1
|
Dorjay Tamang JS, Banerjee S, Baidya SK, Das S, Ghosh B, Jha T, Adhikari N. An overview of matrix metalloproteinase-12 in multiple disease conditions, potential selective inhibitors, and drug designing strategies. Eur J Med Chem 2025; 283:117154. [PMID: 39709794 DOI: 10.1016/j.ejmech.2024.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Matrix metalloproteases (MMPs) are the proteolytic enzymes accountable for extracellular matrix (ECM) modification through their Zn2+-dependent catalytic activity. Among these, MMP-12 is one of the crucial MMPs that contributes to various disease states including different types of cancers and other major pathophysiological conditions including COPD, asthma, emphysema, skin diseases, arthritis, vascular diseases, and neurological disorders. The majority of the MMP-12 inhibitors should have three constitutional pharmacophoric features (i.e., a hydrophobic group to occupy the S1' pocket, a zinc-binding motif for chelating to the catalytic Zn2+ ion present at the catalytic site, and a flexible and hydrogen bond forming linker region between the S1' pocket substituent and the zinc chelating group for interacting with the catalytic and Ω-loop amino acid residues). This review mainly focuses on the various roles of MMP-12 in different diseases along with the structural comparison with other MMPs as well as promising and MMP-12-selective inhibitors and molecular modeling studies performed on MMP-12 inhibitors. Therefore, this review will provide comprehensive information to the researchers for designing effective and MMP-12-selective inhibitors for therapeutic advancement in the future.
Collapse
Affiliation(s)
- Jigme Sangay Dorjay Tamang
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
2
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Zhang M, Lin Y, Han Z, Huang X, Zhou S, Wang S, Zhou Y, Han X, Chen H. Exploring mechanisms of skin aging: insights for clinical treatment. Front Immunol 2024; 15:1421858. [PMID: 39582871 PMCID: PMC11581952 DOI: 10.3389/fimmu.2024.1421858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The skin is the largest organ in the human body and is made up of various cells and structures. Over time, the skin will age, which is not only influenced by internal factors, but also by external environmental factors, especially ultraviolet radiation. Aging causes immune system weakening in the elderly, which makes them more susceptible to dermatosis, such as type 2 inflammatory mediated pruritus. The immune response in this condition is marked by senescent cells consistently releasing low amounts of pro-inflammatory cytokines through a senescence-associated secretory phenotype (SASP). This continuous inflammation may accelerate immune system aging and establish a connection between immune aging and type 2 inflammatory skin diseases. In addition, two chronic pigmentation disorders, vitiligo and chloasma, are also associated with skin aging. Aged cells escape the immune system and accumulate in tissues, forming a microenvironment that promotes cancer. At the same time, "photoaging" caused by excessive exposure to ultraviolet radiation is also an important cause of skin cancer. This manuscript describes the possible links between skin aging and type 2 inflammation, chronic pigmentation disorders, and skin cancer and suggests some treatment options.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Zhou
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Xuan Han
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
4
|
Bogdanowicz P, Bensadoun P, Noizet M, Béganton B, Philippe A, Alvarez-Georges S, Doat G, Tourette A, Bessou-Touya S, Lemaitre JM, Duplan H. Senomorphic activity of a combination of niacinamide and hyaluronic acid: correlation with clinical improvement of skin aging. Sci Rep 2024; 14:16321. [PMID: 39009698 PMCID: PMC11251187 DOI: 10.1038/s41598-024-66624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Intrinsic and extrinsic factors, including lifestyle and sun exposure, can contribute to cell senescence, which impairs skin homeostasis, that may in turn lead to skin aging. Senescent cells have a specific secretome, called the senescence-associated secretory phenotype (SASP) that includes MMPs, CXCLs and S100A8/9. Reducing the SASP with senotherapeutics is a promising strategy to reduce skin aging. Here we evaluated the effect of a formula containing niacinamide and hyaluronic acid, which are known to limit senescence and skin aging. We conducted three different studies. (1) Ex vivo explants treated with the formula had more collagen and glycosaminoglycan. (2) In a clinical trial with forty-four women, two months of treatment improved fine lines, wrinkles, luminosity, smoothness, homogeneity, and plumpness. (3) In a third study on thirty women, we treated one arm for two months and took skin biopsies to study gene expression. 101 mRNAs and 13 miRNAs were differentially expressed. We observed a likely senomorphic effect, as there was a decrease in many SASP genes including MMP12 and CXCL9 and a significant downregulation of autocrine signaling genes: S100A8 and S100A9. These pharmaco-clinical results are the first to demonstrate the senomorphic properties of an effective anti-aging formula in skin.
Collapse
Affiliation(s)
| | - Paul Bensadoun
- INSERM IRMB UMR1183, Hôpital Saint Eloi, Université de Montpellier, Montpellier, France
| | - Maïté Noizet
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | - Benoît Béganton
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | - Armony Philippe
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | | | - Gautier Doat
- Laboratoires Dermatologiques Avène, Lavaur, France
| | - Amélie Tourette
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | | | - Jean-Marc Lemaitre
- INSERM IRMB UMR1183, Hôpital Saint Eloi, Université de Montpellier, Montpellier, France.
| | - Hélène Duplan
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| |
Collapse
|
5
|
Hock BD, Goddard L, MacPherson SA, Strother M, Gibbs D, Pearson JF, McKenzie JL. Levels and in vitro functional effects of circulating anti-hinge antibodies in melanoma patients receiving the immune checkpoint inhibitor pembrolizumab. PLoS One 2023; 18:e0290793. [PMID: 37713423 PMCID: PMC10503750 DOI: 10.1371/journal.pone.0290793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
The efficacy of PD-1 monoclonals such as pembrolizumab can be modulated by the signals delivered via their Fc region. Tumour/inflammation associated proteases can generate F(ab')2 fragments of therapeutic monoclonals, and subsequent recognition of F(ab')2 epitopes by circulating anti-hinge antibodies (AHA) can then, potentially, link F(ab')2 binding to the target antigen with novel Fc signalling. Although elevated in inflammatory diseases, AHA levels in cancer patients have not been investigated and functional studies utilising the full repertoire of AHA present in sera have been limited. AHA levels in pembrolizumab treated melanoma patients (n = 23) were therefore compared to those of normal donors and adalimumab treated patients. A subset of melanoma patients and the majority of adalimumab patients had elevated levels of AHA reactive with F(ab')2 fragments of IgG4 anti-PD-1 monoclonals (nivolumab, pembrolizumab) and IgG1 therapeutic monoclonals (rituximab, adalimumab). Survival analysis was restricted by the small patient numbers but those melanoma patients with the highest levels (>75% percentile, n = 5) of pembrolizumab-F(ab')2 reactive AHA had significantly better overall survival post pembrolizumab treatment (p = 0.039). In vitro functional studies demonstrated that the presence of AHA+ sera restored the neutrophil activating capacity of pembrolizumab to its F(ab')2 fragment. Neither pembrolizumab nor its F(ab')2 fragments can induce NK cell or complement dependent cytotoxicity (CDC). However, AHA+ sera in combination with pembrolizumab-F(ab')2 provided Fc regions that could activate NK cells. The ability of AHA+ sera to restore CDC activity was more restricted and observed using only one pembrolizumab and one adalimumab patient serum in combination with rituximab- F(ab')2. This study reports the presence of elevated AHA levels in pembrolizumab treated melanoma patients and highlight the potential for AHA to provide additional Fc signaling. The issue of whether tumour associated proteolysis of PD-1 mAbs and subsequent AHA recognition impacts on treatment efficacy requires further study.
Collapse
Affiliation(s)
- Barry D. Hock
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Liping Goddard
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Sean A. MacPherson
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch Hospital, Christchurch, New Zealand
- Haematology Department, Christchurch Hospital, Christchurch, New Zealand
| | - Matthew Strother
- Canterbury Regional Cancer and Haematology Service, Christchurch, New Zealand
| | - David Gibbs
- Canterbury Regional Cancer and Haematology Service, Christchurch, New Zealand
| | - John F. Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, Christchurch, New Zealand
| | - Judith L. McKenzie
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
6
|
Teng Y, Fu X, Zhang Q, Wang F, Liu Y, Zou Z. Prognostic and clinicopathological significance of MMP12 in various cancers: a meta-analysis and bioinformatics analysis. Biomark Med 2023; 17:623-634. [PMID: 37812024 DOI: 10.2217/bmm-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Background: Cancer is one of the top causes of mortality worldwide. The matrix metalloproteinase MMP12 is highly expressed in some cancers, but there is a lack of meta-analyses proving the correlation between MMP12 and cancer. Materials & methods: A literature search was performed using Web of Science, PubMed and other databases. Quantitative meta-analysis of the data was carried out. The Cancer Genome Atlas was further used to validate our results. Results: High MMP12 expression was associated with poorer overall survival and poorer 5-year overall survival. Elevated expression of MMP12 predicted shorter overall survival in six cancers and worse disease-free survival in four malignancies based on validation using the Gene Expression Profiling Interactive Analysis online analysis tool. Conclusion: Elevated MMP12 expression is likely a marker of poor prognosis in various cancers.
Collapse
Affiliation(s)
- Yangjing Teng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xinyi Fu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qin Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Feiyang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhenhong Zou
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, 330031, People's Republic of China
| |
Collapse
|
7
|
Vodova M, Nejdl L, Pavelicova K, Zemankova K, Rrypar T, Skopalova Sterbova D, Bezdekova J, Nuchtavorn N, Macka M, Adam V, Vaculovicova M. Detection of pesticides in food products using paper-based devices by UV-induced fluorescence spectroscopy combined with molecularly imprinted polymers. Food Chem 2022; 380:132141. [PMID: 35101791 DOI: 10.1016/j.foodchem.2022.132141] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/04/2022]
Abstract
In this proof-of-concept study, we explore the detection of pesticides in food using a combined power of sensitive UV-induced fingerprint spectroscopy with selective capture by molecularly imprinted polymers (MIPs) and portable cost-effective paper-based analytical devices (PADs). The specific pesticides used herein as model compounds (both pure substances and their application products for spraying), were: strobilurins (i.e. trifloxystrobin), urea pesticides (rimsulfuron), pyrethroids (cypermethrine) and aryloxyphenoxyproponic acid herbicides (Haloxyfop-methyl). Commercially available spraying formulations containing the selected pesticides were positively identified by MIP-PADs swabs of sprayed apple and tomato. The key properties of MIP layer - imprinting factor (IF) and selectivity factor (α) were characterized using trifloxystrobin (IF-3.5, α-4.4) was demonstrated as a potential option for in-field application. The presented method may provide effective help with in-field testing of food and reveal problems such as false product labelling.
Collapse
Affiliation(s)
- Milada Vodova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Kristyna Pavelicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Kristyna Zemankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Tomas Rrypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Jaroslava Bezdekova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Nantana Nuchtavorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhaya Rd., Rajathevee, Bangkok 10400, Thailand
| | - Mirek Macka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic.
| |
Collapse
|
8
|
Biomimetic Nanoscale Materials for Skin Cancer Therapy and Detection. J Skin Cancer 2022; 2022:2961996. [PMID: 35433050 PMCID: PMC9010180 DOI: 10.1155/2022/2961996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Skin cancer has developed as one of the most common types of cancer in the world, with a significant impact on public health impact and the economy. Nanotechnology methods for cancer treatment are appealing since they allow for the effective transport of medicines and other biologically active substances to specific tissues while minimizing harmful consequences. It is one of the most significant fields of research for treating skin cancer. Various nanomaterials have been employed in skin cancer therapy. The current review will summarize numerous methods of treating and diagnosing skin cancer in the earliest stages. There are numerous skin cancer indicators available for the prompt diagnosis of this type of disease. Traditional approaches to skin cancer diagnosis are explored, as are their shortcomings. Electrochemical and optical biosensors for skin cancer diagnosis and management were also discussed. Finally, various difficulties concerning the cost and ease of use of innovative methods should be addressed and overcome.
Collapse
|
9
|
Comprehensive Analysis of Prognostic Value and Immune Infiltration of MMP12 in Esophageal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:4097428. [PMID: 35265129 PMCID: PMC8898792 DOI: 10.1155/2022/4097428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a typical neoplastic disease and a frequent cause of death in China. The prognosis of most ESCC patients is still poor. Previous studies demonstrated that MMP12 is involved in tumor metastasis. However, its clinical significance and association with cancer immunity remained largely unclear. In this study, we first analyzed the expressing pattern of MMPs in ESCC from TCGA datasets and found that several MMPs expression was distinctly increased in ESCC. However, only MMP12 expression was associated with five-year survival of ESCC patients. Then, we focused on MMP12 and found its high expression was positively related to advanced clinical stages of ESCC specimens. KEGG assays revealed MMP12 may influence the activity of several tumor-related pathways, such as the Toll-like receptor signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. Then, we sought to determine whether MMP12 expressions were related to immune cell infiltration in ESCC. We observed that increased MMP12 levels were positively associated with the infiltration levels of mast cells activated and macrophages M0. However, eosinophils, B cells naïve, and mast cells resting exhibited an opposite result. Finally, we showed that knockdown of MMP12 suppressed the proliferation of ESCC cells. Overall, our findings proved that high expression of MMP12 may be a novel and valuable prognostic factor in ESCC.
Collapse
|
10
|
Mapping of MeLiM melanoma combining ICP-MS and MALDI-MSI methods. Int J Biol Macromol 2022; 203:583-592. [PMID: 35090942 DOI: 10.1016/j.ijbiomac.2022.01.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Here we developed a powerful tool for comprehensive data collection and mapping of molecular and elemental signatures in the Melanoma-bearing Libechov Minipig (MeLiM) model. The combination of different mass spectrometric methods allowed for detail investigation of specific melanoma markers and elements and their spatial distribution in tissue sections. MALDI-MSI combined with HPLC-MS/MS analyses resulted in identification of seven specific proteins, S100A12, CD163, MMP-2, galectin-1, tenascin, resistin and PCNA that were presented in the melanoma signatures. Furthermore, the ICP-MS method allowed for spatial detection of zinc, calcium, copper, and iron elements linked with the allocation of the specific binding proteins.
Collapse
|
11
|
Role of Biomarkers in the Integrated Management of Melanoma. DISEASE MARKERS 2022; 2021:6238317. [PMID: 35003391 PMCID: PMC8739586 DOI: 10.1155/2021/6238317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
Abstract
Melanoma, which is an aggressive skin cancer, is currently the fifth and seventh most common cancer in men and women, respectively. The American Cancer Society reported that approximately 106,110 new cases of melanoma were diagnosed in the United States in 2021, with 7,180 people dying from the disease. This information could facilitate the early detection of possible metastatic lesions and the development of novel therapeutic techniques for melanoma. Additionally, early detection of malignant melanoma remains an objective of melanoma research. Recently, melanoma treatment has substantially improved, given the availability of targeted treatments and immunotherapy. These developments have highlighted the significance of identifying biomarkers for prognosis and predicting therapy response. Biomarkers included tissue protein expression, circulating DNA detection, and genetic alterations in cancer cells. Improved diagnostic and prognostic biomarkers are becoming increasingly relevant in melanoma treatment, with the development of newer and more targeted treatments. Here, the author discusses the aspects of biomarkers in the real-time management of patients with melanoma.
Collapse
|
12
|
Overexpression of the nucleoporin Nup88 stimulates migration and invasion of HeLa cells. Histochem Cell Biol 2021; 156:409-421. [PMID: 34331103 PMCID: PMC8604841 DOI: 10.1007/s00418-021-02020-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Elevated expression of the nucleoporin Nup88, a constituent of the nuclear pore complex, is seen in various types of malignant tumors, but whether this overexpression contributes to the malignant phenotype has yet to be determined. Here, we investigated the effect of the overexpression of Nup88 on the migration and invasion of cervical cancer HeLa cells. The overexpression of Nup88 promoted a slight but significant increase in both migration and invasion, whereas knockdown of Nup88 by RNA interference suppressed these phenotypes. The observed phenotypes in Nup88-overexpressing HeLa cells were not due to the progression of the epithelial-to-mesenchymal transition or activation of NF-κB, which are known to be important for cell migration and invasion. Instead, we identified an upregulation of matrix metalloproteinase-12 (MMP-12) at both the gene and protein levels in Nup88-overexpressing HeLa cells. Upregulation of MMP-12 protein by the overexpression of Nup88 was also observed in one other cervical cancer cell line and two prostate cancer cell lines but not 293 cells. Treatment with a selective inhibitor against MMP-12 enzymatic activity significantly suppressed the invasive ability of HeLa cells induced by Nup88 overexpression. Taken together, our results suggest that overexpression of Nup88 can stimulate malignant phenotypes including invasive ability, which is promoted by MMP-12 expression.
Collapse
|
13
|
Chiavaroli A, Sinan KI, Zengin G, Mahomoodally MF, Bibi Sadeer N, Etienne OK, Cziáky Z, Jekő J, Glamočlija J, Soković M, Recinella L, Brunetti L, Leone S, Abdallah HH, Angelini P, Angeles Flores G, Venanzoni R, Menghini L, Orlando G, Ferrante C. Identification of Chemical Profiles and Biological Properties of Rhizophora racemosa G. Mey. Extracts Obtained by Different Methods and Solvents. Antioxidants (Basel) 2020; 9:antiox9060533. [PMID: 32570898 PMCID: PMC7346144 DOI: 10.3390/antiox9060533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Mangrove forests exemplify a multifaceted ecosystem since they do not only play a crucial ecological role but also possess medicinal properties. Methanolic, ethyl acetate and aqueous leaf and bark extracts were prepared using homogenizer-assisted extraction (HAE), infusion and maceration (with and without stirring). The different extracts were screened for phytochemical profiling and antioxidant capacities in terms of radical scavenging (DPPH, ABTS), reducing potential (CUPRAC, FRAP), total antioxidant capacity and chelating power. Additionally, R. racemosa was evaluated for its anti-diabetic (α-amylase, α-glucosidase), anti-tyrosinase and anti-cholinesterase (AChE, BChE) activities. Additionally, antimycotic and antibacterial effects were investigated against Eescherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Listeria monocytogenes, Enterobacter cloacae, Bacillus cereus, Micrococcus luteus, Staphylococcus aureus, Aspergillus fumigatus, Aspergillus niger, Trichoderma viride, Penicillium funiculosum, Penicillium ochrochloron and Penicillium verrucosum. Finally, based on phytochemical fingerprint, in silico studies, including bioinformatics, network pharmacology and docking approaches were conducted to predict the putative targets, namely tyrosinase, lanosterol-14-α-demethylase and E. coli DNA gyrase, underlying the observed bio-pharmacological and microbiological effects. The methanolic leave and bark extracts (prepared by both HAE and maceration) abounded with phenolics, flavonoids, phenolic acids and flavonols. Results displayed that both methanolic leaf and bark extracts (prepared by HAE) exhibited the highest radical scavenging, reducing potential and total antioxidant capacity. Furthermore, our findings showed that the highest enzymatic inhibitory activity recorded was with the tyrosinase enzyme. In this context, bioinformatics analysis predicted putative interactions between tyrosinase and multiple secondary metabolites including apigenin, luteolin, vitexin, isovitexin, procyanidin B, quercetin and methoxy-trihydroxyflavone. The same compounds were also docked against lanosterol-14α-demethylase and E. Coli DNA gyrase, yielding affinities in the submicromolar–micromolar range that further support the observed anti-microbial effects exerted by the extracts. In conclusion, extracts of R. racemosa may be considered as novel sources of phytoanti-oxidants and enzyme inhibitors that can be exploited as future first-line pharmacophores.
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.R.); (L.B.); (S.L.); (L.M.); (C.F.)
| | - Koaudio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk Universtiy, Campus Konya, 42130 Konya, Turkey;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk Universtiy, Campus Konya, 42130 Konya, Turkey;
- Correspondence: (G.Z.); (P.A.); (G.O.)
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; or
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit 230, Mauritius;
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit 230, Mauritius;
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, 01 Abidjan, Ivory Coast;
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (Z.C.); (J.J.)
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, 11000 Belgrade, Serbia; (J.G.) (M.S.)
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, 11000 Belgrade, Serbia; (J.G.) (M.S.)
| | - Lucia Recinella
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.R.); (L.B.); (S.L.); (L.M.); (C.F.)
| | - Luigi Brunetti
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.R.); (L.B.); (S.L.); (L.M.); (C.F.)
| | - Sheila Leone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.R.); (L.B.); (S.L.); (L.M.); (C.F.)
| | - Hassan H. Abdallah
- Chemistry Department, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq;
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (G.A.F.); (R.V.)
- Correspondence: (G.Z.); (P.A.); (G.O.)
| | - Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (G.A.F.); (R.V.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (G.A.F.); (R.V.)
| | - Luigi Menghini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.R.); (L.B.); (S.L.); (L.M.); (C.F.)
| | - Giustino Orlando
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.R.); (L.B.); (S.L.); (L.M.); (C.F.)
- Correspondence: (G.Z.); (P.A.); (G.O.)
| | - Claudio Ferrante
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (L.R.); (L.B.); (S.L.); (L.M.); (C.F.)
| |
Collapse
|
14
|
Jiang D, Wang Y, Liu M, Si Q, Wang T, Pei L, Wang P, Ye H, Shi J, Wang X, Song C, Wang K, Dai L, Zhang J. A panel of autoantibodies against tumor-associated antigens in the early immunodiagnosis of lung cancer. Immunobiology 2020; 225:151848. [PMID: 31980218 DOI: 10.1016/j.imbio.2019.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Lung cancer (LC) is one of the most common malignant tumors worldwide with low five-year survival rate due to lack of effective diagnosis. This study aims to find an optimal combination of autoantibodies for detecting of early-stage LC. METHODS Nine relatively novel autoantibodies against tumor-associated (TAAs) (PSIP1, TOP2A, ACTR3, RPS6KA5, HMGB3, MMP12, GREM1, ZWINT and NUSAP1) were detected by using ELISA. Diagnostic models were developed by using the training set (n = 644) and further validated in another independent set (n = 248). We also evaluated the diagnostic accuracy of the model to detect benign lung diseases (BLD) from the early-stage lung cancer. RESULTS The areas under the receiver operating characteristic curve (AUC) for the model with three TAAs panel (GREM1, HMGB3 and PSIP1) was 0.711(95% CI 0.674-0.746) in the training set and 0.858 (95% CI 0.808-0.899) in the validation set, which demonstrated a higher diagnostic capability. The AUC of this three TAAs model was 0.833 (95%CI 0.780-0.878) in discriminating LC from BLD. This model could identify early-stage LC patients from normal control (NC) individuals, with AUC of 0.687(95% CI 0.634-0.736) in training set and AUC of 0.920(95% CI 0.860-0.960) in validation set, and the overall AUC for early-stage LC was 0.779(95% CI 0.739-0.816) when the training set and validation set were combined. CONCLUSIONS The model with three TAAs panel would detect LC with higher effectiveness, and might be potential screening method for the early LC.
Collapse
Affiliation(s)
- Di Jiang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Yulin Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Qiufang Si
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Tingting Wang
- Department of Clinical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 451464, Henan, China
| | - Lu Pei
- Department of Clinical Laboratory, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Peng Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Hua Ye
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Xiao Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Chunhua Song
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Kaijuan Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China.
| | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
15
|
Wang T, Liu H, Pei L, Wang K, Song C, Wang P, Ye H, Zhang J, Ji Z, Ouyang S, Dai L. Screening of tumor-associated antigens based on Oncomine database and evaluation of diagnostic value of autoantibodies in lung cancer. Clin Immunol 2020; 210:108262. [PMID: 31629809 DOI: 10.1016/j.clim.2019.108262] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The purpose of this study is to discover novel tumor-associated antigens (TAAs) to improve the diagnosis of lung cancer (LC). MATERIALS AND METHODS Oncomine database was used to discover potential TAAs from LC tissues, enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of autoantibodies against TAAs in two independent sets (identification set, n = 368; validation set, n = 1011). RESULTS Analyses of sera from identification set showed that the sensitivity of autoantibodies against five TAAs (HMGB3, ZWINT, GREM1, NUSAP1 and MMP12) reached 57.1%, 42.4%, 38.0%, 36.4% and 20.7%, with area under ROC curve (AUC) of 0.85, 0.75, 0.71, 0.73 and 0.70, respectively. It also validated the diagnostic performances of these autoantibodies with AUC of 0.72, 0.65, 0.61, 0.64 and 0.64, respectively. Autoantibody against HMGB3 exhibited significantly increased frequency in early LC (53.3%) compared to advanced LC (29.3%) (P < .05). The positive rates of autoantibody against HMGB3 and NUSAP1 in serum of LC patients without distant metastasis were significantly higher than that of distant metastatic LC (P < .05). When each of the three protein biomarkers (CEA, CA125 and CYFRA21-1) was combined with anti-HMGB3 autoantibody, the sensitivity of early LC increased to 72.7%, 63.3% and 75.9% from 36.4%, 13.3% and 27.6%, respectively. CONCLUSION Autoantibodies against 5 TAAs (HMGB3, ZWINT, GREM1, NUSAP1 and MMP12) might have favorable diagnostic values in LC detection, and autoantibody against HMGB3 has the potential to serve as a serological biomarker in early-stage LC. The combination of protein biomarkers and anti-HMGB3 might contribute to detection of early-stage LC.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Medical Examination in the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Clinical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451464, Henan, China
| | - Hongchun Liu
- Department of Medical Examination in the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lu Pei
- Department of Medical Examination in the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Clinical Laboratory, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China
| | - Kaijuan Wang
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chunhua Song
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Peng Wang
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hua Ye
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine in the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Liping Dai
- Department of Respiratory and Sleep Medicine in the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
16
|
|
17
|
Zeng L, Qian J, Zhu F, Wu F, Zhao H, Zhu H. The prognostic values of matrix metalloproteinases in ovarian cancer. J Int Med Res 2019; 48:300060519825983. [PMID: 31099295 PMCID: PMC7140190 DOI: 10.1177/0300060519825983] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Objective To investigate the prognostic significance of 23 matrix metalloproteinase
(MMP) genes in patients diagnosed with ovarian
carcinoma. Methods The prognostic significance of 23 MMP genes in patients
diagnosed with ovarian carcinoma was investigated using the Kaplan–Meier
plotter (KM plotter), which uses the gene expression data and overall
survival information of patients with ovarian cancer that were downloaded
from the Gene Expression Omnibus, Cancer Biomedical Informatics Grid and The
Cancer Genome Atlas cancer datasets. The correlation between mRNA levels of
individual MMPs (MMP2, MMP9, MMP10, MMP12, MMP13 and MMP25) and
clinicopathological features (histological subtype, pathological grade and
clinical stage) were investigated. The MMP protein level profiles in normal
ovarian tissues and ovarian cancer tissues were examined using the Human
Protein Atlas database. Results The results showed that high mRNA levels of MMP2 and MMP13 were associated
with a worse overall survival in patients with ovarian cancer, whereas high
mRNA levels of MMP9, MMP10, MMP12 and MMP25 were associated with a better
overall survival. The protein levels of MMP2, MMP9, MMP10 and MMP25 in
ovarian cancer tissues were elevated compared with normal ovarian
tissues. Conclusions This study demonstrated that MMPs can be a reliable prognostic biomarker for
ovarian cancer.
Collapse
Affiliation(s)
- Linchai Zeng
- Department of Gynaecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jie Qian
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Fangfang Zhu
- Department of Gynaecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Fang Wu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongqin Zhao
- Department of Gynaecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiyan Zhu
- Department of Gynaecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
18
|
Rossi S, Cordella M, Tabolacci C, Nassa G, D'Arcangelo D, Senatore C, Pagnotto P, Magliozzi R, Salvati A, Weisz A, Facchiano A, Facchiano F. TNF-alpha and metalloproteases as key players in melanoma cells aggressiveness. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:326. [PMID: 30591049 PMCID: PMC6309098 DOI: 10.1186/s13046-018-0982-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Background Melanoma aggressiveness determines its growth and metastatic potential. This study aimed at identifying new molecular pathways controlling melanoma cell malignancy. Methods Ten metastatic melanoma cell lines were characterized by their proliferation, migration and invasion capabilities. The most representative cells were also characterized by spheroid formation assay, gene- and protein- expression profiling as well as cytokines secretion and the most relevant pathways identified through bioinformatic analysis were tested by in silico transcriptomic validation on datasets generated from biopsies specimens of melanoma patients. Further, matrix metalloproteases (MMPs) activity was tested by zymography assays and TNF-alpha role was validated by anti-TNF cell-treatment. Results An aggressiveness score (here named Melanoma AGgressiveness Score: MAGS) was calculated by measuring proliferation, migration, invasion and cell-doubling time in10human melanoma cell lines which were clustered in two distinct groups, according to the corresponding MAGS. SK-MEL-28 and A375 cell lines were selected as representative models for the less and the most aggressive phenotype, respectively. Gene-expression and protein expression data were collected for SK-MEL-28 and A375 cells by Illumina-, multiplex x-MAP-and mass-spectrometry technology. The collected data were subjected to an integrated Ingenuity Pathway Analysis, which highlighted that cytokine/chemokine secretion, as well as Cell-To-Cell Signaling and Interaction functions as well as matrix metalloproteases activity were significantly different in these two cell types. The key role of these pathways was then confirmed by functional validation. TNF role was confirmed by exposing cells to the anti-TNF Infliximab antibody. Upon such treatment melanoma cells aggressiveness was strongly reduced. Metalloproteases activity was assayed, and their role was confirmed by comparing transcriptomic data from cutaneous melanoma patients (n = 45) and benign nevi (n = 18). Conclusions Inflammatory signals such as TNF and MMP-2 activity are key intrinsic players to determine melanoma cells aggressiveness suggesting new venue sin the identification of novel molecular targets with potential therapeutic relevance. Electronic supplementary material The online version of this article (10.1186/s13046-018-0982-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Martina Cordella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, SA, Italy
| | - Daniela D'Arcangelo
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Cinzia Senatore
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Pagnotto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Roberta Magliozzi
- Neurology B, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, SA, Italy.,Genomix4Life srl, Baronissi, SA, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
19
|
Denlinger CE. Hedging our bets. J Thorac Cardiovasc Surg 2018; 155:2177-2178. [PMID: 29402433 DOI: 10.1016/j.jtcvs.2018.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
20
|
Bisevac JP, Djukic M, Stanojevic I, Stevanovic I, Mijuskovic Z, Djuric A, Gobeljic B, Banovic T, Vojvodic D. Association Between Oxidative Stress and Melanoma Progression. J Med Biochem 2018; 37:12-20. [PMID: 30581337 PMCID: PMC6294103 DOI: 10.1515/jomb-2017-0040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Overproduction of free radicals accompanied with their insufficient removal/neutralization by antioxidative defense system impairs redox hemostasis in living organisms. Oxidative stress has been shown to be involved in all the stages of carcinogenesis and malignant melanocyte transformation. The aim of this study was to examine association between oxidative stress development and different stages of melanoma. METHODS The measured oxidative stress parameters included: superoxide anion radical, total and manganese superoxide dismutase, catalase and malondialdehyde. Oxidative stress parameters were measured spectrophotometrically in serum samples from melanoma patients (n=72) and healthy control subjects (n=30). Patients were classified according to AJCC clinical stage. RESULTS Average superoxide anion and malondialdehyde concentrations were significantly higher in melanoma patients than in control group, with the highest value of superoxide anion in stage III, while malondialdehyde highest value was in stage IV. The activity of total and manganese superoxide dismutase was insignificantly higher in melanoma patients than in control group, while catalase activity was significantly higher. The highest activity of total activity of manganese superoxide dismutase was in stage IV. Catalase activity was increasing with the disease progression achieving the maximum in stage III. CONCLUSION Results of our study suggest that melanoma is oxidative stress associated disease, as well as deteriorated cell functioning at mitochondrial level.
Collapse
Affiliation(s)
| | - Mirjana Djukic
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Ivan Stanojevic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Zeljko Mijuskovic
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
- Clinic of Dermatology, Military Medical Academy, Belgrade, Serbia
| | - Ana Djuric
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Borko Gobeljic
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Tatjana Banovic
- Department of Immunology, SA Pathology, Royal Adelaide Hospital, Adelaide, Australia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
| |
Collapse
|
21
|
Li J, Zhang X, Liu Q, Yang M, Zhou Z, Ye Y, Zhou Z, He X, Wang L. Myeloid-derived suppressor cells accumulate among myeloid cells contributing to tumor growth in matrix metalloproteinase 12 knockout mice. Cell Immunol 2017; 327:1-12. [PMID: 29555056 DOI: 10.1016/j.cellimm.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are found frequently in patients and mice bearing tumors, which derived from immature myeloid cells. In healthy individuals, immature myeloid cells formed in the bone marrow differentiating to dendritic cells, macrophages and neutrophils. However, it is unclear whether some gene deficiency will lead to MDSCs accumulation in mice without bearing tumor. Here, we observed that MDSCs accumulated in the bone marrow of matrix metalloproteinase 12 knockout mice (MMP12-/- mice) compared with wild type mice (MMP12+/+ mice). And the number of CD4+ cells dramatically decreased, regulatory T cells was up-regulation and MDSCs function were determined. The results suggested that immune surveillance have been impaired in MMP12-/- transgenic mice. After intravenous administration of B16 murine melanoma cells, MMP12-/- mice developed more metastatic pulmonary nodules than MMP12+/+ mice. Meanwhile, more MDSCs appeared in the tumors of MMP12-/- mice compared with those of MMP12+/+ mice. Mechanistically, we performed a MDSC blocking assay, finding that blockade of MDSCs resulted in reducing growth of tumors in MMP12-/- mice. Furthermore, we ascertained that macrophages in MMP12-/- mice abundantly secrete IL-1β in bone marrow which induce the accumulation of MDSCs in the bone marrow. Together, these results demonstrated that the macrophages in MMP12-/- mice could crosstalk with myeloid cells through IL-1β, inducing MDSCs accumulation, then contributing to tumor growth. It has revealed that the critical roles of macrophage in myeloid cells differentiation.
Collapse
Affiliation(s)
- Jiangchao Li
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohan Zhang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Liu
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Yang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zijun Zhou
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuxiang Ye
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeqi Zhou
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Xu Y, Wang Y, Liu H, Shi Q, Zhu D, Amos CI, Fang S, Lee JE, Hyslop T, Li X, Han J, Wei Q. Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival. Mol Carcinog 2017; 57:22-31. [PMID: 28796414 DOI: 10.1002/mc.22716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
Metzincins are key molecules in the degradation of the extracellular matrix and play an important role in cellular processes such as cell migration, adhesion, and cell fusion of malignant tumors, including cutaneous melanoma (CM). We hypothesized that genetic variants of the metzincin metallopeptidase family genes would be associated with CM-specific survival (CMSS). To test this hypothesis, we first performed Cox proportional hazards regression analysis to evaluate the associations between genetic variants of 75 metzincin metallopeptidase family genes and CMSS using the dataset from the genome-wide association study (GWAS) from The University of Texas MD Anderson Cancer Center (MDACC) which included 858 non-Hispanic white patients with CM, and then validated using the dataset from the Harvard GWAS study which had 409 non-Hispanic white patients with invasive CM. Four independent SNPs (MMP16 rs10090371 C>A, ADAMTS3 rs788935 T>C, TLL2 rs10882807 T>C and MMP9 rs3918251 A>G) were identified as predictors of CMSS, with a variant-allele attributed hazards ratio (HR) of 1.73 (1.32-2.29, 9.68E-05), 1.46 (1.15-1.85, 0.002), 1.68 (1.31-2.14, 3.32E-05) and 0.67 (0.51-0.87, 0.003), respectively, in the meta-analysis of these two GWAS studies. Combined analysis of risk genotypes of these four SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes increased (Ptrend < 0.001). An improvement was observed in the prediction model (area under the curve [AUC] = 81.4% vs. 78.6%), when these risk genotypes were added to the model containing non-genotyping variables. Our findings suggest that these genetic variants may be promising prognostic biomarkers for CMSS.
Collapse
Affiliation(s)
- Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Yanru Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Hongliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Xi'an, Shanxi, China
| | - Dakai Zhu
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Terry Hyslop
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Biostatistics and Bioinformatics, Duke University and Duke Clinical Research Institute, Durham, North Carolina
| | - Xin Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, and Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Qingyi Wei
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
23
|
Merzoug-Larabi M, Spasojevic C, Eymard M, Hugonin C, Auclair C, Karam M. Protein kinase C inhibitor Gö6976 but not Gö6983 induces the reversion of E- to N-cadherin switch and metastatic phenotype in melanoma: identification of the role of protein kinase D1. BMC Cancer 2017; 17:12. [PMID: 28056869 PMCID: PMC5217271 DOI: 10.1186/s12885-016-3007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Background Melanoma is a highly metastatic type of cancer that is resistant to all standard anticancer therapies and thus has a poor prognosis. Therefore, metastatic melanoma represents a significant clinical problem and requires novel and effective targeted therapies. The protein kinase C (PKC) family comprises multiple isoforms of serine/threonine kinases that possess distinct roles in cancer development and progression. In this study, we determined whether inhibition of PKC could revert a major process required for melanoma progression and metastasis; i.e. the E- to N-cadherin switch. Methods The cadherin switch was analyzed in different patient-derived primary tumors and their respective metastatic melanoma cells to determine the appropriate cellular model (aggressive E-cadherin-negative/N-cadherin-positive metastasis-derived melanoma cells). Next, PKC inhibition in two selected metastatic melanoma cell lines, was performed by using either pharmacological inhibitors (Gö6976 and Gö6983) or stable lentiviral shRNA transduction. The expression of E-cadherin and N-cadherin was determined by western blot. The consequences of cadherin switch reversion were analyzed: cell morphology, intercellular interactions, and β-catenin subcellular localization were analyzed by immunofluorescence labeling and confocal microscopy; cyclin D1 expression was analyzed by western blot; cell metastatic potential was determined by anchorage-independent growth assay using methylcellulose as semi-solid medium and cell migration potential by wound healing and transwell assays. Results Gö6976 but not Gö6983 reversed the E- to N-cadherin switch and as a consequence induced intercellular interactions, profound morphological changes from elongated mesenchymal-like to cuboidal epithelial-like shape, β-catenin translocation from the nucleus to the plasma membrane inhibiting its oncogenic function, and reverting the metastatic potential of the aggressive melanoma cells. Comparison of the target spectrum of these inhibitors indicated that these observations were not the consequence of the inhibition of conventional PKCs (cPKCs), but allowed the identification of a novel serine/threonine kinase, i.e. protein kinase Cμ, also known as protein kinase D1 (PKD1), whose specific inhibition allows the reversion of the metastatic phenotype in aggressive melanoma. Conclusion In conclusion, our study suggests, for the first time, that while cPKCs don’t embody a pertinent therapeutic target, inhibition of PKD1 represents a novel attractive approach for the treatment of metastatic melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3007-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Caroline Spasojevic
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France.,Département de Génétique, Institut Curie, Unité de Pharmacogénomique, Paris, 75248, France
| | - Marianne Eymard
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Caroline Hugonin
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Christian Auclair
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Manale Karam
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France. .,Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 5825, Qatar.
| |
Collapse
|
24
|
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci 2016; 17:ijms17060868. [PMID: 27271600 PMCID: PMC4926402 DOI: 10.3390/ijms17060868] [Citation(s) in RCA: 665] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions.
Collapse
Affiliation(s)
- Pavida Pittayapruek
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Ornicha Prapapan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| |
Collapse
|
25
|
Gomes CBF, Zechin KG, Xu S, Stelini RF, Nishimoto IN, Zhan Q, Xu T, Qin G, Treister NS, Murphy GF, Lian CG. TET2 Negatively Regulates Nestin Expression in Human Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1427-34. [PMID: 27102770 PMCID: PMC4901139 DOI: 10.1016/j.ajpath.2016.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/09/2016] [Accepted: 01/27/2016] [Indexed: 01/31/2023]
Abstract
Although melanoma is an aggressive cancer, the understanding of the virulence-conferring pathways involved remains incomplete. We have demonstrated that loss of ten-eleven translocation methylcytosine dioxygenase (TET2)-mediated 5-hydroxymethylcytosine (5-hmC) is an epigenetic driver of melanoma growth and a biomarker of clinical virulence. We also have determined that the intermediate filament protein nestin correlates with tumorigenic and invasive melanoma growth. Here we examine the relationships between these two biomarkers. Immunohistochemistry staining of nestin and 5-hmC in 53 clinically annotated primary and metastatic patient melanomas revealed a significant negative correlation. Restoration of 5-hmC, as assessed in a human melanoma cell line by introducing full-length TET2 and TET2-mutated constructs, decreased nestin gene and protein expression in vitro. Genome-wide mapping using hydroxymethylated DNA immunoprecipitation sequencing disclosed significantly less 5-hmC binding in the 3' untranslated region of the nestin gene in melanoma compared to nevi, and 5-hmC binding in this region was significantly increased after TET2 overexpression in human melanoma cells in vitro. Our findings provide evidence suggesting that nestin regulation is negatively controlled epigenetically by TET2 via 5-hmC binding at the 3' untranslated region of the nestin gene, providing one potential pathway for understanding melanoma growth characteristics. Studies are now indicated to further define the interplay between 5-hmC, nestin expression, and melanoma virulence.
Collapse
Affiliation(s)
- Camilla B F Gomes
- Program in Oral Pathology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil; Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karina G Zechin
- Program in Oral Pathology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Shuyun Xu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafael F Stelini
- Department of Pathology, Medical Sciences School, University of Campinas, Piracicaba, Brazil
| | - Ines N Nishimoto
- Department of Head and Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Qian Zhan
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ting Xu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gungwei Qin
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nathaniel S Treister
- Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, Harvard School of Dental Medicine, Boston, Massachusetts
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|