively). We also found a marked correlation between TC and CC genotypes of MnSOD rs4880 polymorphism and a 1.9- to 2.3-fold increase risk of PE (OR = 1.9, 95%CI 1.2-2.9; P = 0.005 and OR = 2.3, 95%CI 1-5.1; P = 0.04, respectively). The rs4880 MnSOD polymorphism was correlated with increased risk of PE in the allelic and dominant models (OR = 1.8, 95% CI 1.2-2.5, P = 0.002; OR = 1.9, 95%CI 1.3-3, P = 0.002, respectively). High frequency of TC/CC genotype of MnSOD rs4880 and CT genotypes of rs1050450 polymorphism in PE patients compared to controls showed the contribution of these variants to PE susceptibility.
Collapse
Affiliation(s)
- Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Moradi-Shahrebabak
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Razavi
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahnaz Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Harati-Sadegh
- Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
19
|
Dragicevic B, Suvakov S, Jerotic D, Reljic Z, Djukanovic L, Zelen I, Pljesa-Ercegovac M, Savic-Radojevic A, Simic T, Dragicevic D, Matic M. Association of SOD2 (rs4880) and GPX1 (rs1050450) Gene Polymorphisms with Risk of Balkan Endemic Nephropathy and its Related Tumors. ACTA ACUST UNITED AC 2019; 55:medicina55080435. [PMID: 31382611 PMCID: PMC6723896 DOI: 10.3390/medicina55080435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Background: Experimental data show that superoxide dismutase 2 (SOD2) is involved in ochratoxin (OTA)-induced nephrotoxicity, whereas clinical data indicate the role of SOD2 rs4880 or glutathione peroxidase 1 (GPX1) rs1050450 polymorphisms in end-stage renal disease and urothelial carcinoma risk, known to be the major complications of Balkan endemic nephropathy (BEN). Therefore, we hypothesized that SOD2 and GPX1 gene polymorphisms would influence the risk of BEN and its associated tumors. Materials and Methods: The study was conducted in 207 BEN patients and 86 controls from endemic areas. Results: Individuals with both copies of variant SOD2 allele, known for lower mitochondrial antioxidant protection, are at a significantly higher BEN risk (OR = 2.6, p = 0.021). No association was observed between GPX1 gene polymorphism and BEN risk. Combining SOD2 and GPX1 genotypes did not alter the risk of BEN development. Regarding the risk of urothelial tumors in BEN patients, none of the polymorphisms studied was significantly associated with the risk of these tumors. Conclusions: Polymorphism in SOD2 rs4880 gene affects the risk of BEN development. Hence, SOD2 genotyping could, together with a panel of other enzymes, be used as a biomarker of susceptibility in BEN areas.
Collapse
Affiliation(s)
- Biljana Dragicevic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Sonja Suvakov
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Djurdja Jerotic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zorica Reljic
- Medical laboratory "PAN LAB", 36000 Kraljevo, Serbia
| | | | - Ivanka Zelen
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Dejan Dragicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Clinic of Urology, Clinical Centre of Serbia, Resavska 51, 11000 Belgrade, Serbia.
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
20
|
Impact of Occupational Exposures and Genetic Polymorphisms on Recurrence and Progression of Non-Muscle-Invasive Bladder Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081563. [PMID: 30042310 PMCID: PMC6121504 DOI: 10.3390/ijerph15081563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Introduction: Additional or better markers are needed to guide the clinical monitoring of patients with non-muscle-invasive bladder cancer (NMIBC). Aim: To investigate the influence of occupational exposures and genetic polymorphisms on recurrence and progression of NMIBC. Methods: The study includes 160 NMIBC patients. We collected on questionnaire information on demographic variables, lifetime smoking history, lifetime history of occupational exposure to aromatic amines and polycyclic aromatic hydrocarbons. Genetic polymorphism (glutathione S-transferase M1; T1; P1 (GSTM1; GSTT1; GSTP1); N-acetyltransferase 1; 2 (NAT1; NAT2); cytochrome P450 1B1 (CYP1B1); sulfotransferase 1A1 (SULT1A1); myeloperoxidase (MPO); catechol-O-methyltransferase (COMT); manganese superoxide dismutase (MnSOD); NAD(P)H:quinone oxidoreductase (NQO1); X-ray repair cross-complementing group 1; 3 (XRCC1; XRCC3) and xeroderma pigmentosum complementation group (XPD)) was assessed in peripheral blood lymphocytes. DNA adducts were evaluated by 32P-postlabeling. Predictors of recurrence (histological confirmation of a newly found bladder tumor) and progression (transition of tumor from low-grade to high-grade and/or increase in TNM stage) were identified by multivariate Cox proportional hazard regression with stepwise backward selection of independent variables. Hazard ratios (HR) with 95% confidence interval (95%CI) and two-tail probability of error (p-value) were estimated. Results: The risk of BC progression decreased with the homozygous genotype “ValVal” of both COMT and MnSOD (HR = 0.195; 95%CI = 0.060 to 0.623; p = 0.006). The results on BC recurrence were of borderline significance. No occupational exposure influenced recurrence or progression. Conclusion: Our results are supported by experimental evidence of a plausible mechanism between cause (ValVal genotype of both MnSOD and COMT) and effect (decreased progression of tumor in NMIBC patients). The genetic polymorphisms associated with better prognosis may be used in clinic to guide selection of treatment for patients initially diagnosed with NMIBC. However, external validation studies are required.
Collapse
|
21
|
Varlamova EG, Goltyaev MV, Kuznetsova JP. Effect of Sodium Selenite on Gene Expression of SELF, SELW, and TGR Selenoproteins in Adenocarcinoma Cells of the Human Prostate. Mol Biol 2018. [DOI: 10.1134/s0026893318030147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Naiki T, Naiki-Ito A, Iida K, Etani T, Kato H, Suzuki S, Yamashita Y, Kawai N, Yasui T, Takahashi S. GPX2 promotes development of bladder cancer with squamous cell differentiation through the control of apoptosis. Oncotarget 2018; 9:15847-15859. [PMID: 29662611 PMCID: PMC5882302 DOI: 10.18632/oncotarget.24627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/27/2018] [Indexed: 01/10/2023] Open
Abstract
Herein, we elucidated the molecular mechanisms and therapeutic potential of glutathione peroxidase 2 (GPX2) in bladder cancer. GPX2 expression gradually increased during progression from normal to papillary or nodular hyperplasia (PNHP) and urothelial carcinoma (UC) in a rat N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder carcinogenesis model. GPX2 overexpression was more marked in UC with squamous differentiation (SqD) than in pure UC. Clinical intraepithelial lesions of papillary UC and invasive UC with SqD also had strong GPX2 expression in human radical cystectomy specimens. In addition, prognostic analysis using transurethral specimens revealed that low expression level of GPX2 predicted poor prognosis in patients with pure UC. Further, UC cell lines, BC31 and RT4, cultured in vitro also overexpressed GPX2. Knock-down of GPX2 induced significant inhibition of intracellular reactive oxygen species (ROS) production, in addition to significant growth inhibition and increased apoptosis with activation of caspase 3 or 7 in both BC31 and RT4 cells. Interestingly, tumor growth of BC31 cells subcutaneously transplanted in nude mice was significantly caused the induction of apoptosis, as well as inhibition of angiogenesis and SqD by GPX2 down-regulation. Our findings demonstrated that GPX2 plays an important role in bladder carcinogenesis through the regulation of apoptosis against intracellular ROS, and may be considered as a novel biomarker or therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Keitaro Iida
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiki Etani
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoriko Yamashita
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyasu Kawai
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
23
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Abstract
OBJECTIVE Several studies have demonstrated that abnormal glutathione peroxidases 1 (Gpx1) expression can influence the biological behavior of malignant cells. However, the roles of Gpx1 in laryngeal squamous cell carcinoma (LSCC) remain unknown. The purpose of this study is to analyze the Gpx1 expression and prognostic significance in LSCC patients. METHODS Gpx1 mRNA levels in laryngeal tissues were determined by qRT-PCR. Meanwhile, We examined the expression levels of Gpx1 protein in 140 primary tumor tissues and 28 cases of normal tissues by immunohistochemistry (IHC) analysis on tissue microarrays (TMA). RESULTS Our results revealed that the frequency of high Gpx1 was significantly higher in cancer tissue compared to normal surgical margins; Gpx1 expression correlated with clinical features and overall survival (OS). Gpx1 overexpression was significantly associated with lymph node metastasis (P=0.023) and TNM stage (P=0.008); Kaplan-Meier survival curves revealed that patients with high Gpx1 expression had worse prognoses than patients with low Gpx1 expression; By multivariate analysis, we revealed that high Gpx1 expression level (HR 2.101, 95%CI 1.011-4.367; P=0.047) was an independent prognostic factor of survival in LSCC patients. CONCLUSION We speculate that Gpx1 can be applied to predict the prognosis in LSCC patients.
Collapse
|
25
|
Buraczynska M, Buraczynska K, Dragan M, Ksiazek A. Pro198Leu Polymorphism in the Glutathione Peroxidase 1 Gene Contributes to Diabetic Peripheral Neuropathy in Type 2 Diabetes Patients. Neuromolecular Med 2017; 19:147-153. [PMID: 27592002 PMCID: PMC5334407 DOI: 10.1007/s12017-016-8438-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase 1 (Gpx1) is an endogenous antioxidant enzyme. The T allele of the Pro198Leu polymorphism in the Gpx1 (rs1050450, 198C > T) gene is associated with reduced enzyme activity. The aim of this study was to evaluate the association between Pro198Leu polymorphism and risk of diabetic peripheral neuropathy (DPN). We examined 1244 T2DM patients and 730 healthy controls. In the patient group, 33 % had diabetic peripheral neuropathy. All subjects were genotyped for the Gpx1 Pro198Leu polymorphism by polymerase chain reaction and restriction analysis. A significant increase in the T allele and TT genotype frequencies was observed in DPN patients compared to those without DPN (OR 1.55, 95 % CI 1.30-1.85 and 1.89, 95 % CI 1.30-2.74, respectively). The association remained significant after correction for age, disease duration, HbA1c and BMI. When distribution of T allele was compared between DPN+ and DPN- subgroups and controls, OR was 1.54 for DPN+ and 1.00 for DPN- patients. In conclusion, our findings suggest that Gpx1 Pro198Leu genotypes are significantly associated with the risk of diabetic peripheral neuropathy in patients with T2DM. The study provides new clinically relevant information regarding genetic determinants of susceptibility to diabetic neuropathy.
Collapse
Affiliation(s)
- Monika Buraczynska
- Department of Nephrology, Medical University of Lublin, Dr K. Jaczewskiego 8, 20-954 Lublin, Poland
| | - Kinga Buraczynska
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Michal Dragan
- Department of Nephrology, Medical University of Lublin, Dr K. Jaczewskiego 8, 20-954 Lublin, Poland
| | - Andrzej Ksiazek
- Department of Nephrology, Medical University of Lublin, Dr K. Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
26
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
27
|
Chen Y, Zhang H, Zhou HJ, Ji W, Min W. Mitochondrial Redox Signaling and Tumor Progression. Cancers (Basel) 2016; 8:40. [PMID: 27023612 PMCID: PMC4846849 DOI: 10.3390/cancers8040040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as "tumor suppressors" or prevent excessive ROS to act as "tumor promoter". Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.
Collapse
Affiliation(s)
- Yuxin Chen
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Haiqing Zhang
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St, New Haven, CT 06520, USA.
| | - Weidong Ji
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Wang Min
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China.
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Vodusek AL, Goricar K, Gazic B, Dolzan V, Jazbec J. Antioxidant defence-related genetic variants are not associated with higher risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence. Radiol Oncol 2016; 50:80-6. [PMID: 27069453 PMCID: PMC4825342 DOI: 10.1515/raon-2015-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 12/24/2022] Open
Abstract
Background Thyroid cancer is one of the most common secondary cancers after treatment of malignancy in childhood or adolescence. Thyroid gland is very sensitive to the carcinogenic effect of ionizing radiation, especially in children. Imbalance between pro- and anti-oxidant factors may play a role in thyroid carcinogenesis. Our study aimed to assess the relationship between genetic variability of antioxidant defence-related genes and the risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence. Patients and methods In a retrospective study, we compared patients with childhood or adolescence primary malignancy between 1960 and 2006 that developed a secondary thyroid cancer (cases) with patients (controls), with the same primary malignancy but did not develop any secondary cancer. They were matched for age, gender, primary diagnosis and treatment (especially radiotherapy) of primary malignancy. They were all genotyped for SOD2 p.Ala16Val, CAT c.-262C>T, GPX1 p.Pro200Leu, GSTP1 p.Ile105Val, GSTP1 p.Ala114Val and GSTM1 and GSTT1 deletions. The influence of polymorphisms on occurrence of secondary cancer was examined by McNemar test and Cox proportional hazards model. Results Between 1960 and 2006 a total of 2641 patients were diagnosed with primary malignancy before the age of 21 years in Slovenia. Among them 155 developed a secondary cancer, 28 of which were secondary thyroid cancers. No significant differences in the genotype frequency distribution were observed between cases and controls. Additionally we observed no significant influence of investigated polymorphisms on time to the development of secondary thyroid cancer. Conclusions We observed no association of polymorphisms in antioxidant genes with the risk for secondary thyroid cancer after treatment of malignancy in childhood or adolescence. However, thyroid cancer is one of the most common secondary cancers in patients treated for malignancy in childhood or adolescence and the lifelong follow up of these patients is of utmost importance.
Collapse
Affiliation(s)
- Ana Lina Vodusek
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Katja Goricar
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Gazic
- Department of Pathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Vita Dolzan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Jazbec
- Department of Hematology and Oncology, University Children's Hospital, Ljubljana, Slovenia
| |
Collapse
|
29
|
1,25-Dihydroxyvitamin D3 alleviates salivary adenoid cystic carcinoma progression by suppressing GPX1 expression through the NF-κB pathway. Int J Oncol 2016; 48:1271-9. [DOI: 10.3892/ijo.2016.3341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/31/2015] [Indexed: 11/05/2022] Open
|
30
|
Zhang CX, Guo LK, Qin YM, Li GY. Interaction of Polymorphisms of Resistin Gene Promoter -420C/G, Glutathione Peroxidase -1 Gene Pro198Leu and Cigarette Smoking in Nonalcoholic Fatty Liver Disease. Chin Med J (Engl) 2015; 128:2467-73. [PMID: 26365964 PMCID: PMC4725550 DOI: 10.4103/0366-6999.164931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many studies have suggested that cigarette smoking and polymorphisms of resistin and glutathione peroxidase-1 (GPx-1) genes are closely correlated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, few reports have investigated these associations with respect to NAFLD susceptibility. We, therefore, examined the distribution of polymorphisms in GPx-1 and resistin genes in NAFLD patients and healthy controls and analyzed the relationship between these polymorphisms and smoking status. METHODS Nine hundred NAFLD patients and 900 healthy controls were selected, and the genetic polymorphisms of resistin gene promoter-420C/G and GPx-1 gene Pro198Leu were analyzed by polymorphism-polymerase chain reaction (PCR) in DNA extracted from peripheral blood leukocytes. Interactions between the two mutants and the gene-environment interaction with cigarette smoking were also analyzed. RESULTS Genotype frequencies of -420C/G (GG) and Pro198Leu (LL) were significantly higher in NAFLD cases (49.56% and 50.11%, respectively) compared with healthy controls (23.67% and 24.22%, respectively) (P = 0.0069; P = 0.0072). Moreover, the risk of NAFLD with -420C/G (GG) was significantly higher than in controls (odds ratio [OR] =3.1685, 95% confidence interval (CI) =1.9366-5.2073). Individuals carrying Pro198Leu (LL) had a high risk of NAFLD (OR = 3.1424, 95% CI = 1.7951-5.2367). Combined analysis of the polymorphisms showed that the -420C/G (GG)/Pro198Leu (LL) genotype was significantly more common in the NAFLD group than in the control group (39.44% vs. 12.78%, respectively, P = 0.0054), while individuals with -420C/G (GG)/Pro198Leu (LL) had a high risk of NAFLD (OR = 5.0357, 95% CI = 3.1852-7.8106). Moreover, the cigarette smoking rate in the NAFLD group was significantly higher than in the control group (OR = 1.8990, P = 0.0083 in the smoking index (SI) ≤400 subgroup; OR = 5.0937, P = 0.0051 in the SI >400 subgroup), and statistical analysis suggested a positive interaction between cigarette smoking and -420C/G (GG) (γ = 5.6018 in the SI ≤400 subgroup; γ = 4.4770 in the SI >400 subgroup) and Pro198Leu (LL) (γ = 5.7715 in the SI ≤400 subgroup; γ = 4.5985 in the SI >400 subgroup) in increasing the risk of NAFLD. CONCLUSION NAFLD risk factors include -420C/G (GG), Pro198Leu (LL) and cigarette smoking, and these three factors have a significant additive effect on NAFLD risk.
Collapse
Affiliation(s)
- Chao-Xian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, China,Address for correspondence: Prof. Chao-Xian Zhang, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, China E-Mail:
| | - Li-Ke Guo
- Depatment of Stomatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, China
| | - Yong-Mei Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, China
| | - Guang-Yan Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, China
| |
Collapse
|
31
|
Shi H, Yang F, Li W, Zhao W, Nie K, Dong B, Liu Z. A review: fabrications, detections and applications of peptide nucleic acids (PNAs) microarray. Biosens Bioelectron 2014; 66:481-9. [PMID: 25499661 DOI: 10.1016/j.bios.2014.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acid (PNA) is a mimic of DNA that shows a high chemical stability and can survive the enzymatic degradation of nucleases and proteases. The superior binding properties of PNA enable the formation of PNA/DNA or PNA/RNA duplex with excellent thermal stability and unique ionic strength effect. The introduction of microarray makes it possible to achieve accurate, high throughput parallel analysis of DNA or RNA with a highly integrated and low reagents consuming device. This powerful tool expands the applications of PNA in genotyping based on single nucleotide polymorphism (SNP) detection, the monitoring of disease-related miRNA expression and pathogen detection. This review paper discusses the fabrications of PNA microarrays through in situ synthesis strategy or spotting method by automatic devices, the various detection methods for the microarray-based hybridization and the current applications of PNA microarrays.
Collapse
Affiliation(s)
- Huanhuan Shi
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Feipeng Yang
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Wenjia Li
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Weiwei Zhao
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Kaixuan Nie
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Bo Dong
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
| |
Collapse
|