1
|
Sabit H, Attia MG, Mohamed N, Taha PS, Ahmed N, Osama S, Abdel-Ghany S. Beyond traditional biopsies: the emerging role of ctDNA and MRD on breast cancer diagnosis and treatment. Discov Oncol 2025; 16:271. [PMID: 40050490 PMCID: PMC11885725 DOI: 10.1007/s12672-025-01940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Breast cancer management has traditionally relied on tissue biopsies and imaging, which offer limited insights into the disease. However, the discovery of circulating tumor DNA (ctDNA) and minimal residual disease (MRD) detection has revolutionized our approach to breast cancer. ctDNA, which is fragmented tumor DNA found in the bloodstream, provides a minimally invasive way to understand the tumor's genomic landscape, revealing heterogeneity and critical mutations that biopsies may miss. MRD, which indicates cancer cells that remain after treatment, can now be detected using ctDNA and other advanced methods, improving our ability to predict disease recurrence. This allows for personalized adjuvant therapies based on individual MRD levels, avoiding unnecessary treatments for patients with low MRD. This review discusses how ctDNA and MRD represent a paradigm shift towards personalized, genomically guided cancer care, which has the potential to significantly improve patient outcomes in breast cancer.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
| | - Manar G Attia
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nouran Mohamed
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Pancé S Taha
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nehal Ahmed
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Salma Osama
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| |
Collapse
|
2
|
王 荦, 李 卓, 吴 洁, 谢 晋. [miR-342-3p Promotes the Proliferation, Migration, and Invasion of Clear Cell Renal Cell Carcinoma Cells by Targeted Inhibition of PPM1E]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:731-738. [PMID: 38948282 PMCID: PMC11211793 DOI: 10.12182/20240560403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 07/02/2024]
Abstract
Objective To explore the effects of microRNA-342-3p/Mg2+Mn2+-dependent protein phosphatase 1E (miR-342-3p/PPM1E) on the proliferation, migration, and invasion of clear cell renal cell carcinoma (ccRCC) cells. Methods The gene chips GSE12105, GSE23085, GSE66271, and GSE66270 were searched, and the relationship between miR-342-3p, PPM1E, and the clinical malignant phenotypes of ccRCC was analyzed. ACHN and 769-P cells were transfected with miR-342-3p inhibitor. The effects of miR-342-3p on cell proliferation, migration, and invasion were examined. ACHN cell line with stable and high expression of miR-342-3p was constructed, and the tumorigenicity of the cell line in BALB/c nude mice was observed. The targeted relationship between miR-342-3p and PPM1E was verified by dual-luciferase reporter gene assay. The cells were transfected with miR-342-3p mimic and pcDNA-PPM1E plasmids to observe whether PPM1E could reverse the effects of miR-342-3p overexpression on the proliferation, migration, and invasion of the cells. Results The expression of miR-342-3p was upregulated in ccRCC, and there were significant differences among patients with tumors of different T stages and G stages and those with different prognoses (P<0.05). The overall survival in the miR-342-3p high-expression group was significantly shorter than that in the low-expression group (P<0.05). Compared with those in the miR-NC group, the miR-342-3p level was significantly downregulated in the inhibitor group, and the cell proliferation ability and the numbers of migrating and invading cells were also significantly decreased (P<0.05). Compared with the miR-NC group, miR-342-3p group had significantly increased volume and mass of tumor tissues and miR-342-3p level, but significantly decreased level of PPM1E mRNA (P<0.05). The expression of PPM1E was downregulated in ccRCC, and there were significant differences among patients with tumors of different M stages, N stages, and G stages, and different recurrence statuses (P<0.05). The miR-342-3p could inhibit the expression of PPM1E in a targeted way. Compared with the miR-NC group, the miR-342-3p group had significantly increased cell proliferation ability and increased numbers of migrating and invading cells (P<0.05). However, PPM1E could reverse the promotion effect of miR-342-3p mimic on ccRCC cells (P<0.05). Conclusion The miR-342-3p can inhibit PPM1E expression in a targeted way, and thus promotes the proliferation, migration, and invasion of ccRCC cells.
Collapse
Affiliation(s)
- 荦楠 王
- 新乡医学院第一附属医院 肿瘤内科一病区 (新乡 453100)The First Ward, Department of Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - 卓然 李
- 新乡医学院第一附属医院 肿瘤内科一病区 (新乡 453100)The First Ward, Department of Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - 洁清 吴
- 新乡医学院第一附属医院 肿瘤内科一病区 (新乡 453100)The First Ward, Department of Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - 晋玲 谢
- 新乡医学院第一附属医院 肿瘤内科一病区 (新乡 453100)The First Ward, Department of Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| |
Collapse
|
3
|
Zavarykina TM, Lomskova PK, Pronina IV, Khokhlova SV, Stenina MB, Sukhikh GT. Circulating Tumor DNA Is a Variant of Liquid Biopsy with Predictive and Prognostic Clinical Value in Breast Cancer Patients. Int J Mol Sci 2023; 24:17073. [PMID: 38069396 PMCID: PMC10706922 DOI: 10.3390/ijms242317073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This paper introduces the reader to the field of liquid biopsies and cell-free nucleic acids, focusing on circulating tumor DNA (ctDNA) in breast cancer (BC). BC is the most common type of cancer in women, and progress with regard to treatment has been made in recent years. Despite this, there remain a number of unresolved issues in the treatment of BC; in particular, early detection and diagnosis, reliable markers of response to treatment and for the prediction of recurrence and metastasis, especially for unfavorable subtypes, are needed. It is also important to identify biomarkers for the assessment of drug resistance and for disease monitoring. Our work is devoted to ctDNA, which may be such a marker. Here, we describe its main characteristics and potential applications in clinical oncology. This review considers the results of studies devoted to the analysis of the prognostic and predictive roles of various methods for the determination of ctDNA in BC patients. Currently known epigenetic changes in ctDNA with clinical significance are reviewed. The possibility of using ctDNA as a predictive and prognostic marker for monitoring BC and predicting the recurrence and metastasis of cancer is also discussed, which may become an important part of a precision approach to the treatment of BC.
Collapse
Affiliation(s)
- Tatiana M. Zavarykina
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Polina K. Lomskova
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
| | - Svetlana V. Khokhlova
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Marina B. Stenina
- “N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of the Russian Federation, Moscow 115522, Russia;
| | - Gennady T. Sukhikh
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| |
Collapse
|
4
|
Keup C, Kimmig R, Kasimir-Bauer S. The Diversity of Liquid Biopsies and Their Potential in Breast Cancer Management. Cancers (Basel) 2023; 15:5463. [PMID: 38001722 PMCID: PMC10670968 DOI: 10.3390/cancers15225463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Analyzing blood as a so-called liquid biopsy in breast cancer (BC) patients has the potential to adapt therapy management. Circulating tumor cells (CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA) and other blood components mirror the tumoral heterogeneity and could support a range of clinical decisions. Multi-cancer early detection tests utilizing blood are advancing but are not part of any clinical routine yet. Liquid biopsy analysis in the course of neoadjuvant therapy has potential for therapy (de)escalation.Minimal residual disease detection via serial cfDNA analysis is currently on its way. The prognostic value of blood analytes in early and metastatic BC is undisputable, but the value of these prognostic biomarkers for clinical management is controversial. An interventional trial confirmed a significant outcome benefit when therapy was changed in case of newly emerging cfDNA mutations under treatment and thus showed the clinical utility of cfDNA analysis for therapy monitoring. The analysis of PIK3CA or ESR1 variants in plasma of metastatic BC patients to prescribe targeted therapy with alpesilib or elacestrant has already arrived in clinical practice with FDA-approved tests available and is recommended by ASCO. The translation of more liquid biopsy applications into clinical practice is still pending due to a lack of knowledge of the analytes' biology, lack of standards and difficulties in proving clinical utility.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, 45147 Essen, Germany
| | | | | |
Collapse
|
5
|
Yang T, Wang N, Wang F, Liu H, Shen F, Lv G. Refinement and validation of a comprehensive clinical diagnostic model (GAMAD) based on gender, age, multitarget circulating tumour DNA methylation signature and commonly used serological biomarkers for early detection of hepatocellular carcinoma: a multicentre, prospective observational study protocol. BMJ Open 2023; 13:e076467. [PMID: 37723113 PMCID: PMC10510880 DOI: 10.1136/bmjopen-2023-076467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
INTRODUCTION Prompt detection of hepatocellular carcinoma (HCC) in patients with chronic liver diseases is critical for enhancing prognosis. Existing imaging techniques and serum markers fall short of clinical needs. This study aims to establish a non-invasive diagnostic model for early HCC detection in the Chinese population. METHODS AND ANALYSIS This prospective, multicentre, observational study will enrol 2000 participants, including HCC patients, those with chronic liver diseases (hepatitis, cirrhosis and benign liver space-occupying lesions), and healthy individuals. The study will collect demographic data and blood samples, which will be used to test α-fetoprotein (AFP), des-γ-carboxy-prothrombin (DCP) and circulating tumour DNA (ctDNA) methylation. The GAMAD (Gender+Age+Methylation+AFP+DCP) model involving gender, age, ctDNA methylation signature, AFP and DCP will be developed and blindly validated in training and validation sets (1400 and 600 cases, respectively). Primary endpoints include sensitivity, specificity and accuracy (receiver operating characteristic curves; area under the curve value) of GAMAD for HCC and/or high-risk HCC groups. Secondary endpoints involve comparing GAMAD with the established GALAD (Gender+Age+AFP-L3+AFP+DCP) model and each blood index (AFP, DCP and methylation signature) to evaluate: (1) GAMAD's clinical utility for HCC patients in all stages according to different staging systems; (2) GAMAD's discrimination ability for patients in various subgroups, including liver cirrhosis (LC) related HCC and LC, hepatitis B virus (HBV) related HCC and HBV, hepatitis C virus (HCV) related HCC and HCV, and non-alcoholic fatty liver disease (NAFLD) related HCC and NAFLD. ETHICS AND DISSEMINATION This trial has been approved by the Medical Ethics Committees of the First Hospital of Jilin University (#22K073-001), the Eastern Hepatobiliary Surgery Hospital, Naval Medical University (#EHBHKY2023-H0003-P001) and Tianjin Third Central Hospital (#IRB2023-007-01). All participants in the trial will provide written informed consent. Results of this study will be disseminated in peer-reviewed scientific journals and at conferences nationally and internationally. TRIAL REGISTRATION NUMBER NCT05626985.
Collapse
Affiliation(s)
- Tian Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nanya Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China
| | - Hongmei Liu
- Department of Medical Affairs, Singlera Genomics (Shanghai) Ltd, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|
7
|
Duque G, Manterola C, Otzen T, Arias C, Palacios D, Mora M, Galindo B, Holguín JP, Albarracín L. Cancer Biomarkers in Liquid Biopsy for Early Detection of Breast
Cancer: A Systematic Review. Clin Med Insights Oncol 2022; 16:11795549221134831. [PMCID: PMC9634213 DOI: 10.1177/11795549221134831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Breast cancer (BC) is the most common neoplasm in women worldwide. Liquid
biopsy (LB) is a non-invasive diagnostic technique that allows the analysis
of biomarkers in different body fluids, particularly in peripheral blood and
also in urine, saliva, nipple discharge, volatile respiratory fluids, nasal
secretions, breast milk, and tears. The objective was to analyze the
available evidence related to the use of biomarkers obtained by LB for the
early diagnosis of BC. Methods: Articles related to the use of biomarkers for the early diagnosis of BC due
to LB, published between 2010 and 2022, from the databases (WoS, EMBASE,
PubMed, and SCOPUS) were included. The MInCir diagnostic scale was applied
in the articles to determine their methodological quality (MQ). Descriptive
statistics were used, as well as determination of weighted averages of each
variable, to analyze the extracted data. Sensitivity, specificity, and area
under the curve values for specific biomarkers (individual or in panels) are
described. Results: In this systematic review (SR), 136 articles met the selection criteria,
representing 17 709 patients with BC. However, 95.6% were case-control
studies. In 96.3% of cases, LB was performed in peripheral blood samples.
Most of the articles were based on microRNA (miRNA) analysis. The mean MQ
score was 25/45 points. Sensitivity, specificity, and area under the curve
values for specific biomarkers (individual or in panels) have been
found. Conclusions: The determination of biomarkers through LB is a useful mechanism for the
diagnosis of BC. The analysis of miRNA in peripheral blood is the most
studied methodology. Our results indicate that LB has a high sensitivity and
specificity for the diagnosis of BC, especially in early stages.
Collapse
Affiliation(s)
- Galo Duque
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador,Galo Duque, Faculty of Medicine,
Universidad del Azuay. Postal address: Av. 24 de Mayo y Hernán Malo, Cuenca,
Ecuador 010107.
| | - Carlos Manterola
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Tamara Otzen
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Cristina Arias
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | | | - Miriann Mora
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Bryan Galindo
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Juan Pablo Holguín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Lorena Albarracín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
8
|
Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. Int J Mol Sci 2022; 23:ijms23179952. [PMID: 36077348 PMCID: PMC9456236 DOI: 10.3390/ijms23179952] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is a highly heterogeneous disease. The treatment of BC is complicated owing to intratumoral complexity. Tissue biopsy and immunohistochemistry are the current gold standard techniques to guide breast cancer therapy; however, these techniques do not assess tumoral molecular heterogeneity. Personalized medicine aims to overcome these biological and clinical complexities. Advances in techniques and computational analyses have enabled increasingly sensitive, specific, and accurate application of liquid biopsy. Such progress has ushered in a new era in precision medicine, where the objective is personalized treatment of breast cancer, early screening, accurate diagnosis and prognosis, relapse detection, longitudinal monitoring, and drug selection. Liquid biopsy can be defined as the sampling of components of tumor cells that are released from a tumor and/or metastatic deposits into the blood, urine, feces, saliva, and other biological substances. Such components include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or circulating tumor RNA (ctRNA), platelets, and exosomes. This review aims to highlight the role of liquid biopsy in breast cancer and precision medicine.
Collapse
|
9
|
Lin RK, Su CM, Lin SY, Thi Anh Thu L, Liew PL, Chen JY, Tzeng HE, Liu YR, Chang TH, Lee CY, Hung CS. Hypermethylation of TMEM240 predicts poor hormone therapy response and disease progression in breast cancer. Mol Med 2022; 28:67. [PMID: 35715741 PMCID: PMC9204905 DOI: 10.1186/s10020-022-00474-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background Approximately 25% of patients with early-stage breast cancer experience cancer progression throughout the disease course. Alterations in TMEM240 in breast cancer were identified and investigated to monitor treatment response and disease progression. Methods Circulating methylated TMEM240 in the plasma of breast cancer patients was used to monitor treatment response and disease progression. The Cancer Genome Atlas (TCGA) data in Western countries and Illumina methylation arrays in Taiwanese breast cancer patients were used to identify novel hypermethylated CpG sites and genes related to poor hormone therapy response. Quantitative methylation-specific PCR (QMSP), real-time reverse transcription PCR, and immunohistochemical analyses were performed to measure DNA methylation and mRNA and protein expression levels in 394 samples from Taiwanese and Korean breast cancer patients. TMEM240 gene manipulation, viability, migration assays, RNA-seq, and MetaCore were performed to determine its biological functions and relationship to hormone drug treatment response in breast cancer cells. Results Aberrant methylated TMEM240 was identified in breast cancer patients with poor hormone therapy response using genome-wide methylation analysis in the Taiwan and TCGA breast cancer cohorts. A cell model showed that TMEM240, which is localized to the cell membrane and cytoplasm, represses breast cancer cell proliferation and migration and regulates the expression levels of enzymes involved in estrone and estradiol metabolism. TMEM240 protein expression was observed in normal breast tissues but was not detected in 88.2% (67/76) of breast tumors and in 90.0% (9/10) of metastatic tumors from breast cancer patients. QMSP revealed that in 54.5% (55/101) of Taiwanese breast cancer patients, the methylation level of TMEM240 was at least twofold higher in tumor tissues than in matched normal breast tissues. Patients with hypermethylation of TMEM240 had poor 10-year overall survival (p = 0.003) and poor treatment response, especially hormone therapy response (p < 0.001). Circulating methylated TMEM240 dramatically and gradually decreased and then diminished in patients without disease progression, whereas it returned and its levels in plasma rose again in patients with disease progression. Prediction of disease progression based on circulating methylated TMEM240 was found to have 87.5% sensitivity, 93.1% specificity, and 90.2% accuracy. Conclusions Hypermethylation of TMEM240 is a potential biomarker for treatment response and disease progression monitoring in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00474-9.
Collapse
Affiliation(s)
- Ruo-Kai Lin
- Program in Drug Discovery and Development Industry, Program in Clinical Drug Development of Herbal Medicine, Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Clinical Trial Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei, Taiwan
| | - Chih-Ming Su
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yun Lin
- Program in Drug Discovery and Development Industry, Program in Clinical Drug Development of Herbal Medicine, Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Le Thi Anh Thu
- Quang Tri Medical College, Dien Bien Phu Str., Dong Luong District, Dong Ha City, Quang Tri, Vietnam
| | - Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian-Yu Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Huey-En Tzeng
- Division of Hematology and Oncology, Department of Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Medical Research, Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan.,Program for Cancer Molecular Biology and Drug Discovery, and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yang Lee
- Bioinformatics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Hung
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. .,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
10
|
Karaglani M, Panagopoulou M, Baltsavia I, Apalaki P, Theodosiou T, Iliopoulos I, Tsamardinos I, Chatzaki E. Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach. Int J Mol Sci 2022; 23:2959. [PMID: 35328380 PMCID: PMC8952417 DOI: 10.3390/ijms23062959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for diagnosis and monitoring. Here, we established an in silico pipeline to analyze high-throughput methylome datasets to identify specific methylation fingerprints in three pathological entities of major burden, i.e., breast cancer (BrCa), osteoarthritis (OA) and diabetes mellitus (DM). Differential methylation analysis was conducted to compare tissues/cells related to the pathology and different types of healthy tissues, revealing Differentially Methylated Genes (DMGs). Highly performing and low feature number biosignatures were built with automated machine learning, including: (1) a five-gene biosignature discriminating BrCa tissue from healthy tissues (AUC 0.987 and precision 0.987), (2) three equivalent OA cartilage-specific biosignatures containing four genes each (AUC 0.978 and precision 0.986) and (3) a four-gene pancreatic β-cell-specific biosignature (AUC 0.984 and precision 0.995). Next, the BrCa biosignature was validated using an independent ccfDNA dataset showing an AUC and precision of 1.000, verifying the biosignature's applicability in liquid biopsy. Functional and protein interaction prediction analysis revealed that most DMGs identified are involved in pathways known to be related to the studied diseases or pointed to new ones. Overall, our data-driven approach contributes to the maximum exploitation of high-throughput methylome readings, helping to establish specific disease profiles to be applied in clinical practice and to understand human pathology.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Ismini Baltsavia
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (I.B.); (I.I.)
| | - Paraskevi Apalaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (I.B.); (I.I.)
| | - Ioannis Tsamardinos
- JADBio Gnosis DA S.A., Science and Technology Park of Crete, GR-70013 Heraklion, Greece;
- Department of Computer Science, University of Crete, GR-70013 Heraklion, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology—Hellas, GR-70013 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, GR-71410 Heraklion, Greece
| |
Collapse
|
11
|
The Role of DNA Methylation and DNA Methyltransferases in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:317-348. [DOI: 10.1007/978-3-031-11454-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Kerachian MA, Azghandi M, Mozaffari-Jovin S, Thierry AR. Guidelines for pre-analytical conditions for assessing the methylation of circulating cell-free DNA. Clin Epigenetics 2021; 13:193. [PMID: 34663458 PMCID: PMC8525023 DOI: 10.1186/s13148-021-01182-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Methylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as one of the earliest and most significant genomic aberrations that arise during carcinogenesis. Liquid biopsy can be employed for the detection of these epigenetic biomarkers. It consists of isolation (pre-analytical) and detection (analytical) phases. The choice of pre-analytical variables comprising cirDNA extraction and bisulfite conversion methods can affect the identification of cirDNA methylation. Indeed, different techniques give a different return of cirDNA, which confirms the importance of pre-analytical procedures in clinical diagnostics. Although novel techniques have been developed for the simplification of methylation analysis, the process remains complex, as the steps of DNA extraction, bisulfite treatment, and methylation detection are each carried out separately. Recent studies have noted the absence of any standard method for the pre-analytical processing of methylated cirDNA. We have therefore conducted a comprehensive and systematic review of the important pre-analytical and analytical variables and the patient-related factors which form the basis of our guidelines for analyzing methylated cirDNA in liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alain R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France.
- INSERM, U1194, Montpellier, France.
- University of Montpellier, Montpellier, France.
- ICM, Regional Institute of Cancer of Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Guo Q, Hua Y. The assessment of circulating cell-free DNA as a diagnostic tool for breast cancer: an updated systematic review and meta-analysis of quantitative and qualitative ssays. Clin Chem Lab Med 2021; 59:1479-1500. [PMID: 33951758 DOI: 10.1515/cclm-2021-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This updated meta-analysis aimed to assess the diagnostic accuracy of circulating cell-free DNA (cfDNA) in breast cancer (BC). CONTENT An extensive systematic search was performed in PubMed, Scopus, Embase, and Science Direct databases to retrieve all related literature. Various diagnostic estimates, including sensitivity (SE), specificity (SP), likelihood ratios (LRs), diagnostic odds ratio (DOR), and area under the curve (AUC) of summary receiver operating characteristic (sROC) curve, were also calculated using bivariate linear mixed models. SUMMARY In this meta-analysis, 57 unique articles (130 assays) on 4246 BC patients and 2,952 controls, were enrolled. For quantitative approaches, pooled SE, SP, PLR, NLR, DOR, and AUC were obtained as 0.80, 0.88, 6.7, 0.23, 29, and 0.91, respectively. Moreover, for qualitative approaches, pooled SE and SP for diagnostic performance were obtained as 0.36 and 0.98, respectively. In addition, PLR was 14.9 and NLR was 0.66. As well, the combined DOR was 23, and the AUC was 0.79. OUTLOOK Regardless of promising SE and SP, analysis of LRs suggested that quantitative assays are not robust enough neither for BC confirmation nor for its exclusion. On the other hand, qualitative assays showed satisfying performance only for confirming the diagnosis of BC, but not for its exclusion. Furthermore, qualitative cfDNA assays showed a better diagnostic performance in patients at the advanced stage of cancer, which represented no remarkable clinical significance as a biomarker for early detection.
Collapse
Affiliation(s)
- Qingfeng Guo
- Department of General Surgery, Affiliated Hospital of Jiangnan University (Original Area of Wuxi No. 3 People's Hospital), Wuxi, P.R. China
| | - Yuming Hua
- Department of General Surgery, Affiliated Hospital of Jiangnan University (Original Area of Wuxi No. 3 People's Hospital), Wuxi, P.R. China
| |
Collapse
|
14
|
Rodríguez J, Avila J, Rolfo C, Ruíz-Patiño A, Russo A, Ricaurte L, Ordóñez-Reyes C, Arrieta O, Zatarain-Barrón ZL, Recondo G, Cardona AF. When Tissue is an Issue the Liquid Biopsy is Nonissue: A Review. Oncol Ther 2021; 9:89-110. [PMID: 33689160 PMCID: PMC8140006 DOI: 10.1007/s40487-021-00144-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Precision medicine has impacted the field of medical oncology by introducing personalized therapies, improving all measurable outcomes. This field, in turn, has expanded to obtaining and analyzing a vast and ever-increasing amount of genomic information. One technique currently applied is the liquid biopsy, which consists of detecting and isolating DNA and exosomes in cancer patients. Newly developed techniques have made it possible to use the liquid biopsy in a wide range of settings. However, challenges regarding the validation of its clinical utility exist because of a lack of standardization across different techniques and tumor types, confounder genomic information, lack of appropriate clinical trial designs, and a non-measured, and therefore not estimated, economic impact on population health. Nowadays, liquid biopsy is not routinely used, but ongoing research is increasing its popularity, and a new era in oncology is developing. Therefore, it is essential to have an in-depth understanding of the liquid biopsy technique. In this review, we summarize the leading techniques and liquid biopsy applications in cancer.
Collapse
Affiliation(s)
- July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Jenny Avila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alejandro Ruíz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Alessandro Russo
- Medical Oncology Unit A.O. Papardo and Department of Human Pathology, University of Messina, Messina, Italy
| | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Pathology Department, Mayo Clinic, Rochester, MN, USA
| | | | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Gonzalo Recondo
- Thoracic Oncology Section, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia.
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia.
- Clinical and Traslational Oncology Group, Clinica del Country, Bogota, Colombia.
| |
Collapse
|
15
|
Circulating Cell-Free DNA in Breast Cancer: Searching for Hidden Information towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13040728. [PMID: 33578793 PMCID: PMC7916622 DOI: 10.3390/cancers13040728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our research focuses in the elucidation of the nature of circulating cell-free DNA (ccfDNA) as a biological entity and its exploitation as a liquid biopsy biomaterial. Working on breast cancer, it became clear that although a promising biosource, its clinical exploitation is burdened mainly by gaps in knowledge about its biology and specific characteristics. The current review covers multiple aspects of ccfDNA in breast cancer. We cover key issues such as quantity, integrity, releasing structures, methylation specific changes, release mechanisms, biological role. Machine learning approaches for analyzing ccfDNA-generated data to produce classifiers for clinical use are also discussed. Abstract Breast cancer (BC) is a leading cause of death between women. Mortality is significantly raised due to drug resistance and metastasis, while personalized treatment options are obstructed by the limitations of conventional biopsy follow-up. Lately, research is focusing on circulating biomarkers as minimally invasive choices for diagnosis, prognosis and treatment monitoring. Circulating cell-free DNA (ccfDNA) is a promising liquid biopsy biomaterial of great potential as it is thought to mirror the tumor’s lifespan; however, its clinical exploitation is burdened mainly by gaps in knowledge of its biology and specific characteristics. The current review aims to gather latest findings about the nature of ccfDNA and its multiple molecular and biological characteristics in breast cancer, covering basic and translational research and giving insights about its validity in a clinical setting.
Collapse
|
16
|
Zhang B, Liu L, Zhou T, Shi X, Wu H, Xiang Z, Zhao M, Lu Q. A simple and highly efficient method of IFI44L methylation detection for the diagnosis of systemic lupus erythematosus. Clin Immunol 2020; 221:108612. [PMID: 33069854 DOI: 10.1016/j.clim.2020.108612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex heterogenous autoimmune disease that can be challenging to diagnose. We previously identified the IFN-induced protein 44-like (IFI44L) methylation marker for SLE diagnosis, which can be detected by pyrosequencing. Although the previous technique has high sensitivity and specificity, it requires special equipment and high cost for detection. Here, we established a high-resolution melting-quantitative polymerase chain reaction (HRM-qPCR) assay to detect the methylation of IFI44L promoter for the diagnosis of SLE. The result was determined according to the standard melting curve of the methylation level of the IFI44L promoter region. The sensitivity was 88.571% and the specificity was 97.087%. The HRM-qPCR and pyrosequencing results presented good consistency when both methods were used to detect the methylation of the IFI44L promoter for SLE diagnosis. Furthermore, the HRM-qPCR method can be used to distinguish SLE from other autoimmune diseases, infectious diseases and virus-related cancers.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Limin Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Tian Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Xiaoli Shi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Zhongyuan Xiang
- Department of Clinical Laboratory, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China.
| |
Collapse
|
17
|
Baburaj G, Damerla RR, Udupa KS, Parida P, Munisamy M, Kolesar J, Rao M. Liquid biopsy approaches for pleural effusion in lung cancer patients. Mol Biol Rep 2020; 47:8179-8187. [PMID: 33029702 DOI: 10.1007/s11033-020-05869-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Genomic profiling of tumors has become the mainstay for diagnosis, treatment monitoring and a guide to precision medicine. However, in clinical practice, the detection of driver mutations in tumors has several procedural limitations owing to progressive disease and tumor heterogeneity. The current era of liquid biopsy promises a better solution. This diagnostic utility of liquid biopsy has been demonstrated by numerous studies for the detection of cell-free DNA (cfDNA) in plasma for disease diagnosis, prognosis, and prediction. However, cfDNAs are limited in blood circulation and still hurdles to achieve promising precision medicine. Malignant pleural effusion (MPE) is usually detected in advanced lung malignancy, which is rich in tumor cells. Extracellular vesicles and cfDNAs are the two major targets currently explored using MPE. Therefore, MPE can be used as a source of biomarkers in liquid biopsy for investigating tumor mutations. This review focuses on the liquid biopsy approaches for pleural effusion which may be explored as an alternative source for liquid biopsy in lung cancer patients to diagnose early disease progression.
Collapse
Affiliation(s)
- Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Preetiparna Parida
- Department of Medical Genetics, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, 567 TODD Building, 789 South Limestone Street, Lexington, KY, 40539-0596, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
18
|
Liu Y, Du Q, Sun D, Han R, Teng M, Chen S, You H, Dong Y. Clinical applications of circulating tumor DNA in monitoring breast cancer drug resistance. Future Oncol 2020; 16:2863-2878. [PMID: 32976028 DOI: 10.2217/fon-2019-0760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer-related deaths in women worldwide. Unfortunately, treatments often fail because of the development of drug resistance, the underlying mechanisms of which remain unclear. Circulating tumor DNA (ctDNA) is free DNA released into the blood by necrosis, apoptosis or direct secretion by tumor cells. In contrast to repeated, highly invasive tumor biopsies, ctDNA reflects all molecular alterations of tumors dynamically and captures both spatial and temporal tumor heterogeneity. Highly sensitive technologies, including personalized digital PCR and deep sequencing, make it possible to monitor response to therapies, predict drug resistance and tailor treatment regimens by identifying the genomic alteration profile of ctDNA, thereby achieving precision medicine. This review focuses on the current status of ctDNA biology, the technologies used to detect ctDNA and the potential clinical applications of identifying drug resistance mechanisms by detecting tumor-specific genomic alterations in breast cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Dan Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Ruiying Han
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Haisheng You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| |
Collapse
|
19
|
Delmonico L, Alves G, Bines J. Cell free DNA biology and its involvement in breast carcinogenesis. Adv Clin Chem 2020; 97:171-223. [PMID: 32448434 DOI: 10.1016/bs.acc.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy represents a procedure for minimally invasive analysis of non-solid tissue, blood and other body fluids. It comprises a set of analytes that includes circulating tumor cells (CTCs) and circulating free DNA (cfDNA), RNA, long noncoding RNA (lncRNA) and micro RNA (miRNA), as well as extracellular vesicles. These novel analytes represent an alternative tool to complement diagnosis and monitor and predict response to treatment of the tumoral process and may be used for other disease processes such viral and parasitic infection. This review focuses on the biologic and molecular characteristics of cfDNA in general and the molecular changes (mutational and epigenetic) proven useful in oncologic practice for diagnosis, monitoring and treatment of breast cancer specifically.
Collapse
Affiliation(s)
- Lucas Delmonico
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Gilda Alves
- Laboratório de Marcadores Circulantes, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - José Bines
- Instituto Nacional de Câncer (INCA-HCIII), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Stastny I, Zubor P, Kajo K, Kubatka P, Golubnitschaja O, Dankova Z. Aberrantly Methylated cfDNA in Body Fluids as a Promising Diagnostic Tool for Early Detection of Breast Cancer. Clin Breast Cancer 2020; 20:e711-e722. [PMID: 32792225 DOI: 10.1016/j.clbc.2020.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/29/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Breast malignancies are the leading type of cancer among women. Its prevention and early detection, particularly in young women, remains challenging. To this end, cell-free DNA (cfDNA) detected in body fluids demonstrates great potential for early detection of tissue transformation and altered molecular setup, such as epigenetic profiles. Aberrantly methylated cfDNA in body fluids could therefore serve as a potential diagnostic and prognostic tool in breast cancer management. Abnormal methylation may lead to both an activation of oncogenes via hypomethylation and an inactivation of tumor suppressor genes by hypermethylation. We update the state of the art in the area of aberrant cfDNA methylation analyses as a diagnostic and prognostic tool in breast cancer, report on the main technological challenges, and provide an outlook for advancing the overall management of breast malignancies based on cfDNA as a target for diagnosis and tailored therapies.
Collapse
Affiliation(s)
- Igor Stastny
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Obstetrics and Gynaecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Pavol Zubor
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Karol Kajo
- Department of Pathology, St Elizabeth Cancer Institute Hospital, Bratislava, Slovak Republic; Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kubatka
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Olga Golubnitschaja
- Radiological Hospital, Rheinische, Excellence University of Bonn, Bonn, Germany; Breast Cancer Research Centre, Rheinische, Excellence University of Bonn, Bonn, Germany; Centre for Integrated Oncology, Cologne-Bonn, Excellence University of Bonn, Bonn, Germany
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
21
|
Rolfo C, Cardona AF, Cristofanilli M, Paz-Ares L, Diaz Mochon JJ, Duran I, Raez LE, Russo A, Lorente JA, Malapelle U, Gil-Bazo I, Jantus-Lewintre E, Pauwels P, Mok T, Serrano MJ. Challenges and opportunities of cfDNA analysis implementation in clinical practice: Perspective of the International Society of Liquid Biopsy (ISLB). Crit Rev Oncol Hematol 2020; 151:102978. [PMID: 32428812 DOI: 10.1016/j.critrevonc.2020.102978] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Precision medicine was born with the development of new diagnostic techniques and targeted drugs, yielding better outcomes in cancer care. With the evolution and increasing sensitivity for detecting oncogenic drivers, liquid biopsies (LBs), specifically cell-free DNA (cfDNA) analysis, have been proposed as a minimally-invasive technique for genomic profiling. Ranging from sequencing techniques to PCR-based methods and other more complex strategies, this approach, currently applicable in some solid tumors with robust evidence, is showing promising opportunities in other cancers. However, difficulties in validating their clinical utility exist within limitation at different levels among several techniques, reporting of the results, lack of appropriate clinical trial designs, and unknown economic impact. One of the aims of the ISLB is to create recommendations to develop reliable and sustainable diagnostic, prognostic and predictive tools using LBs. This paper is addressing these objectives, helping the healthcare providers and scientific community to understand the potential of LB.
Collapse
Affiliation(s)
- Christian Rolfo
- Thoracic Oncology Department and Early Phase Clinical Trials Section, School of Medicine, Maryland University, Maryland, USA.
| | - Andrés F Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia; Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia; Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 710 N Fairbanks Court, Suite 8-250A, Chicago, IL, 60611, USA
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Universidad Complutense and CIBERONC, Madrid, Spain
| | - Juan Jose Diaz Mochon
- DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Granada, Spain; GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain; Department Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
| | - Ignacio Duran
- Servicio de Oncologia Medica, Medical Oncology Department, Hospital Universitario Marques de Valdecilla, Edificio Sur, 2 Planta, Despacho 277, 39008, Santander, Spain
| | - Luis E Raez
- Memorial Cancer Institute, Memorial Health Care System, Florida International University, Florida, USA
| | - Alessandro Russo
- Thoracic Oncology Department and Early Phase Clinical Trials Section, School of Medicine, Maryland University, Maryland, USA; Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Italy
| | - Jose A Lorente
- Laboratory of Genetic Identification, Department of Legal Medicine, University of Granada, Av. de la Investigación, 11, 18071, Granada, Spain; Centre for Genomics and Oncological Research - GENYO, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; University of Navarra, Center for Applied Medical Research, Program of Solid Tumors, Pamplona, Navarra, Spain; Idisna, Navarra Institute for Health Research, Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación, Valencia General University Hospital, Valencia, Spain
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, & Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Tony Mok
- State Key Laboratory in Oncology in South China, Hong Kong, China
| | - María José Serrano
- Centre for Genomics and Oncological Research - GENYO, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain; Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Spain; Complejo Hospitalario Universitario Granada (CHUG), Department of Medical Oncology, University of Granada, Granada, Spain.
| | | |
Collapse
|
22
|
Wan Z, Peng X, Ma L, Tian Q, Wu S, Li J, Ling J, Lv W, Ding B, Tan J, Zhang Z. Targeted Sequencing of Genomic Repeat Regions Detects Circulating Cell-free Echinococcus DNA. PLoS Negl Trop Dis 2020; 14:e0008147. [PMID: 32155159 PMCID: PMC7083330 DOI: 10.1371/journal.pntd.0008147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/20/2020] [Accepted: 02/18/2020] [Indexed: 11/20/2022] Open
Abstract
Background Echinococcosis is a chronic zoonosis caused by tapeworms of the genus Echinococcus. Treatment of the disease is often expensive and complicated, sometimes requiring extensive surgery. Ultrasonographic imaging is currently the main technique for diagnosis, while immunological analysis provides additional information. Confirmation still needs pathological analysis. However, these diagnostic techniques generally detect infection in late stages of the disease. An accurate, early and non-invasive molecular diagnostic method is still unavailable. Methodology/Principal findings We sequenced the cell-free DNA (cfDNA) from plasma of echinococcosis patients and confirmed the presence of Echinococcus DNA. To improve detection sensitivity, we developed a method based on targeted next-generation sequencing of repeat regions. Simulation experiments demonstrate that the targeted sequencing is sensitive enough to detect as little as 0.1% of an Echinococcus genome in 1 mL of plasma. Results obtained using patient plasma shows that the Area Under the Curve (AUC) of the method is 0.862, with a detection sensitivity of 62.50% and specificity of 100%, corresponding to a Youden-index of 0.625. Conclusions/Significance This study provides evidence that hydatid cysts release cfDNA fragments into patient plasma. Using the repeat region targeted sequencing method, highly specific detection of Echinococcus infection was achieved. This study paves a new avenue for potential non-invasive screening and diagnosis of echinococcosis. Echinococcosis is a severe chronic parasitic disease caused by tapeworms of the genus Echinococcus. According to the World Health Organization, there are more than 1 million people living with echinococcosis worldwide. For decades, little progress has been made to develop a molecular diagnosis and specific treatment for the disease. Although imaging and immunological detection are used for diagnosis, these technologies are either only effective for late stages of the disease or hardly conclusive. The detection of cell-free DNA has been a powerful tool for precise diagnosis. In this study, we showed the presence of Echinococcus-derived cell-free DNA in plasma of echinococcosis patients. We further established an assay to detect parasite DNA in blood samples based on amplification of Echinococcus specific repeat regions followed by targeted next-generation sequencing. This technique provides a new method for potential extensive screening and precision diagnosis of echinococcosis with high specificity.
Collapse
Affiliation(s)
- Zhengqing Wan
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Xiaoqing Peng
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Qingshan Tian
- Center for Prevention and Treatment of Echinococcosis, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Shizheng Wu
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Junqi Li
- Sunrain Biotechnology Corporation, Changsha, Hunan, China
| | - Jie Ling
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
| | - Weigang Lv
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Binrong Ding
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province, Central South University, Changsha, Hunan, China
- Center for Medical Genetics, Central South University, Changsha, Hunan, China
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- * E-mail:
| |
Collapse
|
23
|
Abdulmawjood B, Roma-Rodrigues C, Fernandes AR, Baptista PV. Liquid biopsies in myeloid malignancies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1044-1061. [PMID: 35582281 PMCID: PMC9019201 DOI: 10.20517/cdr.2019.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Hematologic malignancies are the most common type of cancer affecting children and young adults, and encompass diseases, such as leukemia, lymphoma, and myeloma, all of which impact blood associated tissues such as the bone marrow, lymphatic system, and blood cells. Clinical diagnostics of these malignancies relies heavily on the use of bone marrow samples, which is painful, debilitating, and not free from risks for leukemia patients. Liquid biopsies are based on minimally invasive assessment of markers in the blood (and other fluids) and have the potential to improve the efficacy of diagnostic/therapeutic strategies in leukemia patients, providing a useful tool for the real time molecular profiling of patients. The most promising noninvasive biomarkers are circulating tumor cells, circulating tumor DNA, microRNAs, and exosomes. Herein, we discuss the role of assessing these circulating biomarkers for the understanding of tumor progression and metastasis, tumor progression dynamics through treatment and for follow-up.
Collapse
Affiliation(s)
- Bilal Abdulmawjood
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| |
Collapse
|
24
|
Abstract
Breast cancer is a highly heterogeneous and dynamic disease, exhibiting unique somatic alterations that lead to disease recurrence and resistance. Tumor biopsy and conventional imaging approaches are not able to provide sufficient information regarding the early detection of recurrence and real time monitoring through tracking sensitive or resistance mechanisms to treatment. Circulating tumor DNA (ctDNA) analysis has emerged as an attractive noninvasive methodology to detect cancer-specific genetic aberrations in plasma including DNA mutations and DNA methylation patterns. Numerous studies have reported on the potential of ctDNA analysis in the management of early and advanced stages of breast cancer. Advances in high-throughput technologies, especially next generation sequencing and PCR-based assays, were highly important for the successful application of ctDNA analysis. However, before being integrated into clinical practice, ctDNA analysis needs to be standardized and validated through the performance of multicenter prospective and well-designed clinical studies. This review is focused on the clinical utility of ctDNA analysis, especially at the DNA mutation and methylation level, in breast cancer patients, incorporating the latest advances in technological approaches and involving key studies in the early and metastatic setting.
Collapse
Affiliation(s)
- Eleni Tzanikou
- Department of Chemistry, Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| | - Evi Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
25
|
Quantitative Methylation-Specific PCR: A Simple Method for Studying Epigenetic Modifications of Cell-Free DNA. Methods Mol Biol 2019; 1909:137-162. [PMID: 30580429 DOI: 10.1007/978-1-4939-8973-7_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation of cell-free circulating DNA (cfDNA) has recently gained attention for its use as biomarker in cancer diagnosis, prognosis, and prediction of therapeutic response. Quantification of cfDNA methylation levels requires methods with high sensitivity and specificity due to low amounts of cfDNA available in plasma, high degradation of cfDNA, and/or contamination with genomic DNA. To date, several approaches for measuring cfDNA methylation have been established, including quantitative methylation-specific PCR (qMSP), which represents a simple, fast, and cost-effective technique that can be easily implemented into clinical practice. In this chapter, we provide a detailed protocol for SYBR Green qMSP analysis which is currently used in our laboratory for cfDNA methylation detection. Useful information regarding successful qMSP primers design are also provided.
Collapse
|
26
|
Abstract
Since its discovery in human blood plasma about 70 years ago, circulating cell-free DNA (cfDNA) has become an attractive subject of research as noninvasive disease biomarker. The interest in clinical applications has gained an exponential increase, making it a popular and potential target in a wide range of research areas.cfDNA can be found in different body fluids, both in healthy and not healthy subjects. The recent and rapid development of new molecular techniques is promoting the study and the identification of cfDNA, holding the key to minimally invasive diagnostics, improving disease monitoring, clinical decision, and patients' outcome.cfDNA has already given a huge impact on prenatal medicine, and it could become, in the next future, the standard of care also in other fields, from oncology to transplant medicine and cardiovascular diseases.
Collapse
Affiliation(s)
- Rossella Ranucci
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
27
|
Mauger F, Deleuze JF. Technological advances in studying epigenetics biomarkers of prognostic potential for clinical research. PROGNOSTIC EPIGENETICS 2019:45-83. [DOI: 10.1016/b978-0-12-814259-2.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Guan Z, Yu H, Cuk K, Zhang Y, Brenner H. Whole-Blood DNA Methylation Markers in Early Detection of Breast Cancer: A Systematic Literature Review. Cancer Epidemiol Biomarkers Prev 2018; 28:496-505. [DOI: 10.1158/1055-9965.epi-18-0378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/09/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
|
29
|
Shang M, Chang C, Pei Y, Guan Y, Chang J, Li H. Potential Management of Circulating Tumor DNA as a Biomarker in Triple-Negative Breast Cancer. J Cancer 2018; 9:4627-4634. [PMID: 30588246 PMCID: PMC6299380 DOI: 10.7150/jca.28458] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
As a specific subtype of breast cancer, Triple-negative breast cancer (TNBC) is associated with worse prognosis and higher tumor aggressiveness than HER2-amplified or hormone receptor positive breast cancers. Circulating tumor DNA (ctDNA), as a non-invasive “liquid biopsy”, is an emerging original blood-based biomarker for early breast cancer diagnosis, monitoring treatment response, and determining prognosis. In TNBC patients, ctDNA has an inherent tendency to characterize tumor heterogeneity and metastasis-specific mutations providing a key alternative to tumor tissue profiling. Several studies have already demonstrated the potential of ctDNA in TNBC patients from early to advanced stages of the disease including diagnosis, therapy decisions and assessment of prognosis. This review provides a critical brief summary of the evidence that gives credence to the utility of ctDNA as a biomarker for its role into clinical management in TNBC.
Collapse
Affiliation(s)
- Mao Shang
- School of Medicine and Life Sciences, University of Jinan Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China. 250117
| | - Chunxiao Chang
- Department of Medical Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China. 250117
| | - Yanqing Pei
- Department of Quality Management Office, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China. 250117
| | - Yin Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Beijing, China
| | - Jin Chang
- Oncology department, Affiliated Hospital of Taishan Medical university
| | - HuiHui Li
- Department of Medical Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China. 250117
| |
Collapse
|
30
|
O’Keefe CM, Pisanic TR, Zec H, Overman MJ, Herman JG, Wang TH. Facile profiling of molecular heterogeneity by microfluidic digital melt. SCIENCE ADVANCES 2018; 4:eaat6459. [PMID: 30263958 PMCID: PMC6157960 DOI: 10.1126/sciadv.aat6459] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/14/2018] [Indexed: 05/05/2023]
Abstract
This work presents a digital microfluidic platform called HYPER-Melt (high-density profiling and enumeration by melt) for highly parallelized copy-by-copy DNA molecular profiling. HYPER-Melt provides a facile means of detecting and assessing sequence variations of thousands of individual DNA molecules through digitization in a nanowell microchip array, allowing amplification and interrogation of individual template molecules by detecting HRM fluorescence changes due to sequence-dependent denaturation. As a model application, HYPER-Melt is used here for the detection and assessment of intermolecular heterogeneity of DNA methylation within the promoters of classical tumor suppressor genes. The capabilities of this platform are validated through serial dilutions of mixed epialleles, with demonstrated detection limits as low as 1 methylated variant in 2 million unmethylated templates (0.00005%) of a classic tumor suppressor gene, CDKN2A (p14ARF). The clinical potential of the platform is demonstrated using a digital assay for NDRG4, a tumor suppressor gene that is commonly methylated in colorectal cancer, in liquid biopsies of healthy and colorectal cancer patients. Overall, the platform provides the depth of information, simplicity of use, and single-molecule sensitivity necessary for rapid assessment of intermolecular variation contributing to genetic and epigenetic heterogeneity for challenging applications in embryogenesis, carcinogenesis, and rare biomarker detection.
Collapse
Affiliation(s)
- Christine M. O’Keefe
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD 21218, USA
| | - Helena Zec
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James G. Herman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD 21218, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Corresponding author.
| |
Collapse
|
31
|
Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R, Zehir A, Weigelt B, Dawson SJ, Arcila ME, Berger MF, Tsui DW. The value of cell-free DNA for molecular pathology. J Pathol 2018; 244:616-627. [PMID: 29380875 DOI: 10.1002/path.5048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Caitlin M Stewart
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prachi D Kothari
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florent Mouliere
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Cancer Research UK Major Centre - Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Richard Mair
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Cancer Research UK Major Centre - Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Saira Somnay
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia.,Centre for Cancer Research, University of Melbourne, Victoria, Australia
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Wy Tsui
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
32
|
Hench IB, Hench J, Tolnay M. Liquid Biopsy in Clinical Management of Breast, Lung, and Colorectal Cancer. Front Med (Lausanne) 2018; 5:9. [PMID: 29441349 PMCID: PMC5797586 DOI: 10.3389/fmed.2018.00009] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Examination of tumor molecular characteristics by liquid biopsy is likely to greatly influence personalized cancer patient management. Analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and tumor-derived exosomes, all collectively referred to as “liquid biopsies,” are not only a modality to monitor treatment efficacy, disease progression, and emerging therapy resistance mechanisms, but they also assess tumor heterogeneity and evolution in real time. We review the literature concerning the examination of ctDNA and CTC in a diagnostic setting, evaluating their prognostic, predictive, and monitoring capabilities. We discuss the advantages and limitations of various leading ctDNA/CTC analysis technologies. Finally, guided by the results of clinical trials, we discuss the readiness of cell-free DNA and CTC as routine biomarkers in the context of various common types of neoplastic disease. At this moment, one cannot conclude whether or not liquid biopsy will become a mainstay in oncology practice.
Collapse
Affiliation(s)
- Ivana Bratić Hench
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jürgen Hench
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Markus Tolnay
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
33
|
Genetic signature and profiling of head and neck cancer: where do we stand? Curr Opin Otolaryngol Head Neck Surg 2018; 25:154-158. [PMID: 28141602 DOI: 10.1097/moo.0000000000000348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW To focus on two novel aspects of head and neck squamous cell carcinoma (HNSCC) genetics of special interest: the epithelial-mesenchymal transition (EMT) process, an initial step in tumor progression that finally leads to metastasis formation, by explaining how genes as well as epigenetic factors control this process, and the new diagnostic options based on the analysis of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) that could revolutionize diagnosis in the coming years. RECENT FINDINGS We present an intriguing recently described group of factors, namely miRNAs, deregulated during EMT. MiRNAs could serve as novel markers of EMT and metastasis formation and are also a potential therapeutic target. Second, we show recent findings on CTC and cfDNA analysis in HNSCC that demonstrate the usefulness of this new diagnostic approach. SUMMARY We stress the importance of EMT in the context of metastasis formation and the potential of liquid biopsies in clinical practice.
Collapse
|
34
|
Domínguez-Vigil IG, Moreno-Martínez AK, Wang JY, Roehrl MH, Barrera-Saldaña HA. The dawn of the liquid biopsy in the fight against cancer. Oncotarget 2018; 9:2912-2922. [PMID: 29416824 PMCID: PMC5788692 DOI: 10.18632/oncotarget.23131] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/10/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer is a molecular disease associated with alterations in the genome, which, thanks to the highly improved sensitivity of mutation detection techniques, can be identified in cell-free DNA (cfDNA) circulating in blood, a method also called liquid biopsy. This is a non-invasive alternative to surgical biopsy and has the potential of revealing the molecular signature of tumors to aid in the individualization of treatments. In this review, we focus on cfDNA analysis, its advantages, and clinical applications employing genomic tools (NGS and dPCR) particularly in the field of oncology, and highlight its valuable contributions to early detection, prognosis, and prediction of treatment response.
Collapse
Affiliation(s)
- Irma G. Domínguez-Vigil
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Ana K. Moreno-Martínez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
- Genetics Laboratory, Vitagénesis, Monterrey, Nuevo León, México
| | | | - Michael H.A. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hugo A. Barrera-Saldaña
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
- TecSalud, Tecnológico de Monterrey, San Pedro Garza García, Nuevo León, México
| |
Collapse
|
35
|
García-Giménez JL, Seco-Cervera M, Tollefsbol TO, Romá-Mateo C, Peiró-Chova L, Lapunzina P, Pallardó FV. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci 2017; 54:529-550. [PMID: 29226748 DOI: 10.1080/10408363.2017.1410520] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic modifications and regulators represent potential molecular elements which control relevant physiological and pathological features, thereby contributing to the natural history of human disease. These epigenetic modulators can be employed as disease biomarkers, since they show several advantages and provide information about gene function, thus explaining differences among patient endophenotypes. In addition, epigenetic biomarkers can incorporate information regarding the effects of the environment and lifestyle on health and disease, and monitor the effect of applied therapies. Technologies used to analyze these epigenetic biomarkers are constantly improving, becoming much easier to use. Laboratory professionals can easily acquire experience and techniques are becoming more affordable. A high number of epigenetic biomarker candidates are being continuously proposed, making now the moment to adopt epigenetics in the clinical laboratory and convert epigenetic marks into reliable biomarkers. In this review, we describe some current promising epigenetic biomarkers and technologies being applied in clinical practice. Furthermore, we will discuss some laboratory strategies and kits to accelerate the adoption of epigenetic biomarkers into clinical routine. The likelihood is that over time, better markers will be identified and will likely be incorporated into future multi-target assays that might help to optimize its application in a clinical laboratory. This will improve cost-effectiveness, and consequently encourage the development of theragnosis and the application of precision medicine.
Collapse
Affiliation(s)
- José Luis García-Giménez
- a Center for Biomedical Network Research on Rare Diseases (CIBERER) , Institute of Health Carlos III , Valencia , Spain.,b INCLIVA Biomedical Research Institute , Valencia , Spain.,c Department Physiology, School of Medicine and Dentistry , Universitat de València (UV) , Valencia , Spain.,d Epigenetics Research Platform (CIBERER/UV/INCLIVA) , Valencia , Spain.,e EpiDisease S.L. Spin-Off of CIBERER (ISCIII) , Valencia , Spain
| | - Marta Seco-Cervera
- a Center for Biomedical Network Research on Rare Diseases (CIBERER) , Institute of Health Carlos III , Valencia , Spain.,b INCLIVA Biomedical Research Institute , Valencia , Spain.,c Department Physiology, School of Medicine and Dentistry , Universitat de València (UV) , Valencia , Spain
| | - Trygve O Tollefsbol
- f Department of Biology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Carlos Romá-Mateo
- a Center for Biomedical Network Research on Rare Diseases (CIBERER) , Institute of Health Carlos III , Valencia , Spain.,b INCLIVA Biomedical Research Institute , Valencia , Spain.,c Department Physiology, School of Medicine and Dentistry , Universitat de València (UV) , Valencia , Spain.,d Epigenetics Research Platform (CIBERER/UV/INCLIVA) , Valencia , Spain
| | - Lorena Peiró-Chova
- b INCLIVA Biomedical Research Institute , Valencia , Spain.,g INCLIVA Biobank , Valencia , Spain
| | - Pablo Lapunzina
- a Center for Biomedical Network Research on Rare Diseases (CIBERER) , Institute of Health Carlos III , Valencia , Spain.,h Institute of Medical and Molecular Genetics (INGEMM) , IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Federico V Pallardó
- a Center for Biomedical Network Research on Rare Diseases (CIBERER) , Institute of Health Carlos III , Valencia , Spain.,b INCLIVA Biomedical Research Institute , Valencia , Spain.,c Department Physiology, School of Medicine and Dentistry , Universitat de València (UV) , Valencia , Spain.,d Epigenetics Research Platform (CIBERER/UV/INCLIVA) , Valencia , Spain
| |
Collapse
|
36
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
37
|
Beddowes E, Sammut SJ, Gao M, Caldas C. Predicting treatment resistance and relapse through circulating DNA. Breast 2017; 34 Suppl 1:S31-S35. [PMID: 28694015 DOI: 10.1016/j.breast.2017.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The use of circulating DNA(ctDNA) to provide a non-invasive, personalised genomic snapshot of a patients' tumour has huge potential. Over the past five years this area of research has gained huge momentum. A number of studies in metastatic breast cancer have shown the potential of ctDNA to predict prognosis and treatment response using ctDNA. Further developments have included deeper sequencing using whole exome and shallow whole genome approaches which has the potential to identify new mutations and chromosomal copy number changes which appear upon resistance to treatment. In early breast cancer, recent work utilising personalised digital PCR probes has shown huge potential in predicting disease relapse and the detection of micrometastatic disease which could lead to improved treatment and outcome for these patients. Specific pathways of resistance can also be monitored and liquid biopsy approaches for the detection of ESR1 mutations have been used which could identify patients who have become resistant to particular endocrine therapies. The identification of PIK3CA mutations in plasma has also been shown to predict a higher response rate to specific PI3K inhibitors and could be used as a non-invasive screening tool prior to treatment. Further work on the detection of exosomal miRNA and hypermethylated DNA in plasma have shown promise in terms of specificity for early breast cancer detection and could be used to monitor treatment response. This review will focus on technological advances in the field, early detection of relapse and the detection of tumour-specific genomic alterations which could predict treatment response and resistance in patients with breast cancer.
Collapse
Affiliation(s)
- Emma Beddowes
- Department of Oncology, University of Cambridge, and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Stephen J Sammut
- Department of Oncology, University of Cambridge, and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Meiling Gao
- Department of Oncology, University of Cambridge, and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom.
| |
Collapse
|
38
|
Han X, Wang J, Sun Y. Circulating Tumor DNA as Biomarkers for Cancer Detection. GENOMICS, PROTEOMICS & BIOINFORMATICS 2017; 15:59-72. [PMID: 28392479 PMCID: PMC5414889 DOI: 10.1016/j.gpb.2016.12.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/23/2022]
Abstract
Detection of circulating tumor DNAs (ctDNAs) in cancer patients is an important component of cancer precision medicine ctDNAs. Compared to the traditional physical and biochemical methods, blood-based ctDNA detection offers a non-invasive and easily accessible way for cancer diagnosis, prognostic determination, and guidance for treatment. While studies on this topic are currently underway, clinical translation of ctDNA detection in various types of cancers has been attracting much attention, due to the great potential of ctDNA as blood-based biomarkers for early diagnosis and treatment of cancers. ctDNAs are detected and tracked primarily based on tumor-related genetic and epigenetic alterations. In this article, we reviewed the available studies on ctDNA detection and described the representative methods. We also discussed the current understanding of ctDNAs in cancer patients and their availability as potential biomarkers for clinical purposes. Considering the progress made and challenges involved in accurate detection of specific cell-free nucleic acids, ctDNAs hold promise to serve as biomarkers for cancer patients, and further validation is needed prior to their broad clinical use.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyun Wang
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingli Sun
- CAS Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|