1
|
Nemati MH, Yazdanpanah E, Kazemi R, Orooji N, Dadfar S, Oksenych V, Haghmorad D. Microbiota-Driven Mechanisms in Multiple Sclerosis: Pathogenesis, Therapeutic Strategies, and Biomarker Potential. BIOLOGY 2025; 14:435. [PMID: 40282300 DOI: 10.3390/biology14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Multiple sclerosis (MS) is a well-known, chronic autoimmune disorder of the central nervous system (CNS) involving demyelination and neurodegeneration. Research previously conducted in the area of the gut microbiome has highlighted it as a critical contributor to MS pathogenesis. Changes in the commensal microbiota, or dysbiosis, have been shown to affect immune homeostasis, leading to elevated levels of pro-inflammatory cytokines and disruption of the gut-brain axis. In this review, we provide a comprehensive overview of interactions between the gut microbiota and MS, especially focusing on the immunomodulatory actions of microbiota, such as influencing T-cell balance and control of metabolites, e.g., short-chain fatty acids. Various microbial taxa (e.g., Prevotella and Faecalibacterium) were suggested to lay protective roles, whereas Akkermansia muciniphila was associated with disease aggravation. Interventions focusing on microbiota, including probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary therapies to normalize gut microbial homeostasis, suppress inflammation and are proven to improve clinical benefits in MS patients. Alterations in gut microbiota represent opportunities for identifying biomarkers for early diagnosis, disease progression and treatment response monitoring. Further studies need to be conducted to potentially address the interplay between genetic predispositions, environmental cues, and microbiota composition to get the precise mechanisms of the gut-brain axis in MS. In conclusion, the gut microbiota plays a central role in MS pathogenesis and offers potential for novel therapeutic approaches, providing a promising avenue for improving clinical outcomes in MS management.
Collapse
Affiliation(s)
- Mohammad Hosein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Roya Kazemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Niloufar Orooji
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| |
Collapse
|
2
|
Zhao J, Jia H, Ma P, Zhu D, Fang Y. Multidimensional mechanisms of anxiety and depression in Parkinson's Disease: integrating neuroimaging, neurocircuits, and molecular pathways. Pharmacol Res 2025; 215:107717. [PMID: 40157405 DOI: 10.1016/j.phrs.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Anxiety and depression are common non-motor symptoms of Parkinson's disease (PD) that significantly affect patients' quality of life. In recent years, our understanding of PD has advanced through multifaceted studies on the pathological mechanisms associated with anxiety and depression in PD. These classic psychiatric symptoms involve complex pathophysiology, with both distinct features and connections to the mechanisms underlying the aetiology of PD. Furthermore, the co-occurrence of anxiety and depression in PD blurs the boundaries between them. Therefore, a comprehensive summary of the pathogenic mechanisms associated with anxiety and depression will aid in better addressing the emergence of these classic psychiatric symptoms in PD. This article integrates neuroanatomical, neural projection, neurotransmitter, neuroinflammatory, brain-gut axis, neurotrophic, hypothalamic-pituitary-adrenal axis, and genetic perspectives to provide a comprehensive description of the core pathological alterations underlying anxiety and depression in PD, aiming to provide an up-to-date perspective and broader therapeutic prospects for PD patients suffering from anxiety or depression.
Collapse
Affiliation(s)
- Jihu Zhao
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Huafang Jia
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China.
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Deyuan Zhu
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yibin Fang
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Attiq A. Early-life antibiotic exposures: Paving the pathway for dysbiosis-induced disorders. Eur J Pharmacol 2025; 991:177298. [PMID: 39864578 DOI: 10.1016/j.ejphar.2025.177298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells. Given the potential consequences of antibiotic therapy on gut microbiota equilibrium, there is a need for prudent antibiotic use to mitigate associated risks. Observational studies have linked increased antibiotic usage to various pathogenic conditions, including obesity, inflammatory bowel disease, anxiety-like effects, asthma, and pulmonary carcinogenesis. Addressing dysbiosis incidence requires proactive measures, including prophylactic use of β-lactamase drugs (SYN-004, SYN-006, and SYN-007), hydrolysing the β-lactam in the proximal GIT for maintaining intestinal flora homeostasis. Prebiotic and probiotic supplementations are crucial in restoring intestinal flora equilibrium by competing with pathogenic bacteria for nutritional resources and adhesion sites, reducing luminal pH, neutralising toxins, and producing antimicrobial agents. Faecal microbiota transplantation (FMT) shows promise in restoring gut microbiota composition. Rational antibiotic use is essential to preserve microflora and improve patient compliance with antibiotic regimens by mitigating associated side effects. Given the significant implications on gut microbiota composition, concerted intervention strategies must be pursued to rectify and reverse the occurrence of antibiotic-induced dysbiosis. Here, antibiotics-induced microbiota dysbiosis mechanisms and their systemic implications are reviewed. Moreover, proposed interventions to mitigate the impact on gut microflora are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
4
|
Staun-Ram E, Volkowich A, Miller A. Immunotherapy-mediated modulation of the gut microbiota in multiple sclerosis and associations with diet and clinical response-the effect of dimethyl fumarate therapy. Ther Adv Neurol Disord 2025; 18:17562864241306565. [PMID: 40092554 PMCID: PMC11907610 DOI: 10.1177/17562864241306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 03/19/2025] Open
Abstract
Background Accumulating evidence supports a role of the microbiota in health and disease, including in multiple sclerosis (MS). How MS drugs affect the microbiota and whether this is part of their mode of action is yet unknown. Objectives To assess how dimethyl fumarate (DMF) affects the gut microbiota and whether the microbiota is associated with clinical response or adverse events (AEs) to DMF or diet. Design An observational cohort study, in which the microbiota from 45 patients with relapsing-remitting MS pre-DMF initiation and following 6 months of DMF therapy, and from 47 matched healthy controls, were compared, and associations with clinical and dietary data assessed. Data sources and methods Microbial DNA was sequenced and analyzed using MicrobiomeAnalyst. The clinical response was assessed after 1-year DMF therapy based upon evidence of disease activity (relapse, ΔEDSS increase >1, or MRI activity compared to pre-treatment). Dietary data were obtained by food questionnaires. Results Alterations in relative abundance of several microbes were identified post 6-month DMF therapy compared to pre-treatment, including an increase in Firmicutes, Lachnospiraceae, and Ruminococcaceae, while reduction in Bacteroidetes and Proteobacteria. Patients who showed disease activity within 1 year from DMF initiation had pre-treatment higher abundance of Proteobacteria, Flavonifractor, and Acidaminococcaceae, while lower abundance of Firmicutes, Ruminococcaceae, Butyricicoccus, and Massiliprevotella massiliensis, compared to patients without disease activity. Patients who discontinued DMF therapy due to AEs had pre-treatment higher abundance of Proteobacteria, Bacteroidetes, Eggerthella, and Lachnoclostridium and lower abundance of Ruminococcaceae, Megamonas, and Holdemanella, among others. Differentially abundant microbes correlated with intake of several nutrients. Conclusion DMF immunotherapy is associated with modifications of the microbiota. The microbiota may affect the severity of AEs and the clinical response to DMF, and is potentially modulated by diet. Microbiota-based, personalized treatment approach, integrating pharmacotherapy with dietary components, carries potential to improved clinical outcome.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Neuroimmunology Unit and Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Anat Volkowich
- Neuroimmunology Unit and Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Ariel Miller
- Neuroimmunology Unit and Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Michal St. 7, Haifa 3436212, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
5
|
Yu J, Li Y, Zhu B, Shen J, Miao L. Research progress on the kidney-gut-brain axis in brain dysfunction in maintenance hemodialysis patients. Front Med (Lausanne) 2025; 12:1538048. [PMID: 40115780 PMCID: PMC11922870 DOI: 10.3389/fmed.2025.1538048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025] Open
Abstract
Maintenance hemodialysis (MHD) has become the primary renal replacement therapy for patients with end-stage renal disease. The kidney-gut-brain axis represents a communication network connecting the kidney, intestine and brain. In MHD patients, factors such as uremic toxins, hemodynamic changes, vascular damage, inflammation, oxidative stress, and intestinal dysbiosis in MHD patients refers to a range of clinical syndromes, including brain injury, and is manifested by conditions such as white matter disease, brain atrophy, cerebrovascular disease, cognitive impairment, depression, anxiety, and other behavioral or consciousness abnormalities. Numerous studies have demonstrated the prevalence of these brain disorders in MHD patients. Understanding the mechanisms of brain disorders in MHD patients, particularly through the lens of kidney-gut-brain axis dysfunction, offers valuable insights for future research and the development of targeted therapies. This article reviews the brain dysfunction associated with MHD, the impact of the kidney-brain axis, intestinal barrier damage, gut microbiota dysbiosis caused by MHD, and the role of the gut-brain axis in brain dysfunction.
Collapse
Affiliation(s)
- Jie Yu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yulu Li
- Department of Nephrology, Taicang Loujiang New City Hospital, Suzhou, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianqin Shen
- Department of Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Liying Miao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
6
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2025; 125:428-443. [PMID: 39701328 PMCID: PMC11903166 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 51 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|
7
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Abavisani M, Faraji N, Ebadpour N, Kesharwani P, Sahebkar A. Beyond digestion: Exploring how the gut microbiota modulates human social behaviors. Neuroscience 2025; 565:52-62. [PMID: 39615647 DOI: 10.1016/j.neuroscience.2024.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
For a long time, traditional medicine has acknowledged the gut's impact on general health. Contemporary science substantiates this association through investigations of the gut microbiota, the extensive community of microorganisms inhabiting our gastrointestinal system. These microscopic residents considerably improve digestive processes, nutritional absorption, immunological function, and pathogen defense. Nevertheless, a variety of gastrointestinal and extra-intestinal disorders can result from dysbiosis, an imbalance of the microbial composition of the gut microbiota. A groundbreaking discovery is the gut-brain axis, a complex communication network that links the enteric and central nervous system (CNS). This bidirectional communication allows the brain to influence gut activities and vice versa, impacting mental health and mood disorders like anxiety and depression. The gut microbiota can influence this communication by creating neurotransmitters and short-chain fatty acids, among other biochemical processes. These factors may affect our mental state, our ability to regulate our emotions, and the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to explore the complex interrelationships between the brain and the gut microbiota. We also conducted a thorough examination of the existing understanding in the area of how microbiota affects social behaviors, including emotions, stress responses, and cognitive functions. We also explored the potential of interventions that focus on the connection between the gut and the brain, such as using probiotics to treat diseases of the CNS. This research opens up new possibilities for addressing mental health and neurological conditions in an innovative manner.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| |
Collapse
|
9
|
Kuziak A, Heczko P, Pietrzyk A, Strus M. Iron Homeostasis Dysregulation, Oro-Gastrointestinal Microbial Inflammatory Factors, and Alzheimer's Disease: A Narrative Review. Microorganisms 2025; 13:122. [PMID: 39858890 PMCID: PMC11767265 DOI: 10.3390/microorganisms13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that profoundly impacts cognitive function and the nervous system. Emerging evidence highlights the pivotal roles of iron homeostasis dysregulation and microbial inflammatory factors in the oral and gut microbiome as potential contributors to the pathogenesis of AD. Iron homeostasis disruption can result in excessive intracellular iron accumulation, promoting the generation of reactive oxygen species (ROS) and oxidative damage. Additionally, inflammatory agents produced by pathogenic bacteria may enter the body via two primary pathways: directly through the gut or indirectly via the oral cavity, entering the bloodstream and reaching the brain. This infiltration disrupts cellular homeostasis, induces neuroinflammation, and exacerbates AD-related pathology. Addressing these mechanisms through personalized treatment strategies that target the underlying causes of AD could play a critical role in preventing its onset and progression.
Collapse
Affiliation(s)
- Agata Kuziak
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 Street, 31-008 Cracow, Poland;
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Piotr Heczko
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| |
Collapse
|
10
|
Wu X, Yang HJ, Ryu MS, Jung SJ, Ha K, Jeong DY, Park S. Association of Mucin-Degrading Gut Microbiota and Dietary Patterns with Colonic Transit Time in Constipation: A Secondary Analysis of a Randomized Clinical Trial. Nutrients 2024; 17:138. [PMID: 39796573 PMCID: PMC11722837 DOI: 10.3390/nu17010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The relationship between gut microbiota composition, lifestyles, and colonic transit time (CTT) remains poorly understood. This study investigated associations among gut microbiota profiles, diet, lifestyles, and CTT in individuals with subjective constipation. METHODS We conducted a secondary analysis of data from our randomized clinical trial, examining gut microbiota composition, CTT, and dietary intake in baseline and final assessments of 94 participants with subjective constipation. Participants were categorized into normal-transit (<36 h) and slow-transit (≥36 h) groups based on CTT at baseline. Gut microbiota composition was measured using 16S rRNA sequencing, and dietary patterns were assessed through semi-quantitative food frequency questionnaires. Enterotype analysis, machine learning approaches, and metabolic modeling were employed to investigate microbiota-diet interactions. The constipated participants primarily belonged to Lachnospiraceae (ET-L). RESULTS The slow-transit group showed higher alpha diversity than the normal-transit group. Butyricicoccus faecihominis was abundant in the normal-transit group, while Neglectibacter timonensis, Intestinimonas massiliensis, and Intestinibacter bartlettii were abundant in the slow-transit group, which also had a higher abundance of mucin-degrading bacteria. Metabolic modeling predicted increased N-acetyl-D-glucosamine (GlcNAc), a mucin-derived metabolite, in the slow-transit group. Network analysis identified two microbial co-abundance groups (CAG3 and CAG9) significantly associated with transit time and dietary patterns. Six mucin-degrading species showed differential correlations with GlcNAc and a plant-based diet, particularly, including rice, bread, fruits and vegetables, and fermented beans. In conclusion, an increased abundance of mucin-degrading bacteria and their predicted metabolic products were associated with delayed CTT. CONCLUSION These findings suggest dietary modulation of these bacterial populations as a potential therapeutic strategy for constipation. Moreover, our results reveal a potential immunometabolic mechanism where mucin-degrading bacteria and their metabolic interactions may influence intestinal transit, mucosal barrier function, and immune response.
Collapse
Affiliation(s)
- Xuangao Wu
- Department of Bioconvergence, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan 31499, ChungNam-do, Republic of Korea;
| | - Hee-Jong Yang
- Department of R&D, Microbial Institute for Fermentation Industry, 61-27 Minsokmaeul-gil, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (M.-S.R.); (K.H.)
| | - Myeong-Seon Ryu
- Department of R&D, Microbial Institute for Fermentation Industry, 61-27 Minsokmaeul-gil, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (M.-S.R.); (K.H.)
| | - Su-Jin Jung
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea;
| | - Kwangsu Ha
- Department of R&D, Microbial Institute for Fermentation Industry, 61-27 Minsokmaeul-gil, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (M.-S.R.); (K.H.)
| | - Do-Yeon Jeong
- Department of R&D, Microbial Institute for Fermentation Industry, 61-27 Minsokmaeul-gil, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (M.-S.R.); (K.H.)
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan 31499, ChungNam-do, Republic of Korea;
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan 31499, ChungNam-do, Republic of Korea
| |
Collapse
|
11
|
Feng R, Zhu Q, Wang A, Wang H, Wang J, Chen P, Zhang R, Liang D, Teng J, Ma M, Ding X, Wang X. Effect of fecal microbiota transplantation on patients with sporadic amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled trial. BMC Med 2024; 22:566. [PMID: 39617896 PMCID: PMC11610222 DOI: 10.1186/s12916-024-03781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder marked by the progressive loss of motor neurons. Recent insights into ALS pathogenesis underscore the pivotal role of the gut microbiome, prompting an investigation into the potential therapeutic impact of fecal microbiota transplantation (FMT) on sporadic ALS patients. METHODS Conducted as a double-blind, placebo-controlled, parallel-group, randomized clinical trial, the study enrolled 27 participants from October 2022 to April 2023. The participants were followed up for 6 months from February 2023 to October 2023, during in-person visits at baseline, week 15, week 23, and week 35. The participants, evenly randomized, received either healthy donor FMT (FMT, n = 14) or a mixture of 0.9% saline and food coloring (E150c) as sham transplantation (placebo, n = 13). The primary outcome measured the change in the ALS Functional Rating Scale-Revised (ALSFRS-R) total score from baseline to week 35. Secondary outcomes included changes in gastrointestinal and respiratory functions, muscle strength, autonomic function, cognition, quality of life, intestinal microbiome composition, and plasm neurofilament light chain protein (NFL). Efficacy and safety outcomes were assessed in the intention-to-treat population. RESULTS A total of 27 randomized patients (47% women; mean age, 67.2 years), 24 participants completed the entire study. Notably, ALSFRS-R score changes exhibited no significant differences between FMT (6.1 [SD, 3.11]) and placebo (6.41[SD, 2.73]) groups from baseline to week 35. Secondary efficacy outcomes, encompassing respiratory function, muscle strength, autonomic function, cognition, quality of life, and plasm NFL, showed no significant differences. Nevertheless, the FMT group exhibited improvements in constipation, depression, and anxiety symptoms. FMT induced a shift in gut microbiome community composition, marked by increased abundance of Bifidobacterium, which persisted until week 15 (95% CI, 0.04 to 0.28; p = 0.01). Gastrointestinal adverse events were the primary manifestations of FMT-related side effects. CONCLUSIONS In this clinical trial involving 27 sporadic ALS patients, FMT did not significantly slow the decline in ALSFRS-R score. Larger multicenter trials are needed to confirm the efficacy of FMT in sporadic ALS patients and to explore the underlying biological mechanisms. TRIAL REGISTRATION Chinese Clinical Trial Registry Identifier: ChiCTR 2200064504.
Collapse
Affiliation(s)
- Renyi Feng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Qingyong Zhu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Ao Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Hanzhen Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Jiuqi Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Pei Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Rui Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Dongxiao Liang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Junfang Teng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Mingming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Xuebing Ding
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China.
| | - Xuejing Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China.
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China.
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
12
|
Mroke P, Goit R, Rizwan M, Tariq S, Rizwan AW, Umer M, Nassar FF, Torijano Sarria AJ, Singh D, Baig I. Implications of the Gut Microbiome in Alzheimer's Disease: A Narrative Review. Cureus 2024; 16:e73681. [PMID: 39677207 PMCID: PMC11646158 DOI: 10.7759/cureus.73681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/17/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with its prevalence doubling approximately every decade. It is a significant contributor to disability-adjusted life-years in individuals aged 50 and older, impacting a substantial portion of this population globally. The pathophysiology of AD is primarily explained by two hypotheses: the amyloid cascade hypothesis and the tau hypothesis. While the amyloid cascade hypothesis is widely accepted as the main contributor to AD, both mechanisms promote neuroinflammation by driving the formation of amyloid-beta (Aβ) plaques and tau tangles, which are key features of the neurodegenerative process. Recent studies highlight the critical role of the gut microbiome (GMB) in the progression of AD. Gut dysbiosis has been linked to neuroinflammation, altered Aβ metabolism, blood-brain barrier disruption, and changes in neuroactive metabolites. Targeting the GMB offers potential therapeutic avenues aimed at restoring microbial balance and mitigating the effects of dysbiosis. The gut-brain axis, crucial for neurological health, remains underexplored in AD, especially since current research is limited to animal models and small human studies, leaving uncertainty about specific gut bacteria's roles in AD. Currently, pharmacological treatments for AD include cholinesterase inhibitors and memantine. This review discusses newer and emerging treatments targeting Aβ and tau pathology, alongside microbiome-based interventions. Larger, human-based studies with diverse populations are essential to establish the therapeutic efficacy of these microbiome-targeted treatments and their long-term impact on AD management.
Collapse
Affiliation(s)
- Palvi Mroke
- Internal Medicine, Caribbean Medical University School of Medicine, Willemstad, CUW
| | - Raman Goit
- Internal Medicine, Virgen Milagrosa University Foundation, San Carlos City, PHL
| | - Muhammad Rizwan
- Internal Medicine, Sheikh Zayed Medical College, Rahim Yar Khan, PAK
| | - Saba Tariq
- Internal Medicine, Amna Inayat Medical College Pakistan, Lahore, PAK
| | | | - Muhammad Umer
- Internal Medicine, King Edward Medical University, Lahore, PAK
| | - Fariha F Nassar
- Internal Medicine, Rajiv Gandhi University of Health Science, Bangalore, IND
| | | | - Dilpreet Singh
- Internal Medicine, Ascension St. John Hospital, Detroit, USA
| | - Imran Baig
- Internal Medicine, Houston Methodist Hospital, Houston, USA
| |
Collapse
|
13
|
Xing C, Zhang X, Wang D, Chen H, Gao X, Sun C, Guo W, Roshan S, Li Y, Hang Z, Cai S, Lei T, Bi W, Hou L, Li L, Wu Y, Li L, Zeng Z, Du H. Neuroprotective effects of mesenchymal stromal cells in mouse models of Alzheimer's Disease: The Mediating role of gut microbes and their metabolites via the Microbiome-Gut-Brain axis. Brain Behav Immun 2024; 122:510-526. [PMID: 39191350 DOI: 10.1016/j.bbi.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024] Open
Abstract
The intricacy and multifaceted nature of Alzheimer's disease (AD) necessitate therapies that target multiple aspects of the disease. Mesenchymal stromal cells (MSCs) emerge as potential agents to mitigate AD symptoms; however, whether their therapeutic efficacy involves modulation of gut microbiota and the microbiome-gut-brain axis (MGBA) remains unexplored. In this study, we evaluated the effects of three distinct MSCs types-derived from the umbilical cord (UCMSC), dental pulp (SHED), and adipose tissue (ADSC)-in an APP/PS1 mouse model of AD. In comparison to saline control, MSCs administration resulted in a significant reduction of behavioral disturbances, amyloid plaques, and phosphorylated tau in the hippocampus and frontal cortex, accompanied by an increase in neuronal count and Nissl body density across AD-afflicted brain regions. Through 16S rRNA gene sequencing, we identified partial restoration of gut microbial balance in AD mice post-MSCs treatment, evidenced by the elevation of neuroprotective Akkermansia and reduction of the AD-associated Sphingomonas. To examine whether gut microbiota involved in MSCs efficacy in treating AD, SHED with better anti-inflammatory and gut microbiota recovery effects among three MSCs, and another AD model 5 × FAD mice with earlier and more pathological proteins in brain than APP/PS1, were selected for further studies. Antibiotic-mediated gut microbial inactivation attenuated MSCs efficacy in 5 × FAD mice, implicating the involvement of gut microbiota in the therapeutic mechanism. Functional analysis of altered gut microbiota and targeted bile acid metabolism profiling revealed a significant enhancement in bile acid variety following MSCs therapy. A chief bile acid constituent, taurocholic acid (TCA), was orally administered to AD mice and similarly abated AD symptoms. Nonetheless, the disruption of intestinal neuronal integrity with enterotoxin abrogated the ameliorative impact of both MSCs and TCA treatments. Collectively, our findings substantiate that MSCs confer therapeutic benefits in AD within a paradigm that primarily involves regulation of gut microbiota and their metabolites through the MGBA.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoshuang Zhang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Donghui Wang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Hongyu Chen
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoyu Gao
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Chunbin Sun
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wenhua Guo
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China; Reproductive Center, Peking University Third Hospital, Beijing, China
| | - Shah Roshan
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Yingxian Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Zhongci Hang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Shanglin Cai
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Tong Lei
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wangyu Bi
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Liangxuan Hou
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Luping Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Yawen Wu
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Liang Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Zehua Zeng
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China.
| | - Hongwu Du
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
14
|
Park KJ, Gao Y. Gut-brain axis and neurodegeneration: mechanisms and therapeutic potentials. Front Neurosci 2024; 18:1481390. [PMID: 39513042 PMCID: PMC11541110 DOI: 10.3389/fnins.2024.1481390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
This paper reviews the effects of gut microbiota in regulating neurodegenerative diseases through controlling gut-brain axis. Specific microbial populations and their metabolites (short-chain fatty acids and tryptophan derivatives) regulate neuroinflammation, neurogenesis and neural barrier integrity. We then discuss ways by which these insights lead to possible interventions - probiotics, prebiotics, dietary modification, and fecal microbiota transplantation (FMT). We also describe what epidemiological and clinical studies have related certain microbiota profiles with the courses of neurodegenerative diseases and how these impact the establishment of microbiome-based diagnostics and individualized treatment options. We aim to guide microbial ecology research on this key link to neurodegenerative disorders and also to highlight collaborative approaches to manage neurological health by targeting microbiome-related factors.
Collapse
Affiliation(s)
| | - Yao Gao
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Gu X, Fan M, Zhou Y, Zhang Y, Wang L, Gao W, Li T, Wang H, Si N, Wei X, Bian B, Zhao H. Intestinal endogenous metabolites affect neuroinflammation in 5×FAD mice by mediating "gut-brain" axis and the intervention with Chinese Medicine. Alzheimers Res Ther 2024; 16:222. [PMID: 39396997 PMCID: PMC11472645 DOI: 10.1186/s13195-024-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Emerging evidence suggested the association between gut dysbiosis and Alzheimer's disease (AD) progression. However, it remained unclear how the gut microbiome and neuroinflammation in the brain mutually interact or how these interactions affect brain functioning and cognition. Here we hypothesized that "gut-brain" axis mediated by microbial derived metabolites was expected to novel breakthroughs in the fields of AD research and development. METHODS Multiple technologies, such as immunofluorescence, 16s rDNA sequencing, mass spectrometry-based metabolomics (LC-QQQ-MS and GC-MS), were used to reveal potential link between gut microbiota and the metabolism and cognition of the host. RESULTS Microbial depletion induced by the antibiotics mix (ABX) verified that "gut-brain" can transmit information bidirectionally. Short-chain fatty acid-producing (SCFAs-producing) bacteria and amino acid-producing bacteria fluctuated greatly in 5×FAD mice, especially the reduction sharply of the Bifidobacteriaceae and the increase of the Lachnospiraceae family. Concentrations of several Tryptophan-kynurenine intermediates, lactic acid, CD4+ cell, and CD8+ cells were higher in serum of 5×FAD mice, whilst TCA cycle intermediates and Th1/Th2 were lower. In addition, the levels of iso-butyric acid (IBA) in feces, serum, and brain of 5×FAD mice were increased compared with WT-M mice, especially in serum. And IBA in the brain was positively correlated with Aβ and proinflammatory factors. CONCLUSION Together, our finding highlighted that the alternation in gut microbiota affected the effective communication between the "gut-brain" axis in 5×FAD mice by regulating the immune system, carbohydrate, and energy metabolism.
Collapse
Affiliation(s)
- Xinru Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- The Neurology Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Miaoxuan Fan
- Beijing Drug Package Test Institute, Beijing, 100700, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linna Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
16
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Saha P, Sisodia SS. Role of the gut microbiome in mediating sex-specific differences in the pathophysiology of Alzheimer's disease. Neurotherapeutics 2024; 21:e00426. [PMID: 39054179 PMCID: PMC11585881 DOI: 10.1016/j.neurot.2024.e00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) presents distinct pathophysiological features influenced by biological sex, with women disproportionately affected due to sex-specific genetic, hormonal, and epigenetic factors. This review delves into three critical areas of sex differences in AD: First, we explore how genetic predisposition and hormonal changes, particularly those involving sex-specific modifications, influence susceptibility and progression of the disease. Second, we examine the neuroimmune dynamics in AD, emphasizing variations in microglial activity between sexes during crucial developmental stages and the effects of hormonal interventions on disease outcomes. Crucially, this review highlights the significant role of gut microbiome perturbations in shaping AD pathophysiology in a sex-specific manner, suggesting that these alterations can further influence microglial activity and overall disease trajectory. Third, we provide a viewpoint that advocates for personalized therapeutic strategies that integrate the understanding of hormonal fluctuations and microbiome dynamics into treatment plans in order to optimize patient outcomes.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| | - Sangram S Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Li H, Cui X, Lin Y, Huang F, Tian A, Zhang R. Gut microbiota changes in patients with Alzheimer's disease spectrum based on 16S rRNA sequencing: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1422350. [PMID: 39175809 PMCID: PMC11338931 DOI: 10.3389/fnagi.2024.1422350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background The gut microbiota (GM) is hypothesized to play roles in Alzheimer's disease (AD) pathogenesis. In recent years, many GM composition and abundance investigations in AD patients have been conducted; however, despite this work, some results remain controversial. Therefore, we conducted a systematic review and meta-analysis using 16S ribosomal RNA (16S rRNA) sequencing to explore GM alterations between patients with AD spectrum and healthy controls (HCs). Methods A systematic and comprehensive literature search of PubMed, Web of Science, Embase, the Cochrane Library, China National Knowledge Infrastructure, China Biology Medicine disc database, WanFang database and Social Sciences Citation Index databases was conducted from inception to January 2023. Inclusion and exclusion criteria were strictly defined, and two researchers independently screened and extracted information from selected studies. Data quality were evaluated according to the "Cochrane system evaluator manual" and pooled data were comprehensively analyzed using Stata 14 software with standardized mean differences (SMDs) and 95% confidence intervals (95% CIs) used to measure effect sizes. Also, geographical heterogeneity effects (related to cohorts) on GM abundance were examined based on subgroup meta-analyses if sufficient studies reported outcomes. Finally, publication bias was assessed using funnel plots. Results Out of 1566 articles, 13 studies involving 581 patients with AD spectrum and 445 HCs were deemed eligible and included in our analysis. In summary, a decreased microbiota alpha diversity and a significantly distinct pattern of clustering with regard to beta diversity were observed in AD spectrum patients when compared with HCs. Comparative analyses revealed a decreased Ruminococcus, Faecalibacterium, Lachnospira, Dialister, Lachnoclostridium, and Roseburia abundance in AD spectrum patients while Phascolarctobacterium, Lactobacillus, and Akkermansia muciniphila were more enriched in patients when compared to HCs. Furthermore, regional variations may have been in play for intestinal microbes such as Bacteroides, Bifidobacterium, and Alistipes. Conclusion Our meta-analysis identified alterations in GM abundance in patients with AD spectrum, with 12 genera from four major phyla significantly associated with AD. Moreover, we provided evidence for region-specific alterations in Bacteroides, Bifidobacterium, and Alistipes abundance. These findings may have profound implications for the development of innovative GM-based strategies to prevent and treat AD. Systematic review registration https://doi.org/10.37766/inplasy2024.6.0067, identifier INPLASY202460067.
Collapse
Affiliation(s)
- Hui Li
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopan Cui
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuxiu Lin
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengqiong Huang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ayong Tian
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rongwei Zhang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Anaya-Prado R, Cárdenas-Fregoso AP, Reyes-Perez AM, Ortiz-Hernandez DM, Quijano-Ortiz M, Delgado-Martinez MV, Pelayo-Romo AS, Anaya-Fernandez R, Anaya-Fernandez MM, Azcona-Ramirez CC, Garcia-Ramirez IF, Guerrero-Palomera MA, Gonzalez-Martinez D, Guerrero-Palomera CS, Paredes-Paredes K, Garcia-Perez C. The Biomolecular Basis of Gut Microbiome on Neurological Diseases. OBM NEUROBIOLOGY 2024; 08:1-40. [DOI: 10.21926/obm.neurobiol.2403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The human gastrointestinal (GI) tract harbors many microorganisms, including viruses, protozoa, archaea, fungi, and bacteria. Altogether, these microbes constitute what we know as the gut microbiome (GM). These commensal communities have important implications for human health. They influence physiological processes through different mechanisms, including synthesizing neurotransmitters, regulating enzymatic pathways, and releasing molecules responsible for different signal pathways. The interaction between GM and brain function has been associated with the development and pathogenesis of neuropsychiatric diseases. This review discusses current studies targeting the regulation and modulation of GM in nerve, neuroendocrine, and immune pathways. Thus, we analyze current evidence on transcription, changes in composition, and specific interactions between the gut and brain from a biomolecular perspective. Special attention is paid to mood disorders and neurodegenerative diseases.
Collapse
|
20
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic Human Gut Microbiome and Immune Shifts During an Immersive Psychosocial Therapeutic Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600881. [PMID: 38979211 PMCID: PMC11230355 DOI: 10.1101/2024.06.26.600881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Depression is a leading cause of disability worldwide yet its underlying factors, particularly microbial associations, are poorly understood. Methods We examined the longitudinal interplay between the microbiome and immune system in the context of depression during an immersive psychosocial intervention. 142 multi-omics samples were collected from 52 well-characterized participants before, during, and three months after a nine-day inquiry-based stress reduction program. Results We found that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. Conclusions Our findings reveal a protective link between the Prevotella-dominant microbiome and depression, associated with a less inflammatory environment and moderated symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, highlight potential avenues for microbiome-targeted therapies in depression management.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- These authors contributed equally to the work
| | - Ariel B. Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
- These authors contributed equally to the work
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S. Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford university School of Medicine, CA, USA
- Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| |
Collapse
|
21
|
Ayten Ş, Bilici S. Modulation of Gut Microbiota Through Dietary Intervention in Neuroinflammation and Alzheimer's and Parkinson's Diseases. Curr Nutr Rep 2024; 13:82-96. [PMID: 38652236 PMCID: PMC11133127 DOI: 10.1007/s13668-024-00539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW The gut microbiota plays a crucial role in the pathogenesis of neuroinflammation and Alzheimer's and Parkinson's diseases. One of the main modulators of the gut microbiota is the diet, which directly influences host homeostasis and biological processes. Some dietary patterns can affect neurodegenerative diseases' progression through gut microbiota composition, gut permeability, and the synthesis and secretion of microbial-derived neurotrophic factors and neurotransmitters. This comprehensive review critically assesses existing studies investigating the impact of dietary interventions on the modulation of the microbiota in relation to neurodegenerative diseases and neuroinflammation. RECENT FINDINGS There are limited studies on the effects of specific diets, such as the ketogenic diet, Mediterranean diet, vegetarian diet, and Western diet, on the progression of neuroinflammation and Alzheimer's and Parkinson's diseases through the gut-brain axis. The ketogenic diet displays promising potential in ameliorating the clinical trajectory of mild cognitive impairment and Alzheimer's disease. However, conflicting outcomes were observed among various studies, highlighting the need to consider diverse types of ketogenic diets and their respective effects on clinical outcomes and gut microbiota composition. Vegetarian and Mediterranean diets, known for their anti-inflammatory properties, can be effective against Parkinson's disease, which is related to inflammation in the gut environment. On the other hand, the westernization of dietary patterns was associated with reduced gut microbial diversity and metabolites, which ultimately contributed to the development of neuroinflammation and cognitive impairment. Various studies examining the impact of dietary interventions on the gut-brain axis with regard to neuroinflammation and Alzheimer's and Parkinson's diseases are thoroughly reviewed in this article. A strong mechanistic explanation is required to fully understand the complex interactions between various dietary patterns, gut microbiota, and microbial metabolites and the effects these interactions have on cognitive function and the progression of these diseases.
Collapse
Affiliation(s)
- Şerife Ayten
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey.
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
22
|
Palacios N, Gordon S, Wang T, Burk R, Qi Q, Huttenhower C, Gonzalez HM, Knight R, De Carli C, Daviglus M, Lamar M, Telavera G, Tarraf W, Kosciolek T, Cai J, Kaplan RC. Gut Microbiome Multi-Omics and Cognitive Function in the Hispanic Community Health Study/Study of Latinos- Investigation of Neurocognitive Aging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307533. [PMID: 38798527 PMCID: PMC11118626 DOI: 10.1101/2024.05.17.24307533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
INTRODUCTION We conducted a study within the Hispanic Community Health Study/Study of Latinos- Investigation of Neurocognitive Aging (HCHS/SOL-INCA) cohort to examine the association between gut microbiome and cognitive function. METHODS We analyzed the fecal metagenomes of 2,471 HCHS/SOL-INCA participants to, cross-sectionally, identify microbial taxonomic and functional features associated with global cognitive function. Omnibus (PERMANOVA) and feature-wise analyses (MaAsLin2) were conducted to identify microbiome-cognition associations, and specific microbial species and pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG modules) associated with cognition. RESULTS Eubacterium species( E. siraeum and E. eligens ), were associated with better cognition. Several KEGG modules, most strongly Ornithine, Serine biosynthesis and Urea Cycle, were associated with worse cognition. DISCUSSION In a large Hispanic/Latino cohort, we identified several microbial taxa and KEGG pathways associated with cognition.
Collapse
|
23
|
Caldarelli M, Rio P, Marrone A, Ocarino F, Chiantore M, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Gut-Brain Axis: Focus on Sex Differences in Neuroinflammation. Int J Mol Sci 2024; 25:5377. [PMID: 38791415 PMCID: PMC11120930 DOI: 10.3390/ijms25105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
24
|
Izzy S, Yahya T, Albastaki O, Cao T, Schwerdtfeger LA, Abou-El-Hassan H, Chopra K, Ekwudo MN, Kurdeikaite U, Verissimo IM, LeServe DS, Lanser TB, Aronchik M, Oliveira MG, Moreira T, Rezende RM, El Khoury J, Cox LM, Weiner HL, Zafonte R, Whalen MJ. High-salt diet induces microbiome dysregulation, neuroinflammation and anxiety in the chronic period after mild repetitive closed head injury in adolescent mice. Brain Commun 2024; 6:fcae147. [PMID: 39045090 PMCID: PMC11264151 DOI: 10.1093/braincomms/fcae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 07/25/2024] Open
Abstract
The associations between human concussions and subsequent sequelae of chronic neuropsychiatric and cardiovascular diseases such as hypertension have been reported; however, little is known about the underlying biological processes. We hypothesized that dietary changes, including a high-salt diet, disrupt the bidirectional gut-brain axis, resulting in worsening neuroinflammation and emergence of cardiovascular and behavioural phenotypes in the chronic period after repetitive closed head injury in adolescent mice. Adolescent mice were subjected to three daily closed head injuries, recovered for 12 weeks and then maintained on a high-salt diet or a normal diet for an additional 12 weeks. Experimental endpoints were haemodynamics, behaviour, microglial gene expression (bulk RNA sequencing), brain inflammation (brain tissue quantitative PCR) and microbiome diversity (16S RNA sequencing). High-salt diet did not affect systemic blood pressure or heart rate in sham or injured mice. High-salt diet increased anxiety-like behaviour in injured mice compared to sham mice fed with high-salt diet and injured mice fed with normal diet. Increased anxiety in injured mice that received a high-salt diet was associated with microgliosis and a proinflammatory microglial transcriptomic signature, including upregulation in interferon-gamma, interferon-beta and oxidative stress-related pathways. Accordingly, we found upregulation of tumour necrosis factor-alpha and interferon-gamma mRNA in the brain tissue of high salt diet-fed injured mice. High-salt diet had a larger effect on the gut microbiome composition than repetitive closed head injury. Increases in gut microbes in the families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae were positively correlated with anxiety-like behaviours. In contrast, Muribaculaceae, Acholeplasmataceae and Lactobacillaceae were negatively correlated with anxiety in injured mice that received a high-salt diet, a time-dependent effect. The findings suggest that high-salt diet, administered after a recovery period, may affect neurologic outcomes following mild repetitive head injury, including the development of anxiety. This effect was linked to microbiome dysregulation and an exacerbation of microglial inflammation, which may be physiological targets to prevent behavioural sequelae in the chronic period after mild repetitive head injury. The data suggest an important contribution of diet in determining long-term outcomes after mild repetitive head injury.
Collapse
Affiliation(s)
- Saef Izzy
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- The Football Players Health Study at Harvard University, Boston, MA 02138, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Taha Yahya
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omar Albastaki
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tian Cao
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kusha Chopra
- Cancer Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Millicent N Ekwudo
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ugne Kurdeikaite
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelly M Verissimo
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Aronchik
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marilia G Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thais Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Joseph El Khoury
- Harvard Medical School, Boston, MA 02115, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ross Zafonte
- Harvard Medical School, Boston, MA 02115, USA
- The Football Players Health Study at Harvard University, Boston, MA 02138, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women’s Hospital, Boston, MA 02129, USA
| | - Michael J Whalen
- Harvard Medical School, Boston, MA 02115, USA
- The Football Players Health Study at Harvard University, Boston, MA 02138, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
25
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Belinchón-deMiguel P, Ramos-Campo DJ, Curiel-Regueros A, Martín-Rodríguez A, Tornero-Aguilera JF. The Interplay of Sports and Nutrition in Neurological Health and Recovery. J Clin Med 2024; 13:2065. [PMID: 38610829 PMCID: PMC11012304 DOI: 10.3390/jcm13072065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
This comprehensive review explores the dynamic relationship between sports, nutrition, and neurological health. Focusing on recent clinical advancements, it examines how physical activity and dietary practices influence the prevention, treatment, and rehabilitation of various neurological conditions. The review highlights the role of neuroimaging in understanding these interactions, discusses emerging technologies in neurotherapeutic interventions, and evaluates the efficacy of sports and nutritional strategies in enhancing neurological recovery. This synthesis of current knowledge aims to provide a deeper understanding of how lifestyle factors can be integrated into clinical practices to improve neurological outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Agustín Curiel-Regueros
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| |
Collapse
|
26
|
Shen J, Bian N, Zhao L, Wei J. The role of T-lymphocytes in central nervous system diseases. Brain Res Bull 2024; 209:110904. [PMID: 38387531 DOI: 10.1016/j.brainresbull.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.
Collapse
Affiliation(s)
- Jianing Shen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
27
|
Awe T, Fasawe A, Sawe C, Ogunware A, Jamiu AT, Allen M. The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system. AIMS Neurosci 2024; 11:49-62. [PMID: 38617041 PMCID: PMC11007408 DOI: 10.3934/neuroscience.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brain-gut axis refers to the communication between the central nervous system and the gastrointestinal tract, with the gut microbiome playing a crucial role. While our understanding of the interaction between the gut microbiome and the host's physiology is still in its nascent stage, evidence suggests that the gut microbiota can indeed modulate host behavior. Understanding the specific mechanisms by which the gut microbiota community modulates the host's behavior remains the focus of present and future neuro-gastroenterology studies. This paper reviews several pieces of evidence from the literature on the impact of gut microbiota on host behavior across animal taxa. We explore the different pathways through which this modulation occurs, with the aim of deepening our understanding of the fascinating relationship between the gut microbiome and the central nervous system.
Collapse
Affiliation(s)
- Temitope Awe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Caleb Sawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Adedayo Ogunware
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Michael Allen
- Department of Physiology, College of Medicine, Lagos State University, Lagos, Nigeria
| |
Collapse
|
28
|
Wang Q, Gao T, Zhang W, Liu D, Li X, Chen F, Mei J. Causal relationship between the gut microbiota and insomnia: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1279218. [PMID: 38500501 PMCID: PMC10945026 DOI: 10.3389/fcimb.2024.1279218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Changes in the gut microbiota are closely related to insomnia, but the causal relationship between them is not yet clear. Objective To clarify the relationship between the gut microbiota and insomnia and provide genetic evidence for them, we conducted a two-sample Mendelian randomization study. Methods We used a Mendelian randomized two-way validation method to discuss the causal relationship. First, we downloaded the data of 462,341 participants relating to insomnia, and the data of 18,340 participants relating to the gut microbiota from a genome-wide association study (GWAS). Then, we used two regression models, inverse-variance weighted (IVW) and MR-Egger regression, to evaluate the relationship between exposure factors and outcomes. Finally, we took a reverse MR analysis to assess the possibility of reverse causality. Results The combined results show 19 gut microbiotas to have a causal relationship with insomnia (odds ratio (OR): 1.03; 95% confidence interval (CI): 1.01, 1.05; p=0.000 for class. Negativicutes; OR: 1.03; 95% CI: 1.01, 1.05; p=0.000 for order.Selenomonadales; OR: 1.01; 95% CI: 1.00, 1.02; p=0.003 for genus.RikenellaceaeRC9gutgroup). The results were consistent with sensitivity analyses for these bacterial traits. In reverse MR analysis, we found no statistical difference between insomnia and these gut microbiotas. Conclusion This study can provide a new direction for the causal relationship between the gut microbiota (class.Negativicutes, order.Selenomonadales, genus.Lactococcus) and insomnia and the treatment or prevention strategies of insomnia.
Collapse
Affiliation(s)
- Qianfei Wang
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tianci Gao
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Weichao Zhang
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dong Liu
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin Li
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fenqiao Chen
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jianqiang Mei
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
29
|
Pan J, Lu D, Yu L, Ye Z, Duan H, Narbad A, Zhao J, Zhai Q, Tian F, Chen W. Nonylphenol induces depressive behavior in rats and affects gut microbiota: A dose-dependent effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123357. [PMID: 38228262 DOI: 10.1016/j.envpol.2024.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Nonylphenol (NP), an endocrine disruptor absorbed through food intake, was investigated in this study for its potential dose-response relationship with the manifestation of depression-like behavior in rats. Based on this, the mechanisms of NP-induced depressive behavior, encompassing neurotransmitters, gut barrier function, inflammatory response, gut microbiota composition and metabolites were further explored. At medium and high NP doses, both mRNA and protein levels of zonula occludens protein-1 and claudin-1 were considerably downregulated, concomitant with an elevation in tumor necrosis factor-α and interleukin-1β expression in a dose-dependent effect, resulting in damage to the gut mucosa. Despite a minimal impact on behavior and gut barriers at low NP doses, alterations in gut microbiota composition were observed. During NP exposure, dose-dependent changes in the gut microbiota revealed a decline in microbial diversity linked to the synthesis of short-chain fatty acids. NP not only adversely affected the gut microbiota structure but also exacerbated central nervous system damage through the gut-brain axis. The accumulation of NP may cause neurotransmitter disturbances and inflammatory responses in the hippocampus, which also exacerbate depressed behavior in rats. Therefore, NP could exacerbate the inflammatory response in the hippocampus and colon by compromising intestinal barrier integrity, facilitating the proliferation of pathogenic bacteria, impairing butyrate metabolism, and perturbing neurotransmitter homeostasis, thus aggravating the depressive behavior of rats. It is noteworthy that the changes in these indicators were related to the NP exposure dose.
Collapse
Affiliation(s)
- Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Dezhi Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
30
|
Elangovan A, Dahiya B, Kirola L, Iyer M, Jeeth P, Maharaj S, Kumari N, Lakhanpal V, Michel TM, Rao KRSS, Cho SG, Yadav MK, Gopalakrishnan AV, Kadhirvel S, Kumar NS, Vellingiri B. Does gut brain axis has an impact on Parkinson's disease (PD)? Ageing Res Rev 2024; 94:102171. [PMID: 38141735 DOI: 10.1016/j.arr.2023.102171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Parkinson's Disease (PD) is becoming a growing global concern by being the second most prevalent disease next to Alzheimer's Disease (AD). Henceforth new exploration is needed in search of new aspects towards the disease mechanism and origin. Evidence from recent studies has clearly stated the role of Gut Microbiota (GM) in the maintenance of the brain and as a root cause of various diseases and disorders including other neurological conditions. In the case of PD, with an unknown etiology, the GM is said to have a larger impact on the disease pathophysiology. Although GM and its metabolites are crucial for maintaining the normal physiology of the host, it is an undeniable fact that there is an influence of GM in the pathophysiology of PD. As such the Enteroendocrine Cells (EECs) in the epithelium of the intestine are one of the significant regulators of the gut-brain axis and act as a communication mediator between the gut and the brain. The communication is established via the molecules of neuroendocrine which are said to have a crucial part in neurological diseases such as AD, PD, and other psychiatry-related disorders. This review is focused on understanding the proper role of GM and EECs in PD. Here, we also focus on some of the metabolites and compounds that can interact with the PD genes causing various dysfunctions in the cell and facilitating the disease conditions using bioinformatical tools. Various mechanisms concerning EECs and PD, their identification, the latest studies, and available current therapies have also been discussed.
Collapse
Affiliation(s)
- Ajay Elangovan
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Bhawna Dahiya
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Laxmi Kirola
- Department of Biotechnology, School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007, India
| | - Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India; Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India
| | - Priyanka Jeeth
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sakshi Maharaj
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nikki Kumari
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda 151005, Punjab, India
| | - Tanja Maria Michel
- Research Unit of Psychiatry, Dept. of Psychiatry Odense, Clinical Institute, University of Southern Denmark, J.B. Winslowsvej 20, Indg. 220B, Odense, Denmark
| | - K R S Sambasiva Rao
- Mangalayatan University - Jabalpur, Jabalpur - 481662, Madhya Pradesh, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Saraboji Kadhirvel
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004 Mizoram, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
31
|
Wu JJ, Wei Z. Advances in the study of the effects of gut microflora on microglia in Alzheimer's disease. Front Mol Neurosci 2023; 16:1295916. [PMID: 38098943 PMCID: PMC10720669 DOI: 10.3389/fnmol.2023.1295916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Alzheimer's disease (AD) is a central nervous system (CNS) degenerative disorder, is caused by various factors including β-amyloid toxicity, hyperphosphorylation of tau protein, oxidative stress, and others. The dysfunction of microglia has been associated with the onset and advancement of different neurodevelopmental and neurodegenerative disorders, such as AD. The gut of mammals harbors a vast and complex population of microorganisms, commonly referred to as the microbiota. There's a growing recognition that these gut microbes are intrinsically intertwined with mammalian physiology. Through the circulation of metabolites, they establish metabolic symbiosis, enhance immune function, and establish communication with different remote cells, including those in the brain. The gut microbiome plays a crucial part in influencing the development and performance of microglia, as indicated by recent preclinical studies. Dysbiosis of the intestinal flora leads to alterations in the microglia transcriptome that regulate the interconversion of microglia subtypes. This conversation explores recent research that clarifies how gut bacteria, their byproducts, and harmful elements affect the activation and characteristics of microglia. This understanding opens doors to innovative microbial-based therapeutic strategies for early identification and treatment goals in AD.
Collapse
Affiliation(s)
- Jin-Jing Wu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhe Wei
- School of Medicine, Lishui University, Lishui, Zhejiang, China
- Institute of Breast Oncology, Lishui University Medical College, Lishui, Zhejiang, China
| |
Collapse
|
32
|
Amidu SB, Boamah VE, Ekuadzi E, Mante PK. Gut-Brain-axis: effect of basil oil on the gut microbiota and its contribution to the anticonvulsant properties. BMC Complement Med Ther 2023; 23:393. [PMID: 37924049 PMCID: PMC10623859 DOI: 10.1186/s12906-023-04211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Epilepsy is a chronic neurological condition that disrupts the normal functioning of the brain and it is characterized by seizures. Research suggests the involvement of the Gut-Brain axis in epilepsy. This study seeks to determine the role of the gut microbiota in the anticonvulsant effect of basil oil (BO) using antibiotic-depleted and altered germ-free mice against naïve mice in Pentylenetetrazole (PTZ) induced seizure model. There is an ever growing interest in improvement of treatment outcomes in epilepsy and also in the development of newer therapeutic options, especially in the population of patients that do not attain seizure relief from available antiseizure medications (ASMs). According to research, gut microbiota can alter brain function and development. Increasing evidence suggests disrupting the delicate symbiotic balance existing between the gut and brain results in disease conditions. Also, the oil from Ocimum basilicum L., (BO) has been proven scientifically to significantly block clonic seizures induced by PTZ and picrotoxin in seizure models. METHODS The microbiota of mice were depleted or altered by administering cocktail antibiotics and individual antibiotics respectively. DNA was isolated from mouse stool, and then the 16S ribosomal ribonucleic acid (16S rRNA) gene was quantitatively amplified using reverse transcription-polymerase chain reaction (RT-PCR). Amplicons were sequenced to determine the phylogenetic make-up of the bacteria involved. Metabolic profiles of the serum and stool of mice were determined using Proton (1H) Nuclear Magnetic Resonance (NMR) spectroscopy. RESULTS Cocktail antibiotic pre-treatment significantly reversed the anticonvulsant effect of BO by increasing frequency and duration of seizures but did not affect latency to seizure. In mice pre-treated with single antibiotics, the anticonvulsant effect of BO was lost as latency to seizures, frequency and duration of seizures increased compared to mice that received only BO. Assessment of the phylogenetic make-up of the microbiota in antibiotic pre-treated mice showed a distorted composition of the microbiota compared to the control group. CONCLUSION Depletion of the microbiota significantly reversed the anticonvulsant actions of BO. The concentrations of short chain fatty acids (SCFAs) was higher in stool than in the serum of the mice. Administration of BO probably does not influence the microbial composition within the mouse microbiota. The elevated ratio of Firmicutes to Bacteroidetes in microbiota-depleted groups might have contributed to the reversal of anticonvulsant actions of BO.
Collapse
Affiliation(s)
- Sumaiya Bandile Amidu
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
| | - Vivian Etsiapa Boamah
- Department of Pharmaceutics, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
| | - Edmund Ekuadzi
- Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
| | - Priscilla Kolibea Mante
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana.
| |
Collapse
|
33
|
Nitzan Z, Staun-Ram E, Volkowich A, Miller A. Multiple Sclerosis-Associated Gut Microbiome in the Israeli Diverse Populations: Associations with Ethnicity, Gender, Disability Status, Vitamin D Levels, and Mediterranean Diet. Int J Mol Sci 2023; 24:15024. [PMID: 37834472 PMCID: PMC10573818 DOI: 10.3390/ijms241915024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Microbiome dysbiosis is increasingly being recognized as implicated in immune-mediated disorders including multiple sclerosis (MS). The microbiome is modulated by genetic and environmental factors including lifestyle, diet, and drug intake. This study aimed to characterize the MS-associated gut microbiome in the Israeli populations and to identify associations with demographic, dietary, and clinical features. The microbiota from 57 treatment-naive patients with MS (PwMS) and 43 age- and gender-matched healthy controls (HCs) was sequenced and abundance compared. Associations between differential microbes with demographic or clinical characteristics, as well as diet and nutrient intake, were assessed. While there was no difference in α- or β-diversity of the microbiome, we identified 40 microbes from different taxonomic levels that differ in abundance between PwMS and HCs, including Barnesiella, Collinsella, Egerthella, Mitsuokella, Olsenella Romboutsia, and Succinivibrio, all enhanced in PwMS, while several members of Lacnospira were reduced. Additional MS-differential microbes specific to ethnicity were identified. Several MS-specific microbial patterns were associated with gender, vitamin D level, Mediterranean diet, nutrient intake, or disability status. Thus, PwMS have altered microbiota composition, with distinctive patterns related to geographic locations and population. Microbiome dysbiosis seem to be implicated in disease progression, gender-related differences, and vitamin D-mediated immunological effects recognized in MS. Dietary interventions may be beneficial in restoring a "healthy microbiota" as part of applying comprehensive personalized therapeutic strategies for PwMS.
Collapse
Affiliation(s)
- Zehavit Nitzan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Anat Volkowich
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
34
|
Wang J, Chen Y, Li M, Xia S, Zhao K, Fan H, Ni J, Sun W, Jia X, Lai S. The effects of differential feeding on ileum development, digestive ability and health status of newborn calves. Front Vet Sci 2023; 10:1255122. [PMID: 37745216 PMCID: PMC10514501 DOI: 10.3389/fvets.2023.1255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Pre-weaning is the most important period for the growth and development of calves. Intestinal morphology, microbial community and immunity are initially constructed at this stage, and even have a lifelong impact on calves. Early feeding patterns have a significant impact on gastrointestinal development and microbial communities. This study mainly analyzed the effects of three feeding methods on the gastrointestinal development of calves, and provided a theoretical basis for further improving the feeding mode of calves. it is very important to develop a suitable feeding mode. In this study, we selected nine newborn healthy Holstein bull calves were randomly selected and divided into three groups (n = 3), which were fed with starter + hay + milk (SH group), starter + milk (SF group), total mixed ration + milk (TMR group). After 80 days of feeding Feeding to 80 days of age after, the ileum contents and blood samples were collected, and the differences were compared and analyzed by metagenomic analysis and serum metabolomics analysis. Results show that compared with the other two groups, the intestinal epithelium of the SH group was more complete and the goblet cells developed better. The feeding method of SH group was more conducive to the development of calves, with higher daily gain and no pathological inflammatory reaction. The intestinal microbial community was more conducive to digestion and absorption, and the immunity was stronger. These findings are helpful for us to explore better calf feeding patterns. In the next step, we will set up more biological replicates to study the deep-seated reasons for the differences in the development of pre-weaning calves. At the same time, the new discoveries of neuro microbiology broaden our horizons and are the focus of our future attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
35
|
Hammond TC, Green SJ, Jacobs Y, Chlipala GE, Xing X, Heil S, Chen A, Aware C, Flemister A, Stromberg A, Balchandani P, Lin AL. Gut microbiome association with brain imaging markers, APOE genotype, calcium and vegetable intakes, and obesity in healthy aging adults. Front Aging Neurosci 2023; 15:1227203. [PMID: 37736325 PMCID: PMC10510313 DOI: 10.3389/fnagi.2023.1227203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction Advanced age is a significant factor in changes to brain physiology and cognitive functions. Recent research has highlighted the critical role of the gut microbiome in modulating brain functions during aging, which can be influenced by various factors such as apolipoprotein E (APOE) genetic variance, body mass index (BMI), diabetes, and dietary intake. However, the associations between the gut microbiome and these factors, as well as brain structural, vascular, and metabolic imaging markers, have not been well explored. Methods We recruited 30 community dwelling older adults between age 55-85 in Kentucky. We collected the medical history from the electronic health record as well as the Dietary Screener Questionnaire. We performed APOE genotyping with an oral swab, gut microbiome analysis using metagenomics sequencing, and brain structural, vascular, and metabolic imaging using MRI. Results Individuals with APOE e2 and APOE e4 genotypes had distinct microbiota composition, and higher level of pro-inflammatory microbiota were associated higher BMI and diabetes. In contrast, calcium- and vegetable-rich diets were associated with microbiota that produced short chain fatty acids leading to an anti-inflammatory state. We also found that important gut microbial butyrate producers were correlated with the volume of the thalamus and corpus callosum, which are regions of the brain responsible for relaying and processing information. Additionally, putative proinflammatory species were negatively correlated with GABA production, an inhibitory neurotransmitter. Furthermore, we observed that the relative abundance of bacteria from the family Eggerthellaceae, equol producers, was correlated with white matter integrity in tracts connecting the brain regions related to language, memory, and learning. Discussion These findings highlight the importance of gut microbiome association with brain health in aging population and could have important implications aimed at optimizing healthy brain aging through precision prebiotic, probiotic or dietary interventions.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States
| | - Yael Jacobs
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George E. Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, United States
| | - Xin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Sally Heil
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Anna Chen
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Chetan Aware
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Abeoseh Flemister
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Arnold Stromberg
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
36
|
Palacios N, Wilkinson J, Bjornevik K, Schwarzschild MA, McIver L, Ascherio A, Huttenhower C. Metagenomics of the Gut Microbiome in Parkinson's Disease: Prodromal Changes. Ann Neurol 2023; 94:486-501. [PMID: 37314861 PMCID: PMC10538421 DOI: 10.1002/ana.26719] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Prior studies on the gut microbiome in Parkinson's disease (PD) have yielded conflicting results, and few studies have focused on prodromal (premotor) PD or used shotgun metagenomic profiling to assess microbial functional potential. We conducted a nested case-control study within 2 large epidemiological cohorts to examine the role of the gut microbiome in PD. METHODS We profiled the fecal metagenomes of 420 participants in the Nurses' Health Study and the Health Professionals Follow-up Study with recent onset PD (N = 75), with features of prodromal PD (N = 101), controls with constipation (N = 113), and healthy controls (N = 131) to identify microbial taxonomic and functional features associated with PD and features suggestive of prodromal PD. Omnibus and feature-wise analyses identified bacterial species and pathways associated with prodromal and recently onset PD. RESULTS We observed depletion of several strict anaerobes associated with reduced inflammation among participants with PD or features of prodromal PD. A microbiome-based classifier had moderate accuracy (area under the curve [AUC] = 0.76 for species and 0.74 for pathways) to discriminate between recently onset PD cases and controls. These taxonomic shifts corresponded with functional shifts indicative of carbohydrate source preference. Similar, but less marked, changes were observed in participants with features of prodromal PD, in both microbial features and functions. INTERPRETATION PD and features of prodromal PD were associated with similar changes in the gut microbiome. These findings suggest that changes in the microbiome could represent novel biomarkers for the earliest phases of PD. ANN NEUROL 2023;94:486-501.
Collapse
Affiliation(s)
- Natalia Palacios
- Department of Public Health, University of Massachusetts Lowell, Lowell, MA
- Department of Veterans Affairs, ENRM VA Hospital, Bedford, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
| | | | - Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
| | | | - Lauren McIver
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center (HCMPH)
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
37
|
Singh SV, Ganguly R, Jaiswal K, Yadav AK, Kumar R, Pandey AK. Molecular signalling during cross talk between gut brain axis regulation and progression of irritable bowel syndrome: A comprehensive review. World J Clin Cases 2023; 11:4458-4476. [PMID: 37469740 PMCID: PMC10353503 DOI: 10.12998/wjcc.v11.i19.4458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional disorder which alters gastrointestinal (GI) functions, thus leading to compromised health status. Pathophysiology of IBS is not fully understood, whereas abnormal gut brain axis (GBA) has been identified as a major etiological factor. Recent studies are suggestive for visceral hyper-sensitivity, altered gut motility and dysfunctional autonomous nervous system as the main clinical abnormalities in IBS patients. Bidirectional signalling interactions among these abnormalities are derived through various exogenous and endogenous factors, such as microbiota population and diversity, microbial metabolites, dietary uptake, and psychological abnormalities. Strategic efforts focused to study these interactions including probiotics, antibiotics and fecal transplantations in normal and germ-free animals are clearly suggestive for the pivotal role of gut microbiota in IBS etiology. Additionally, neurotransmitters act as communication tools between enteric microbiota and brain functions, where serotonin (5-hydroxytryptamine) plays a key role in pathophysiology of IBS. It regulates GI motility, pain sense and inflammatory responses particular to mucosal and brain activity. In the absence of a better understanding of various interconnected crosstalks in GBA, more scientific efforts are required in the search of novel and targeted therapies for the management of IBS. In this review, we have summarized the gut microbial composition, interconnected signalling pathways and their regulators, available therapeutics, and the gaps needed to fill for a better management of IBS.
Collapse
Affiliation(s)
- Shiv Vardan Singh
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Kritika Jaiswal
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Aditya Kumar Yadav
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| |
Collapse
|
38
|
Yeo J. Influence of food-derived bioactives on gut microbiota compositions and their metabolites by focusing on neurotransmitters. Food Sci Biotechnol 2023; 32:1019-1027. [PMID: 37215258 PMCID: PMC10195957 DOI: 10.1007/s10068-023-01293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
The behavior of gut microbiota is closely involved in sustaining balanced immune and metabolic homeostasis, and the dysbiosis of gut microbiota can lead to severe disease. Foods and dietary patterns are the primary drivers in shaping/designing gut microbiota compositions and their metabolites across the lifetime. This indicates the importance of functional molecules present in the food matrix in the life of gut microbiota and their influence on the host's biological system. In this contribution, the effects of different dietary choices and bioactive compounds (i.e., phenolics, vitamins, carotenoids) on gut microbiome compositions and their metabolites are comprehensively discussed by focusing on neurotransmitters. This study may provide useful information that fills a gap in understanding the role of the gut microbiota and its alterations as affected by foods and food-derived bioactives.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul Campus, Seoul, 05029 Republic of Korea
| |
Collapse
|
39
|
Jiao Y, Zhao Z, Li X, Li L, Xiao D, Wan S, Wu T, Li T, Li P, Zhao R. Salidroside ameliorates memory impairment following long-term ethanol intake in rats by modulating the altered intestinal microbiota content and hippocampal gene expression. Front Microbiol 2023; 14:1172936. [PMID: 37362918 PMCID: PMC10288325 DOI: 10.3389/fmicb.2023.1172936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background Salidroside (Sal), the main component of a famous herb Rhodiola rosea L, enhances memory performance and reduces fatigue. Therefore, this study assessed the effect of Sal on memory impairment induced by a long-term intake of ethanol (EtOH) in rats and investigated its relevant mechanisms using gut microbiota metagenomic analysis and hippocampal transcriptomic analysis. Methods Eighteen male SD rats were divided into the normal control group (CON group), EtOH model group (Model group), and Sal treatment group (Sal group). The rats in the Model and Sal groups intragastrically (i.g.) received 2 g/kg EtOH for 30 consecutive days, whereas the CON group was given an equal volume of distilled water. Meanwhile, the rats in the Sal group were administered i.g. 30 mg/kg Sal 60 min after EtOH intake. All rats were tested in the eight-arm maze for their memory function every 3 days. On the 30th day, metagenomic analyses of gut microbiota and transcriptomic analyses of the hippocampus were performed. Results Compared with the Model group, Sal treatment reduced the total time to complete the eight-arm maze task, decreased the number of arm entries, and abated the working memory error that was significant from the 9th day. Additionally, Sal intervention improved the gut microbiota composition, such as the increased abundance of Actinobacteria and Bifidobacterium, which was related to the metabolism of amino acids and terpenoid carbohydrate, endocrine function, and signal transduction by neurotransmitters. In the hippocampus, the EtOH intake differentially expressed 68 genes (54 genes increased, whereas 14 genes decreased), compared with the CON group, whereas Sal intervention affected these changes: 15 genes increased whereas 11 genes decreased. And, enrichment analyses revealed these genes were related to the structural components of the ribosome, mRNA splicing process, protein translation, mitochondria function, and immunological reaction. Finally, a correlation analysis found the memory impairment was positively correlated with the abnormal upregulation of Tomm7 but negatively correlated with decreased abundance of gut Alistipes_indistinctus, Lactobacillus_taiwanensis, Lactobacillus_paragasseri, and Lactobacillus johnsonii. Conclusion Sal improved memory impairment caused by long-term EtOH intake in rats, which may be related to its regulation of gut dysbiosis and hippocampal dysfunction.
Collapse
Affiliation(s)
- Yu Jiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhenglin Zhao
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xin Li
- Department of Psychiatry, The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lulu Li
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou, Henan, China
| | - Siyuan Wan
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Wu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Rongjie Zhao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
40
|
Prado C, Espinoza A, Martínez-Hernández JE, Petrosino J, Riquelme E, Martin AJM, Pacheco R. GPR43 stimulation on TCRαβ + intraepithelial colonic lymphocytes inhibits the recruitment of encephalitogenic T-cells into the central nervous system and attenuates the development of autoimmunity. J Neuroinflammation 2023; 20:135. [PMID: 37264394 PMCID: PMC10233874 DOI: 10.1186/s12974-023-02815-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαβ+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαβ+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαβ+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαβ+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
| | - J Eduardo Martínez-Hernández
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erick Riquelme
- Respiratory Diseases Department, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Providencia, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| |
Collapse
|
41
|
Sun C, Sang S, Tang Y, Niu X, Yoo HS, Zhou P, Liu H, Gong Y, Xu L. Effects of music therapy on anxiety in patients with cancer: study protocol of a randomised controlled trial. BMJ Open 2023; 13:e067360. [PMID: 37247967 DOI: 10.1136/bmjopen-2022-067360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Although music therapy (MT) has been found to reduce anxiety in patients with cancer and delay tumour progression to some extent, its mechanism of action has not been determined. MT may reduce anxiety by reducing the concentrations of proinflammatory cytokines. The present study was designed to evaluate the effects of MT on anxiety and cytokine levels in patients with cancer. METHODS AND ANALYSIS This randomised, open, single-centre parallel-controlled trial will randomise 60 patients with malignant tumours who meet the inclusion criteria in a 1:1 ratio to either an MT group or a non-MT (NMT) group. Patients in the MT group will receive emotional nursing care and individualised receptive MT for 1 week, whereas patients in the NMT group will receive emotional nursing care alone. Primary outcomes will include scores on the State-Trait Anxiety Inventory, Distress Thermometer and Hamilton Anxiety Scale. Secondary outcomes will include scores on the Quality of Life Questionnaire C30, serum concentrations of the cytokines interleukin (IL)-1β, tumour necrosis factor-α, IL-2R, IL-4, IL-6, IL-8 and IL-10, serum concentrations of the neurotransmitters 5-hydroxytryptamine, dopamine, norepinephrine, adrenocorticotropic hormone and γ-aminobutyric acid, and determination of gut microbiota populations. ETHICS AND DISSEMINATION On 5 August 2020, the study protocol was approved by the Research Ethics Committee of the Yueyang Hospital of Integrated Traditional Chinese and Western Medicine of the Shanghai University of Traditional Chinese Medicine. The findings of this study will be published in peer-reviewed publications and presented at appropriate conferences. TRIAL REGISTRATION NUMBER CTR2000035244.
Collapse
Affiliation(s)
- Chenbing Sun
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuliu Sang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhe Tang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodie Niu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hwa-Seung Yoo
- Department of Integrative Oncology, East West Cancer Center, Seoul Korea Medicine Hospital, Seoul, Korea (the Republic of)
| | - Ping Zhou
- Department of Music Education, Shanghai Conservatory of Music, Shanghai, China
| | - Hao Liu
- Department of Music Engineering, Shanghai Conservatory of Music, Shanghai, China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Molina-Mateo D, Valderrama BP, Zárate RV, Hidalgo S, Tamayo-Leiva J, Soto A, Guerra S, Arriagada V, Oliva C, Diez B, Campusano JM. Kanamycin treatment in the pre-symptomatic stage of a Drosophila PD model prevents the onset of non-motor alterations. Neuropharmacology 2023; 236:109573. [PMID: 37196855 DOI: 10.1016/j.neuropharm.2023.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor alterations, which is preceded by a prodromal stage where non-motor symptoms are observed. Over recent years, it has become evident that this disorder involves other organs that communicate with the brain like the gut. Importantly, the microbial community that lives in the gut plays a key role in this communication, the so-called microbiota-gut-brain axis. Alterations in this axis have been associated to several disorders including PD. Here we proposed that the gut microbiota is different in the presymptomatic stage of a Drosophila model for PD, the Pink1B9 mutant fly, as compared to that observed in control animals. Our results show this is the case: there is basal dysbiosis in mutant animals evidenced by substantial difference in the composition of midgut microbiota in 8-9 days old Pink1B9 mutant flies as compared with control animals. Further, we fed young adult control and mutant flies kanamycin and analyzed motor and non-motor behavioral parameters in these animals. Data show that kanamycin treatment induces the recovery of some of the non-motor parameters altered in the pre-motor stage of the PD fly model, while there is no substantial change in locomotor parameters recorded at this stage. On the other hand, our results show that feeding young animals the antibiotic, results in a long-lasting improvement of locomotion in control flies. Our data support that manipulations of gut microbiota in young animals could have beneficial effects on PD progression and age-dependent motor impairments.
Collapse
Affiliation(s)
- D Molina-Mateo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Centro Interdisciplinario de Neurociencia UC, Pontificia Universidad Católica de Chile, Chile
| | - B P Valderrama
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - R V Zárate
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - S Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - J Tamayo-Leiva
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Center for Genome Regulation, Faculty of Science, University of Chile, Santiago, Chile
| | - A Soto
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - S Guerra
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - V Arriagada
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - C Oliva
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - B Diez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Center for Genome Regulation, Faculty of Science, University of Chile, Santiago, Chile; Center for Climate and Resilience Research, University of Chile, Santiago, Chile
| | - J M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Centro Interdisciplinario de Neurociencia UC, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
43
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
44
|
Reyes-Martínez S, Segura-Real L, Gómez-García AP, Tesoro-Cruz E, Constantino-Jonapa LA, Amedei A, Aguirre-García MM. Neuroinflammation, Microbiota-Gut-Brain Axis, and Depression: The Vicious Circle. J Integr Neurosci 2023; 22:65. [PMID: 37258450 DOI: 10.31083/j.jin2203065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/02/2023] Open
Abstract
Depression is the leading cause of disability worldwide, contributing to the global disease burden. From above, it is a priority to investigate models that fully explain its physiopathology to develop new treatments. In the last decade, many studies have shown that gut microbiota (GM) dysbiosis influences brain functions and participate, in association with immunity, in the pathogenesis of depression. Thereby, GM modulation could be a novel therapeutic target for depression. This review aims to evidence how the GM and the immune system influence mental illness, particularly depression. Here, we focus on the communication mechanisms between the intestine and the brain and the impact on the development of neuroinflammation contributing to the development of Major Depressive Disorder (MDD). However, most of the current findings are in animal models, suggesting the need for studies in humans. In addition, more analysis of metabolites and cytokines are needed to identify new pathophysiological mechanisms improving anti-depression treatments.
Collapse
Affiliation(s)
- Sandy Reyes-Martínez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| | - Lorena Segura-Real
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| | - Ana Pamela Gómez-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Infectología e Inmunología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Col. La Raza, 02990 Ciudad de México, Mexico
| | - Luis A Constantino-Jonapa
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - María M Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Ciudad de México, Mexico
| |
Collapse
|
45
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
46
|
Pesantes N, Barberá A, Pérez-Rocher B, Artacho A, Vargas SL, Moya A, Ruiz-Ruiz S. Influence of mental health medication on microbiota in the elderly population in the Valencian region. Front Microbiol 2023; 14:1094071. [PMID: 37007475 PMCID: PMC10062206 DOI: 10.3389/fmicb.2023.1094071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Spain has an aging population; 19.93% of the Spanish population is over 65. Aging is accompanied by several health issues, including mental health disorders and changes in the gut microbiota. The gut-brain axis is a bidirectional network linking the central nervous system with gastrointestinal tract functions, and therefore, the gut microbiota can influence an individual’s mental health. Furthermore, aging-related physiological changes affect the gut microbiota, with differences in taxa and their associated metabolic functions between younger and older people. Here, we took a case–control approach to study the interplay between gut microbiota and mental health of elderly people. Fecal and saliva samples from 101 healthy volunteers over 65 were collected, of which 28 (EE|MH group) reported using antidepressants or medication for anxiety or insomnia at the time of sampling. The rest of the volunteers (EE|NOMH group) were the control group. 16S rRNA gene sequencing and metagenomic sequencing were applied to determine the differences between intestinal and oral microbiota. Significant differences in genera were found, specifically eight in the gut microbiota, and five in the oral microbiota. Functional analysis of fecal samples showed differences in five orthologous genes related to tryptophan metabolism, the precursor of serotonin and melatonin, and in six categories related to serine metabolism, a precursor of tryptophan. Moreover, we found 29 metabolic pathways with significant inter-group differences, including pathways regulating longevity, the dopaminergic synapse, the serotoninergic synapse, and two amino acids.
Collapse
Affiliation(s)
- Nicole Pesantes
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Ana Barberá
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
| | - Benjamí Pérez-Rocher
- Instituto de Biología Integrativa de Sistemas (I2Sysbio), CSIC-Universitat de València, València, Spain
| | - Alejandro Artacho
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
| | - Sergio Luís Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
- Instituto de Biología Integrativa de Sistemas (I2Sysbio), CSIC-Universitat de València, València, Spain
| | - Susana Ruiz-Ruiz
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
- *Correspondence: Susana Ruiz-Ruiz,
| |
Collapse
|
47
|
Park JM, Lee SC, Ham C, Kim YW. Effect of probiotic supplementation on gastrointestinal motility, inflammation, motor, non-motor symptoms and mental health in Parkinson's disease: a meta-analysis of randomized controlled trials. Gut Pathog 2023; 15:9. [PMID: 36879342 PMCID: PMC9990363 DOI: 10.1186/s13099-023-00536-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Gut dysbiosis is hypothesized to cause PD; therefore, whether probiotics can be used as adjuvants in the treatment of PD is being actively investigated. AIMS We performed a systematic review and meta-analysis to evaluate the effectiveness of probiotic therapy in PD patients. METHODS PUBMED/MEDLINE, EMBASE, Cochrane, Scopus, PsycINFO and Web of Science databases were searched till February 20, 2023. The meta-analysis used a random effects model and the effect size was calculated as mean difference or standardized mean difference. We assessed the quality of the evidence using the Grade of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS Eleven studies involving 840 participants were included in the final analysis. This meta-analysis showed high-quality evidence of improvement in Unified PD Rating Scale Part III motor scale (standardized mean difference [95% confidence interval]) (- 0.65 [- 1.11 to - 0.19]), non-motor symptom (- 0.81 [- 1.12 to - 0.51]), and depression scale (- 0.70 [- 0.93 to -0.46]). Moderate to low quality evidence of significant improvement was observed in gastrointestinal motility (0.83 [0.45-1.10]), quality of life (- 1.02 [- 1.66 to - 0.37]), anxiety scale (- 0.72 [- 1.10 to - 0.35]), serum inflammatory markers (- 5.98 [- 9.20 to - 2.75]), and diabetes risk (- 3.46 [- 4.72 to - 2.20]). However, there were no significant improvements in Bristol Stool Scale scores, constipation, antioxidant capacity, and risk of dyslipidemia. In a subgroup analysis, probiotic capsules improved gastrointestinal motility compared to fermented milk. CONCLUSION Probiotic supplements may be suitable for improving the motor and non-motor symptoms of PD and reducing depression. Further research is warranted to determine the mechanism of action of probiotics and to determine the optimal treatment protocol.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Chorom Ham
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
48
|
Zhai Y, Luo Y, Mo X, Yang P, Pang Y, Wu L, Zheng G, Zou M, Ma W, Wang K, Li Y, Chen Y, Mei X. Zhuang medicine Shuanglu Tongnao Compound Recipe treats stroke by affecting the intestinal flora regulated by the TLR4/NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:174. [PMID: 36923097 PMCID: PMC10009559 DOI: 10.21037/atm-23-253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Background The standardized treatment of ischemic stroke (IS) with Shuanglu Tongnao Compound Recipe (SLTNCR) combined with Western medicine has improved the life quality and neurological function of patients and achieved a satisfactory clinical effect. However, the underlying mechanisms of SLTNCR in the treatment of IS remain unclear. Methods A rat model of IS was prepared using Longa's wire bolus method. SLTNCR was administered by gavage with following doses: low dose, 7.16 g·kg-1; middle dose, 14.33 g·kg-1; high dose, 28.66 g·kg-1. The expressions of toll-like receptor 4 (TLR4), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, nuclear factor-κB (NF-κB), etc., brain neuron damage, small intestine structure, and the structure of intestinal flora of rats in the high, medium, and low dose SLTNCR groups as well as the Injury + Clostridium butyricum and Injury + Edaravone groups were detected by 16SrRNA gene sequencing, western blot, hematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR). Results SLTNCR significantly reduced the brain water content, decreased the cerebral infarct size, and improved the neurological deficits, neuronal damage, small bowel tissue damage, and expression of inflammatory factors [B-cell CLL/lymphoma 2 (Bcl-2), BCL2 associated agonist of cell death (Bad), cleaved-caspase-3] in brain tissue. SLTNCR administration significantly inhibited expressions of TLR4, NF-κB, and inhibitor of nuclear factor kappa B (IκB), and decreased phosphorylation levels of NF-κB and IκB in the small intestinal tissues of IS rats. Moreover, SLTNCR also significantly upregulated the expression of intestinal barrier function-related molecules [zona occludens 1 (ZO-1), occludin, claudin-5] and regulated the expression of colonic TLR4, TNF-α, IL-6, and IL-1β. SLTNCR can improve the symptoms of IS rats by improving brain and small intestinal function, particularly by regulating the TLR4/NF-κB signaling pathway, apoptotic proteins, and inflammatory factors in brain tissue. Gut microbiota analysis helped to identify the pharmacological mechanisms underlying the effects of SLTNCR on intestinal bacterial diversity and flora structure in IS rats. Conclusions SLTNCR can alleviate symptoms of IS and the potential mechanism of its effect is to protect brain tissue by suppressing inflammation. SLTNCR can also alter the structure and diversity of the bacterial community in IS.
Collapse
Affiliation(s)
- Yang Zhai
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yihui Luo
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Xueni Mo
- Department of Neurology, Guangxi University of Chinese Medicine, Nanning, China
| | - Peng Yang
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yan Pang
- Department of Emergency, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Lin Wu
- Department of Neurology, Guangxi University of Chinese Medicine, Nanning, China
| | - Guangshan Zheng
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Min Zou
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Wei Ma
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Kaihua Wang
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yan Li
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Ying Chen
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Xiaoping Mei
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| |
Collapse
|
49
|
Kumari S, Taliyan R, Dubey SK. Comprehensive Review on Potential Signaling Pathways Involving the Transfer of α-Synuclein from the Gut to the Brain That Leads to Parkinson's Disease. ACS Chem Neurosci 2023; 14:590-602. [PMID: 36724408 DOI: 10.1021/acschemneuro.2c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease is the second most prevalent neurological disease after Alzheimer's. Primarily, old age males are more affected than females. The aggregates of oligomeric forms of α-synuclein cause the loss of dopaminergic neurons in the substantia nigra pars compacta. Further, it leads to dopamine shortage in the striatum region. According to recent preclinical studies, environmental factors like pesticides, food supplements, pathogens, etc. enter the body through the mouth or nose and ultimately reach the gut. Further, these factors get accumulated in enteric nervous system which leads to misfolding of α-synuclein gene, and aggregation of this gene results in Lewy pathology in the gut and reaches to the brain through the vagus nerve. This evidence showed a strong bidirectional connection between the gut and the brain, which leads to gastrointestinal problems in Parkinson patients. Moreover, several studies reveal that patients with Parkinson experience more gastrointestinal issues in the early stages of the disease, such as constipation, increased motility, gut inflammation, etc. This review article focuses on the transmission of α-synuclein and the mechanisms involved in the link between the gut and the brain in Parkinson's disease. Also, this review explores the various pathways involved in Parkinson and current therapeutic approaches for the improvement of Parkinson's disease.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science─Pilani, Pilani, 333031 Rajasthan, India
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science─Pilani, Pilani, 333031 Rajasthan, India
| | | |
Collapse
|
50
|
Wu N, Li X, Ma H, Zhang X, Liu B, Wang Y, Zheng Q, Fan X. The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Front Neurol 2023; 14:1108738. [PMID: 36816570 PMCID: PMC9929158 DOI: 10.3389/fneur.2023.1108738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays a key role in the function of the host immune system and neuroimmune diseases. Alterations in the composition of the gut microbiota can lead to pathology and altered formation of microbiota-derived components and metabolites. A series of neuroimmune diseases, such as myasthenia gravis (MG), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSDs), Guillain-Barré syndrome (GBS), and autoimmune encephalitis (AIE), are associated with changes in the gut microbiota. Microecological therapy by improving the gut microbiota is expected to be an effective measure for treating and preventing some neuroimmune diseases. This article reviews the research progress related to the roles of gut microbiota and fecal microbiota transplantation (FMT) in neuroimmune diseases.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xizhi Li
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yuan Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,*Correspondence: Yuan Wang ✉
| | - Qi Zheng
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Qi Zheng ✉
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Xueli Fan ✉
| |
Collapse
|