1
|
Watson MJ, Mundorff CC, Lynch EM, Kollman JM, Kearney JF, Guttman M. Defining the Features of Complement-Active IgM. J Mol Biol 2025; 437:169104. [PMID: 40154915 PMCID: PMC12040574 DOI: 10.1016/j.jmb.2025.169104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Immunoglobulin M (IgM) is a class of mammalian antibody that is critical for the early stages of adaptive immunity, and is the most potent Ig-activator of the classical complement cascade. While the relationship between IgM and complement has been appreciated for decades, the structural transitions within IgM upon antigen binding that promote the activation of complement component C1 remain unresolved. Here we examine in vitro complement activation, C1 binding kinetics, and conformational changes within IgM in different antigen-bound states. Binding studies using biolayer interferometry revealed that only in a multivalent complex with a surface-displayed antigen was IgM fully capable of initiating complement activation. Hydrogen/Deuterium exchange with mass spectrometry revealed the predominant structural changes within the Fc domains during transition to the active conformation. Collectively, this work establishes key structural and functional qualities that define the complement-active form of IgM.
Collapse
Affiliation(s)
- Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Charlie C Mundorff
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
2
|
Buchner J, Sitia R, Svilenov HL. Understanding IgM Structure and Biology to Engineer New Antibody Therapeutics. BioDrugs 2025; 39:347-357. [PMID: 40237925 PMCID: PMC12031937 DOI: 10.1007/s40259-025-00720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
Immunoglobulin M (IgM) antibodies are an essential and conserved part of adaptive immunity. IgMs assemble into pentamers and hexamers that bind to antigens with high avidity. Pentamers incorporate a small protein called J-chain (JC) that is important for their transcytosis via the poly-immunoglobulin receptor (pIgR). IgM antibodies can efficiently activate complement and interact with different Fc receptors (FcμR, Fcα/μR, pIgR) that trigger distinct effector functions and biodistribution. Even if these features have made the clinical use of IgM attractive over the past decades, there are currently no approved therapeutic IgMs on the market. In this review, we summarize the recent advances in the knowledge of IgM biogenesis and structure and discuss the therapeutic opportunities of IgM over IgG arising from high avidity, target clustering, binding to distinct IgM receptors, complement activation, transcytosis, and protein engineering opportunities. In addition, we summarize possibilities and outstanding challenges in the production of therapeutic IgM, including available technologies for IgM purification. Finally, we review recent preclinical and clinical data showing that IgM outperforms IgG in various in vitro assays but still fails to pass through clinical trials successfully. Challenges remain for IgM development, such as the need for a better understanding of IgM biology to facilitate a smoother transition from the preclinic to successful clinical trials.
Collapse
Affiliation(s)
- Johannes Buchner
- Department Bioscience, Center for Protein Assemblies, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, Italy
| | - Hristo L Svilenov
- Biopharmaceutical Technology, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.
| |
Collapse
|
3
|
van Tol BDM, Wasynczuk AM, Gijze S, Mayboroda OA, Nouta J, Dolhain RJEM, Wuhrer M, Falck D. Comprehensive Immunoglobulin G, A, and M Glycopeptide Profiling for Large-Scale Biomedical Research. Mol Cell Proteomics 2025; 24:100928. [PMID: 39983994 PMCID: PMC11953977 DOI: 10.1016/j.mcpro.2025.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Glycosylation of immunoglobulin G (IgG) is recognized as a key modulator of cellular effector functions. At the same time, an increasing body of evidence underlines the importance of other antibody isotypes, especially IgA and IgM, in pathophysiological conditions. Therefore, methods to efficiently study the complex interplay between isotypes, subclasses, and glycosylation of antibodies during acute and chronic states of inflammation are needed. As a solution, we present an integrated and comprehensive method combining simultaneous affinity enrichment of IgG, IgA, and IgM with a single measurement, glycopeptide-centered LC-MS analysis of all isotypes which provides protein-specific (isotype and subclass), and site-specific N- and O-glycosylation quantitation. A two-protease approach provided individual peptides for each glycosylation site, allowing unambiguous compositional assignment and relative quantitation of glycoforms on the MS1 level as well as structural confirmation and partial isomer assignment on the MS/MS level. We demonstrate that our methodology can be efficiently applied to large clinical studies revealing differences in antibody glycosylation in women during and after pregnancy, as well as between healthy donors and patients with rheumatoid arthritis. In addition, this showcased the advantages of our method in comprehensiveness and resolution of isotypes, subclasses, and glycosylation sites as well as its precision and robustness.
Collapse
Affiliation(s)
- Bianca D M van Tol
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna M Wasynczuk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Steinar Gijze
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Ko S, Hong S. Characterization of IgD and IgT with their expressional analysis following subtype II megalocytivirus vaccination and infection in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105248. [PMID: 39216776 DOI: 10.1016/j.dci.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, heavy chain genes of IgD and IgT were sequenced and characterized their gene expression in rock bream (Oplegnathus fasciatus). Rock bream (RB)-IgD cDNA is 3319 bp in length and encodes a leader region, variable domains, a μ1 domain, and seven constant domains (CH1-CH7). A membrane-bound (mIgT) and secretory form (sIgT) of RB-IgT cDNAs are 1902 bp and 1689 bp in length, respectively, and encode a leader region, variable domains, four constant domains (CH1-CH4) and C-terminus. Their predicted 3D-structure and phylogenetic relation were similar to those of other teleost. In healthy fish, RB-IgD and mIgT gene expressions were higher in major lymphoid organs and blood, while RB-sIgT gene was more highly expressed in midgut. IgT expressing cells were detected in melano-macrophage centers (MMC) of head kidney in immunohistochemistry analysis. Under immune stimulation in vitro, RB-IgD and IgT gene expressions were upregulated in head kidney and spleen cells by bovine serum albumin or a rock bream iridovirus (RBIV) vaccine. In vivo, their expressions were significantly upregulated in head kidney, blood, and gill upon vaccination. Especially, RB-mIgT gene expression in head kidney and blood was upregulated at day 3 after vaccination while upregulated at earlier time point of day 1 by challenge with RBIV. This may suggest that memory cells might be produced during the primary response by vaccination and rapidly proliferated by secondary immune response by viral infection. RB-sIgT gene expression was highly upregulated in peripheral blood in vaccinated fish after viral infection, indicating that IgT plays an important role in systemic immune response as well as mucosal immune system. Our findings provide information on the role of RB-IgT in adaptive immunity during vaccination and viral infection in the vaccinated fish.
Collapse
Affiliation(s)
- Sungjae Ko
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea.
| |
Collapse
|
5
|
Wang Q, Wang X, Ding J, Huang L, Wang Z. Structural insight of cell surface sugars in viral infection and human milk glycans as natural antiviral substance. Int J Biol Macromol 2024; 277:133867. [PMID: 39009265 DOI: 10.1016/j.ijbiomac.2024.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Viral infections are caused by the adhesion of viruses to host cell receptors, including sialylated glycans, glycosaminoglycans, and human blood group antigens (HBGAs). Atomic-level structural information on the interactions between viral particles or proteins with glycans can be determined to provide precise targets for designing antiviral drugs. Milk glycans, existing as free oligosaccharides or glycoconjugates, have attracted increasing attention; milk glycans protect infants against infectious diseases, particularly poorly manageable viral infections. Furthermore, several glycans containing structurally distinct sialic acid/fucose/sulfate modifications in human milk acting as a "receptor decoy" and serving as the natural antiviral library, could interrupt virus-receptor interaction in the first line of defense for viral infection. This review highlights the basis of virus-glycan interactions, presents specific glycan receptor binding by gastroenterovirus viruses, including norovirus, enteroviruses, and the breakthroughs in the studies on the antiviral properties of human milk glycans, and also elucidates the role of glycans in respiratory viruses infection. In addition, recent advances in methods for performing virus/viral protein-glycan interactions were reported. Finally, we discuss the prospects and challenges of the studies on the clinical application of human milk glycan for viral interventions.
Collapse
Affiliation(s)
- Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
6
|
Hasegawa H, Wang S, Kast E, Chou HT, Kaur M, Janlaor T, Mostafavi M, Wang YL, Li P. Understanding the biosynthesis of human IgM SAM-6 through a combinatorial expression of mutant subunits that affect product assembly and secretion. PLoS One 2024; 19:e0291568. [PMID: 38848420 PMCID: PMC11161108 DOI: 10.1371/journal.pone.0291568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Polymeric IgMs are secreted from plasma cells abundantly despite their structural complexity and intricate multimerization steps. To gain insights into IgM's assembly mechanics that underwrite such high-level secretion, we characterized the biosynthetic process of a natural human IgM, SAM-6, using a heterologous HEK293(6E) cell platform that allowed the production of IgMs both in hexameric and pentameric forms in a controlled fashion. By creating a series of mutant subunits that differentially disrupt secretion, folding, and specific inter-chain disulfide bond formation, we assessed their effects on various aspects of IgM biosynthesis in 57 different subunit chain combinations, both in hexameric and pentameric formats. The mutations caused a spectrum of changes in steady-state subcellular subunit distribution, ER-associated inclusion body formation, intracellular subunit detergent solubility, covalent assembly, secreted IgM product quality, and secretion output. Some mutations produced differential effects on product quality depending on whether the mutation was introduced to hexameric IgM or pentameric IgM. Through this systematic combinatorial approach, we consolidate diverse overlapping knowledge on IgM biosynthesis for both hexamers and pentamers, while unexpectedly revealing that the loss of certain inter-chain disulfide bonds, including the one between μHC and λLC, is tolerated in polymeric IgM assembly and secretion. The findings highlight the differential roles of underlying non-covalent protein-protein interactions in hexamers and pentamers when orchestrating the initial subunit interactions and maintaining the polymeric IgM product integrity during ER quality control steps, secretory pathway trafficking, and secretion.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Songyu Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Eddie Kast
- Molecular Analytics, Department of Biologic Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Hui-Ting Chou
- Structural Biology, Department of Small Molecule Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Mehma Kaur
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Tanakorn Janlaor
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Mina Mostafavi
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Yi-Ling Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Peng Li
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| |
Collapse
|
7
|
Yin V, Deslignière E, Mokiem N, Gazi I, Lood R, de Haas CJC, Rooijakkers SHM, Heck AJR. Not All Arms of IgM Are Equal: Following Hinge-Directed Cleavage by Online Native SEC-Orbitrap-Based CDMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1320-1329. [PMID: 38767111 PMCID: PMC11157650 DOI: 10.1021/jasms.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Immunoglobulins M (IgM) are key natural antibodies produced initially in humoral immune response. Due to their large molecular weights and extensive glycosylation loads, IgMs represent a challenging target for conventional mass analysis. Charge detection mass spectrometry (CDMS) may provide a unique approach to tackle heterogeneous IgM assemblies, although this technique can be quite laborious and technically challenging. Here, we describe the use of online size exclusion chromatography (SEC) to automate buffer exchange and sample introduction, and demonstrate its adaptability with Orbitrap-based CDMS. We discuss optimal experimental parameters for online SEC-CDMS experiments, including ion activation, choice of column, and resolution. Using this approach, CDMS histograms containing hundreds of individual ion signals can be obtained in as little as 5 min from single injections of <1 μg of sample. To demonstrate the unique utility of online SEC-CDMS, we performed real-time kinetic monitoring of pentameric IgM digestion by the protease IgMBRAZOR, which cleaves specifically in the hinge region of IgM. Several digestion intermediates corresponding to processive losses of F(ab')2 subunits could be mass-resolved and identified by SEC-CDMS. Interestingly, we find that for the J-chain linked IgM pentamer, cleavage of one of the F(ab')2 subunits is much slower than the other four F(ab')2 subunits, which we attribute to the symmetry-breaking interactions of the J-chain within the pentameric IgM structure. The online SEC-CDMS methodologies described here open new avenues into the higher throughput automated analysis of heterogeneous, high-mass protein assemblies by CDMS.
Collapse
Affiliation(s)
- Victor Yin
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Evolène Deslignière
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Nadia Mokiem
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Inge Gazi
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Rolf Lood
- Genovis
AB, Scheelevägen
2, 223 63 Lund, Sweden
| | - Carla J. C. de Haas
- Department
of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department
of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Tavakkoli Yaraki M, Wongtrakul-Kish K, Moh ESX, Packer NH, Wang Y. Lectin-conjugated nanotags with high SERS stability: selective probes for glycans. Analyst 2024; 149:1774-1783. [PMID: 38373007 DOI: 10.1039/d3an02108d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Surface-enhanced Raman scattering (SERS) nanotags functionalized with lectins as the biological recognition element can be used to target the carbohydrate portion of carbohydrate-carrying molecules (glycoconjugates). An investigation of the optical stability of such functionalized SERS nanotags is an essential initial step before future application and quantification of surface glycan biomarkers on cells and extracellular vesicles. Herein, we report an innovative approach to evaluate the SERS stability of lectin-conjugated nanotags by investigating any possible interfering lectin-lectin interactions in a mixture of different lectin-conjugated SERS nanotags, as well as an assessment of lectin-glycan interaction by mixing wheat germ agglutinin (WGA)-conjugated SERS nanotags with different glycoproteins. No lectin cross-reactivity was found in the mixture of lectin-conjugated SERS nanotags, evidenced by the constant SERS intensity. Additionally, the results showed that the lectins conjugated to SERS nanotags retain their ability to interact with glycans, as evidenced by the changes in the nanotag color and extinction spectra. Their SERS intensity remained constant as supported by finite-element method (FEM) simulation results, demonstrating a high SERS stability and selectivity of lectin-conjugated nanotags towards multiplex applications.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Katherine Wongtrakul-Kish
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Edward S X Moh
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Nicolle H Packer
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
9
|
Cheng YH, Lee CH, Wang SY, Chou CY, Yang YJ, Kao CC, Wu HY, Dong Y, Hung WY, Su CY, Tseng ST, Tsai IL. Multiplexed Antibody Glycosylation Profiling Using Dual Enzyme Digestion and Liquid Chromatography-Triple Quadrupole Mass Spectrometry Method. Mol Cell Proteomics 2024; 23:100710. [PMID: 38154690 PMCID: PMC10844133 DOI: 10.1016/j.mcpro.2023.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023] Open
Abstract
Antibody glycosylation plays a crucial role in the humoral immune response by regulating effector functions and influencing the binding affinity to immune cell receptors. Previous studies have focused mainly on the immunoglobulin G (IgG) isotype owing to the analytical challenges associated with other isotypes. Thus, the development of a sensitive and accurate analytical platform is necessary to characterize antibody glycosylation across multiple isotypes. In this study, we have developed an analytical workflow using antibody-light-chain affinity beads to purify IgG, IgA, and IgM from 16 μL of human plasma. Dual enzymes, trypsin and Glu-C, were used during on-bead digestion to obtain enzymatic glycopeptides and protein-specific surrogate peptides. Ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry was used in order to determine the sensitivity and specificity. Our platform targets 95 glycopeptides across the IgG, IgA, and IgM isotypes, as well as eight surrogate peptides representing total IgG, four IgG classes, two IgA classes, and IgM. Four stable isotope-labeled internal standards were added after antibody purification to calibrate the preparation and instrumental bias during analysis. Calibration curves constructed using serially diluted plasma samples showed good curve fitting (R2 > 0.959). The intrabatch and interbatch precision for all the targets had relative standard deviation of less than 29.6%. This method was applied to 19 human plasma samples, and the glycosylation percentages were calculated, which were comparable to those reported in the literature. The developed method is sensitive and accurate for Ig glycosylation profiling. It can be used in clinical investigations, particularly for detailed humoral immune profiling.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsin Lee
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yi Chou
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Jung Yang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Yushi Dong
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Ying Hung
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yi Su
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ting Tseng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Haslund-Gourley BS, Woloszczuk K, Hou J, Connors J, Cusimano G, Bell M, Taramangalam B, Fourati S, Mege N, Bernui M, Altman MC, Krammer F, van Bakel H, Maecker HT, Rouphael N, Diray-Arce J, Wigdahl B, Kutzler MA, Cairns CB, Haddad EK, Comunale MA. IgM N-glycosylation correlates with COVID-19 severity and rate of complement deposition. Nat Commun 2024; 15:404. [PMID: 38195739 PMCID: PMC10776791 DOI: 10.1038/s41467-023-44211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The glycosylation of IgG plays a critical role during human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during human acute viral infection. The analysis of IgM N-glycosylation from healthy controls and hospitalized coronavirus disease 2019 (COVID-19) patients reveals increased high-mannose and sialylation that correlates with COVID-19 severity. These trends are confirmed within SARS-CoV-2-specific immunoglobulin N-glycan profiles. Moreover, the degree of total IgM mannosylation and sialylation correlate significantly with markers of disease severity. We link the changes of IgM N-glycosylation with the expression of Golgi glycosyltransferases. Lastly, we observe antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients and modulated by exoglycosidase digestion. Taken together, this work links the IgM N-glycosylation with COVID-19 severity and highlights the need to understand IgM glycosylation and downstream immune function during human disease.
Collapse
Affiliation(s)
| | - Kyra Woloszczuk
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | - Jintong Hou
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | | | - Gina Cusimano
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | - Mathew Bell
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | | | | | - Nathan Mege
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | - Mariana Bernui
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Joann Diray-Arce
- Clinical & Data Coordinating Center (CDCC); Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Brian Wigdahl
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA
| | | | | | - Elias K Haddad
- Drexel University/Tower Health Hospital, Philadelphia, PA, USA.
| | | |
Collapse
|
11
|
Kallolimath S, Palt R, Föderl-Höbenreich E, Sun L, Chen Q, Pruckner F, Eidenberger L, Strasser R, Zatloukal K, Steinkellner H. Glyco engineered pentameric SARS-CoV-2 IgMs show superior activities compared to IgG1 orthologues. Front Immunol 2023; 14:1147960. [PMID: 37359564 PMCID: PMC10285447 DOI: 10.3389/fimmu.2023.1147960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Immunoglobulin M (IgM) is the largest antibody isotype with unique features like extensive glycosylation and oligomerization. Major hurdles in characterizing its properties are difficulties in the production of well-defined multimers. Here we report the expression of two SARS-CoV-2 neutralizing monoclonal antibodies in glycoengineered plants. Isotype switch from IgG1 to IgM resulted in the production of IgMs, composed of 21 human protein subunits correctly assembled into pentamers. All four recombinant monoclonal antibodies carried a highly reproducible human-type N-glycosylation profile, with a single dominant N-glycan species at each glycosite. Both pentameric IgMs exhibited increased antigen binding and virus neutralization potency, up to 390-fold, compared to the parental IgG1. Collectively, the results may impact on the future design of vaccines, diagnostics and antibody-based therapies and emphasize the versatile use of plants for the expression of highly complex human proteins with targeted posttranslational modifications.
Collapse
Affiliation(s)
- Somanath Kallolimath
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Roman Palt
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Lin Sun
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Florian Pruckner
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lukas Eidenberger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Herta Steinkellner
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
Haslund-Gourley B, Woloszcuk K, Hou J, Connors J, Cusimano G, Bell M, Taramangalam B, Fourati S, Mege N, Bernui M, Altman M, Krammer F, van Bakel H, Maecker H, Wigdahl B, Cairns C, Haddad E, Comunale M. IgM N-glycosylation correlates with COVID-19 severity and rate of complement deposition. RESEARCH SQUARE 2023:rs.3.rs-2939468. [PMID: 37398192 PMCID: PMC10312960 DOI: 10.21203/rs.3.rs-2939468/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The glycosylation of IgG plays a critical role during human SARS-CoV-2, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during acute viral infection in humans. In vitro evidence suggests that the glycosylation of IgM inhibits T cell proliferation and alters complement activation rates. The analysis of IgM N-glycosylation from healthy controls and hospitalized COVID-19 patients reveals that mannosylation and sialyation levels associate with COVID-19 severity. Specifically, we find increased di- and tri-sialylated glycans and altered mannose glycans in total serum IgM in severe COVID-19 patients when compared to moderate COVID-19 patients. This is in direct contrast with the decrease of sialic acid found on the serum IgG from the same cohorts. Moreover, the degree of mannosylation and sialylation correlated significantly with markers of disease severity: D-dimer, BUN, creatinine, potassium, and early anti-COVID-19 amounts of IgG, IgA, and IgM. Further, IL-16 and IL-18 cytokines showed similar trends with the amount of mannose and sialic acid present on IgM, implicating these cytokines' potential to impact glycosyltransferase expression during IgM production. When examining PBMC mRNA transcripts, we observe a decrease in the expression of Golgi mannosidases that correlates with the overall reduction in mannose processing we detect in the IgM N-glycosylation profile. Importantly, we found that IgM contains alpha-2,3 linked sialic acids in addition to the previously reported alpha-2,6 linkage. We also report that antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients. Taken together, this work links the immunoglobulin M N-glycosylation with COVID-19 severity and highlights the need to understand the connection between IgM glycosylation and downstream immune function during human disease.
Collapse
|
13
|
Hale M, Netland J, Chen Y, Thouvenel CD, Smith KN, Rich LM, Vanderwall ER, Miranda MC, Eggenberger J, Hao L, Watson MJ, Mundorff CC, Rodda LB, King NP, Guttman M, Gale M, Abraham J, Debley JS, Pepper M, Rawlings DJ. IgM antibodies derived from memory B cells are potent cross-variant neutralizers of SARS-CoV-2. J Exp Med 2022; 219:213384. [PMID: 35938988 PMCID: PMC9365875 DOI: 10.1084/jem.20220849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 01/14/2023] Open
Abstract
Humoral immunity to SARS-CoV-2 can be supplemented with polyclonal sera from convalescent donors or an engineered monoclonal antibody (mAb) product. While pentameric IgM antibodies are responsible for much of convalescent sera's neutralizing capacity, all available mAbs are based on the monomeric IgG antibody subtype. We now show that IgM mAbs derived from immune memory B cell receptors are potent neutralizers of SARS-CoV-2. IgM mAbs outperformed clonally identical IgG antibodies across a range of affinities and SARS-CoV-2 receptor-binding domain epitopes. Strikingly, efficacy against SARS-CoV-2 viral variants was retained for IgM but not for clonally identical IgG. To investigate the biological role for IgM memory in SARS-CoV-2, we also generated IgM mAbs from antigen-experienced IgM+ memory B cells in convalescent donors, identifying a potent neutralizing antibody. Our results highlight the therapeutic potential of IgM mAbs and inform our understanding of the role for IgM memory against a rapidly mutating pathogen.
Collapse
Affiliation(s)
- Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | | | - Lucille M. Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | - Marcos C. Miranda
- Institute for Protein Design, University of Washington, Seattle, WA,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Linhui Hao
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Michael J. Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | | | - Lauren B. Rodda
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA,Department of Immunology, University of Washington School of Medicine, Seattle, WA,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA,Correspondence to David J. Rawlings:
| |
Collapse
|
14
|
Yin X, Li X, Mu L, Bai H, Yang Y, Chen N, Wu L, Fu S, Li J, Ying W, Ye J. Affinity-Driven Site-Specific High Mannose Modification Determines the Structural Polymerization and Function of Tetrameric IgM in a Primitive Vertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:593-605. [PMID: 35868636 DOI: 10.4049/jimmunol.2100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/21/2022] [Indexed: 10/17/2023]
Abstract
Teleost tetramer IgM is the predominant Ig in the immune system and plays essential roles in host defense against microbial infection. Due to variable disulfide polymerization of the monomeric subunits, tetrameric IgM possesses considerable structural diversity. Previous work indicated that the teleost IgM H chain was fully occupied with complex-type N-glycans. However, after challenge with trinitrophenyl (TNP) Ag, the complex N-glycans in the Asn-509 site of Oreochromis niloticus IgM H chain transformed into high mannose. This study, therefore, was conducted to examine the functional roles of the affinity-related high-mannose modification in tilapia IgM. The TNP-specific IgM Ab affinity maturation was revealed in tilapia over the response. A positive correlation between TNP-specific IgM affinity and its disulfide polymerization level of isomeric structure was demonstrated. Mass spectrometric analysis indicated that the relationship between IgM affinity and disulfide polymerization was associated with the Asn-509 site-specific high-mannose modification. Furthermore, the increase of high mannose content promoted the combination of IgM and mannose receptor (MR) on the surface of phagocytes. Moreover, the increased interaction of IgM and MR amplified the phagocytic ability of phagocytes to Streptococcus agalactiae. To our knowledge, this study demonstrates that site-specific high-mannose modification associates with IgM Ab affinity and its structural disulfide polymerization and amplifies the phagocytosis of phagocytes by the combination of IgM and MR. The present study provides evidence for understanding the association of IgM structure and function during the evolution of the immune system.
Collapse
Affiliation(s)
- Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Xiaoyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing, People's Republic of China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Hao Bai
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Yanjian Yang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Nuo Chen
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Liting Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Shengli Fu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI; and
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing, People's Republic of China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Vattepu R, Sneed SL, Anthony RM. Sialylation as an Important Regulator of Antibody Function. Front Immunol 2022; 13:818736. [PMID: 35464485 PMCID: PMC9021442 DOI: 10.3389/fimmu.2022.818736] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antibodies play a critical role in linking the adaptive immune response to the innate immune system. In humans, antibodies are categorized into five classes, IgG, IgM, IgA, IgE, and IgD, based on constant region sequence, structure, and tropism. In serum, IgG is the most abundant antibody, comprising 75% of antibodies in circulation, followed by IgA at 15%, IgM at 10%, and IgD and IgE are the least abundant. All human antibody classes are post-translationally modified by sugars. The resulting glycans take on many divergent structures and can be attached in an N-linked or O-linked manner, and are distinct by antibody class, and by position on each antibody. Many of these glycan structures on antibodies are capped by sialic acid. It is well established that the composition of the N-linked glycans on IgG exert a profound influence on its effector functions. However, recent studies have described the influence of glycans, particularly sialic acid for other antibody classes. Here, we discuss the role of glycosylation, with a focus on terminal sialylation, in the biology and function across all antibody classes. Sialylation has been shown to influence not only IgG, but IgE, IgM, and IgA biology, making it an important and unappreciated regulator of antibody function.
Collapse
Affiliation(s)
- Ravi Vattepu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sunny Lyn Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Frensch M, Jäger C, Müller PF, Tadić A, Wilhelm I, Wehrum S, Diedrich B, Fischer B, Meléndez AV, Dengjel J, Eibel H, Römer W. Bacterial lectin BambL acts as a B cell superantigen. Cell Mol Life Sci 2021; 78:8165-8186. [PMID: 34731252 PMCID: PMC8629787 DOI: 10.1007/s00018-021-04009-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/03/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
B cell superantigens crosslink conserved domains of B cell receptors (BCRs) and cause dysregulated, polyclonal B cell activation irrespective of normal BCR-antigen complementarity. The cells typically succumb to activation-induced cell death, which can impede the adaptive immune response and favor infection. In the present study, we demonstrate that the fucose-binding lectin of Burkholderia ambifaria, BambL, bears functional resemblance to B cell superantigens. By engaging surface glycans, the bacterial lectin activated human peripheral blood B cells, which manifested in the surface expression of CD69, CD54 and CD86 but became increasingly cytotoxic at higher concentrations. The effects were sensitive to BCR pathway inhibitors and excess fucose, which corroborates a glycan-driven mode of action. Interactome analyses in a model cell line suggest BambL binds directly to glycans of the BCR and regulatory coreceptors. In vitro, BambL triggered BCR signaling and induced CD19 internalization and degradation. Owing to the lectin's six binding sites, we propose a BCR activation model in which BambL functions as a clustering hub for receptor glycans, modulates normal BCR regulation, and induces cell death through exhaustive activation.
Collapse
Affiliation(s)
- Marco Frensch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christina Jäger
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter F Müller
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Annamaria Tadić
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Isabel Wilhelm
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Sarah Wehrum
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Britta Diedrich
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, University Medical Center and University of Freiburg, Freiburg, Germany
| | - Beate Fischer
- Center for Chronic Immunodeficiency, CCI and University Medical Center Freiburg, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, University Medical Center and University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, CCI and University Medical Center Freiburg, Freiburg, Germany.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
3D Structures of IgA, IgM, and Components. Int J Mol Sci 2021; 22:ijms222312776. [PMID: 34884580 PMCID: PMC8657937 DOI: 10.3390/ijms222312776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Immunoglobulin G (IgG) is currently the most studied immunoglobin class and is frequently used in antibody therapeutics in which its beneficial effector functions are exploited. IgG is composed of two heavy chains and two light chains, forming the basic antibody monomeric unit. In contrast, immunoglobulin A (IgA) and immunoglobulin M (IgM) are usually assembled into dimers or pentamers with the contribution of joining (J)-chains, which bind to the secretory component (SC) of the polymeric Ig receptor (pIgR) and are transported to the mucosal surface. IgA and IgM play a pivotal role in various immune responses, especially in mucosal immunity. Due to their structural complexity, 3D structural study of these molecules at atomic scale has been slow. With the emergence of cryo-EM and X-ray crystallographic techniques and the growing interest in the structure-function relationships of IgA and IgM, atomic-scale structural information on IgA-Fc and IgM-Fc has been accumulating. Here, we examine the 3D structures of IgA and IgM, including the J-chain and SC. Disulfide bridging and N-glycosylation on these molecules are also summarized. With the increasing information of structure–function relationships, IgA- and IgM-based monoclonal antibodies will be an effective option in the therapeutic field.
Collapse
|
18
|
Göritzer K, Strasser R. Glycosylation of Plant-Produced Immunoglobulins. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:519-543. [PMID: 34687021 DOI: 10.1007/978-3-030-76912-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.
Collapse
Affiliation(s)
| | - Richard Strasser
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. Structure, Function, and Therapeutic Use of IgM Antibodies. Antibodies (Basel) 2020; 9:E53. [PMID: 33066119 PMCID: PMC7709107 DOI: 10.3390/antib9040053] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Natural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro-immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain. Although the antigen binding affinities of natural IgM antibodies are typically lower than IgG, their polyvalency allows for high avidity binding and efficient engagement of complement to induce complement-dependent cell lysis. The high avidity of IgM antibodies renders them particularly efficient at binding antigens present at low levels, and non-protein antigens, for example, carbohydrates or lipids present on microbial surfaces. Pentameric IgM antibodies also contain a joining (J) chain that stabilizes the pentameric structure and enables binding to several receptors. One such receptor, the polymeric immunoglobulin receptor (pIgR), is responsible for transcytosis from the vasculature to the mucosal surfaces of the lung and gastrointestinal tract. Several naturally occurring IgM antibodies have been explored as therapeutics in clinical trials, and a new class of molecules, engineered IgM antibodies with enhanced binding and/or additional functional properties are being evaluated in humans. Here, we review the considerable progress that has been made regarding the understanding of biology, structure, function, manufacturing, and therapeutic potential of IgM antibodies since their discovery more than 80 years ago.
Collapse
Affiliation(s)
- Bruce A. Keyt
- IGM Biosciences Inc, 325 East Middlefield Road, Mountain View, CA 94043, USA; (R.B.); (A.M.S.); (S.F.C.); (M.S.P.)
| | | | | | | | | |
Collapse
|
20
|
Relative content detection of oligomannose modification of IgM heavy chain induced by TNP-antigen in an early vertebrate through nanoLC-MS/MS. Talanta 2020; 219:121346. [PMID: 32887075 DOI: 10.1016/j.talanta.2020.121346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 01/23/2023]
Abstract
N-glycan modification is reported to be important in regulating the structure and function of immunoglobulins in mammals. While, the study on teleost immunoglobulin glycosylation is still limitted. In this study, we constructed a TNP-antigen driven model, and detected the site-specific N-glycans of PBS-immunized and TNP-specific Oreochromis niloticus serum IgM through 18O-labeling and nanoLC-MS/MS. These methods are widely used for peptide enrichment and protein modification identification, but rarely used in detecting the level of N-glycosylation in teleost Igs that driven by specific antigen. The results revealed that there are four N-glycosylation sites in O.niloticus IgM heavy chain, namely, the Asn-315 site in the CH2 domain, the Asn-338 site in the CH3 domain, and the Asn-509 and Asn-551 sites in the CH4 domain, All of the four residues were efficiently N-glycosylated. After immunized with TNP-antigen, the signal strength of oligomannose in the TNP-specific IgM in primary mass spectrometry was significantly higher than that in the PBS-immunized IgM. Notably, the TNP-specific IgM had an Asn-509 site fully occupied with oligomannose, while only a small amount of oligomannose was found in the PBS-immunized IgM of this site. N-glycans in other sites were mainly complex-type with a low content of fucosylation and sialylated. The oligomannose in TNP-specific IgM was further verified to be essential for the binding of IgM and MBL. These results demonstrated that the TNP-antigen induced the site-specific oligomannose modification of O.niloticus IgM heavy chain, and played an important role in the interaction of IgM and MBL, which provided insights into the evolutionary understanding of the IgM oligomannose modification and function.
Collapse
|
21
|
Chen Y, Paluch M, Zorn JA, Rajan S, Leonard B, Estevez A, Brady J, Chiu H, Phung W, Famili A, Yan M, Ciferri C, Matsumoto ML, Lazar GA, Crowell S, Hass P, Agard NJ. Targeted IgMs agonize ocular targets with extended vitreal exposure. MAbs 2020; 12:1818436. [PMID: 32936727 PMCID: PMC7577241 DOI: 10.1080/19420862.2020.1818436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 01/02/2023] Open
Abstract
Treatment of ocular disease is hindered by the presence of the blood-retinal barrier, which restricts access of systemic drugs to the eye. Intravitreal injections bypass this barrier, delivering high concentrations of drug to the targeted tissue. However, the recommended dosing interval for approved biologics is typically 6-12 weeks, and frequent travel to the physician's office poses a substantial burden for elderly patients with poor vision. Real-world data suggest that many patients are under-treated. Here, we investigate IgMs as a novel platform for treating ocular disease. We show that IgMs are well-suited to ocular administration due to moderate viscosity, long ocular exposure, and rapid systemic clearance. The complement-dependent cytotoxicity of IgMs can be readily removed with a P436G mutation, reducing safety liabilities. Furthermore, dodecavalent binding of IgM hexamers can potently activate pathways implicated in the treatment of progressive blindness, including the Tie2 receptor tyrosine kinase signaling pathway for the treatment of diabetic macular edema, or the death receptor 4 tumor necrosis family receptor pathway for the treatment of wet age-related macular degeneration. Collectively, these data demonstrate the promise of IgMs as therapeutic agonists for treating progressive blindness.
Collapse
Affiliation(s)
- Yvonne Chen
- Departments of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Maciej Paluch
- Departments of Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Julie A. Zorn
- Departments of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Sharmila Rajan
- Departments of Preclinical & Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Brandon Leonard
- Departments of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Alberto Estevez
- Departments of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - John Brady
- Departments of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Henry Chiu
- Departments of Biochemical and Cellular Physiology, Genentech Inc., South San Francisco, CA, USA
| | - Wilson Phung
- Departments of Microchemistry Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Amin Famili
- Departments of Drug Development, Genentech Inc., South San Francisco, CA, USA
| | - Minhong Yan
- Departments of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Claudio Ciferri
- Departments of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | | | - Greg A. Lazar
- Departments of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Susan Crowell
- Departments of Preclinical & Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Phil Hass
- Departments of Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Nicholas J. Agard
- Departments of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
22
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Chemoenzymatic glycan labelling as a platform for site-specific IgM-antibody drug conjugates. Anal Biochem 2019; 584:113385. [DOI: 10.1016/j.ab.2019.113385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
|
24
|
Blandino R, Baumgarth N. Secreted IgM: New tricks for an old molecule. J Leukoc Biol 2019; 106:1021-1034. [PMID: 31302940 PMCID: PMC6803036 DOI: 10.1002/jlb.3ri0519-161r] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022] Open
Abstract
Secreted IgM (sIgM) is a multifunctional evolutionary conserved antibody that is critical for the maintenance of tissue homeostasis as well as the development of fully protective humoral responses to pathogens. Constitutive secretion of self- and polyreactive natural IgM, produced mainly by B-1 cells, provides a circulating antibody that engages with autoantigens as well as invading pathogens, removing apoptotic and other cell debris and initiating strong immune responses. Pathogen-induced IgM production by B-1 and conventional B-2 cells strengthens this early, passive layer of IgM-mediated immune defense and regulates subsequent IgG production. The varied effects of secreted IgM on immune homeostasis and immune defense are facilitated through its binding to numerous different cell types via different receptors. Recent studies identified a novel function for pentameric IgM, namely as a transporter for the effector protein ″apoptosis-inhibitor of macrophages″ (AIM/CD5L). This review aims to provide a summary of the known functions and effects of sIgM on immune homeostasis and immune defense, and its interaction with its various receptors, and to highlight the many critical immune regulatory functions of this ancient and fascinating immunoglobulin.
Collapse
Affiliation(s)
- Rebecca Blandino
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
| | - Nicole Baumgarth
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
- Dept. Pathology, Microbiology & Immunology, University of California, Davis
| |
Collapse
|
25
|
Ivleva VB, Cooper JW, Arnold FJ, Lei QP. Overcoming Challenges in Structural Characterization of HIV-1 Envelope Glycoprotein by LC-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1663-1678. [PMID: 31111416 PMCID: PMC7476438 DOI: 10.1007/s13361-019-02225-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 05/30/2023]
Abstract
Characterization of HIV Env glycoprotein with 28 glycosylation sites is the essential step of structure-based vaccine design programs. A comprehensive LC-MS/MS peptide mapping analysis was applied to assess the primary sequence, glycosylation profiles, and glycosite occupancy of Env to ensure the adequate mimicking of the native immunogen. Another structural feature was reported, related to its cleaved subunits within the trimeric assembly. We bring attention to the importance of thorough inspection of the results generated by the informatics tools which are currently available for the biopharmaceutical characterization. The complexity of Env translates into a vast amount of data with occasional information gaps that could not possibly be filled by means of the automatic data analysis. A series of data validation steps was applied, followed by the illustrations on how the high-quality results may be misinterpreted. It was shown that the glycan sites can only be characterized to a certain limit, and that any claim of full structural characterization of this molecule beyond these limits should be treated with caution. Following the result verification, the percent glycan occupancy was reported for 25 N-glycan sites, including 3 critical antibody-recognition sites. The exact glycan profiles were provided for 20 individual sites, whereas only the glycosylation type could be deduced for 5 sites, dictated by their location within Env sequence. The distribution of the unprocessed high mannose-type glycans correlated with the expected "mannose patch." Experimental procedure optimization and a workflow for glycan characterization with a focus on stringent data testing are presented in the current study.
Collapse
Affiliation(s)
- Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Jonathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Frank J Arnold
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.
| |
Collapse
|
26
|
Wang Q, Yang G, Wang T, Yang W, Betenbaugh MJ, Zhang H. Characterization of intact glycopeptides reveals the impact of culture media on site-specific glycosylation of EPO-Fc fusion protein generated by CHO-GS cells. Biotechnol Bioeng 2019; 116:2303-2315. [PMID: 31062865 DOI: 10.1002/bit.27009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
With the increasing demand to provide more detailed quality attributes, more sophisticated glycan analysis tools are highly desirable for biopharmaceutical manufacturing. Here, we performed an intact glycopeptide analysis method to simultaneously analyze the site-specific N- and O-glycan profiles of the recombinant erythropoietin Fc (EPO-Fc) protein secreted from a Chinese hamster ovary glutamine synthetase stable cell line and compared the effects of two commercial culture media, EX-CELL (EX) and immediate advantage (IA) media, on the glycosylation profile of the target protein. EPO-Fc, containing the Fc region of immunoglobulin G1 (IgG1) fused to EPO, was harvested at Day 5 and 8 of a batch cell culture process followed by purification and N- and O-glycopeptide profiling. A mixed anion exchange chromatographic column was implemented to capture and enrich N-linked glycopeptides. Using intact glycopeptide characterization, the EPO-Fc was observed to maintain their individual EPO and Fc N-glycan characteristics in which the EPO region presented bi-, tri-, and tetra-branched N-glycan structures, while the Fc N-glycan displayed mostly biantennary glycans. EPO-Fc protein generated in EX medium produced more complex tetra-antennary N-glycans at each of the three EPO N-sites while IA medium resulted in a greater fraction of bi- and tri-antennary N-glycans at these same sites. Interestingly, the sialylation content decreased from sites 1-4 in both media while the fucosylation progressively increased with a maximum at the final IgG Fc site. Moreover, we observed that low amounts of Neu5Gc were detected and the content increased at the later sampling time in both EX and IA media. For O-glycopeptides, both media produced predominantly three structures, N1F1F0SOG0, N1H1F0S1G0, and N1H1F0S2G0, with lesser amounts of other structures. This intact glycopeptide method can decipher site-specific glycosylation profile and provide a more detailed characterization of N- and O-glycans present for enhanced understanding of the key product quality attributes such as media on recombinant proteins of biotechnology interest.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
27
|
Chandler KB, Mehta N, Leon DR, Suscovich TJ, Alter G, Costello CE. Multi-isotype Glycoproteomic Characterization of Serum Antibody Heavy Chains Reveals Isotype- and Subclass-Specific N-Glycosylation Profiles. Mol Cell Proteomics 2019; 18:686-703. [PMID: 30659065 PMCID: PMC6442369 DOI: 10.1074/mcp.ra118.001185] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
Antibodies are critical glycoproteins that bridge the innate and adaptive immune systems to provide protection against infection. The isotype/subclass of the antibody, the co-translational N-glycosylation on the CH2 domain, and the remodeling of the N-linked glycans during passage through the ER and Golgi are the known variables within the Fc domain that program antibody effector function. Through investigations of monoclonal therapeutics, it has been observed that addition or removal of specific monosaccharide residues from antibody N-glycans can influence the potency of antibodies, highlighting the importance of thoroughly characterizing antibody N-glycosylation. Although IgGs usually have a single N-glycosylation site and are well studied, other antibody isotypes, e.g. IgA and IgM, that are the first responders in certain diseases, have two to five sites/monomer of antibody, and little is known about their N-glycosylation. Here we employ a nLC-MS/MS method using stepped-energy higher energy collisional dissociation to characterize the N-glycan repertoire and site occupancy of circulating serum antibodies. We simultaneously determined the site-specific N-linked glycan repertoire for IgG1, IgG4, IgA1, IgA2, and IgM in individual healthy donors. Compared with IgG1, IgG4 displayed a higher relative abundance of G1S1F and a lower relative abundance of G1FB. IgA1 and IgA2 displayed mostly biantennary N-glycans. IgA2 variants with the either serine (S93) or proline (P93) were detected. In digests of the sera from a subset of donors, we detected an unmodified peptide containing a proline residue at position 93; this substitution would strongly disfavor N-glycosylation at N92. IgM sites N46, N209, and N272 displayed mostly complex glycans, whereas sites N279 and N439 displayed higher relative abundances of high-mannose glycoforms. This multi-isotype approach is a crucial step toward developing a platform to define disease-specific N-glycan signatures for different isotypes to help tune antibodies to induce protection. Data are available via ProteomeXchange with identifier PXD010911.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts
| | - Nickita Mehta
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Deborah R Leon
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Catherine E Costello
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts;.
| |
Collapse
|
28
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
29
|
Su YL, Wang B, Hu MD, Cui ZW, Wan J, Bai H, Yang Q, Cui YF, Wan CH, Xiong L, Zhang YA, Geng H. Site-Specific N-Glycan Characterization of Grass Carp Serum IgM. Front Immunol 2018; 9:2645. [PMID: 30487799 PMCID: PMC6246689 DOI: 10.3389/fimmu.2018.02645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023] Open
Abstract
Immunoglobulin M (IgM) is the major antibody in teleost fish and plays an important role in humoral adaptive immunity. The N-linked carbohydrates presenting on IgM have been well documented in higher vertebrates, but little is known regarding site-specific N-glycan characteristics in teleost IgM. In order to characterize these site-specific N-glycans, we conducted the first study of the N-glycans of each glycosylation site of the grass carp serum IgM. Among the four glycosylation sites, the Asn-262, Asn-303, and Asn-426 residues were efficiently glycosylated, while Asn-565 at the C-terminal tailpiece was incompletely occupied. A striking decrease in the level of occupancy at the Asn-565 glycosite was observed in dimeric IgM compared to that in monomeric IgM, and no glycan occupancy of Asn-565 was observed in tetrameric IgM. Glycopeptide analysis with liquid chromatography-electrospray ionization tandem mass spectrometry revealed mainly complex-type glycans with substantial heterogeneity, with neutral; monosialyl-, disialyl- and trisialylated; and fucosyl-and non-fucosyl-oligosaccharides conjugated to grass carp serum IgM. Glycan variation at a single site was greatest at the Asn-262 glycosite. Unlike IgMs in other species, only traces of complex-type and no high-mannose glycans were found at the Asn-565 glycosite. Matrix-assisted laser desorption ionization analysis of released glycans confirmed the overwhelming majority of carbohydrates were of the complex-type. These results indicate that grass carp serum IgM exhibits unique N-glycan features and highly processed oligosaccharides attached to individual glycosites.
Collapse
Affiliation(s)
- Yi-Ling Su
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Bing Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Meng-Die Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zheng-Wei Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hao Bai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qian Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yan-Fang Cui
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, China
| | - Cui-Hong Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Li Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
30
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
31
|
Kim JW, Budzak J, Liu Y, Jégouzo SAF, Drickamer K, Taylor ME. Identification of serum glycoprotein ligands for the immunomodulatory receptor blood dendritic cell antigen 2. Glycobiology 2018; 28:592-600. [PMID: 29796630 PMCID: PMC6054153 DOI: 10.1093/glycob/cwy050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/19/2018] [Indexed: 12/26/2022] Open
Abstract
Blood dendritic cell antigen 2 (BDCA-2) is a C-type lectin found on the surface of plasmacytoid dendritic cells. It functions as a glycan-binding receptor that downregulates the production of type I interferons and thus plays a role in oligosaccharide-mediated immunomodulation. The carbohydrate recognition domain in BDCA-2 binds selectively to galactose-terminated bi-antennary glycans. Because the plasmacytoid dendritic cells function in a plasma environment rich in glycoproteins, experiments have been undertaken to identify endogenous ligands for blood dendritic cell antigen 2. A combination of blotting, affinity chromatography and proteomic analysis reveals that serum glycoprotein ligands for BDCA-2 include IgG, IgA and IgM. Compared to binding of IgG, which was previously described, IgA and IgM bind with higher affinity. The association constants for the different subclasses of immunoglobulins are below and roughly proportional to the serum concentrations of these glycoprotein ligands. Binding to the other main serum glycoprotein ligand, α2-macroglobulin, is independent of whether this protease inhibitor is activated. Binding to all of these glycoprotein ligands is mediated predominantly by bi-antennary glycans in which each branch bears a terminal galactose residue. The different affinities of the glycoprotein ligands reflect the different numbers of these galactose-terminated glycans and their degree of exposure on the native glycoproteins. The results suggest that normal serum levels of immunoglobulins could downmodulate interferon stimulation of further antibody production.
Collapse
Affiliation(s)
- Jong-Won Kim
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - James Budzak
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - Yu Liu
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - Sabine A F Jégouzo
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - Kurt Drickamer
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| | - Maureen E Taylor
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College, London, UK
| |
Collapse
|
32
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2. Expert Rev Proteomics 2018. [PMID: 29521143 DOI: 10.1080/14789450.2018.1448710] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The changes in glycan structures have been attributed to disease states for several decades. The surface glycosylation pattern is a signature of physiological state of a cell. In this review we provide a link between observed substructural glycan changes and a range of diseases. Areas covered: We highlight biologically relevant glycan substructure expression in cancer, inflammation, neuronal diseases and diabetes. Furthermore, the alterations in antibody glycosylation in a disease context are described. Expert commentary: Advances in technologies, as described in Part 1 of this review have now enabled the characterization of specific glycan structural markers of a range of disease states. The requirement of including glycomics in cross-disciplinary omics studies, such as genomics, proteomics, epigenomics, transcriptomics and metabolomics towards a systems glycobiology approach to understanding disease mechanisms and management are highlighted.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| | - Edward S X Moh
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| |
Collapse
|
33
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 1. Expert Rev Proteomics 2018; 15:165-182. [PMID: 29285957 DOI: 10.1080/14789450.2018.1421946] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Protein glycosylation is recognized as an important post-translational modification, with specific substructures having significant effects on protein folding, conformation, distribution, stability and activity. However, due to the structural complexity of glycans, elucidating glycan structure-function relationships is demanding. The fine detail of glycan structures attached to proteins (including sequence, branching, linkage and anomericity) is still best analysed after the glycans are released from the purified or mixture of glycoproteins (glycomics). The technologies currently available for glycomics are becoming streamlined and standardized and many features of protein glycosylation can now be determined using instruments available in most protein analytical laboratories. Areas covered: This review focuses on the current glycomics technologies being commonly used for the analysis of the microheterogeneity of monosaccharide composition, sequence, branching and linkage of released N- and O-linked glycans that enable the determination of precise glycan structural determinants presented on secreted proteins and on the surface of all cells. Expert commentary: Several emerging advances in these technologies enabling glycomics analysis are discussed. The technological and bioinformatics requirements to be able to accurately assign these precise glycan features at biological levels in a disease context are assessed.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Edward S X Moh
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| |
Collapse
|
34
|
Glycan profile of CHO derived IgM purified by highly efficient single step affinity chromatography. Anal Biochem 2017; 539:162-166. [DOI: 10.1016/j.ab.2017.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/28/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022]
|
35
|
Bae SJ, Shin MW, Kim RH, Shin D, Son T, Wee HJ, Kim KW. Ninjurin1 Assembles Into a Homomeric Protein Complex Maintained by N-linked Glycosylation. J Cell Biochem 2017; 118:2219-2230. [PMID: 28067406 DOI: 10.1002/jcb.25872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
Ninjurin1 (Ninj1) is a cell surface protein known as a homophilic adhesion molecule. Previous studies have shown a trans-interaction of Ninj1 between immune cells and endothelial cells; however, little is known about Ninj1 modification and structure in the cis-interaction. We showed that Ninj1 assembles into a homomeric complex via a cis-interaction mediated by the intracellular region and N-glycosylation at Asn60 . We identified cis-interaction between Ninj1 proteins using CFP- and YFP-tagged Ninj1 by Förster resonance energy transfer using a confocal microscope and fluorescence-activated cell sorter. We further observed the Ninj1 homomeric complexes composed of two to six monomeric Ninj1 molecules by a formaldehyde cross-linking assay. Co-immunoprecipitation assays with epitope-tagged truncated Ninj1 suggested that the intracellular region encompassing Leu101 -Ala110 participates in Ninj1 homomer assembly. Ninj1 N-glycosylation was characterized by treatment of tunicamycin and substitution of Asn to Gln or Ala. Fluorescence-activated cell sorting-based Förster resonance energy transfer assays further demonstrated that N-glycosylation is indispensable for the Ninj1 cis-interaction, and a formaldehyde cross-linking assay confirmed that interruption of N-glycosylation by Asn substitution disrupted Ninj1 homomeric complex formation. In silico analysis revealed that Ninj1 is highly conserved in vertebrates and that the conserved sequence contains an N-glycosylation motif and cis-interacting intracellular region, which participate in Ninj1 homomer assembly. Taken together, these data show that Ninj1 assembles into a homomeric protein complex and that N-glycosylation is a prerequisite for Ninj1 homomer assembly. J. Cell. Biochem. 118: 2219-2230, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sung-Jin Bae
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Min Wook Shin
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ran Hee Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dongyoon Shin
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Taekwon Son
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
| |
Collapse
|
36
|
Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway. Sci Rep 2017; 7:41815. [PMID: 28157181 PMCID: PMC5291101 DOI: 10.1038/srep41815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4–5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers.
Collapse
|
37
|
Lee JY, Lee HK, Park GW, Hwang H, Jeong HK, Yun KN, Ji ES, Kim KH, Kim JS, Kim JW, Yun SH, Choi CW, Kim SI, Lim JS, Jeong SK, Paik YK, Lee SY, Park J, Kim SY, Choi YJ, Kim YI, Seo J, Cho JY, Oh MJ, Seo N, An HJ, Kim JY, Yoo JS. Characterization of Site-Specific N-Glycopeptide Isoforms of α-1-Acid Glycoprotein from an Interlaboratory Study Using LC-MS/MS. J Proteome Res 2016; 15:4146-4164. [PMID: 27760464 DOI: 10.1021/acs.jproteome.5b01159] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycoprotein conformations are complex and heterogeneous. Currently, site-specific characterization of glycopeptides is a challenge. We sought to establish an efficient method of N-glycoprotein characterization using mass spectrometry (MS). Using alpha-1-acid glycoprotein (AGP) as a model N-glycoprotein, we identified its tryptic N-glycopeptides and examined the data reproducibility in seven laboratories running different LC-MS/MS platforms. We used three test samples and one blind sample to evaluate instrument performance with entire sample preparation workflow. 165 site-specific N-glycopeptides representative of all N-glycosylation sites were identified from AGP 1 and AGP 2 isoforms. The glycopeptide fragmentations by collision-induced dissociation or higher-energy collisional dissociation (HCD) varied based on the MS analyzer. Orbitrap Elite identified the greatest number of AGP N-glycopeptides, followed by Triple TOF and Q-Exactive Plus. Reproducible generation of oxonium ions, glycan-cleaved glycopeptide fragment ions, and peptide backbone fragment ions was essential for successful identification. Laboratory proficiency affected the number of identified N-glycopeptides. The relative quantities of the 10 major N-glycopeptide isoforms of AGP detected in four laboratories were compared to assess reproducibility. Quantitative analysis showed that the coefficient of variation was <25% for all test samples. Our analytical protocol yielded identification and quantification of site-specific N-glycopeptide isoforms of AGP from control and disease plasma sample.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Hyun Kyoung Lee
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Gun Wook Park
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Heeyoun Hwang
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Hoi Keun Jeong
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Ki Na Yun
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Department of Chemistry, Sogang University , Seoul 04107, Republic of Korea
| | - Eun Sun Ji
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Department of Chemistry, Hannam University , Daejeon 34430, Republic of Korea
| | - Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Jun Seok Kim
- Department of Biomedical Systems Engineering, Korea Polytechnics , Gyeonggi 13590, Republic of Korea
| | - Jong Won Kim
- New Drug Development Center, Osong Medical Innovation Foundation , Cheongju 28160, Republic of Korea
| | - Sung Ho Yun
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Chi-Won Choi
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Seung Il Kim
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Jong-Sun Lim
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Seul-Ki Jeong
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Soo-Youn Lee
- Department of Laboratory & Genetics, Samsung Medical Center, Sungkyunkwan University of Medicine , Seoul 06351, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center , Seoul 06351, Republic of Korea
| | - Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul 06351, Republic of Korea
| | - Su Yeon Kim
- Department of Clinical Research Supporting Team, Clinical Research Institute, Samsung Medical Center , Seoul 06351, Republic of Korea
| | - Young-Jin Choi
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Yong-In Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Jawon Seo
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Myoung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| |
Collapse
|
38
|
Hang Q, Isaji T, Hou S, Zhou Y, Fukuda T, Gu J. N-Glycosylation of integrin α5 acts as a switch for EGFR-mediated complex formation of integrin α5β1 to α6β4. Sci Rep 2016; 6:33507. [PMID: 27641064 PMCID: PMC5027594 DOI: 10.1038/srep33507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/23/2016] [Indexed: 01/17/2023] Open
Abstract
N-Glycosylation of integrin α5β1 is involved in multiple cell behaviors. We previously reported that the N-glycosylations of the calf domain on integrin α5 (S3–5,10–14) are essential for its inhibitory effect on EGFR signaling in regulating cell proliferation. However, the importance of the individual N-glycosylation and the underlying mechanisms of inhibition remain unclear. Here, we characterize the S3–5,10–14 mutants in detail and found that the N-glycosylation of site-11 (Asn712) is key for cell growth. The restoration of site-11, unlike the other individual sites, significantly suppressed cell growth and EGFR signaling in a manner that was similar to that of wild-type (WT). Mechanistically, this N-glycosylation inhibited the response abilities upon EGF stimulation and EGFR dimerization. Interestingly, we found this N-glycosylation controlled the EGFR complex formation with integrin α5β1 or α6β4; i.e., the loss of site-11 switched EGFR-α5β1 to EGFR-α6β4, which is well known to promote cellular signaling for cell growth. Moreover, the site-11 N-glycan exhibited a more branching structure compared with other sites, which may be required for EGFR-α5β1 formation. Taken together, these data clearly demonstrate that the site-11 N-glycosylation on α5 is most important for its inhibitory effect on EGFR signaling, which may provide a novel regulatory mechanism for crosstalks between integrins and EGFR.
Collapse
Affiliation(s)
- Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Ying Zhou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
39
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|