1
|
Shah FA, Qadir H, Khan JZ, Faheem M. A review: From old drugs to new solutions: The role of repositioning in alzheimer's disease treatment. Neuroscience 2025; 576:167-181. [PMID: 40164279 DOI: 10.1016/j.neuroscience.2025.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Drug repositioning or drug reprofiling, involves identifying novel indications for approved and previously abandoned drugs in the treatment of other diseases. The traditional drug discovery process is tedious, time-consuming, risky, and challenging. Fortunately, the inception of the drug repositioning concept has expedited the process by using compounds with established safety profiles in humans, and thereby significantly reducing costs. Alzheimer's disease (AD) is a severe neurological disorder characterized by progressive degeneration of the brain with limited and less effective therapeutic interventions. Researchers have attempted to identify potential treatment of AD from existing drug however, the success of drug repositioning strategy in AD remains uncertain. This article briefly discusses the importance and effectiveness of drug repositioning strategies, the major obstacles in the development of drugs for AD, approaches to address these challenges, and the role of machine learning in identifying early markers of AD for improved management.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Halima Qadir
- Shifa College of Pharmaceutical Sciences, STMU, Islamabad Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad Pakistan.
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan.
| |
Collapse
|
2
|
Li Y, Yu Q, Lu Y, Ma Y, Qi J, Chen Z, Zhu Q, Wu W. Choline-based ionic liquids enhance the dermal delivery of cyclosporine a for potential treatment of psoriasis. Drug Deliv Transl Res 2025; 15:1693-1706. [PMID: 39237671 DOI: 10.1007/s13346-024-01705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Psoriasis is a prevalent chronic disease affecting 2-3% of the global population. Cyclosporine A (CyA) has been widely used with great promise in the treatment of moderate to severe psoriasis despite various side effects associated with its systemic administration. Topical administration of CyA circumvents systemic side effects; however, the poor water solubility and large molecular weight of CyA pose challenges for dermal delivery. In this study, choline-based ionic liquids (ILs) were used to enhance the dermal delivery of CyA for the potential treatment of psoriasis. All four ILs tested significantly improved the solubility of CyA, which was greater than that of the control group with dimethyl sulfoxide (DMSO) as a solubilizer (20%, w/w). The saturated solubility of CyA in two of the ILs, choline geranate ([Ch][Ge]) and choline ricinoleate ([Ch][Ra]), reached more than 90 mg/mL, and the solubilization capability of the ILs except [Ch][Ci] was resistant to water dilution. The negligible change in CyA content determined by high-performance liquid chromatography and the secondary structure detected by circular dichroism spectroscopy confirmed the stability of CyA in the ILs. At 4 h in the in vitro penetration test, the amount of CyA retained in the skin in the IL groups was slightly greater than that in the control group (20% DMSO). The water content of the ILs significantly affected their penetration ability. When the water content increased from 10 to 70%, the dermal delivery of CyA first increased, peaked at a water content of 30%, and then decreased. The dermal delivery ability of [Ch][Ge] and [Ch][Ra] with a water content of 70% was still comparable to that of 20% DMSO. Moreover, CyA-loaded ILs (0.5%, w/w) significantly relieved the symptoms of psoriasis in an imiquimod (IMQ)-induced mouse model, and the levels of inflammatory factors, including tumor necrosis factor α, interleukin 22 and interleukin 17, in the affected area were reduced by 71.7%, 75.6%, and 89.3%, respectively. The IL tested, choline sorbate ([Ch][So]), showed low cytotoxicity to human immortalized epidermal cells (HaCaT). After 7 days of consecutive application, [Ch][So] did not cause significant irritation. In conclusion, ILs demonstrate promising potential for the dermal delivery of CyA for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
| | - Qin Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Yi Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Yanyun Ma
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Jianping Qi
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Wei Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China.
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai, 201399, China.
- Fudan Zhangjiang Institute, Shanghai, 201203, China.
| |
Collapse
|
3
|
Alqadi R, Alqumia A, Alhomoud IS, Alhowail A, Aldubayan M, Mohammed HA, Alhmoud H, Khan RA. Cyclosporine: Immunosuppressive effects, entwined toxicity, and clinical modulations of an organ transplant drug. Transpl Immunol 2025; 88:102147. [PMID: 39549927 DOI: 10.1016/j.trim.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
The discovery and use of cyclosporine since its inception into the clinics in the '70s and up have played a crucial role in advancing transplant therapy, and containment of the immune-based rejections. The drug has improved the high rates of acute rejections and has supported early graft survival. However, the long-term survival of renal allografts is still less prevalent, and an in-depth analysis, as well as reported findings led us to believe that there is a chronic irreversible component to the drug, that is tackled through its metabolites, and that causes toxicity, which has led to new therapies, including monoclonal antibody-based medications. A recap of the immunosuppressive effects, and entwined toxicity of the drug, now relegated primarily to bone marrow early transplants, is being overviewed for the past protocols that were used to minimize, and avoid, or use this calcineurin inhibitor class of drug, cyclosporine, in combination with other drugs. The current review circumvents the cyclosporine's mechanism of action, pathophysiology, cytochrome roles, and other factors associated with acute and chronic toxicity developments. The review also attempts to find conclusive strategies reported in the recent studies to avoid its toxic side effects, and develop a safe-use strategy for the drug. Gastrointestinal decontamination, supporting the airway, monitoring for signs of respiratory insufficiency, monitoring for severe reactions, such as seizures, need for administration of oxygen, and avoiding the administration of drugs, that increase the blood levels of the cyclosporine, are beneficial interventions, when encountering cyclosporine toxicity cases. The constrained therapeutic outcomes have also led to redesign, and making use of combined formulations to reassess the pharmacokinetics of the drug.
Collapse
Affiliation(s)
- Razan Alqadi
- Department of Pharmacy, King Saud Hospital, Unaizah, Qassim 56249, Saudi Arabia
| | - Amal Alqumia
- Department of Pharmacy, King Fahd Specialist Hospital, Buraydah, Qassim 52719, Saudi Arabia
| | - Ibrahim S Alhomoud
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Hussam Alhmoud
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
4
|
Nazerian A, Jafarzadeh A, Salehi S, Ghasemi M, Goodarzi A. Cyclosporin for the treatment of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN): a systematic review of observational studies and clinical trials focusing on single therapy, combination therapy, and comparative assessments. Inflammopharmacology 2025; 33:485-503. [PMID: 39470865 DOI: 10.1007/s10787-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare, severe, and potentially life-threatening skin and mucous membrane disorders. They are characterized by widespread skin and mucosal detachment and necrosis, and are classified based on the percentage of total body surface area (TBSA) affected. Given the severe and often life-threatening nature of these conditions, the identification and implementation of effective treatments is crucial. Notably, cyclosporin has demonstrated efficacy in managing these challenging conditions. METHODS A systematic search was carried out through the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases until May 2024. Additionally, a manual search was conducted through the reference lists of the included studies to minimize the risk of missing reports. RESULTS Overall, 17 studies involving 4761 patients were included in our analysis. The majority of the included studies suggested favorable outcomes for the use of cyclosporin in SJS/TEN patients. The use of cyclosporin was associated with improved survival rates, early arrest of disease progression, faster re-epithelialization, reduced length of hospital stays, and lower rates of multi-organ failure. However, a few studies did not find a survival advantage with cyclosporin and even reported an increased risk of mortality, as well as an increased TBSA detachment and risk of infection. CONCLUSION Most studies indicate positive outcomes with cyclosporin treatment in SJS/TEN patients. This is likely due to cyclosporin's immunomodulatory properties, which may help attenuate the severe inflammatory response associated with these conditions.
Collapse
Affiliation(s)
| | - Alireza Jafarzadeh
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Rasool Akram Hospital, Niayesh Street, Sattar Khan Avenue, Tehran, 1445613131, Iran
| | - Sadaf Salehi
- Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Rasool Akram Hospital, Niayesh Street, Sattar Khan Avenue, Tehran, 1445613131, Iran.
| |
Collapse
|
5
|
Gao H, Zhao L, Du A, Zhang X, Chai M, Liu L, Pazo EE, Wei R. Comparison of therapeutic effects of 0.05% Cyclosporine A versus 0.1% Fluorometholone in Chinese patients with mild dry eye unresponsive to artificial tears: a randomized control study. BMC Ophthalmol 2024; 24:513. [PMID: 39604906 PMCID: PMC11603962 DOI: 10.1186/s12886-024-03771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND To assess and compare the therapeutic outcomes of 0.05% Cyclosporine A (CsA) ophthalmic solution versus 0.1% Fluorometholone (FML) eyedrops in Chinese patients with mild dry eye disease (DED) unresponsive to conventional artificial tears (AT). METHODS A total of 43 patients with mild DED, who have failed to respond to conventional AT therapy for over 3 months, were randomly assigned to receive either 0.05% CsA or 0.1% FML twice daily for 6-months. In addition, all the patients were instructed to use 0.1% SH 4 times a day as supplementary therapy. Dry eye examination, including Ocular Surface Disease Index (OSDI) questionnaire, non-invasive tear break-up time (NIBUT), Schirmer scores, corneal fluorescein staining (CFS) scores, and conjunctival goblet cell (CGC) density, intraocular pressure (IOP), Best corrected visual acuity (BCVA) was conducted at baseline and then evaluated at 1, 3, and 6 months after treatment. Corneal endothelial cell density, corneal dendritic cells (DCs) and nerves were assessed by in vivo confocal microscopy at baseline and 6 months after treatment. RESULTS At 3 and 6 months after treatment, OSDI scores in the 0.05% CsA group showed more improvement than those in the 0.1% FML group. CFS was significantly lower and Schirmer scores were significantly higher in 0.05% CsA group compared with 0.1% FML group. NIBUT improved significantly in both groups, with greater improvement in the 0.05% CsA group at the 1-, 3-, and 6-month visits. Throughout the duration of the study, the 0.1% FML group exhibited no notable enhancement in CGC density. Conversely, a substantial elevation in CGC density was observed in the 0.05% CsA group. After 6 months of treatment, significantly reduced corneal DC density and area were obtained in 0.05% CsA group as compared to 0.1% FML group, while there were no significant changes in cornea nerve fiber density, cornea nerve fiber length and cornea nerve fiber width in both groups. Additionally, after 6 months of treatment, neither group showed any statistically significant changes in IOP, BCVA or in corneal endothelial cell density. CONCLUSION The administration of 0.05% CsA proved effective in managing mild DED, offering a supplementary advantage in improving Schirmer scores, restoring CGC density and reducing corneal DC density compared to 0.1% FML eyedrops. Consequently, 0.05% CsA eyedrops are recommended as a safe and efficacious therapeutic alternative for patients with mild DED who fail to respond to conventional tear substitutes therapy. CLINICAL TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry, ChiCTR2200066441, Registered 06 December 2022-Retrospectively registered.
Collapse
Affiliation(s)
- Huijuan Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
- Department of Ophthalmology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Orbital Disease, Tianjin, 300211, China
| | - Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Aoxue Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xia Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Mengdi Chai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Emmanuel Eric Pazo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
6
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
7
|
Chen H, Yin W, Yao K, Liang J, Cai J, Sui X, Zhao X, Zhang J, Xiao J, Li R, Liu Q, Yao J, You G, Liu Y, Jiang C, Qiu X, Wang T, You Q, Zhang Y, Yang M, Zheng J, Dai Z, Yang Y. Mesenchymal Stem Cell Membrane-Camouflaged Liposomes for Biomimetic Delivery of Cyclosporine A for Hepatic Ischemia-Reperfusion Injury Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404171. [PMID: 39031840 PMCID: PMC11348201 DOI: 10.1002/advs.202404171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Indexed: 07/22/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a prevalent issue during liver resection and transplantation, with currently no cure or FDA-approved therapy. A promising drug, Cyclosporin A (CsA), ameliorates HIRI by maintaining mitochondrial homeostasis but has systemic side effects due to its low bioavailability and high dosage requirements. This study introduces a biomimetic CsA delivery system that directly targets hepatic lesions using mesenchymal stem cell (MSC) membrane-camouflaged liposomes. These hybrid nanovesicles (NVs), leveraging MSC-derived proteins, demonstrate efficient inflammatory chemotaxis, transendothelial migration, and drug-loading capacity. In a HIRI mouse model, the biomimetic NVs accumulated at liver injury sites entered hepatocytes, and significantly reduced liver damage and restore function using only one-tenth of the CsA dose typically required. Proteomic analysis verifies the protection mechanism, which includes reactive oxygen species inhibition, preservation of mitochondrial integrity, and reduced cellular apoptosis, suggesting potential for this biomimetic strategy in HIRI intervention.
Collapse
Affiliation(s)
- Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Wen Yin
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Kang Yao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Guangdong province engineering laboratory for transplantation medicineGuangzhouChina
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Xin Sui
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Xuegang Zhao
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- Guangdong province engineering laboratory for transplantation medicineGuangzhouChina
| | - Qiuli Liu
- The Biotherapy Centerthe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Guohua You
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Xiaotong Qiu
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Tingting Wang
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Qiang You
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yingcai Zhang
- Department of Hepatobiliary SurgeryPeople's Hospital of Xinjiang Uyghur Autonomous RegionUrumqi830001China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
| | - Zong Dai
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated HospitalOrgan Transplantation InstituteSun Yat‐sen UniversityOrgan Transplantation Research Center of Guangdong ProvinceGuangdong Province Engineering Laboratory for Transplantation MedicineGuangzhou510630China
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
8
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
9
|
Marathe D, Bhuvanashree VS, Mehta CH, T. A, Nayak UY. Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery. Adv Pharmacol Pharm Sci 2024; 2024:1247450. [PMID: 38938593 PMCID: PMC11208788 DOI: 10.1155/2024/1247450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
Sonophoresis is the most approachable mode of transdermal drug delivery system, wherein low-frequency sonophoresis penetrates the drug molecules into the skin. It is an alternative method for an oral system of drug delivery and hypodermal injections. The cavitation effect is thought to be the main mechanism used in sonophoresis. The cavitation process involves forming a gaseous bubble and its rupture, induced in the coupled medium. Other mechanisms used are thermal effects, convectional effects, and mechanical effects. It mainly applies to transporting hydrophilic drugs, macromolecules, gene delivery, and vaccine delivery. It is also used in carrier-mediated delivery in the form of micelles, liposomes, and dendrimers. Some synergistic effects of sonophoresis, along with some permeation enhancers, such as chemical enhancers, iontophoresis, electroporation, and microneedles, increased the effectiveness of drug penetration. Sonophoresis-mediated ocular drug delivery, nail drug delivery, gene delivery to the brain, sports medicine, and sonothrombolysis are also widely used. In conclusion, while sonophoresis offers promising applications in diverse fields, further research is essential to comprehensively elucidate the biophysical mechanisms governing ultrasound-tissue interactions. Addressing these gaps in understanding will enable the refinement and optimization of sonophoresis-based therapeutic strategies for enhanced clinical efficacy.
Collapse
Affiliation(s)
- Divya Marathe
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudeva Sampriya Bhuvanashree
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ashwini T.
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
10
|
Li Q, Cao H, Xu X, Chen Y, Zhang Y, Mi Y, Zhu X, Shi Y, Liu J, Wang B, Xu CB, Wang C. Resveratrol attenuates cyclosporin A-induced upregulation of the thromboxane A 2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in the rat mesenteric artery. Eur J Pharmacol 2024; 972:176543. [PMID: 38582274 DOI: 10.1016/j.ejphar.2024.176543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Cyclosporin A, an immunosuppressive agent, is extensively utilized for the prevention of transplant rejection and treat autoimmune disease in the clinic, despite its association with a high risk of hypertension development among patients. Resveratrol is a kind of non-flavonoid phenolic compound that widely exists in many plants. The aim of the present study was to investigate the mechanism by which resveratrol ameliorates cyclosporin A-induced hypertension. The arterial rings of the mesentery were incubated with cyclosporin A and resveratrol in vitro. Rats were administered cyclosporin A and/or resveratrol for 3 weeks in vivo. Blood pressure was measured via the tail arteries. Vasoconstriction curves were recorded using a sensitive myograph. The protein expression was evaluated through Western blotting. This study demonstrated that resveratrol mitigated the cyclosporin A-induced increase in blood pressure in rats. Furthermore, resveratrol markedly inhibited the cyclosporin A-induced upregulation of thromboxane A2 receptor-mediated vasoconstriction in the rat mesenteric artery both in vitro and in vivo. Moreover, resveratrol activated AMPK/SIRT1 and inhibited the MAPK/NF-κB signaling pathway. In conclusion, resveratrol restored the cyclosporin A-induced upregulation of the thromboxane A2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in rats.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hanjing Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinya Xu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yumeng Chen
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yufang Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanni Mi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xingmei Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China.
| |
Collapse
|
11
|
Ma X, Liu Y, Wang J, Liu H, Wei G, Lu W, Liu Y. Combination of PEGylation and Cationization on Phospholipid-Coated Cyclosporine Nanosuspensions for Enhanced Ocular Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27040-27054. [PMID: 38743443 DOI: 10.1021/acsami.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Strong precorneal clearance mechanisms including reflex blink, constant tear drainage, and rapid mucus turnover constitute great challenges for eye drops for effective drug delivery to the ocular epithelium. In this study, cyclosporine A (CsA) for the treatment of dry eye disease (DED) was selected as the model drug. Two strategies, PEGylation for mucus penetration and cationization for potent cellular uptake, were combined to construct a novel CsA nanosuspension (NS@lipid-PEG/CKC) by coating nanoscale drug particles with a mixture of lipids, DSPE-PEG2000, and a cationic surfactant, cetalkonium chloride (CKC). NS@lipid-PEG/CKC with the mean size ∼173 nm and positive zeta potential ∼+40 mV showed promoted mucus penetration, good cytocompatibility, more cellular uptake, and prolonged precorneal retention without obvious ocular irritation. More importantly, NS@lipid-PEG/CKC recovered tear production and goblet cell density more efficiently than the commercial cationic nanoemulsion on a dry eye disease rat model. All results indicated that a combination of PEGylation and cationization might provide a promising strategy to coordinate mucus penetration and cellular uptake for enhanced drug delivery to the ocular epithelium for nanomedicine-based eye drops.
Collapse
Affiliation(s)
- Xiaopei Ma
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yaodong Liu
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jun Wang
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Hui Liu
- Department of Breast Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gang Wei
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics. School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| |
Collapse
|
12
|
Hao T, Tang L, Xu Q, Wang W, Li Z, Shen Y, Xu B, Luo H, Li Q, Wang J, Zhang J. Silk Fibroin Formed Bioadhesive Ophthalmic Gel for Dry Eye Syndrome Treatment. AAPS PharmSciTech 2024; 25:92. [PMID: 38684590 DOI: 10.1208/s12249-024-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
PURPOSE Dry eye syndrome (DES), arising from various etiologic factors, leads to tear film instability and ocular surface damage. Given its anti-inflammatory effects, cyclosporine A (CsA) has been widely used as a short-term treatment option for DES. However, poor bioavailability and solubility of CsA in aqueous phase make the development of a cyclosporine A-based eye drop for ocular topical application a huge challenge. METHODS In this study, a novel strategy for preparing cyclosporine A-loaded silk fibroin nanoemulsion gel (CsA NBGs) was proposed to address these barriers. Additionally, the rheological properties, ocular irritation potential, tear elimination kinetics, and pharmacodynamics based on a rabbit dry eye model were investigated for the prepared CsA NBGs. Furthermore, the transcorneal mechanism across the ocular barrier was also investigated. RESULTS The pharmacodynamics and pharmacokinetics of CsA NBGs exhibited superior performance compared to cyclosporine eye drops, leading to a significant enhancement in the bioavailability of CsA NBGs. Furthermore, our investigation into the transcorneal mechanism of CsA NBGs revealed their ability to be absorbed by corneal epithelial cells via the paracellular pathway. CONCLUSION The CsA NBG formulation exhibits promising potential for intraocular drug delivery, enabling safe, effective, and controlled administration of hydrophobic drugs into the eye. Moreover, it enhances drug retention within the ocular tissues and improves systemic bioavailability, thereby demonstrating significant clinical translational prospects.
Collapse
Affiliation(s)
- Tianjiao Hao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lu Tang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianzi Xu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zengjing Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bohui Xu
- School of Pharmacy, Nantong University, No.19 Qixiu Road, Nantong, 226001, China
| | - Hao Luo
- Department of Internal Medicine Oncology, Lianshui People's Hospital, No.6 Hongri East Road, Lianshui, 223400, Jiangsu Province, China
| | - Qian Li
- Collage of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jirong Wang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Jinling Zhang
- Jiangsu Institute for Food and Drug Control, Jiangsu Province, Nanjing, China.
| |
Collapse
|
13
|
Jiao X, Qi Y, Gao N, Zhang C, Zhao S, Yang R. Exploration of efficacy and mechanism of 0.05% cyclosporine eye drops (II) monotherapy in allergic conjunctivitis-associated dry eye. Eye (Lond) 2024; 38:937-944. [PMID: 37904000 PMCID: PMC10965942 DOI: 10.1038/s41433-023-02807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
PURPOSE To explore the efficacy and relevant mechanism of 0.05% cyclosporine A (CsA) eye drops (II) monotherapy in patients with allergic conjunctivitis-associated dry eye (ACDE). METHODS Prospective, randomized, controlled study. Fifty-three patients with mild-to-moderate ACDE were randomly assigned to two groups. The CsA group received 0.05% CsA eye drops (II) monotherapy four times daily. The control group received 0.1% olopatadine twice daily combined with 0.1% preservative-free artificial tears four times daily. Clinical symptoms and signs, tear total IgE, and lymphotoxin-α (LT-α) concentrations were assessed at pre- and post-treatment days 7, 30, and 60. And we further measured six tear cytokines levels using a microsphere-based immunoassay. RESULTS The CsA group showed significant improvement in symptoms (Ocular Surface Disease Index and itching scores) and signs (conjunctival hyperaemia, conjunctival oedema, conjunctival papillae, tear break-up time (TBUT), corneal fluorescein staining, and goblet cell density) at each follow-up period compared to pre-treatment (all P < 0.050). And its improvement in itching scores (P7th < 0.001, P30th = 0.039, and P60th = 0.031) and TBUT (P7th = 0.009, P30th = 0.003, and P60th = 0.005) was more significant than the control group at all follow-up periods. The tear total IgE, interleukin (IL)-5, IL-6, periostin, eotaxin-3, and MMP-9 levels significantly decreased in the CsA group at day 60 after treatment (all P < 0.050). And the changed values in tear total IgE were positively correlated with the change in itching scores. CONCLUSIONS 0.05% CsA eye drops (II) monotherapy can rapidly improve the symptoms and signs, especially in ocular itching and TBUT, in patients with ACDE. And its efficacy is superior to 0.1% olopatadine combined with artificial tears. Moreover, CsA downregulates the expression levels of tear inflammatory cytokines, including tear total IgE, IL-5, IL-6, periostin, eotaxin-3, and MMP-9. Among that, the reduction in tear total IgE levels may reflect the improvement of ocular itching.
Collapse
Affiliation(s)
- Xiting Jiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yuanyuan Qi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Ning Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Chen Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Ruibo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
14
|
Zhang H, Pan Y, Hou Y, Li M, Deng J, Wang B, Hao S. Smart Physical-Based Transdermal Drug Delivery System:Towards Intelligence and Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306944. [PMID: 37852939 DOI: 10.1002/smll.202306944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
15
|
Wu L, Wang Q, Gao QC, Shi GX, Li J, Fan FR, Wu J, He PF, Yu Q. Potential mechanisms and drug prediction of Rheumatoid Arthritis and primary Sjögren's Syndrome: A public databases-based study. PLoS One 2024; 19:e0298447. [PMID: 38359008 PMCID: PMC10868835 DOI: 10.1371/journal.pone.0298447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Rheumatoid arthritis (RA) and primary Sjögren's syndrome (pSS) are the most common systemic autoimmune diseases, and they are increasingly being recognized as occurring in the same patient population. These two diseases share several clinical features and laboratory parameters, but the exact mechanism of their co-pathogenesis remains unclear. The intention of this study was to investigate the common molecular mechanisms involved in RA and pSS using integrated bioinformatic analysis. RNA-seq data for RA and pSS were picked up from the Gene Expression Omnibus (GEO) database. Co-expression genes linked with RA and pSS were recognized using weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis. Then, we screened two public disease-gene interaction databases (GeneCards and Comparative Toxicogenomics Database) for common targets associated with RA and pSS. The DGIdb database was used to predict therapeutic drugs for RA and pSS. The Human microRNA Disease Database (HMDD) was used to screen out the common microRNAs associated with RA and pSS. Finally, a common miRNA-gene network was created using Cytoscape. Four hub genes (CXCL10, GZMA, ITGA4, and PSMB9) were obtained from the intersection of common genes from WGCNA, differential gene analysis and public databases. Twenty-four drugs corresponding to hub gene targets were predicted in the DGIdb database. Among the 24 drugs, five drugs had already been reported for the treatment of RA and pSS. Other drugs, such as bortezomib, carfilzomib, oprozomib, cyclosporine and zidovudine, may be ideal drugs for the future treatment of RA patients with pSS. According to the miRNA-gene network, hsa-mir-21 may play a significant role in the mechanisms shared by RA and pSS. In conclusion, we identified commom targets as potential biomarkers in RA and pSS from publicly available databases and predicted potential drugs based on the targets. A new understanding of the molecular mechanisms associated with RA and pSS is provided according to the miRNA-gene network.
Collapse
Affiliation(s)
- Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi-chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Gao-xiang Shi
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anaesthesia, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Anesthesiology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Fu-rong Fan
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jing Wu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Algahtani MS, Mohammed AA, Ahmad J, Ali R, Saleh E. 3D printed capsule shells for personalized dosing of cyclosporine-loaded SNEDDS. Int J Pharm 2024; 650:123707. [PMID: 38101759 DOI: 10.1016/j.ijpharm.2023.123707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cyclosporine (CsA) is a potent immunosuppressant agent that has been used since 1980 for the treatment of various autoimmune diseases and is extensively used to enhance the survival rate of patients and grafts following organ transplant surgeries. CsA is a poorly soluble drug with a narrow therapeutic window and inter-subject variability, which can lead to graft rejection, nephrotoxicity and other severe adverse effects. This study explores a novel method that combines solubility enhancement of CsA using SNEDDS formulation and personalized dosage delivery using 3D printing technology. The oil phase was chosen as a combination of caproyl 90 and octanoic acid while the Smix phase was chosen as a combination of cremophore El and PEG 400. The optimized liquid SNEDDS was solidified using PEG 6000. An FDM printer was used to print a capsular shell with an oval base that ascends to form a dome with an opening at the top. This opening is used to fill the molten CsA-loaded SNEDDS formulation using a pipette or syringe. The CsA-loaded SNEDDS formulation was characterized by FTIR, DSC and SEM/EDX. The in-vitro release of CsA showed complete release within sixty minutes and followed Korsmeyer-Peppas release kinetics. The drug release was not affected by either the shell opening size or the amount of the loaded formulation. This novel method is simple and straightforward for personalized dosage delivery of drug-loaded SNEDDS formulations.
Collapse
Affiliation(s)
- Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia.
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab Saleh
- Future Manufacturing Processes Research Group, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
17
|
Nicze M, Borówka M, Dec A, Niemiec A, Bułdak Ł, Okopień B. The Current and Promising Oral Delivery Methods for Protein- and Peptide-Based Drugs. Int J Mol Sci 2024; 25:815. [PMID: 38255888 PMCID: PMC10815890 DOI: 10.3390/ijms25020815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Drugs based on peptides and proteins (PPs) have been widely used in medicine, beginning with insulin therapy in patients with diabetes mellitus over a century ago. Although the oral route of drug administration is the preferred one by the vast majority of patients and improves compliance, medications of this kind due to their specific chemical structure are typically delivered parenterally, which ensures optimal bioavailability. In order to overcome issues connected with oral absorption of PPs such as their instability depending on digestive enzymes and pH changes in the gastrointestinal (GI) system on the one hand, but also their limited permeability across physiological barriers (mucus and epithelium) on the other hand, scientists have been strenuously searching for novel delivery methods enabling peptide and protein drugs (PPDs) to be administered enterally. These include utilization of different nanoparticles, transport channels, substances enhancing permeation, chemical modifications, hydrogels, microneedles, microemulsion, proteolytic enzyme inhibitors, and cell-penetrating peptides, all of which are extensively discussed in this review. Furthermore, this article highlights oral PP therapeutics both previously used in therapy and currently available on the medical market.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (B.O.)
| | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (B.O.)
| | | |
Collapse
|
18
|
Jiang X, Gao L, Li Z, Shen Y, Lin ZH. Development and Challenges of Cyclic Peptides for Immunomodulation. Curr Protein Pept Sci 2024; 25:353-375. [PMID: 37990433 DOI: 10.2174/0113892037272528231030074158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023]
Abstract
Cyclic peptides are polypeptide chains formed by cyclic sequences of amide bonds between protein-derived or non-protein-derived amino acids. Compared to linear peptides, cyclic peptides offer several unique advantages, such as increased stability, stronger affinity, improved selectivity, and reduced toxicity. Cyclic peptide has been proved to have a promising application prospect in the medical field. In addition, this paper mainly describes that cyclic peptides play an important role in anti-cancer, anti-inflammatory, anti-virus, treatment of multiple sclerosis and membranous nephropathy through immunomodulation. In order to know more useful information about cyclic peptides in clinical research and drug application, this paper also summarizes cyclic peptides currently in the clinical trial stage and cyclic peptide drugs approved for marketing in the recent five years. Cyclic peptides have many advantages and great potential in treating various diseases, but there are still many challenges to be solved in the development process of cyclic peptides.
Collapse
Affiliation(s)
- Xianqiong Jiang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Zhilong Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China
| | - Zhi-Hua Lin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
- Chongqing College of Traditional Chinese Medicine, 402760
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
19
|
Deshmukh R, Singh R, Mishra S. Pharmaceutical In Situ Gel for Glaucoma: Recent Trends and Development with an Update on Research and Patents. Crit Rev Ther Drug Carrier Syst 2024; 41:1-44. [PMID: 38037819 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Glaucoma is a progressive visual polyneuropathy characterized by retinal ganglion cell atrophy and optic nerve head changes. It's generally triggered due to increased intraocular pressure compared with the healthy eye. Glaucoma is treated with various medications in traditional eye drops, such as prostaglandins, carbonic anhydrase inhibitors, beta-blockers, and others. Such treatments are difficult to use and produce lachrymal leakage and inadequate corneal permeability, resulting in lower availability. Ophthalmic in situ gels, introduced in past decades with tremendous effort, are among the finest various choices to solve the drawbacks of eye drops. Employing different polymers with pH-triggered, temperature-triggered, and ion-activated processes have been used to generate ophthalmic in situ gelling treatments. Once those preparations are delivered into the eye, they change phase from sol to gel, allowing the medicine to stay in the eye for longer. These formulations are known as smart gels as they turn into gelling fluids when administered into the eyes. The different mechanisms of in situ gel formulations are used for the management of glaucoma and are discussed in this review article.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sakshi Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
20
|
Ucakhan OO, Celik-Buyuktepe T, Yang L, Wogu B, Asbell PA. Update on Dry Eye Disease Treatment: Evidence From Randomized Controlled Trials. Eye Contact Lens 2023; 49:542-568. [PMID: 37728883 DOI: 10.1097/icl.0000000000001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 09/21/2023]
Abstract
ABSTRACT Although the ultimate goal of dry eye disease (DED) management is to restore the ocular surface and tear film homeostasis and address any accompanying symptoms, addressing this is not an easy task. Despite the wide range of current treatment modalities targeting multiple aspects of DED, the available DED management literature is quite heterogeneous, rendering evaluation or comparison of treatment outcomes hard or almost impossible. There is still a shortage of well-designed, large-scale, nonsponsored, randomized, controlled trials (RCTs) evaluating long-term safety and efficacy of many targeted therapies individually or used in combination, in the treatment of identified subgroups of patients with DED. This review focuses on the treatment modalities in DED management and aims to reveal the current evidence available as deduced from the outcomes of RCTs.
Collapse
Affiliation(s)
- Omur O Ucakhan
- Department of Ophthalmology (O.O.U.), Ankara University School of Medicine, Ankara, Turkey; Department of Ophthalmology (T.C.-B.), Unye State Hospital, Ordu, Turkey; Department of Ophthalmology (L.Y.), University of Tennessee Health Science Center, Memphis, TN;Sidney Kimmel Medical College at Thomas Jefferson University (B.W.), Philadelphia, PA; and Department of Ophthalmology (P.A.A.), University of Tennessee Health Science Center, Memphis, TN
| | | | | | | | | |
Collapse
|
21
|
Cheng T, Tai Z, Shen M, Li Y, Yu J, Wang J, Zhu Q, Chen Z. Advance and Challenges in the Treatment of Skin Diseases with the Transdermal Drug Delivery System. Pharmaceutics 2023; 15:2165. [PMID: 37631379 PMCID: PMC10458513 DOI: 10.3390/pharmaceutics15082165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Skin diseases are among the most prevalent non-fatal conditions worldwide. The transdermal drug delivery system (TDDS) has emerged as a promising approach for treating skin diseases, owing to its numerous advantages such as high bioavailability, low systemic toxicity, and improved patient compliance. However, the effectiveness of the TDDS is hindered by several factors, including the barrier properties of the stratum corneum, the nature of the drug and carrier, and delivery conditions. In this paper, we provide an overview of the development of the TDDS from first-generation to fourth-generation systems, highlighting the characteristics of each carrier in terms of mechanism composition, penetration method, mechanism of action, and recent preclinical studies. We further investigated the significant challenges encountered in the development of the TDDS and the crucial significance of clinical trials.
Collapse
Affiliation(s)
- Tingting Cheng
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Min Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Junxia Yu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Jiandong Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Zhongjian Chen
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| |
Collapse
|
22
|
Liu M, Wang Y, Shi W, Yang C, Wang Q, Chen J, Li J, Chen B, Sun G. PCDH7 as the key gene related to the co-occurrence of sarcopenia and osteoporosis. Front Genet 2023; 14:1163162. [PMID: 37476411 PMCID: PMC10354703 DOI: 10.3389/fgene.2023.1163162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 07/22/2023] Open
Abstract
Sarcopenia and osteoporosis, two degenerative diseases in older patients, have become severe health problems in aging societies. Muscles and bones, the most important components of the motor system, are derived from mesodermal and ectodermal mesenchymal stem cells. The adjacent anatomical relationship between them provides the basic conditions for mechanical and chemical signals, which may contribute to the co-occurrence of sarcopenia and osteoporosis. Identifying the potential common crosstalk genes between them may provide new insights for preventing and treating their development. In this study, DEG analysis, WGCNA, and machine learning algorithms were used to identify the key crosstalk genes of sarcopenia and osteoporosis; this was then validated using independent datasets and clinical samples. Finally, four crosstalk genes (ARHGEF10, PCDH7, CST6, and ROBO3) were identified, and mRNA expression and protein levels of PCDH7 in clinical samples from patients with sarcopenia, with osteoporosis, and with both sarcopenia and osteoporosis were found to be significantly higher than those from patients without sarcopenia or osteoporosis. PCDH7 seems to be a key gene related to the development of both sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongheng Wang
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Shi
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qidong Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyao Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Padjasek M, Cisło-Sankowska A, Lis-Bartos A, Qasem B, Marycz K. PLDLA/TPU Matrix Enriched with Cyclosporine A as a Therapeutic Platform for Immune-Mediated Keratitis (IMMK) in Horses. Int J Mol Sci 2023; 24:ijms24065735. [PMID: 36982806 PMCID: PMC10057311 DOI: 10.3390/ijms24065735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The purpose of this study was to describe the use of PLDLA/TPU matrix enriched with cyclosporine A (CsA) as a therapeutic platform in horses with immune-mediated keratitis (IMMK) with an in vitro evaluation CsA release and degradation of the blend as well as determination of the safety and efficacy of that platform used in the animal model. The kinetics of the CsA release from matrices constructed of thermoplastic polyurethane (TPU) polymer and a copolymer of L-lactide with DL-lactide (PLDLA) (80:20) in the TPU (10%) and a PLDL (90%) polymer blend were studied. Moreover, we used the STF (Simulated Tear Fluid) at 37 °C as a biological environment to assess the CsA release and its degradation. Additionally, the platform described above was injected subconjunctival in the dorsolateral quadrant of the globe after standing sedation of horses with diagnosed superficial and mid-stromal IMMK. The obtained results indicated that the CsA release rate in the fifth week of the study increased significantly by the value of 0.3% compared to previous weeks. In all of the cases, the TPU/PLA doped with 12 mg of the CsA platform effectively reduced the clinical symptoms of keratitis, leading to the complete remission of the corneal opacity and infiltration four weeks post-injection. The results from this study showed that the PLDLA/TPU matrix enriched with the CsA platform was well tolerated by the equine model and effective in treating superficial and mid-stromal IMMK.
Collapse
Affiliation(s)
- Martyna Padjasek
- Department of Experimental Biology, The Faculty of Biology and Animal Science, The University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11 St., 55-124 Malin, Poland
| | - Anna Cisło-Sankowska
- Department of Experimental Biology, The Faculty of Biology and Animal Science, The University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11 St., 55-124 Malin, Poland
| | - Anna Lis-Bartos
- Department of Biomaterials and Composites, Faculty of Material Science and Ceramics, AGH University of Science and Technology, Aleja Adama Mickiewicza 30, 30-059 Krakow, Poland
| | - Badr Qasem
- Department of Experimental Biology, The Faculty of Biology and Animal Science, The University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11 St., 55-124 Malin, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, The University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11 St., 55-124 Malin, Poland
- Correspondence:
| |
Collapse
|
24
|
Li Y, Guan Q, Xu J, Zhang H, Liu S, Ding Z, Wang Q, Wang Z, Liu M, Zhao Y. Comparative study of cyclosporine A liposomes and emulsions for ophthalmic drug delivery: Process optimization through response surface methodology (RSM) and biocompatibility evaluation. Colloids Surf B Biointerfaces 2023; 225:113267. [PMID: 36940502 DOI: 10.1016/j.colsurfb.2023.113267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/23/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Herein, cyclosporine A loaded liposomes (CsA-Lips) were fabricated aimed at improving the biocompatibility of the ophthalmic formulation and getting rid of the direct contact of ocular tissues with irritant excipients. Response surface methodology was exploited in order to investigate the influence of miscellaneous factors on the key characteristics of CsA-Lips. Ratio of EPC:CsA, ratio of EPC:Chol, and stirring speed were selected as the independent variables, while size, drug-loading content (DL), and drug-loading content (DL) loss rate were applied as the response variables. In case of the maximal lack-of-fit p-value and minimum sequential p-value, quadratic model was regarded as the fittest model to analyze the data. The correlation of independent variables with response variables was described by three-dimension surface figures. Optimized formulation for CsA-Lips was obtained with ratio of EPC:CsA set as 15, ratio of EPC:Chol set as 2, and stirring speed set as 800 rpm. The particle size of CsA-Lips was 129.2 nm after optimalization while their TEM images exhibited spherical unilamellar vesicles with clearly shell-core structure. CsA released more rapidly from CsA-Lips in comparison with self-made emulsion and Restasis®. Besides, minimum cytotoxicity of CsA-Lips was perceived via both MTT method and LDH method, indicating the excellent compatibility of the ophthalmic formulation. Simultaneously, CsA-Lips showed enhanced nonspecific internalization in the cytoplasm with a time-dose-dependent manner. In conclusion, CsA-Lips could be adhibited as the hopeful ophthalmic drug delivery system clinically for dry eye syndrome (DES).
Collapse
Affiliation(s)
- Yinglan Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qingran Guan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jie Xu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Sisi Liu
- Hunan Academy of Forestry, Changsha, Hunan 410004, People's Republic of China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| |
Collapse
|
25
|
Sun C, Li S, Wang K, Feng H, Tian C, Liu X, Li X, Yin X, Wang Y, Wei J, An S. Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda. Toxins (Basel) 2022; 14:toxins14100721. [PMID: 36287989 PMCID: PMC9610628 DOI: 10.3390/toxins14100721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, causes substantial annual agricultural production losses worldwide due to its resistance to many insecticides. Therefore, new insecticides are urgently needed to more effectively control FAW. Cyclosporin A (CsA) is a secondary metabolite of fungi; little is known about its insecticidal activity, especially for the control of FAW. In this study, we demonstrate that CsA shows excellent insecticidal activity (LC50 = 9.69 μg/g) against FAW through significant suppression of calcineurin (CaN) activity, which is a new target for pest control. Combinations of CsA and indoxacarb, emamectin benzoate, or Vip3Aa showed independent or synergistic toxicity against FAW; however, the combination of CsA and chlorantraniliprole showed no toxicity. Sublethal doses of CsA led to decreases in FAW larval and pupal weight, pupation, emergence, mating rates, adult longevity, extended development of FAW larvae and pupae and the pre-oviposition period of adults, and increases in the proportion of pupal malformation. Importantly, CsA treatment reduced FAW ovarian size and female fecundity, which suggests that it has great potential to suppress FAW colony formation. Taken together, these results indicate that CsA has high potential as an insecticide for controlling FAW.
Collapse
Affiliation(s)
- Chengxian Sun
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongqiang Feng
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Caihong Tian
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiang Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (Y.W.); (J.W.)
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (Y.W.); (J.W.)
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
26
|
Sun C, Li S, Wang K, Yin X, Wang Y, Du M, Wei J, An S. Cyclosporin A as a Potential Insecticide to Control the Asian Corn Borer Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae). INSECTS 2022; 13:965. [PMID: 36292912 PMCID: PMC9604310 DOI: 10.3390/insects13100965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The long-term use of chemical insecticides has caused serious problems of insect resistance and environmental pollution; new insecticides are needed to solve this problem. Cyclosporin A (CsA) is a polypeptide produced by many fungi, which is used to prevent or treat immune rejection during organ transplantation. However, little is known about the utility of CsA as an insecticide. Therefore, this study evaluated the insecticidal activity of CsA using Ostrinia furnacalis as a model. The results demonstrated that CsA was toxic to O. furnacalis with LC50 values of 113.02 μg/g and 198.70 μg/g for newly hatched neonates and newly molted third-instar larvae, respectively. Furthermore, CsA treatment had sublethal effects on the development of O. furnacalis, and significantly reduced the fecundity of adults; this suggests that CsA has great potential to suppress O. furnacalis populations. Further analysis revealed that CsA suppressed calcineurin activity in larvae. CsA had independent or synergistic toxic effects on O. furnacalis when combined with β-cypermethrin, indoxacarb, emamectin benzoate, azadirachtin, and the Bacillus thuringiensis toxin Cry1Ac, which suggests that CsA can help prevent or manage resistance. Our study provides detailed information on the potential of CsA as an insecticide for controlling lepidopterans.
Collapse
Affiliation(s)
- Chengxian Sun
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengfang Du
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
27
|
Padjasek M, Qasem B, Cisło-Pakuluk A, Marycz K. Cyclosporine A Delivery Platform for Veterinary Ophthalmology—A New Concept for Advanced Ophthalmology. Biomolecules 2022; 12:biom12101525. [PMID: 36291734 PMCID: PMC9599649 DOI: 10.3390/biom12101525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclosporine A (CsA) is a selective and reversible immunosuppressant agent that is widely used as a medication for a wide spectrum of diseases in humans such as graft versus host disease, non-infectious uveitis, rheumatoid arthritis, psoriasis, and atopic dermatitis. Furthermore, the CsA is used to treat keratoconjunctivitis sicca, chronic superficial keratitis, immune-mediated keratitis and equine recurrent uveitis in animals. The selective activity of Cyclosporine A (CsA) was demonstrated to be an immunomodulation characteristic of T-lymphocyte proliferation and inhibits cytokine gene expression. Moreover, the lipophilic characteristics with poor bioavailability and low solubility in water, besides the side effects, force the need to develop new formulations and devices that will provide adequate penetration into the anterior and posterior segments of the eye. This review aims to summarize the effectiveness and safety of cyclosporine A delivery platforms in veterinary ophthalmology.
Collapse
|
28
|
Gao X, Bian ZL, Qiao XH, Qian XW, Li J, Shen GM, Miao H, Yu Y, Meng JH, Zhu XH, Jiang JY, Le J, Yu L, Wang HS, Zhai XW. Population Pharmacokinetics of Cyclosporine in Chinese Pediatric Patients With Acquired Aplastic Anemia. Front Pharmacol 2022; 13:933739. [PMID: 35979231 PMCID: PMC9377374 DOI: 10.3389/fphar.2022.933739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclosporine (CsA) is a component of the first-line treatment for acquired aplastic anemia (acquired AA) in pediatric patients. This study aimed to develop a population pharmacokinetic (PK) model of CsA in Chinese pediatric patients with acquired AA to inform individual dosage regimens. A total of 681 CsA whole blood concentrations and laboratory data of 157 pediatric patients with acquired AA were retrospectively collected from two hospitals in Shanghai. A nonlinear mixed-effect model approach was used to build the population PK model. Potential covariate effects of age, body weight, and biochemical measurements (renal and liver functions) on CsA PK disposition were evaluated. Model fit was assessed using the basic goodness of fit and a visual predictive check. The CsA concentration data were accurately described using a two-compartment disposition model with first-order absorption and elimination. Body weight value was implemented as a fixed allometric function on all clearance and volume of distribution parameters. Total bilirubin level was identified as a significant covariate on apparent clearance (CL/F), with a 1.07% reduction per 1 nmol/L rise in total bilirubin level. The final estimates for CL/F and central volume (Vc/F) were 29.1 L/h and 325 L, respectively, for a typical 28 kg child. Other covariates (e.g., gender, age, albumin, hemoglobin, hematocrit, serum creatinine, and concomitant medication) did not significantly affect the PK properties of CsA. This population PK model, along with a maximum a posteriori Bayesian approach, could estimate individual PK parameters in pediatric patients with acquired AA to conduct individual CsA therapy.
Collapse
Affiliation(s)
- Xuan Gao
- Outpatient and Emergency Management Office, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhu-Li Bian
- Department of Pediatrics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Hong Qiao
- Department of Pediatrics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Wen Qian
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jun Li
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Guo-Mei Shen
- Outpatient and Emergency Management Office, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Hui Miao
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Yu
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jian-Hua Meng
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiao-Hua Zhu
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jun-Ye Jiang
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jun Le
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Ling Yu
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Hong-Sheng Wang
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiao-Wen Zhai, ; Hong-Sheng Wang,
| | - Xiao-Wen Zhai
- Department of Hematology and Oncology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiao-Wen Zhai, ; Hong-Sheng Wang,
| |
Collapse
|
29
|
Wairkar S, Patel D, Singh A. Nanostructured lipid carrier based dermal gel of cyclosporine for atopic dermatitis-in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Sadeghi S, Kalantari Y, Seirafianpour F, Goodarzi A. The Efficacy and Safety of Topical Cyclosporine-A in Dermatology: A Systematic Review. Dermatol Ther 2022; 35:e15490. [PMID: 35384191 DOI: 10.1111/dth.15490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
Abstract
Cyclosporine-A (Cyc-A) was initially prescribed as systemic therapy for patients receiving solid organ transplants or in patients with graft versus host disease (GVHD). Topical Cyc-A is an ideal form of Cyclosporine in the treatment of mucocutaneous disorders as it causes fewer systemic side effects and has more stable results than steroids; however, poor absorption through the skin makes the development of new formulations necessary to improve skin permeability. To evaluate the efficacy and safety of topical Cyc-A in different dermatological conditions. A thorough systematic review was performed on PubMed/Medline, Embase, Scopus, and Web of Science databases as well as Google Scholar, and relevant studies from 2000 until January 3rd, 2022, were selected. The study was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA). Topical Cyc-A was observed to be an effective medication in the treatment of oral lichen planus, psoriasis, burning mouth syndrome, Pyoderma Gangrenosum, and Zoon's balanitis. Adverse side effects such as dysphagia, burning sensation, lips swealing, and gastrointestinal upset were reported following Cyc-A mouthwash use, whereas mild erythema, dryness, and fissuring of the skin were observed following the Cyc-A lipogel application. Topical Cyc-A was found to be a good alternative to traditional treatment regimens for immune-mediated mucocutaneous conditions. Cyc-A can be considered as a safe and efficient option in cases of long-term treatment as it does not have the same adverse effects of long-term steroids. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sara Sadeghi
- Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Kalantari
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Seirafianpour
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Faculty of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Iran Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| |
Collapse
|
31
|
Chen S, Bai Y, Wang Y, Liang C, Du K, Wang S, Li J, Chang YX. Immunosuppressive effect of Columbianadin on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced dendritic cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114918. [PMID: 34919989 DOI: 10.1016/j.jep.2021.114918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelicae pubescentis radix (APR) has a long history in the treatment of rheumatoid arthritis (RA) in China. It has the effects of dispelling wind to eliminate dampness, removing arthralgia and stopping pain in the Chinese Pharmacopeia, but its mechanisms was unclear. Columbianadin (CBN) was one of the main bioactive compounds of APR, and has many pharmacological effects. But the immunosuppressive effect of CBN on DCs and the potential mechanism needed to be explored. AIM OF THE STUDY The study was aimed to clarify the immunosuppressive effect of CBN on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced DCs. MATERIALS AND METHODS Bone marrow-derived DCs were obtained and cultured from C57BL/6 mice in accordance with protocol. The phenotypic study (CD11c, CD40, CD80, CD86 and MHC Ⅱ) were measured by flow cytometry. FITC-dextran were uptaked by DCs and the change of endocytosis activity were mediated by acquired mannose receptor. Transwell chambers were used to detect the migration ability of DCs. Mixed leukocyte reaction (MLR) assay was used to detect the allostimulatory ability of CBN on TNF-α stimulated DCs. The secretion of cytokines and chemokines was measured by ELISA Kit. TLRs gene and MAPKs/NF-κB protein expression were checked by qRT-PCR and Western blot. RESULTS CBN inhibited the maturation of TNF-α-induced DCs while maintaining phagocytosis capabilities. Additionally, CBN inhibited the migration of TNF-α stimulated DCs, which related to reduce the production of chemokines (MCP-1, MIP-1α). Notably, CBN could suppress the proliferation of CD4+T cells by inhibiting DCs maturation, and decrease the proinflammatory cytokines IL-6 production. Furthermore, CBN inhibited mRNA expression of TLR2, TLR7 and TLR9 in TNF-α-activated DCs. Meanwhile, the phosphorylation of p38, JNK1/2 and NF-κB protein were significantly inhibited in CBN treated DCs. CONCLUSIONS These findings provided novel insights into the pharmacological activity of CBN. They also indicated that inhibition DCs maturation owning to the immunosuppressive effect of CBN. CBN was expected as a potential immunosuppressant and TLRs/MAPKs/NF-κB pathway may be an important mechanism for CBN's immunosuppressive activity.
Collapse
Affiliation(s)
- Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yun Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
32
|
Khoa Huynh NA, Do THT, Le XL, Huynh TTN, Nguyen DH, Tran NK, Tran CTHL, Nguyen DH, Truong CT. Development of softgel capsules containing cyclosporine a encapsulated pine essential oil based self-microemulsifying drug delivery system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Li N, Qin Y, Dai D, Wang P, Shi M, Gao J, Yang J, Xiao W, Song P, Xu R. Transdermal Delivery of Therapeutic Compounds With Nanotechnological Approaches in Psoriasis. Front Bioeng Biotechnol 2022; 9:804415. [PMID: 35141215 PMCID: PMC8819148 DOI: 10.3389/fbioe.2021.804415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated skin disorder involving hyperproliferation of the keratinocytes in the epidermis. As complex as its pathophysiology, the optimal treatment for psoriasis remains unsatisfactorily addressed. Though systemic administration of biological agents has made an impressive stride in moderate-to-severe psoriasis, a considerable portion of psoriatic conditions were left unresolved, mainly due to adverse effects from systemic drug administration or insufficient drug delivery across a highly packed stratum corneum via topical therapies. Along with the advances in nanotechnologies, the incorporation of nanomaterials as topical drug carriers opens an obvious prospect for the development of antipsoriatic topicals. Hence, this review aims to distinguish the benefits and weaknesses of individual nanostructures when applied as topical antipsoriatics in preclinical psoriatic models. In view of specific features of each nanostructure, we propose that a proper combination of distinctive nanomaterials according to the physicochemical properties of loaded drugs and clinical features of psoriatic patients is becoming a promising option that potentially drives the translation of nanomaterials from bench to bedside with improved transdermal drug delivery and consequently therapeutic effects.
Collapse
Affiliation(s)
- Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yeping Qin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Dai
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengyu Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junwei Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsheng Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ping Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Interdisciplinary of Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| |
Collapse
|
34
|
Nishino T, Takahashi K, Tomori S, Ono S, Mimaki M. Effects of diurnal variation of bile acids by meal on cyclosporine A absorption. Pediatr Int 2022; 64:e15296. [PMID: 36421923 DOI: 10.1111/ped.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/10/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Stabilizing blood levels with microemulsified cyclosporine A (CsA), administered in many pediatric kidney diseases, is important for effective immunosuppression and reduced nephrotoxicity. CsA is affected by total bile acids (TBAs); however, no reports have simultaneously measured both. We aimed to elucidate the hypothesized relationship between TBA levels and diurnal variation in CsA in children. METHODS We retrospectively reviewed the medical records of children who were taking oral CsA for the treatment of kidney diseases between January 2016 and July 2021. They consumed four balanced meals and snacks during the day. CsA and TBA were measured twice, in pairs, before and at 0.5, 1, 1.5, 2, 3, and 4 h after oral administration in the morning and evening, and the four-h area under curve (AUC)0-4 of CsA and trough-to-peak ratio (TPR) of TBA were compared. RESULTS Fifty-eight pairs were measured in total; 12 children had idiopathic nephrotic syndrome and 4 children had immunoglobulin A vasculitis with nephritis. The median age at measurement was 7.5 years and the dose of CsA was 3.8 mg/kg/day. The AUC0-4 (ng·h/mL) was significantly lower in the evening than in the morning (1,669 vs. 1,451, P < 0.001). The TPR of TBA was significantly higher in the evening than in the morning (0.14 vs. 0.25, P < 0.001). CONCLUSIONS The low AUC0-4 and slow TBA secretion observed in the evening may be due to pediatric-specific dietary rhythms; thus, snack timing should be considered in children for stabilizing CsA levels.
Collapse
Affiliation(s)
- Tomohiko Nishino
- Department of Pediatrics, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Takahashi
- Department of Pediatrics, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Shinya Tomori
- Department of Pediatrics, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Sayaka Ono
- Department of Pediatrics, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
35
|
The Effects of Bariatric Surgery and Gastrectomy on the Absorption of Drugs, Vitamins, and Mineral Elements. Pharmaceutics 2021; 13:pharmaceutics13122111. [PMID: 34959391 PMCID: PMC8708306 DOI: 10.3390/pharmaceutics13122111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Bariatric surgery, which is an effective treatment for obesity, and gastrectomy, which is the primary treatment method for gastric cancer, alter the anatomy and physiology of the digestive system. Weight loss and changes in the gastrointestinal tract may affect the pharmacokinetic parameters of oral medications. Both bariatric and cancer patients use drugs chronically or temporarily. It is important to know how surgery affects their pharmacokinetics to ensure an effective and safe therapy. The Cochrane, PubMed, and Scopus databases were searched independently by two authors. The search strategy included controlled vocabulary and keywords. Studies show that bariatric surgery and gastrectomy most often reduce the time to maximum plasma concentration (tmax) and decrease the maximum plasma concentration (Cmax) in comparison with the values of these parameters measured in healthy volunteers. Vitamin and mineral deficiencies are also observed. The effect depends on the type of surgery and the properties of the drug. It is recommended to use the drugs that have been tested on these groups of patients as it is possible to monitor them.
Collapse
|
36
|
Pandey S, Tripathi P, Gupta A, Yadav JS. A comprehensive review on possibilities of treating psoriasis using dermal cyclosporine. Drug Deliv Transl Res 2021; 12:1541-1555. [PMID: 34550552 DOI: 10.1007/s13346-021-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
Psoriasis is an autoimmune, chronic proliferative, inflammatory skin disease with high comorbidity. Psoriasis is not a curable disease; it can only be managed. Cyclosporine A (CyA) is one of the FDA-approved immunosuppressant drug used in severe Psoriasis. Till date only oral route is used for its administration. Administration of CyA by this route causes serious side effects such as hypertension and renal toxicity. Due to these side effects, a number of researches have been done and taking place in the current times for the dermal delivery of CyA for the management of psoriasis. Dermal delivery of CyA is not an easy task because of its physiochemical properties like high molecular weight, lipophilicity and resistance offered by stratum corneum (SC). Because of the above problems in the dermal delivery a number of new approaches such as nanolipid carriers, microemulsion, liposomes, niosomes etc. are explored. To those deep findings for psoriasis management with dermal delivery of CyA have not been discussed. This comprehensive review includes all the studies, advancements and their critical findings which took place in the recent times for the dermal delivery of CyA and along with the suitable modification needed for the efficient dermal delivery of CyA are also suggested.
Collapse
Affiliation(s)
- Sonia Pandey
- Sakshi College of Pharmacy, Kalyanpur, UP, 208017, Kanpur, India.
| | - Purnima Tripathi
- Department of Pharmaceutics, Bundelkhand University, Jhansi, UP, India
| | - Arti Gupta
- Department of Pharmacy, Institute of Technology and Management, Gorakhpur, UP, 273209, India
| | - Jitendra Singh Yadav
- Department of Pharmacy, Institute of Technology and Management, Gorakhpur, UP, 273209, India
| |
Collapse
|
37
|
Pilitsis JG. Grand Challenges in Neuromodulatory Interventions. FRONTIERS IN PAIN RESEARCH 2021; 2:700552. [PMID: 35295459 PMCID: PMC8915660 DOI: 10.3389/fpain.2021.700552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
|
38
|
Song F, Gong J, Tao Y, Cheng Y, Lu J, Wang H. A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery. Int J Biol Macromol 2021; 176:448-458. [PMID: 33607138 DOI: 10.1016/j.ijbiomac.2021.02.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
Constructing robust hydrogels with biodegradability and dual stimuli-responsive by utilizing natural polymer as raw materials remains a sustaining challenge. Herein, we proposed an interpenetrating strategy in which N-isopropyl acrylamide (NIPAM) and acrylamide (AM) block copolymers were introduced as the second network into the carboxymethyl cellulose single network gel (CMC gel) to construct a dual-network robust hydrogel (CMC/PNIPAM-co-PAM). The dual-network design strategy effectively improves the mechanical strength of CMC gel. The hydrogel suggests intelligent dual stimuli-responsive behavior to pH and temperature. Furthermore, the copolymerization of NIPAM and AM regulated the low critical solution temperature (LCST) of the hybrid hydrogel, making it close to the physiological temperature of the human body. With the aim of evaluating its application in drug delivery, we loaded tetracycline into the dual-network hydrogel and simulated its release process under the pH microenvironment of the small intestine and the physiological temperature to infer its potential application in intestinal inflammation treatments. Moreover, it is proved that the strong hydrogel possesses good cytocompatibility in vitro biocompatibility testing. In addition, the embedding of tetracycline makes the hydrogel excellent antioxidant performance. This dual-stimulus response integrated hydrogel is expected to play a critical role in drug delivery and targeted therapy.
Collapse
Affiliation(s)
- Fuyu Song
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Jingwei Gong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Yehan Tao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
39
|
Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A. Pharmaceutics 2021; 13:pharmaceutics13020192. [PMID: 33535607 PMCID: PMC7912864 DOI: 10.3390/pharmaceutics13020192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/22/2022] Open
Abstract
A combination of in situ gelling systems and a loaded drug self-assembling nanomicellar carrier was chosen in this study as a new potential Ocular Drug Delivery System (ODDS) for Cyclosporine-A (CyA), a poorly water-soluble drug. Two non-ionic surfactants (d-α-tocopherol polyethylene glycol succinate, VitE-TPGS and polyoxyl 40 hydrogenated castor oil, RH-40) were used to produce the nanomicelles. The physical-chemical characterization of the nanomicelles in terms of CyA entrapment (EE%) and loading efficiency (LE%), cloud point (CP), regeneration time (RT), size and polydispersity index (PI) allowed us to select the best combination of surfactant mixture, which showed appropriate stability, high CyA-EE (99.07%), very small and homogeneous dimensions and favored the solubilization of an amount of CyA (0.144% w/w) comparable to that contained in marketed emulsion Ikervis®. The selected nanomicellar formulation incorporated into optimized ion-sensitive polymeric dispersions of gellan gum (GG-LA: 0.10, 0.15 and 0.20% w/w) able to trigger the sol-gel transition after instillation was characterized from technological (osmolality, pH, gelling capacity, rheological behavior, wettability, TEM and storage stability at 4 and 20 °C) and biopharmaceutical points of view. This new combined approach allowed us to obtain clear aqueous dispersions that were easy to instill and able to form a viscous gel when in contact with the tear fluid, improving CyA ocular bioavailability. Furthermore, this new ODDS prevented CyA transcorneal permeation, exhibited low cytotoxicity and prolonged the CyA resident time in the precorneal area compared to Ikervis®.
Collapse
Affiliation(s)
- Eleonora Terreni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
| | - Erica Zucchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
- Correspondence:
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| |
Collapse
|
40
|
Wu P, Sun W, Li J. Rheumatoid arthritis patients with peripheral blood cell reduction should be evaluated for latent Felty syndrome: A case report. Medicine (Baltimore) 2020; 99:e23608. [PMID: 33371095 PMCID: PMC7748335 DOI: 10.1097/md.0000000000023608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 10/11/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022] Open
Abstract
RATIONALE Felty syndrome is a rare and life-threatening type of rheumatoid arthritis (RA). PATIENT CONCERNS A patient with RA had skin rash and subcutaneous hemorrhage, with a significant decrease in blood hemoglobin (Hb), white blood cell count (WBC), and blood platelet count (BPC). DIAGNOSES The patient had a history of RA, splenomegaly, decreased Hb, WBC, BPC, and normal immunological indexes, combined with a series of bone marrow related tests and genetic tests. INTERVENTIONS She was given high-doses of glucocorticoids intravenously, followed by oral prednisone and cyclosporine maintenance therapy. OUTCOMES Her symptoms were resolved within 2 weeks after the start of immunosuppression. After 2 weeks of discharge, the Hb, WBC, BPC basically returned to normal, and prednisone gradually decreased. LESSONS Felty syndrome is a rare complication of RA. Reductions in Hb, WBC, BPC, and subcutaneous hemorrhage should be considered strongly as the possibility of Felty syndrome. Multi-disciplinary diagnosis and related tests of bone marrow and genes are helpful for diagnosis and correct treatment.
Collapse
Affiliation(s)
- Peng Wu
- The First Affiliated Hospital of GuangDong Pharmaceutical University
| | - Weifeng Sun
- Department of traditional Chinese medicine, southern theater general hospital, the Chinese People's Liberation Army, Guangzhou, China
| | - Jing Li
- Department of traditional Chinese medicine, southern theater general hospital, the Chinese People's Liberation Army, Guangzhou, China
| |
Collapse
|
41
|
Cyclosporine CsA—The Physicochemical Characterization of Liposomal and Colloidal Systems. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper presents an overview of the possibilities of testing various cyclosporine (CsA) formulations with an emphasis on parameters that may be key to improving the stability and biocompatibility. The feasibility of CsA colloidal systems for oral (injection) administration were investigated using different techniques and compared with similar investigations of other researchers. The chosen CsA systems were developed using dipalmitoylphosphocholine (DPPC) and/or cholesterol as a lipid matrix, stabilized with ethanol, with soybean oil or n-tetradecane as oil phase in emulsions, under natural pH, room and physiological temperature. Their integrity was found to be strictly dependent on the stabilizers. The highest CsA penetrability with the system containing phospholipid in the context of its interactions with lipid membranes was shown. Also, the bioavailability of CsA can be enhanced with the biopolymer antibacterial chitosan. This mini-review suggests the suitability of liposome/microemulsion as promising vehicles for CsA delivery. The most hopeful proved to be formulation with the smaller particle size facilitating absorption, but when safety is assessed, relying on just the particle size cannot be the only criteria. Reassumed, the CsA formulation stability known on the basis of the size and zeta potential measurements guarantees a decrease of the individual variations in the drug bioavailability, toxicity and minimizes rejection.
Collapse
|
42
|
Gu TW, Wang MZ, Niu J, Chu Y, Guo KR, Peng LH. Outer membrane vesicles derived from E. coli as novel vehicles for transdermal and tumor targeting delivery. NANOSCALE 2020; 12:18965-18977. [PMID: 32914815 DOI: 10.1039/d0nr03698f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transdermal drug delivery is favored in clinical therapy because of its ability to overcome the shortcomings of the first pass elimination of the liver caused by traditional oral administration and the irreversibility of the injection. However, skin stratum corneum (SC) forms a big barrier that precludes most of the biomacromolecules. Herein, we propose the engineering of transformed Escherichia coli (E. coli) derived outer membrane vesicles, detoxified by lysozymes (named TEVs) as the carrier for transdermal drug delivery. TEVs were derived from transgenic E. coli and then modified by an integrin alpha(v)beta(3) (αvβ3) targeting peptide and co-loaded with indocyanine green (ICG) (P-TEVs-G). TEVs were shown to have excellence in penetrating through intact SC without any additional enhancement, followed by targeting of melanoma cells. TEVs are promising nanoplatforms for transdermal and tumor targeting drug delivery with high efficacy and biosafety, possessing great potential in the treatment of superficial tumors.
Collapse
Affiliation(s)
- Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | | | | | | | | | | |
Collapse
|
43
|
CYP3A Excipient-Based Microemulsion Prolongs the Effect of Magnolol on Ischemia Stroke Rats. Pharmaceutics 2020; 12:pharmaceutics12080737. [PMID: 32764430 PMCID: PMC7464078 DOI: 10.3390/pharmaceutics12080737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Magnolol, which is a CYP3A substrate, is a well-known agent that can facilitate neuroprotection and reduce ischemic brain damage. However, a well-controlled release formulation is needed for the effective delivery of magnolol due to its poor water solubility. In this study, we have developed a formulation for a CYP3A-excipient microemulsion, which can be administrated intraperitoneally to increase the solubility and bioavailability of magnolol and increase its neuroprotective effect against ischemic brain injury. The results showed a significant improvement in the area under the plotted curve of drug concentration versus time curve (AUC0–t) and mean residence time (MRT) of magnolol in microemulsion compared to when it was dissolved in dimethyl sulfoxide (DMSO). Both magnolol in DMSO and microemulsion, administrated after the onset of ischemia, showed a reduced visual brain infarct size. As such, this demonstrates a therapeutic effect on ischemic brain injury caused by occlusion, however it is important to note that a pharmacological effect cannot be concluded by this study. Ultimately, our study suggests that the excipient inhibitor-based microemulsion formulation could be a promising concept for the substrate drugs of CYP3A.
Collapse
|
44
|
Mazet R, Yaméogo JBG, Wouessidjewe D, Choisnard L, Gèze A. Recent Advances in the Design of Topical Ophthalmic Delivery Systems in the Treatment of Ocular Surface Inflammation and Their Biopharmaceutical Evaluation. Pharmaceutics 2020; 12:pharmaceutics12060570. [PMID: 32575411 PMCID: PMC7356360 DOI: 10.3390/pharmaceutics12060570] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular inflammation is one of the most common symptom of eye disorders and diseases. The therapeutic management of this inflammation must be rapid and effective in order to avoid deleterious effects for the eye and the vision. Steroidal (SAID) and non-steroidal (NSAID) anti-inflammatory drugs and immunosuppressive agents have been shown to be effective in treating inflammation of the ocular surface of the eye by topical administration. However, it is well established that the anatomical and physiological ocular barriers are limiting factors for drug penetration. In addition, such drugs are generally characterized by a very low aqueous solubility, resulting in low bioavailability as only 1% to 5% of the applied drug permeates the cornea. The present review gives an updated insight on the conventional formulations used in the treatment of ocular inflammation, i.e., ointments, eye drops, solutions, suspensions, gels, and emulsions, based on the commercial products available on the US, European, and French markets. Additionally, sophisticated formulations and innovative ocular drug delivery systems will be discussed. Promising results are presented with micro- and nanoparticulated systems, or combined strategies with polymers and colloidal systems, which offer a synergy in bioavailability and sustained release. Finally, different tools allowing the physical characterization of all these delivery systems, as well as in vitro, ex vivo, and in vivo evaluations, will be considered with regards to the safety, the tolerance, and the efficiency of the drug products.
Collapse
Affiliation(s)
- Roseline Mazet
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Grenoble University Hospital, 38043 Grenoble, France
| | | | - Denis Wouessidjewe
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Luc Choisnard
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Annabelle Gèze
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Correspondence: ; Tel.: +33-476-63-53-01
| |
Collapse
|
45
|
Marques Borges GS, Oliveira Ferencs MD, Mello Gomide Loures CD, Abdel-Salam MAL, Gontijo Evangelista FC, Sales CC, Reis da Silva PH, de Oliveira RB, Malachias Â, Yoshida MI, de Souza-Fagundes EM, Paula Sabino AD, Fernandes C, Miranda Ferreira LA. Novel self-nanoemulsifying drug-delivery system enhances antileukemic properties of all-trans retinoic acid. Nanomedicine (Lond) 2020; 15:1471-1486. [DOI: 10.2217/nnm-2020-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: All- trans retinoic acid (ATRA) shows erratic oral bioavailability when administered orally against leukemia, which can be solved through its incorporation in self-nanoemulsifying drug-delivery systems (SEDDS). The SEDDS developed contained a hydrophobic ion pair between benzathine (BZT) and ATRA and was enriched with tocotrienols by the input of a palm oil tocotrienol rich fraction (TRF) in its composition. Results: SEDDS-TRF-ATRA-BZT allowed the formation of emulsions with nanometric size that retained ATRA within their core after dispersion. Pharmacokinetic parameters after oral administration of SEDDS-TRF-ATRA-BZT in mice were improved compared with what was seen for an ATRA solution. Moreover, SEDDS-TRF-ATRA-BZT had improved activity against HL-60 cells compared with SEDDS without TRF. Conclusion: SEDDS-TRF-ATRA-BZT is a promising therapeutic choice over ATRA conventional medicine.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Micael de Oliveira Ferencs
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina de Mello Gomide Loures
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mostafa AL Abdel-Salam
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Camila Campos Sales
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Henrique Reis da Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ângelo Malachias
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Irene Yoshida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Maria de Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christian Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Antônio Miranda Ferreira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
46
|
Hyun S, Li L, Yoon KC, Yu J. An amphipathic cell penetrating peptide aids cell penetration of cyclosporin A and increases its therapeutic effect in an in vivo mouse model for dry eye disease. Chem Commun (Camb) 2019; 55:13657-13660. [PMID: 31595891 DOI: 10.1039/c9cc05960a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell penetrating peptide (CPP), LK-3, causes a ca. 10-fold increase in the cell penetration of cyclosporin A (CsA) at nanomolar concentrations. The results of an in vivo dry eye mouse model demonstrated that a 100-fold lower dose of the CsA/LK-3 complex than that of Restasis® is sufficient to cause the same therapeutic effect.
Collapse
Affiliation(s)
- Soonsil Hyun
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
47
|
Essaghraoui A, Belfkira A, Hamdaoui B, Nunes C, Lima SAC, Reis S. Improved Dermal Delivery of Cyclosporine A Loaded in Solid Lipid Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1204. [PMID: 31461853 PMCID: PMC6780175 DOI: 10.3390/nano9091204] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022]
Abstract
Cyclosporine A (CsA) is an immunosuppressant frequently used in the therapy of autoimmune disorders, including skin-related diseases. Aiming towards topical delivery, CsA was successfully incorporated into lipid nanoparticles of Lipocire DM and Pluronic F-127 using the hot homogenization method. Two different nanocarriers were optimized: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) where oleic acid was the liquid lipid. The developed nanoparticles showed mean sizes around 200 nm, a negative surface charge, and drug entrapment efficiencies around 85% and 70% for SLNs and NLCs, respectively. The spherical CsA-loaded lipid nanoparticles were stable for 9 weeks when stored at room temperature, and exhibited in vitro pH-dependent release under skin mimetic conditions, following the Peppas-Korsmeyer model. CsA, when loaded in SLNs, was safe to be used up to 140 μg mL-1 in fibroblasts and keratinocytes, while CsA-loaded NLCs and free drug exhibited IC50 values of 55 and 95 μg mL-1 (fibroblasts) and 28 and 30 μg mL-1 (keratinocytes), respectively. The developed SLNs were able to retain the drug in pork skin with a reduced permeation rate in relation to NLCs. These findings suggest that SLNs are a potential alternative to produce stable and safe CsA nanocarriers for topical administration.
Collapse
Affiliation(s)
- Abderrazzaq Essaghraoui
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Ahmed Belfkira
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Bassou Hamdaoui
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Cláudia Nunes
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|