1
|
Bhattarai S, Kadry R, Yeapuri P, Lu Y, Foster EG, Zhang C, Dash P, Poluektova LY, Gorantla S, Mosley RL, Gendelman HE. HIV-1 infection facilitates Alzheimer's disease pathology in humanized APP knock-in immunodeficient mice. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2025; 4:27-38. [PMID: 40309515 PMCID: PMC12041850 DOI: 10.1515/nipt-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 05/02/2025]
Abstract
Objectives Amyloid-β (Aβ) plaque deposition in the brain is a principal pathological feature of both Alzheimer's disease (AD) and progressive human immunodeficiency virus type one (HIV-1) infection. Both enable Aβ assembly and Aβ protein aggregation. The potential link between HIV-1 and AD remains uncertain, supporting the need for a reliable animal model. HIV-1 is tropic and pathogenic for humans. It does not replicate in mice. The restricted species tropism has slowed progress in basic research activities. The current study seeks to correct animal model limitations. Methods We created an AD mouse to address the need to develop an small animal model that allows studies of viral infection by making a knock-in (KI) with the human amyloid precursor protein (APP)KM670,671NL Swedish mutation to the mouse genome. The resulting founder mice were crossed with immunodeficient NOG (NOD. Cg-Prkdc scid Il2rg tm1Sug Tg(CMV-IL-34)1/Jic) to generate NOG/APPKM670,671NL/IL-34 (NAIL) mice. The mice were reconstituted with human hematopoietic stem cells to generate NAIL mice with functional adaptive and innate human immune systems. Four-month-old, humanized NAIL mice were infected with HIV-1ADA, a macrophage-tropic viral strain then evaluated for viral infection and AD pathology. Results Productive HIV-1 infection was confirmed by plasma HIV-1 RNA levels in infected NAIL mice. The viral load increased by tenfold between day 10 and day 25 post-infection. By day 25, viral DNA confirmed the establishment of HIV-1 reservoirs in CD45+ cells from the immune tissues of infected NAIL mice. Additionally, p24 measurements in lymphoid and brain tissues of NAIL mice validated productive HIV-1 infection. Amyloid burden from infected NAIL mice was increased. Immunofluorescence staining revealed co-localization of Aβ fibrils and HLA-DR+ microglia in infected NAIL mice. Conclusions These results highlight the AD-HIV model's unique pathobiological and infectious features where the viral and immune responses can now be measured.
Collapse
Affiliation(s)
- Shaurav Bhattarai
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Rana Kadry
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Chen Zhang
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Science, Omaha, NE, USA
| |
Collapse
|
2
|
Ozeer FZ, Nagandran S, Wu YS, Wong LS, Stephen A, Lee MF, Kijsomporn J, Guad RM, Batumalaie K, Oyewusi HA, Verma A, Yadav E, Afzal S, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Sarker MMR. A comprehensive review of phytochemicals of Withania somnifera (L.) Dunal (Solanaceae) as antiviral therapeutics. DISCOVER APPLIED SCIENCES 2024; 6:187. [DOI: 10.1007/s42452-024-05845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 11/22/2024]
Abstract
AbstractViruses have caused millions and billions of infections and high mortality rates without successful immunization due to a lack of antiviral drugs approved for clinical use. Therefore, the discovery of novel antiviral drugs is impertinent and natural products are excellent alternative sources. Withania somnifera (L.) Dunal (Solanaceae) is recognized as one of the most significant herbs in the Ayurvedic system and it had been utilized in various biological actions for more than 3000 years. This review aimed to discuss the therapeutic effects and associated molecular mechanisms of Withania somnifera (WS) and its phytochemicals, withanolides against various viruses in preclinical and clinical settings towards developing potential inhibitors which could target virus proteins or their respective host cell receptors. WS was reported to attenuate coronavirus disease 2019 (COVID-19), serve as a potential ligand against the herpes simplex virus (HSV) DNA polymerase, suppress Alzheimer’s disease progression by inhibiting the cytotoxicity induced by the human immunodeficiency virus 1 (HIV-1)-activated beta-amyloid (Aβ), and attenuate the neuraminidase activity of H1N1 influenza. WS root extracts have also reduced the mortality rates and stress levels in tilapia infected with tilapia lake virus (TiLV), and stimulated antiviral nitric oxide formation in chicks infected with infectious bursal disease (IBD). With increasing evidence from previous literatures, further in vitro and in vivo investigations of WS against other viral infections may provide promising results.
Graphical Abstract
Collapse
|
3
|
Li Z, Wang H, Yin Y. Peripheral inflammation is a potential etiological factor in Alzheimer's disease. Rev Neurosci 2024; 35:99-120. [PMID: 37602685 DOI: 10.1515/revneuro-2023-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| |
Collapse
|
4
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
5
|
Gondelaud F, Lozach PY, Longhi S. Viral amyloids: New opportunities for antiviral therapeutic strategies. Curr Opin Struct Biol 2023; 83:102706. [PMID: 37783197 DOI: 10.1016/j.sbi.2023.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Amyloidoses are an array of diseases associated with the aggregation of proteins into fibrils. While it was previously thought that amyloid fibril-forming proteins are exclusively host-cell encoded, recent studies have revealed that pathogenic viruses can form amyloid-like fibrils too. Intriguingly, viral amyloids are often composed of virulence factors, known for their contribution to cell death and disease progression. In this review, we survey the literature about viral proteins capable of forming amyloid-like fibrils. The molecular and cellular mechanisms underlying the formation of viral amyloid-like aggregates are explored. In addition, we discuss the functional implications for viral amplification and the complex interplay between viral amyloids, biological functions, virulence, and virus-induced pathologies.
Collapse
Affiliation(s)
- Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, IVPC UMR754, Team iWays, 69007, Lyon, France. https://twitter.com/pylozach
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
6
|
Sviridov D, Bukrinsky M. Neuro-HIV-New insights into pathogenesis and emerging therapeutic targets. FASEB J 2023; 37:e23301. [PMID: 37942865 PMCID: PMC11032165 DOI: 10.1096/fj.202301239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term describing a complex set of cognitive impairments accompanying HIV infection. Successful antiretroviral therapy (ART) reduces the most severe forms of HAND, but milder forms affect over 50% of people living with HIV (PLWH). Pathogenesis of HAND in the ART era remains unknown. A variety of pathogenic factors, such as persistent HIV replication in the brain reservoir, HIV proteins released from infected brain cells, HIV-induced neuroinflammation, and some components of ART, have been implicated in driving HAND pathogenesis in ART-treated individuals. Here, we propose another factor-impairment of cholesterol homeostasis and lipid rafts by HIV-1 protein Nef-as a possible contributor to HAND pathogenesis. These effects of Nef on cholesterol may also underlie the effects of other pathogenic factors that constitute the multifactorial nature of HAND pathogenesis. The proposed Nef- and cholesterol-focused mechanism may provide a long-sought unified explanation of HAND pathogenesis that takes into account all contributing factors. Evidence for the impairment by Nef of cellular cholesterol balance, potential effects of this impairment on brain cells, and opportunities to therapeutically target this element of HAND pathogenesis are discussed.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
7
|
Balakrishnan B, Arul SS, Ravindran A, Venkataraman S. Brain Virome in Neurodegenerative Disorders: Insights from Transcriptomic Data Analysis. ACS Chem Neurosci 2023; 14:3979-3985. [PMID: 37812144 DOI: 10.1021/acschemneuro.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Neurodegenerative disorders (NDs) are chronic ailments of the central nervous system that gradually deteriorate the structures and functions of neurons. The etiologies of NDs include genetic factors, aging, infections, starvation, brain trauma, and spinal cord injury, among others. However, it is unclear whether viral infections impact the prognosis of NDs or contribute to their development. Hence, we investigated the prevalence of neurotropic viruses in brain samples by using transcriptomic data. A total of 1635 viral isolates with complete genomic information was used to investigate the incidence of 18 distinct viruses across 129 data sets from healthy and ND subjects. Our findings support the evidence pointing to the existence of a brain virome where certain viruses co-occur. We further hypothesize that distinct virome profiles are linked to different forms of NDs.
Collapse
Affiliation(s)
| | | | - Aarti Ravindran
- Department of Biotechnology, Anna University, Chennai 600025, India
| | | |
Collapse
|
8
|
Piotrowski SL, Tucker A, Jacobson S. The elusive role of herpesviruses in Alzheimer's disease: current evidence and future directions. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:253-266. [PMID: 38013835 PMCID: PMC10474380 DOI: 10.1515/nipt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 11/29/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. While pathologic hallmarks, such as extracellular beta-amyloid plaques, are well-characterized in affected individuals, the pathogenesis that causes plaque formation and eventual cognitive decline is not well understood. A recent resurgence of the decades-old "infectious hypothesis" has garnered increased attention on the potential role that microbes may play in AD. In this theory, it is thought that pathogens such as viruses may act as seeds for beta-amyloid aggregation, ultimately leading to plaques. Interest in the infectious hypothesis has also spurred further investigation into additional characteristics of viral infection that may play a role in AD progression, such as neuroinflammation, latency, and viral DNA integration. While a flurry of research in this area has been recently published, with herpesviruses being of particular interest, the role of pathogens in AD remains controversial. In this review, the insights gained thus far into the possible role of herpesviruses in AD are summarized. The challenges and potential future directions of herpesvirus research in AD and dementia are also discussed.
Collapse
Affiliation(s)
- Stacey L. Piotrowski
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Comparative Biomedical Scientist Training Program, National Institutes of Health, Bethesda, MD, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Allison Tucker
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Fulop T, Ramassamy C, Lévesque S, Frost EH, Laurent B, Lacombe G, Khalil A, Larbi A, Hirokawa K, Desroches M, Rodrigues S, Bourgade K, Cohen AA, Witkowski JM. Viruses - a major cause of amyloid deposition in the brain. Expert Rev Neurother 2023; 23:775-790. [PMID: 37551672 DOI: 10.1080/14737175.2023.2244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Clinically, Alzheimer's disease (AD) is a syndrome with a spectrum of various cognitive disorders. There is a complete dissociation between the pathology and the clinical presentation. Therefore, we need a disruptive new approach to be able to prevent and treat AD. AREAS COVERED In this review, the authors extensively discuss the evidence why the amyloid beta is not the pathological cause of AD which makes therefore the amyloid hypothesis not sustainable anymore. They review the experimental evidence underlying the role of microbes, especially that of viruses, as a trigger/cause for the production of amyloid beta leading to the establishment of a chronic neuroinflammation as the mediator manifesting decades later by AD as a clinical spectrum. In this context, the emergence and consequences of the infection/antimicrobial protection hypothesis are described. The epidemiological and clinical data supporting this hypothesis are also analyzed. EXPERT OPINION For decades, we have known that viruses are involved in the pathogenesis of AD. This discovery was ignored and discarded for a long time. Now we should accept this fact, which is not a hypothesis anymore, and stimulate the research community to come up with new ideas, new treatments, and new concepts.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Simon Lévesque
- CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Abedelouahed Khalil
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo Medical Dental University, Tokyo and Nito-Memory Nakanosogo Hospital, Tokyo, Japan
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Biot, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, BCAM, the Basque Foundation for Science and BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Karine Bourgade
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Ecarnot F, Boccardi V, Calcagno A, Franceschi C, Fülop T, Itzhaki RF, Michel JP, Panza F, Rainero I, Solfrizzi V, Ticinesi A, Veronese N, Maggi S. Dementia, infections and vaccines: 30 years of controversy. Aging Clin Exp Res 2023; 35:1145-1160. [PMID: 37160649 PMCID: PMC10169152 DOI: 10.1007/s40520-023-02409-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 05/11/2023]
Abstract
This paper reports the proceedings of a virtual meeting convened by the European Interdisciplinary Council on Ageing (EICA), to discuss the involvement of infectious disorders in the pathogenesis of dementia and neurological disorders leading to dementia. We recap how our view of the infectious etiology of dementia has changed over the last 30 years in light of emerging evidence, and we present evidence in support of the implication of infection in dementia, notably Alzheimer's disease (AD). The bacteria and viruses thought to be responsible for neuroinflammation and neurological damage are reviewed. We then review the genetic basis for neuroinflammation and dementia, highlighting the genes that are currently the focus of investigation as potential targets for therapy. Next, we describe the antimicrobial hypothesis of dementia, notably the intriguing possibility that amyloid beta may itself possess antimicrobial properties. We further describe the clinical relevance of the gut-brain axis in dementia, the mechanisms by which infection can move from the intestine to the brain, and recent findings regarding dysbiosis patterns in patients with AD. We review the involvement of specific pathogens in neurological disorders, i.e. SARS-CoV-2, human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV1), and influenza. Finally, we look at the role of vaccination to prevent dementia. In conclusion, there is a large body of evidence supporting the involvement of various infectious pathogens in the pathogenesis of dementia, but large-scale studies with long-term follow-up are needed to elucidate the role that infection may play, especially before subclinical or clinical disease is present.
Collapse
Affiliation(s)
- Fiona Ecarnot
- EA3920, University of Franche-Comté, 25000, Besancon, France
- Department of Cardiology, University Hospital Besancon, 3-8 Boulevard Fleming, 25000, Besancon, France
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, Nizhny Novgorod, Russia
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Tamas Fülop
- Department of Medicine, Geriatrics Division, Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford and Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Innocenzo Rainero
- Dementia Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicola Veronese
- Geriatrics Section, Department of Internal Medicine, University of Palermo, Palermo, Italy.
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| |
Collapse
|
11
|
Ferrucci R, Cuffaro L, Capozza A, Rosci C, Maiorana N, Groppo E, Reitano MR, Poletti B, Ticozzi N, Tagliabue L, Silani V, Priori A. Brain positron emission tomography (PET) and cognitive abnormalities one year after COVID-19. J Neurol 2023; 270:1823-1834. [PMID: 36692636 PMCID: PMC9873215 DOI: 10.1007/s00415-022-11543-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023]
Abstract
Emerging evidence indicates that the etiologic agent responsible for coronavirus disease 2019 (COVID-19), can cause neurological complications. COVID-19 may induce cognitive impairment through multiple mechanisms. The aim of the present study was to describe the possible neuropsychological and metabolic neuroimaging consequences of COVID-19 12 months after patients' hospital discharge. We retrospectively recruited 7 patients (age [mean ± SD] = 56 years ± 12.39, 4 men) who had been hospitalized for COVID-19 with persistent neuropsychological deficits 12 months after hospital discharge. All patients underwent cognitive assessment and brain (18F-FDG) PET/CT, and one also underwent 18F-amyloid PET/CT. Of the seven patients studied, four had normal glucose metabolism in the brain. Three patients showed various brain hypometabolism patterns: (1) unilateral left temporal mesial area hypometabolism; (2) pontine involvement; and (3) bilateral prefrontal area abnormalities with asymmetric parietal impairment. The patient who showed the most widespread glucose hypometabolism in the brain underwent an 18F-amyloid PET/CT to assess the presence of Aβ plaques. This examination showed significant Aβ deposition in the superior and middle frontal cortex, and in the posterior cingulate cortex extending mildly in the rostral and caudal anterior cingulate areas. Although some other reports have already suggested that brain hypometabolism may be associated with cognitive impairment at shorter intervals from SarsCov-2 infection, our study is the first to assess cognitive functions, brain metabolic activity and in a patient also amyloid PET one year after COVID-19, demonstrating that cerebral effects of COVID-19 can largely outlast the acute phase of the disease and even be followed by amyloid deposition.
Collapse
Affiliation(s)
- Roberta Ferrucci
- Department of Health Science, Aldo Ravelli Research Center, University of Milan, Milan, Italy
- Neurology Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Luca Cuffaro
- Neurology Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Antonella Capozza
- Nuclear Medicine Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Chiara Rosci
- Neurology Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Natale Maiorana
- Department of Health Science, Aldo Ravelli Research Center, University of Milan, Milan, Italy
| | | | | | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Auxologico Institute, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Auxologico Institute, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Luca Tagliabue
- Nuclear Medicine Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Auxologico Institute, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Priori
- Department of Health Science, Aldo Ravelli Research Center, University of Milan, Milan, Italy.
- Neurology Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy.
| |
Collapse
|
12
|
Bai R, Song C, Lv S, Chang L, Hua W, Weng W, Wu H, Dai L. Role of microglia in HIV-1 infection. AIDS Res Ther 2023; 20:16. [PMID: 36927791 PMCID: PMC10018946 DOI: 10.1186/s12981-023-00511-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The usage of antiretroviral treatment (ART) has considerably decreased the morbidity and mortality related to HIV-1 (human immunodeficiency virus type 1) infection. However, ART is ineffective in eradicating the virus from the persistent cell reservoirs (e.g., microglia), noticeably hindering the cure for HIV-1. Microglia participate in the progression of neuroinflammation, brain aging, and HIV-1-associated neurocognitive disorder (HAND). Some methods have currently been studied as fundamental strategies targeting microglia. The purpose of this study was to comprehend microglia biology and its functions in HIV-1 infection, as well as to look into potential therapeutic approaches targeting microglia.
Collapse
Affiliation(s)
- Ruojing Bai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyun Lv
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Linlin Chang
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wei Hua
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Lili Dai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Garces A, Martinez B, De La Garza R, Roy D, Vallee KA, Fields JA, Moore DJ, Rodrigo H, Roy U. Differential expression of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in Alzheimer's disease and HIV-1 associated neurocognitive disorders. Sci Rep 2023; 13:3276. [PMID: 36841839 PMCID: PMC9968324 DOI: 10.1038/s41598-022-27276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/29/2022] [Indexed: 02/27/2023] Open
Abstract
The United Nations projects that one in every six people will be over the age of 65 by the year 2050. With a rapidly aging population, the risk of Alzheimer's disease (AD) becomes a major concern. AD is a multifactorial disease that involves neurodegeneration in the brain with mild dementia and deficits in memory and other cognitive domains. Additionally, it has been established that individuals with Human Immunodeficiency Virus-1 (HIV-1) experience a 5 to 10-year accelerated aging and an increased risk of developing HIV-associated neurocognitive disorders (HAND). Despite a significant amount of clinical evidence pointing towards a potential overlap between neuropathogenic processes in HAND and AD, the underlying epigenetic link between these two diseases is mostly unknown. This study is focused on identifying differentially expressed genes observed in both AD and HAND using linear regression models and a more robust significance analysis of microarray. The results established that the dysregulated type 1 and 2 interferon pathways observed in both AD and HAND contribute to the similar pathologies of these diseases within the brain. The current study identifies the important roles of interferon pathways in AD and HAND, a relationship that may be useful for earlier detection in the future.
Collapse
Affiliation(s)
- Armando Garces
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Bryan Martinez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Roberto De La Garza
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Deepa Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Kaylie-Anna Vallee
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hansapani Rodrigo
- School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX, USA.
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA.
| |
Collapse
|
14
|
Meehan CE, Schantell M, Wiesman AI, Wolfson SL, O’Neill J, Bares SH, Johnson CM, May PE, Murman DL, Wilson TW. Oscillatory markers of neuroHIV-related cognitive impairment and Alzheimer's disease during attentional interference processing. Aging (Albany NY) 2023; 15:524-541. [PMID: 36656738 PMCID: PMC9925679 DOI: 10.18632/aging.204496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
People with HIV (PWH) frequently experience mild cognitive decline, which is typically attributed to HIV-associated neurocognitive disorder (HAND). However, such declines could also be a sign of early Alzheimer's disease (AD) in older PWH. Distinguishing these two pathologies in PWH is exceedingly difficult, as there is a major knowledge gap regarding their neural and neuropsychological bases. In the current study, we begin to address this knowledge gap by recording magnetoencephalography (MEG) during a flanker interference task in 31 biomarker-confirmed patients on the AD spectrum (ADS), 25 older participants with HAND, and 31 cognitively-normal controls. MEG data was examined in the time-frequency domain using a data-driven approach. Our results indicated that the clinical groups (ADS/HAND) performed significantly worse than controls on the task and exhibited aberrations in interference-related theta and alpha oscillations, some of which were disease-specific. Specifically, patients (ADS/HAND) exhibited weaker interference activity in frontoparietal and cingulate cortices compared to controls, while the ADS group exhibited stronger theta interference than those with HAND in frontoparietal, occipital, and temporal cortices. These results reveal overlapping and distinct patterns of neurophysiological alterations among those with ADS and HAND in attentional processing centers and suggest the existence of unique oscillatory markers of each condition.
Collapse
Affiliation(s)
- Chloe E. Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Psychology, University of Nebraska – Omaha, Omaha, NE 68182, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, CA
| | | | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Sara H. Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | | | - Pamela E. May
- Department of Neurological Sciences, UNMC, Omaha, NE 68198, USA
| | - Daniel L. Murman
- Department of Neurological Sciences, UNMC, Omaha, NE 68198, USA
- Memory Disorders and Behavioral Neurology Program, UNMC, Omaha, NE 68198, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Psychology, University of Nebraska – Omaha, Omaha, NE 68182, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
15
|
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer’s and Parkinson’s disease are fatal neurological diseases that can be of idiopathic, genetic, or even infectious origin, as in the case of transmissible spongiform encephalopathies. The etiological factors that lead to neurodegeneration remain unknown but likely involve a combination of aging, genetic risk factors, and environmental stressors. Accumulating evidence hints at an association of viruses with neurodegenerative disorders and suggests that virus-induced neuroinflammation and perturbation of neuronal protein quality control can be involved in the early steps of disease development. In this review, we focus on emerging evidence for a correlation between NDs and viral infection and discuss how viral manipulations of cellular processes can affect the formation and dissemination of disease-associated protein aggregates.
Collapse
Affiliation(s)
- Pascal Leblanc
- Institut NeuroMyoGène INMG-PGNM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, Inserm U1315, Université Claude Bernard UCBL-Lyon1, Faculté de Médecine Rockefeller, Lyon, France
- * E-mail: (PL); (IMV)
| | - Ina Maja Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE), Bonn, Germany
- Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- * E-mail: (PL); (IMV)
| |
Collapse
|
16
|
Magaki SD, Vinters HV, Williams CK, Mareninov S, Khanlou N, Said J, Nemanim N, Gonzalez J, Morales JG, Singer EJ, Yong WH. Neuropathologic Findings in Elderly HIV-Positive Individuals. J Neuropathol Exp Neurol 2022; 81:565-576. [PMID: 35656871 DOI: 10.1093/jnen/nlac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The elderly HIV-positive population is growing due to the widespread use of combination antiretroviral therapy (cART), but the effects of longstanding HIV infection on brain aging are unknown. A significant proportion of HIV-positive individuals develop HIV-associated neurocognitive disorder (HAND) even on cART, but the pathogenesis of HAND is unknown. Although neuroinflammation is postulated to play an important role in aging and neurodegenerative diseases such as Alzheimer disease (AD), it is unclear whether HIV accelerates aging or increases the risk for AD. We examined the brains of 9 elderly HIV-positive subjects on cART without co-infection by hepatitis C virus compared to 7 elderly HIV-negative subjects. Microglial and astrocyte activation and AD pathologic change in association with systemic comorbidities and neurocognitive assessment were evaluated. There was no difference in microglial or astrocyte activation between our HIV-positive and HIV-negative cohorts. One HIV-positive subject and 2 HIV-negative subjects demonstrated significant amyloid deposition, predominantly in the form of diffuse senile plaques, but these individuals were cognitively normal. Neurofibrillary tangles were sparse in the HIV-positive cohort. There was a high prevalence of cardiovascular comorbidities in all subjects. These findings suggest that multiple factors likely contribute to aging and cognitive impairment in elderly HIV-positive individuals on cART.
Collapse
Affiliation(s)
- Shino D Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Harry V Vinters
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sergey Mareninov
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Natasha Nemanim
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jessica Gonzalez
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jose G Morales
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elyse J Singer
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
17
|
Amyloid and Tau Protein Concentrations in Children with Meningitis and Encephalitis. Viruses 2022; 14:v14040725. [PMID: 35458457 PMCID: PMC9027807 DOI: 10.3390/v14040725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) has emerged as a growing threat to human health. It is a multifactorial disorder, in which abnormal amyloid beta metabolism and neuroinflammation have been demonstrated to play a key role. Intrathecal inflammation can be triggered by infections and precede brain damage for years. We analyzed the influence of infections of the central nervous system on biomarkers that are crucially involved in AD pathology. Analyses of the cerebrospinal fluid (CSF) levels of Aβ1–42, Aβ1–40, Tau, and pTau proteins were performed in 53 children with neuroinfections of viral (n = 26) and bacterial origin (n = 19), and in controls (n = 8). We found no changes in CSF amyloid Aβ1–42 concentrations, regardless of etiology. We showed an increase in tau and phosphorylated tau concentrations in purulent CNS infections of the brain, compared to other etiologies. Moreover, the total concentrations of tau in the CSF correlated with the CSF absolute number of neutrophils. These findings and the Aβ 42/40 concentration quotient discrepancies in CFS between meningitis and encephalitis suggest that infections may affect the metabolism of AD biomarkers.
Collapse
|
18
|
Role of Receptors in Relation to Plaques and Tangles in Alzheimer's Disease Pathology. Int J Mol Sci 2021; 22:ijms222312987. [PMID: 34884789 PMCID: PMC8657621 DOI: 10.3390/ijms222312987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the identification of Aβ plaques and NFTs as biomarkers for Alzheimer’s disease (AD) pathology, therapeutic interventions remain elusive, with neither an absolute prophylactic nor a curative medication available to impede the progression of AD presently available. Current approaches focus on symptomatic treatments to maintain AD patients’ mental stability and behavioral symptoms by decreasing neuronal degeneration; however, the complexity of AD pathology requires a wide range of therapeutic approaches for both preventive and curative treatments. In this regard, this review summarizes the role of receptors as a potential target for treating AD and focuses on the path of major receptors which are responsible for AD progression. This review gives an overall idea centering on major receptors, their agonist and antagonist and future prospects of viral mimicry in AD pathology. This article aims to provide researchers and developers a comprehensive idea about the different receptors involved in AD pathogenesis that may lead to finding a new therapeutic strategy to treat AD.
Collapse
|
19
|
Pushkarsky T, Ward A, Ivanov A, Lin X, Sviridov D, Nekhai S, Bukrinsky MI. Abundance of Nef and p-Tau217 in Brains of Individuals Diagnosed with HIV-Associated Neurocognitive Disorders Correlate with Disease Severance. Mol Neurobiol 2021; 59:1088-1097. [PMID: 34843091 PMCID: PMC8857174 DOI: 10.1007/s12035-021-02608-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term used to describe a variety of neurological impairments observed in HIV-infected individuals. The pathogenic mechanisms of HAND and of its connection to HIV infection remain unknown, but one of the considered hypotheses suggests that HIV infection accelerates the development of Alzheimer’s disease. Previous studies suggested that HIV-1 Nef may contribute to HAND by inhibiting cholesterol efflux, increasing the abundance of lipid rafts, and affecting their functionality. Our comparative analysis of postmortem brain samples demonstrated a trend toward the decreased abundance of cholesterol transporter ABCA1 in samples from HIV-infected ART-treated individuals relative to samples from uninfected controls, and a reverse correlation between ABCA1 and flotillin 1, a marker for lipid rafts, in all analyzed samples. The brain samples from HIV-infected individuals, both with and without HAND, were characterized by the increased abundance of p-Tau217 peptide, which correlated with the abundance of flotillin 1. HIV-1 Nef was analyzed in samples from HAND-affected individuals by Western blot with 4 different antibodies and by LC–MS/MS, producing a Nef-positivity score. A significant correlation was found between this score and the abundance of flotillin 1, the abundance of p-Tau217, and the severity of HAND. These results highlight the contribution of Nef and Nef-dependent impairment of cholesterol efflux to HAND pathogenesis and support a connection between the pathogenesis of HAND and Alzheimer’s disease.
Collapse
Affiliation(s)
- Tatiana Pushkarsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam Ward
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- The George Washington University Milken Institute School of Public Health, Washington, DC, USA
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Andrey Ivanov
- College of Medicine, Howard University, Washington, DC, USA
| | - Xionghao Lin
- College of Medicine, Howard University, Washington, DC, USA
- College of Dentistry, Howard University, Washington, DC, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sergei Nekhai
- College of Medicine, Howard University, Washington, DC, USA
| | - Michael I Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
20
|
Bhargavan B, Woollard SM, McMillan JE, Kanmogne GD. CCR5 antagonist reduces HIV-induced amyloidogenesis, tau pathology, neurodegeneration, and blood-brain barrier alterations in HIV-infected hu-PBL-NSG mice. Mol Neurodegener 2021; 16:78. [PMID: 34809709 PMCID: PMC8607567 DOI: 10.1186/s13024-021-00500-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neurocognitive impairment is present in 50% of HIV-infected individuals and is often associated with Alzheimer's Disease (AD)-like brain pathologies, including increased amyloid-beta (Aβ) and Tau hyperphosphorylation. Here, we aimed to determine whether HIV-1 infection causes AD-like pathologies in an HIV/AIDS humanized mouse model, and whether the CCR5 antagonist maraviroc alters HIV-induced pathologies. METHODS NOD/scid-IL-2Rγcnull mice engrafted with human blood leukocytes were infected with HIV-1, left untreated or treated with maraviroc (120 mg/kg twice/day). Human cells in animal's blood were quantified weekly by flow cytometry. Animals were sacrificed at week-3 post-infection; blood and tissues viral loads were quantified using p24 antigen ELISA, RNAscope, and qPCR. Human (HLA-DR+) cells, Aβ-42, phospho-Tau, neuronal markers (MAP 2, NeuN, neurofilament-L), gamma-secretase activating protein (GSAP), and blood-brain barrier (BBB) tight junction (TJ) proteins expression and transcription were quantified in brain tissues by immunohistochemistry, immunofluorescence, immunoblotting, and qPCR. Plasma Aβ-42, Aβ-42 cellular uptake, release and transendothelial transport were quantified by ELISA. RESULTS HIV-1 significantly decreased human (h)CD4+ T-cells and hCD4/hCD8 ratios; decreased the expression of BBB TJ proteins claudin-5, ZO-1, ZO-2; and increased HLA-DR+ cells in brain tissues. Significantly, HIV-infected animals showed increased plasma and brain Aβ-42 and phospho-Tau (threonine181, threonine231, serine396, serine199), associated with transcriptional upregulation of GSAP, an enzyme that catalyzes Aβ formation, and loss of MAP 2, NeuN, and neurofilament-L. Maraviroc treatment significantly reduced blood and brain viral loads, prevented HIV-induced loss of neuronal markers and TJ proteins; decreased HLA-DR+ cells infiltration in brain tissues, significantly reduced HIV-induced increase in Aβ-42, GSAP, and phospho-Tau. Maraviroc also reduced Aβ retention and increased Aβ release in human macrophages; decreased the receptor for advanced glycation end products (RAGE) and increased low-density lipoprotein receptor-related protein-1 (LRP1) expression in human brain endothelial cells. Maraviroc induced Aβ transendothelial transport, which was blocked by LRP1 antagonist but not RAGE antagonist. CONCLUSIONS Maraviroc significantly reduced HIV-induced amyloidogenesis, GSAP, phospho-Tau, neurodegeneration, BBB alterations, and leukocytes infiltration into the CNS. Maraviroc increased cellular Aβ efflux and transendothelial Aβ transport via LRP1 pathways. Thus, therapeutically targeting CCR5 could reduce viremia, preserve the BBB and neurons, increased brain Aβ efflux, and reduce AD-like neuropathologies.
Collapse
Affiliation(s)
- Biju Bhargavan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Shawna M. Woollard
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800 USA
- Huvepharma, 421 W Industrial Lake Drive, Lincoln, NE 68528 USA
| | - Jo Ellyn McMillan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Georgette D. Kanmogne
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800 USA
| |
Collapse
|
21
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. Beta Amyloid, Tau Protein, and Neuroinflammation: An Attempt to Integrate Different Hypotheses of Alzheimer’s Disease Pathogenesis. Mol Biol 2021. [DOI: 10.1134/s002689332104004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that inevitably results in dementia and death. Currently, there are no pathogenetically grounded methods for the prevention and treatment of AD, and all current treatment regimens are symptomatic and unable to significantly delay the development of dementia. The accumulation of β-amyloid peptide (Aβ), which is a spontaneous, aggregation-prone, and neurotoxic product of the processing of signaling protein APP (Amyloid Precursor Protein), in brain tissues, primarily in the hippocampus and the frontal cortex, was for a long time considered the main cause of neurodegenerative changes in AD. However, attempts to treat AD based on decreasing Aβ production and aggregation did not bring significant clinical results. More and more arguments are arising in favor of the fact that the overproduction of Aβ in most cases of AD is not the initial cause, but a concomitant event of pathological processes in the course of the development of sporadic AD. The concept of neuroinflammation has come to the fore, suggesting that inflammatory responses play the leading role in the initiation and development of AD, both in brain tissue and in the periphery. The hypothesis about the key role of neuroinflammation in the pathogenesis of AD opens up new opportunities in the search for ways to treat and prevent this socially significant disease.
Collapse
|
22
|
Alzheimer's-Like Pathology at the Crossroads of HIV-Associated Neurological Disorders. Vaccines (Basel) 2021; 9:vaccines9080930. [PMID: 34452054 PMCID: PMC8402792 DOI: 10.3390/vaccines9080930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the widespread success of combined antiretroviral therapy (cART) in suppressing viremia, the prevalence of human immunodeficiency virus (HIV)-associated neurological disorders (HAND) and associated comorbidities such as Alzheimer’s disease (AD)-like symptomatology is higher among people living with HIV. The pathophysiology of observed deficits in HAND is well understood. However, it has been suggested that it is exacerbated by aging. Epidemiological studies have suggested comparable concentrations of the toxic amyloid protein, amyloid-β42 (Aβ42), in the cerebrospinal fluid (CSF) of HAND patients and in the brains of patients with dementia of the Alzheimer’s type. Apart from abnormal amyloid-β (Aβ) metabolism in AD, a better understanding of the role of similar pathophysiologic processes in HAND could be of substantial value. The pathogenesis of HAND involves either the direct effects of the virus or the effect of viral proteins, such as Tat, Gp120, or Nef, as well as the effects of antiretrovirals on amyloid metabolism and tauopathy, leading, in turn, to synaptodendritic alterations and neuroinflammatory milieu in the brain. Additionally, there is a lack of knowledge regarding the causative or bystander role of Alzheimer’s-like pathology in HAND, which is a barrier to the development of therapeutics for HAND. This review attempts to highlight the cause–effect relationship of Alzheimer’s-like pathology with HAND, attempting to dissect the role of HIV-1, HIV viral proteins, and antiretrovirals in patient samples, animal models, and cell culture model systems. Biomarkers associated with Alzheimer’s-like pathology can serve as a tool to assess the neuronal injury in the brain and the associated cognitive deficits. Understanding the factors contributing to the AD-like pathology associated with HAND could set the stage for the future development of therapeutics aimed at abrogating the disease process.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This article reviews the neurologic complications associated with human immunodeficiency virus (HIV) infection. RECENT FINDINGS Neurologic complications of HIV may be caused by direct virally mediated pathology, immune-mediated phenomena in response to viral infection, or opportunistic infections secondary to depletion of lymphocytes. These neurologic disorders may be influenced by the degree of immunosuppression (ie, CD4+ T-cell lymphocyte count) and stage of infection (early versus late), as well as use of antiretroviral therapy, and may manifest as a variety of central and peripheral neurologic syndromes, including the more commonly encountered HIV-associated cognitive disorders and length-dependent sensorimotor polyneuropathy, respectively. Immune dysregulation underlies the majority of these neurologic phenomena, as well as other HIV-associated conditions including immune reconstitution inflammatory syndrome (IRIS), CD8 lymphocytosis, and potentially the development of compartmentalized infection within the CSF, also referred to as CSF escape. SUMMARY This article reviews a spectrum of clinical syndromes and related neuropathologic states associated with HIV infection.
Collapse
|
24
|
Shi M, Li C, Tian X, Chu F, Zhu J. Can Control Infections Slow Down the Progression of Alzheimer's Disease? Talking About the Role of Infections in Alzheimer's Disease. Front Aging Neurosci 2021; 13:685863. [PMID: 34366826 PMCID: PMC8339924 DOI: 10.3389/fnagi.2021.685863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease as the most common age-related dementia affects more than 40 million people in the world, representing a global public health priority. However, the pathogenesis of Alzheimer’s disease (AD) is complex, and it remains unclear. Over the past decades, all efforts made in the treatments of AD, with targeting the pathogenic amyloid β (Aβ), neurofibrillary tangles, and misfolded tau protein, were failed. Recently, many studies have hinted that infection, and chronic inflammation that caused by infection are crucial risk factors for AD development and progress. In the review, we analyzed the role of infections caused by bacteria, viruses, and other pathogens in the pathogenesis of AD and its animal models, and explored the therapeutic possibility with anti-infections for AD. However, based on the published data, it is still difficult to determine their causal relationship between infection and AD due to contradictory results. We think that the role of infection in the pathogenesis of AD should not be ignored, even though infection does not necessarily cause AD, it may act as an accelerator in AD at least. It is essential to conduct the longitudinal studies and randomized controlled trials in humans, which can determine the role of infection in AD and clarify the links between infection and the pathological features of AD. Finding targeting infection drugs and identifying the time window for applying antibacterial or antiviral intervention may be more promising for future clinical therapeutic strategies in AD.
Collapse
Affiliation(s)
- Mingchao Shi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Chunrong Li
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
25
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
26
|
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:691136. [PMID: 34305533 PMCID: PMC8292681 DOI: 10.3389/fncel.2021.691136] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
27
|
Activation of Endogenous Retrovirus, Brain Infections and Environmental Insults in Neurodegeneration and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147263. [PMID: 34298881 PMCID: PMC8303979 DOI: 10.3390/ijms22147263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic neurodegenerative diseases are complex, and their pathogenesis is uncertain. Alzheimer’s disease (AD) is a neurodegenerative brain alteration that is responsible for most dementia cases in the elderly. AD etiology is still uncertain; however, chronic neuroinflammation is a constant component of brain pathology. Infections have been associated with several neurological diseases and viruses of the Herpes family appear to be a probable cause of AD neurodegenerative alterations. Several different factors may contribute to the AD clinical progression. Exogeneous viruses or other microbes and environmental pollutants may directly induce neurodegeneration by activating brain inflammation. In this paper, we suggest that exogeneous brain insults may also activate retrotransposons and silent human endogenous retroviruses (HERVs). The initial inflammation of small brain areas induced by virus infections or other brain insults may activate HERV dis-regulation that contributes to neurodegenerative mechanisms. Chronic HERV activation in turn may cause progressive neurodegeneration that thereafter merges in cognitive impairment and dementia in genetically susceptible people. Specific treatment for exogenous end endogenous pathogens and decreasing pollutant exposure may show beneficial effect in early intervention protocol to prevent the progression of cognitive deterioration in the elderly.
Collapse
|
28
|
Römer C. Viruses and Endogenous Retroviruses as Roots for Neuroinflammation and Neurodegenerative Diseases. Front Neurosci 2021; 15:648629. [PMID: 33776642 PMCID: PMC7994506 DOI: 10.3389/fnins.2021.648629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative diseases are associated with chronic inflammation in the brain and periphery giving rise to a continuous imbalance of immune processes. Next to inflammation markers, activation of transposable elements, including long intrespersed nuclear elements (LINE) elements and endogenous retroviruses (ERVs), has been identified during neurodegenerative disease progression and even correlated with the clinical severity of the disease. ERVs are remnants of viral infections in the human genome acquired during evolution. Upon activation, they produce transcripts and the phylogenetically youngest ones are still able to produce viral-like particles. In addition, ERVs can bind transcription factors and modulate immune response. Being between own and foreign, ERVs are reviewed in the context of viral infections of the central nervous system, in aging and neurodegenerative diseases. Moreover, this review tests the hypothesis that viral infection may be a trigger at the onset of neuroinflammation and that ERVs sustain the inflammatory imbalance by summarizing existing data of neurodegenerative diseases associated with viruses and/or ERVs.
Collapse
Affiliation(s)
- Christine Römer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|
29
|
Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, Pillai P, Periyasamy P, Buch S. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol 2020; 40:101843. [PMID: 33385630 PMCID: PMC7779826 DOI: 10.1016/j.redox.2020.101843] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of combined antiretroviral treatment (cART) as a treatment for HIV-1 infection has not only resulted in a dramatic decrease in the peripheral viral load but has also led to increased life expectancy of the infected individuals. Paradoxically, increased lifespan is accompanied with higher prevalence of age-related comorbidities, including HIV-associated neurocognitive disorders (HAND). Present study was aimed at exploring the role of HIV TAT protein in mediating microglial mitochondrial oxidative stress, ultimately resulting in neuroinflammation and microglial senescence. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to HIV TAT protein resulted in a senescence-like phenotype, that was characterized by elevated expression of both p16 and p21 proteins, increased numbers of senescence-associated-β-galactosidase positive cells, augmented cell-cycle arrest, increased release of proinflammatory cytokines and decreased telomerase activity. Additionally, exposure of mPMs to HIV TAT also resulted downregulation of SIRT3 with a concomitant increase in mitochondrial oxidative stress. Dual luciferase reporter assay identified miR-505 as a novel target of SIRT3, which was upregulated in mPMs exposed to HIV TAT. Furthermore, transient transfection of mPMs with either the SIRT3 plasmid or miRNA-505 inhibitor upregulated the expression of SIRT3 and mitochondrial antioxidant enzymes, with a concomitant decrease in microglial senescence. These in vitro findings were also validated in the prefrontal cortices and striatum of HIV transgenic rats as well as cART-treated HIV-infected individuals. In summary, this study underscores a yet undiscovered novel mechanism(s) underlying HIV TAT-mediated induction of senescence phenotype in microglia, involving the miR-505-SIRT3 axis-mediated induction of mitochondrial oxidative stress. HIV TAT induces senescence-like phenotype in microglia. HIV TAT decreases SIRT3 with concomitant increase of mitochondrial ROS. Overexpression of SIRT3 attenuated HIV TAT-mediated microglial senescence. miR-505 negatively regulate SIRT3 expression. miR-505 inhibition prevents SIRT3-mediated mitochondria stress and glial senescence.
Collapse
Affiliation(s)
- Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ashutosh Tripathi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
30
|
Martins SDT, Alves LR. Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin? Front Cell Infect Microbiol 2020; 10:593170. [PMID: 33335862 PMCID: PMC7736630 DOI: 10.3389/fcimb.2020.593170] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are small membrane structures containing proteins and nucleic acids that are gaining a lot of attention lately. They are produced by most cells and can be detected in several body fluids, having a huge potential in therapeutic and diagnostic approaches. EVs produced by infected cells usually have a molecular signature that is very distinct from healthy cells. For intracellular pathogens like viruses, EVs can have an even more complex function, since the viral biogenesis pathway can overlap with EV pathways in several ways, generating a continuum of particles, like naked virions, EVs containing infective viral genomes and quasi-enveloped viruses, besides the classical complete viral particles that are secreted to the extracellular space. Those particles can act in recipient cells in different ways. Besides being directly infective, they also can prime neighbor cells rendering them more susceptible to infection, block antiviral responses and deliver isolated viral molecules. On the other hand, they can trigger antiviral responses and cytokine secretion even in uninfected cells near the infection site, helping to fight the infection and protect other cells from the virus. This protective response can also backfire, when a massive inflammation facilitated by those EVs can be responsible for bad clinical outcomes. EVs can help or harm the antiviral response, and sometimes both mechanisms are observed in infections by the same virus. Since those pathways are intrinsically interlinked, understand the role of EVs during viral infections is crucial to comprehend viral mechanisms and respond better to emerging viral diseases.
Collapse
Affiliation(s)
- Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, ICC-Fiocruz, Curitiba, Brazil.,Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, ICC-Fiocruz, Curitiba, Brazil
| |
Collapse
|
31
|
Ditiatkovski M, Mukhamedova N, Dragoljevic D, Hoang A, Low H, Pushkarsky T, Fu Y, Carmichael I, Hill AF, Murphy AJ, Bukrinsky M, Sviridov D. Modification of lipid rafts by extracellular vesicles carrying HIV-1 protein Nef induces redistribution of amyloid precursor protein and Tau, causing neuronal dysfunction. J Biol Chem 2020; 295:13377-13392. [PMID: 32732283 DOI: 10.1074/jbc.ra120.014642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HANDs) are a frequent outcome of HIV infection. Effective treatment of HIV infection has reduced the rate of progression and severity but not the overall prevalence of HANDs, suggesting ongoing pathological process even when viral replication is suppressed. In this study, we investigated how HIV-1 protein Nef secreted in extracellular vesicles (exNef) impairs neuronal functionality. ExNef were rapidly taken up by neural cells in vitro, reducing the abundance of ABC transporter A1 (ABCA1) and thus cholesterol efflux and increasing the abundance and modifying lipid rafts in neuronal plasma membranes. ExNef caused a redistribution of amyloid precursor protein (APP) and Tau to lipid rafts and increased the abundance of these proteins, as well as of Aβ42 ExNef further potentiated phosphorylation of Tau and activation of inflammatory pathways. These changes were accompanied by neuronal functional impairment. Disruption of lipid rafts with cyclodextrin reversed the phenotype. Short-term treatment of C57BL/6 mice with either purified recombinant Nef or exNef similarly resulted in reduced abundance of ABCA1 and elevated abundance of APP in brain tissue. The abundance of ABCA1 in brain tissue of HIV-infected human subjects diagnosed with HAND was lower, and the abundance of lipid rafts was higher compared with HIV-negative individuals. Levels of APP and Tau in brain tissue correlated with the abundance of Nef. Thus, modification of neuronal cholesterol trafficking and of lipid rafts by Nef may contribute to early stages of neurodegeneration and pathogenesis in HAND.
Collapse
Affiliation(s)
| | | | | | - Anh Hoang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tatiana Pushkarsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Irena Carmichael
- Department of Micro Imaging, Monash University, Melbourne, Victoria, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, Louisiana Trobe Institute for Molecular Science, Louisiana Trobe University, Bundoora, Victoria, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
32
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
33
|
Howdle GC, Quidé Y, Kassem MS, Johnson K, Rae CD, Brew BJ, Cysique LA. Brain amyloid in virally suppressed HIV-associated neurocognitive disorder. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e739. [PMID: 32393651 PMCID: PMC7238897 DOI: 10.1212/nxi.0000000000000739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/06/2020] [Indexed: 01/23/2023]
Abstract
Objective To determine whether virally suppressed HIV neuropathogenesis, a chronic neuroinflammatory state, promotes abnormal brain amyloid deposition. Methods A total of 10 men with virally suppressed HIV-associated neurocognitive disorder (HAND), aged 46–68 years, underwent 11C-labeled Pittsburgh compound B PET. Data from the Australian Imaging, Biomarkers and Lifestyle (AIBL), including 39 cognitively normal individuals (aged 60–74 years), 7 individuals with mild cognitive impairment (MCI) (aged 64–71 years), and 11 individuals with Alzheimer disease (AD) (aged 55–74 years), were used as reference. Apart from more women, the AIBL cohort was demographically comparable with the HIV sample. Also, the AIBL PET data did not differ by sex. Cerebellum standardized uptake value ratio amyloid values within 22 regions of interest were estimated. In the HIV sample, apolipoprotein E (APOE) was available in 80%, CSF biomarkers in 60%, and 8–10 years of long-term health outcomes in 100%. Results HAND and the AIBL group with no cognitive deficits had similar amyloid deposition, which was lower than that in both the MCI and AD groups. At the individual level, one HAND case showed high amyloid deposition consistent with AD. This case also had a CSF-AD–like profile and an E4/E4 for APOE. Clinically, this case declined over 18 years with mild HAND symptoms first, followed by progressive memory decline 8–9 years after the study PET, then progression to severe dementia within 2–3 years, and lived a further 6 years. Another HAND case showed increased amyloid deposition restricted to the hippocampi. Two other HAND cases showed abnormally decreased amyloid in subcortical areas. Conclusions Relative to cognitively normal older controls, brain amyloid burden does not differ in virally suppressed HAND at the group level. However, individual analyses show that abnormally high and low amyloid burden occur.
Collapse
Affiliation(s)
- Gemma C Howdle
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Yann Quidé
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Mustafa S Kassem
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Kate Johnson
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Caroline D Rae
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Lucette A Cysique
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia.
| |
Collapse
|
34
|
Proust A, Barat C, Leboeuf M, Drouin J, Gagnon MT, Vanasse F, Tremblay MJ. HIV-1 infection and latency-reversing agents bryostatin-1 and JQ1 disrupt amyloid beta homeostasis in human astrocytes. Glia 2020; 68:2212-2227. [DOI: 10.1002/glia.23833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
| | - Mathieu Leboeuf
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine; Université Laval; Québec QC Canada
| | - Jean Drouin
- Département de médecine familiale et médecine d'urgence, Faculté de Médecine; Université Laval; Québec QC Canada
| | - Marie-Thérèse Gagnon
- Clinique de planification des naissances, Centre Hospitalier Universitaire de Québec-Université Laval, Hôpital Saint-François d'Assise; Québec QC Canada
| | - François Vanasse
- Clinique de planification des naissances, Centre Hospitalier Universitaire de Québec-Université Laval, Hôpital Saint-François d'Assise; Québec QC Canada
| | - Michel J. Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
- Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine; Université Laval; Québec QC Canada
| |
Collapse
|
35
|
Kodidela S, Gerth K, Haque S, Gong Y, Ismael S, Singh A, Tauheed I, Kumar S. Extracellular Vesicles: A Possible Link between HIV and Alzheimer's Disease-Like Pathology in HIV Subjects? Cells 2019; 8:E968. [PMID: 31450610 PMCID: PMC6769601 DOI: 10.3390/cells8090968] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
The longevity of people with HIV/AIDS has been prolonged with the use of antiretroviral therapy (ART). The age-related complications, especially cognitive deficits, rise as HIV patients live longer. Deposition of beta-amyloid (Aβ), a hallmark of Alzheimer's disease (AD), has been observed in subjects with HIV-associated neurocognitive disorders (HAND). Various mechanisms such as neuroinflammation induced by HIV proteins (e.g., Tat, gp120, Nef), excitotoxicity, oxidative stress, and the use of ART contribute to the deposition of Aβ, leading to dementia. However, progressive dementia in older subjects with HIV might be due to HAND, AD, or both. Recently, extracellular vesicles (EVs)/exosomes, have gained recognition for their importance in understanding the pathology of both HAND and AD. EVs can serve as a possible link between HIV and AD, due to their ability to package and transport the toxic proteins implicated in both AD and HIV (Aβ/tau and gp120/tat, respectively). Given that Aß is also elevated in neuron-derived exosomes isolated from the plasma of HIV patients, it is reasonable to suggest that neuron-to-neuron exosomal transport of Aβ and tau also contributes to AD-like pathology in HIV-infected subjects. Therefore, exploring exosomal contents is likely to help distinguish HAND from AD. However, future prospective clinical studies need to be conducted to compare the exosomal contents in the plasma of HIV subjects with and without HAND as well as those with and without AD. This would help to find new markers and develop new treatment strategies to treat AD in HIV-positive subjects. This review presents comprehensive literatures on the mechanisms contributing to Aβ deposition in HIV-infected cells, the role of EVs in the propagation of Aβ in AD, the possible role of EVs in HIV-induced AD-like pathology, and finally, possible therapeutic targets or molecules to treat HIV subjects with AD.
Collapse
Affiliation(s)
- Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA.
| | - Kelli Gerth
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Sanjana Haque
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Yuqing Gong
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Avenue #515, Memphis, TN 38163, USA
| | - Ajay Singh
- Department of Pediatric Pulmonology, Le Bonheur Children Hospital, 50 N. Dunlap st, Memphis, TN 38103, USA
| | - Ishrat Tauheed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Avenue #515, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA.
| |
Collapse
|