1
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Rutledge CA. Molecular mechanisms underlying sarcopenia in heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:7. [PMID: 38455513 PMCID: PMC10919908 DOI: 10.20517/jca.2023.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The loss of skeletal muscle, also known as sarcopenia, is an aging-associated muscle disorder that is disproportionately present in heart failure (HF) patients. HF patients with sarcopenia have poor outcomes compared to the overall HF patient population. The prevalence of sarcopenia in HF is only expected to grow as the global population ages, and novel treatment strategies are needed to improve outcomes in this cohort. Multiple mechanistic pathways have emerged that may explain the increased prevalence of sarcopenia in the HF population, and a better understanding of these pathways may lead to the development of therapies to prevent muscle loss. This review article aims to explore the molecular mechanisms linking sarcopenia and HF, and to discuss treatment strategies aimed at addressing such molecular signals.
Collapse
Affiliation(s)
- Cody A. Rutledge
- Acute Medicine Section, Division of Medicine, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Sun J, Tan Y, Su J, Mikhail H, Pavel V, Deng Z, Li Y. Role and molecular mechanism of ghrelin in degenerative musculoskeletal disorders. J Cell Mol Med 2023; 27:3681-3691. [PMID: 37661635 PMCID: PMC10718156 DOI: 10.1111/jcmm.17944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Ghrelin is a brain-gut peptide, and the first 28-peptide that was found in the gastric mucosa. It has a growth hormone (GH)-releasing hormone-like effect and can potently promote the release of GH from pituitary GH cells; however, it is unable to stimulate GH synthesis. Therefore, ghrelin is believed to play a role in promoting bone growth and development. The correlation between ghrelin and some degenerative diseases of the musculoskeletal system has been reported recently, and ghrelin may be one of the factors influencing degenerative pathologies, such as osteoporosis, osteoarthritis, sarcopenia and intervertebral disc degeneration. With population ageing, the risk of health problems caused by degenerative diseases of the musculoskeletal system gradually increases. In this article, the roles of ghrelin in musculoskeletal disorders are summarized to reveal the potential effects of ghrelin as a key target in the treatment of related bone and muscle diseases and the need for further research.
Collapse
Affiliation(s)
- Jianfeng Sun
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yibo Tan
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingyue Su
- Department of Sports MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and OrthopedicsMinskBelarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and OrthopedicsMinskBelarus
| | - Zhenhan Deng
- Department of Sports MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Yusheng Li
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Effect of Ghrelin on the Cardiovascular System. BIOLOGY 2022; 11:biology11081190. [PMID: 36009817 PMCID: PMC9405061 DOI: 10.3390/biology11081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Ghrelin is an octanoylated peptide that was initially isolated from rat and human stomachs in the process of searching for an endogenous ligand to the orphan growth hormone secretagogue receptor (GHS-R), a G-protein-coupled receptor. Exogenous or endogenous ghrelin secreted from the stomach binds to GHS-R on gastric vagal nerve terminals, and the signals are transmitted to the central nervous system via the vagal afferent nerve to facilitate growth hormone (GH) secretion, feeding, sympathetic inhibition, parasympathetic activation, and anabolic effects. Ghrelin also binds directly to the pituitary GHS-R and stimulates GH secretion. Ghrelin has beneficial effects on the cardiovascular system, including cardioprotective effects such as anti-heart failure, anti-arrhythmic, and anti-inflammatory actions, and it enhances vascular activity via GHS-R-dependent stimulation of GH/IGF-1 (insulin-like growth factor-1) and modulation of the autonomic nervous system. The anti-heart failure effects of ghrelin could be useful as a new therapeutic strategy for chronic heart failure. Abstract Ghrelin, an n-octanoyl-modified 28-amino-acid-peptide, was first discovered in the human and rat stomach as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Ghrelin-GHS-R1a signaling regulates feeding behavior and energy balance, promotes vascular activity and angiogenesis, improves arrhythmia and heart failure, and also protects against cardiovascular disease by suppressing cardiac remodeling after myocardial infarction. Ghrelin’s cardiovascular protective effects are mediated by the suppression of sympathetic activity; activation of parasympathetic activity; alleviation of vascular endothelial dysfunction; and regulation of inflammation, apoptosis, and autophagy. The physiological functions of ghrelin should be clarified to determine its pharmacological potential as a cardiovascular medication.
Collapse
|
5
|
Bukhari SNA. An insight into the multifunctional role of ghrelin and structure activity relationship studies of ghrelin receptor ligands with clinical trials. Eur J Med Chem 2022; 235:114308. [PMID: 35344905 DOI: 10.1016/j.ejmech.2022.114308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Ghrelin is a multifunctional gastrointestinal acylated peptide, primarily synthesized in the stomach and regulates the secretion of growth hormone and energy homeostasis. It plays a central role in modulating the diverse biological, physiological and pathological functions in vertebrates. The synthesis of ghrelin receptor ligands after the finding of growth hormone secretagogue developed from Met-enkephalin led to reveal the endogenous ligand ghrelin and the receptors. Subsequently, many peptides, small molecules and peptidomimetics focusing on the ghrelin receptor, GHS-R1a, were derived. In this review, the key features of ghrelin's structure, forms, its bio-physiological functions, pathological roles and therapeutic potential have been highlighted. A few peptidomimetics and pseudo peptide synthetic perspectives have also been discussed to make ghrelin receptor ligands, clinical trials and their success.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 2014, Saudi Arabia.
| |
Collapse
|
6
|
Gupta S, Mitra A. Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Fail Rev 2020; 26:417-435. [PMID: 33025414 DOI: 10.1007/s10741-020-10032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin, a small peptide hormone (28 aa), secreted mainly by X/A-like cells of gastric mucosa, is also locally produced in cardiomyocytes. Being an orexigenic factor (appetite stimulant), it promotes release of growth hormone (GH) and exerts diverse physiological functions, viz. regulation of energy balance, glucose, and/or fat metabolism for body weight maintenance. Interestingly, administration of exogenous ghrelin significantly improves cardiac functions in CVD patients as well as experimental animal models of heart failure. Ghrelin ameliorates pathophysiological condition of the heart in myocardial infarction, cardiac hypertrophy, fibrosis, cachexia, and ischemia reperfusion injury. This peptide also exerts significant impact at the level of vasculature leading to lowering high blood pressure and reversal of endothelial dysfunction and atherosclerosis. However, the molecular mechanism of actions elucidating the healing effects of ghrelin on the cardiovascular system is still a matter of conjecture. Some experimental data indicate its beneficial effects via complex cellular cross talks between autonomic nervous system and cardiovascular cells, some other suggest more direct receptor-mediated molecular actions via autophagy or ionotropic regulation and interfering with apoptotic and inflammatory pathways of cardiomyocytes and vascular endothelial cells. Here, in this review, we summarise available recent data to encourage more research to find the missing links of unknown ghrelin receptor-mediated pathways as we see ghrelin as a future novel therapy in cardiovascular protection.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, 713347, India
| | - Arkadeep Mitra
- Department of Zoology, City College , 102/1, Raja Rammohan Sarani, Kolkata, 700009, India.
| |
Collapse
|
7
|
Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front Cardiovasc Med 2020; 6:194. [PMID: 32039239 PMCID: PMC6993588 DOI: 10.3389/fcvm.2019.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.
Collapse
Affiliation(s)
| | | | - Canan G. Nebigil
- Laboratory of CardioOncology and Therapeutic Innovation, CNRS, Illkirch, France
| |
Collapse
|
8
|
Yang T, Lu Z, Wang L, Zhao Y, Nie B, Xu Q, Han X, Li T, Zhao J, Cheng W, Wang B, Wu A, Zhu H, Meng W, Shang H, Zhao M. Dynamic Changes in Brain Glucose Metabolism and Neuronal Structure in Rats with Heart Failure. Neuroscience 2020; 424:34-44. [DOI: 10.1016/j.neuroscience.2019.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
|
9
|
Park B, You S, Cho WCS, Choi JY, Lee MS. A systematic review of herbal medicines for the treatment of cancer cachexia in animal models. J Zhejiang Univ Sci B 2019; 20:9-22. [PMID: 30614226 PMCID: PMC6331334 DOI: 10.1631/jzus.b1800171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study is to summarize preclinical studies on herbal medicines used to treat cancer cachexia and its underlying mechanisms. METHODS We searched four representing databases, including PubMed, EMBASE, the Allied and Complementary Medicine Database, and the Web of Science up to December 2016. Randomized animal studies were included if the effects of any herbal medicine were tested on cancer cachexia. The methodological quality was evaluated by the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADE) checklist. RESULTS A total of fourteen herbal medicines and their compounds were identified, including Coptidis Rhizoma, berberine, Bing De Ling, curcumin, Qing-Shu-Yi-Qi-Tang, Scutellaria baicalensis, Hochuekkito, Rikkunshito, hesperidin, atractylodin, Sipjeondaebo-tang, Sosiho-tang, Anemarrhena Rhizoma, and Phellodendri Cortex. All the herbal medicines, except curcumin, have been shown to ameliorate the symptoms of cancer cachexia through anti-inflammation, regulation of the neuroendocrine pathway, and modulation of the ubiquitin proteasome system or protein synthesis. CONCLUSIONS This study showed that herbal medicines might be a useful approach for treating cancer cachexia. However, more detailed experimental studies on the molecular mechanisms and active compounds are needed.
Collapse
Affiliation(s)
- Bongki Park
- Liver and Immunology Research Center, Oriental College, Daejeon University, Daejeon 34020, Republic of Korea
| | - Sooseong You
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Jun-Yong Choi
- Department of Korean Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Myeong Soo Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
10
|
Holubová M, Blechová M, Kákonová A, Kuneš J, Železná B, Maletínská L. In Vitro and In Vivo Characterization of Novel Stable Peptidic Ghrelin Analogs: Beneficial Effects in the Settings of Lipopolysaccharide-Induced Anorexia in Mice. J Pharmacol Exp Ther 2018; 366:422-432. [PMID: 29914876 DOI: 10.1124/jpet.118.249086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023] Open
Abstract
Ghrelin, the only known orexigenic gut hormone produced primarily in the stomach, has lately gained attention as a potential treatment of anorexia and cachexia. However, its biologic stability is highly limited; therefore, a number of both peptide and nonpeptide ghrelin analogs have been synthesized. In this study, we provide in vitro and in vivo characterization of a series of novel peptide growth hormone secretagogue receptor (GHS-R1a) agonists, both under nonpathologic conditions and in the context of lipopolysaccharide (LPS)-induced anorexia. These analogs were based on our previous series modified by replacing the Ser3 with diaminopropionic acid (Dpr), the N-terminal Gly with sarcosine, and Phe4 with various noncoded amino acids. New analogs were further modified by replacing the n-octanoyl bound to Dpr3 with longer or unsaturated fatty acid residues, by incorporation of the second fatty acid residue into the molecule, or by shortening the peptide chain. These modifications preserved the ability of ghrelin analogs to bind to the membranes of cells transfected with GHS-R1a, as well as the GHS-R1a signaling activation. The selected analogs exhibited long-lasting and potent orexigenic effects after a single s.c. administration in mice. The stability of new ghrelin analogs in mice after s.c. administration was significantly higher when compared with ghrelin and [Dpr3]ghrelin, with half-lives of approximately 2 hours. A single s.c. injection of the selected ghrelin analogs in mice with LPS-induced anorexia significantly increased food intake via the activation of orexigenic pathways and normalized blood levels of proinflammatory cytokines, demonstrating the anti-inflammatory potential of the analogs.
Collapse
Affiliation(s)
- Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Anna Kákonová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| |
Collapse
|
11
|
Rhodes L, Zollers B, Wofford JA, Heinen E. Capromorelin: a ghrelin receptor agonist and novel therapy for stimulation of appetite in dogs. Vet Med Sci 2018; 4:3-16. [PMID: 29468076 PMCID: PMC5813110 DOI: 10.1002/vms3.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is a hormone, secreted from cells in the stomach, which is important in the regulation of appetite and food intake in mammals. It exerts its action by binding to a specific G-protein-coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1a) which is found in areas of the brain associated with the regulation of food intake. Ghrelin causes a release of growth hormone (GH) through binding to GHS-R1a in the hypothalamus and pituitary gland. A class of compounds known as growth hormone secretagogues, or ghrelin receptor agonists, were developed for therapeutic use in humans for the stimulation of GH in the frail elderly, and have subsequently been studied for their effects on increasing appetite and food intake, increasing body weight, building lean muscle mass, and treating cachexia. Subsequent research has shown that ghrelin has anti-inflammatory and immunomodulatory effects. This article reviews the basic physiology of ghrelin and the ghrelin receptor agonists, including the available evidence of these effects in vitro and in vivo in rodent models, humans, dogs and cats. One of these compounds, capromorelin, has been FDA-approved for the stimulation of appetite in dogs (ENTYCE ®). The data available on the safety and effectiveness of capromorelin is reviewed, along with a discussion of the potential clinical applications for ghrelin receptor agonists in both human and veterinary medicine.
Collapse
|
12
|
Barazzoni R, Gortan Cappellari G, Palus S, Vinci P, Ruozi G, Zanetti M, Semolic A, Ebner N, von Haehling S, Sinagra G, Giacca M, Springer J. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle 2017; 8:991-998. [PMID: 29098797 PMCID: PMC5700435 DOI: 10.1002/jcsm.12254] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic heart failure (CHF) is associated with skeletal muscle abnormalities contributing to exercise intolerance, muscle loss, and negative impact on patient prognosis. A primary role has been proposed for mitochondrial dysfunction, which may be induced by systemic and tissue inflammation and further contribute to low insulin signalling. The acylated form of the gastric hormone ghrelin (AG) may improve mitochondrial oxidative capacity and insulin signalling in both healthy and diseased rodent models. METHODS We investigated the impact of AG continuous subcutaneous administration (AG) by osmotic minipump (50 nmol/kg/day for 28 days) compared with placebo (P) on skeletal muscle mitochondrial enzyme activities, mitochondrial biogenesis regulators transcriptional expression and insulin signalling in a rodent post-myocardial infarction CHF model. RESULTS No statistically significant differences (NS) were observed among the three group in cumulative food intake. Compared with sham-operated, P had low mitochondrial enzyme activities, mitochondrial biogenesis regulators transcripts, and insulin signalling activation at AKT level (P < 0.05), associated with activating nuclear translocation of pro-inflammatory transcription factor nuclear factor-κB. AG completely normalized all alterations (P < 0.05 vs P, P = NS vs sham-operated). Direct AG activities were strongly supported by in vitro C2C12 myotubes experiments showing AG-dependent stimulation of mitochondrial enzyme activities. No changes in mitochondrial parameters and insulin signalling were observed in the liver in any group. CONCLUSIONS Sustained peripheral AG treatment with preserved food intake normalizes a CHF-induced tissue-specific cluster of skeletal muscle mitochondrial dysfunction, pro-inflammatory changes, and reduced insulin signalling. AG is therefore a potential treatment for CHF-associated muscle catabolic alterations, with potential positive impact on patient outcome.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Gianluca Gortan Cappellari
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Sandra Palus
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Pierandrea Vinci
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michela Zanetti
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Annamaria Semolic
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Nicole Ebner
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy.,Cardiology Division, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jochen Springer
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
13
|
The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2017; 41:14-29. [DOI: 10.1007/s12272-017-0994-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
14
|
Abstract
Background: Cancer cachexia is a catabolic syndrome associated with uncontrolled muscle breakdown. There may be associated fat loss. Occurring in high frequency in advanced cancer, it is an indicator of poor prognosis. Besides weight loss, patients experience a cluster of symptoms including anorexia, early satiety, and weakness. The 3 stages of cachexia include stages of precachexia, cachexia, and refractory cachexia. Refractory cachexia is associated with active catabolism or the presence of factors that make active management of weight loss no longer possible. Patients with refractory cachexia often receive glucocorticoids or megasterol acetate. Glucocorticoid effect is short and responses to megasterol are variable. Anamorelin is a new agent for cancer anorexia-cachexia, with trials completed in advanced lung cancer. Acting as an oral mimetic of ghrelin, it improves appetite and muscle mass. This article reviews the pharmacology, pharmacodynamics, and effect on cancer cachexia. Methods: A PubMed search was done using the Medical Subject Headings term anamorelin. Articles were selected to provide a pharmacologic characterization of anamorelin. Results: Anamorelin increases muscle mass in patients with advanced cancer in 2-phase 3 trials. Conclusions: Anamorelin improves anorexia-cachexia symptoms in patients with advanced non–small-cell lung cancer.
Collapse
Affiliation(s)
- Eric Prommer
- UCLA/ VA Hospice & Palliative Medicine UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
15
|
Zeng X, Chen S, Yang Y, Ke Z. Acylated and unacylated ghrelin inhibit atrophy in myotubes co-cultured with colon carcinoma cells. Oncotarget 2017; 8:72872-72885. [PMID: 29069832 PMCID: PMC5641175 DOI: 10.18632/oncotarget.20531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a result of increased protein degradation and decreased protein synthesis. The multifunctional circulating hormone ghrelin promotes synthesis and inhibits degradation of muscle protein, but its mechanism of action is not fully understood. Here, we investigated whether co-culturing C2C12 myotubes with CT26 colon carcinoma cells induces myotube atrophy, and whether acylated ghrelin (AG) and unacylated ghrelin (UnAG) had anti-atrophic effects. We found that co-culture induced myotube atrophy and increased tumor necrosis factor-alpha (TNF-α) and myostatin concentrations in the culture medium. Moreover, co-culture down-regulated myogenin and MyoD expression, inhibited the Akt signaling, up-regulated ubiquitin E3 ligase expression, and activated the calpain system and autophagy in myotubes. Both AG and UnAG inhibited these changes. Our study describes a novel in vitro model that can be employed to investigate cancer cachexia, and our findings suggest a possible use for AG and UnAG in treating cancer cachexia.
Collapse
Affiliation(s)
- Xianliang Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Sizeng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yang Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Zhao Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
16
|
Abstract
With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.
Collapse
|
17
|
Mansson JV, Alves FD, Biolo A, Souza GC. Use of ghrelin in cachexia syndrome: a systematic review of clinical trials. Nutr Rev 2016; 74:659-669. [DOI: 10.1093/nutrit/nuw029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Abstract
Chronic heart failure (CHF) is a highly prevalent condition among the elderly and is associated with considerable morbidity, institutionalization and mortality. In its advanced stages, CHF is often accompanied by the loss of muscle mass and strength. Sarcopenia is a geriatric syndrome that has been actively studied in recent years due to its association with a wide range of adverse health outcomes. The goal of this review is to discuss the relationship between CHF and sarcopenia, with a focus on shared pathophysiological pathways and treatments. Malnutrition, systemic inflammation, endocrine imbalances, and oxidative stress appear to connect sarcopenia and CHF. At the muscular level, alterations of the ubiquitin proteasome system, myostatin signaling, and apoptosis have been described in both sarcopenia and CHF and could play a role in the loss of muscle mass and function. Possible therapeutic strategies to impede the progression of muscle wasting in CHF patients include protein and vitamin D supplementation, structured physical exercise, and the administration of angiotensin-converting enzyme inhibitors and β-blockers. Hormonal supplementation with growth hormone, testosterone, and ghrelin is also discussed as a potential treatment.
Collapse
|
19
|
Loncar G, Springer J, Anker M, Doehner W, Lainscak M. Cardiac cachexia: hic et nunc. J Cachexia Sarcopenia Muscle 2016; 7:246-60. [PMID: 27386168 PMCID: PMC4929818 DOI: 10.1002/jcsm.12118] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiac cachexia (CC) is the clinical entity at the end of the chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely, the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. A better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia, and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
Collapse
Affiliation(s)
- Goran Loncar
- Department of Cardiology Clinical Hospital Zvezdara Belgrade Serbia; School of Medicine University of Belgrade Belgrade Serbia
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology University Medical Center Göttingen (UMG) Göttingen Germany
| | - Markus Anker
- Department of Cardiology Charité - Universitätsmedizin Berlin Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charité Universitätsmedizin Berlin Germany
| | - Mitja Lainscak
- Department of Cardiology and Department of Research and Education General Hospital Celje Celje Slovenia; Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| |
Collapse
|
20
|
Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment. Int J Cardiol 2016; 202:766-72. [DOI: 10.1016/j.ijcard.2015.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/04/2015] [Indexed: 02/07/2023]
|
21
|
Drescher C, Konishi M, Ebner N, Springer J. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle 2015; 6:303-11. [PMID: 26676067 PMCID: PMC4670737 DOI: 10.1002/jcsm.12082] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 01/02/2023] Open
Abstract
Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies, and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartate-resistant acid phosphatase 5a, and novel substances like epigallocatechin-3-gallate. In summary, the progress to combat muscle wasting is in full swing, and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon support by improved and more helpful strategies.
Collapse
Affiliation(s)
- Cathleen Drescher
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Masaaki Konishi
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Nicole Ebner
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| |
Collapse
|
22
|
Hatanaka M, Konishi M, Ishida J, Saito M, Springer J. Novel mechanism of ghrelin therapy for cachexia. J Cachexia Sarcopenia Muscle 2015; 6:393. [PMID: 26674390 PMCID: PMC4670749 DOI: 10.1002/jcsm.12084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Michiyoshi Hatanaka
- Innovative Clinical Trials, Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany ; Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd Osaka, Japan
| | - Masaaki Konishi
- Innovative Clinical Trials, Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Junnichi Ishida
- Innovative Clinical Trials, Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Masakazu Saito
- Innovative Clinical Trials, Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| |
Collapse
|
23
|
Cardiac cachexia: hic et nunc: "hic et nunc" - here and now. Int J Cardiol 2015; 201:e1-12. [PMID: 26545926 DOI: 10.1016/j.ijcard.2015.10.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Cardiac cachexia (CC) is the clinical entity at the end of chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. Better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick-up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
Collapse
|
24
|
Cancer as a Proinflammatory Environment: Metastasis and Cachexia. Mediators Inflamm 2015; 2015:791060. [PMID: 26508818 PMCID: PMC4609868 DOI: 10.1155/2015/791060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
Abstract
The development of the syndrome of cancer cachexia and that of metastasis are related with a poor prognostic for cancer patients. They are considered multifactorial processes associated with a proinflammatory environment, to which tumour microenvironment and other tissues from the tumour bearing individuals contribute. The aim of the present review is to address the role of ghrelin, myostatin, leptin, HIF, IL-6, TNF-α, and ANGPTL-4 in the regulation of energy balance, tumour development, and tumoural cell invasion. Hypoxia induced factor plays a prominent role in tumour macro- and microenvironment, by modulating the release of proinflammatory cytokines.
Collapse
|
25
|
von Haehling S, Anker SD. Moving on up: the Journal of Cachexia, Sarcopenia and Muscle. J Cachexia Sarcopenia Muscle 2015; 6:193-6. [PMID: 26401464 PMCID: PMC4575549 DOI: 10.1002/jcsm.12064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Stephan von Haehling
- Institute of Innovative Clinical Trial, Department of Cardiology and Pneumology, University of Göttingen Medical School Göttingen, Germany
| | - Stefan D Anker
- Institute of Innovative Clinical Trial, Department of Cardiology and Pneumology, University of Göttingen Medical School Göttingen, Germany
| |
Collapse
|
26
|
Abstract
Sarcopenia (muscle wasting) and cachexia share some pathophysiological aspects. Sarcopenia affects approximately 20 %, cachexia <10 % of ambulatory patients with heart failure (HF). Whilst sarcopenia means loss of skeletal muscle mass and strength that predominantly affects postural rather than non-postural muscles, cachexia means loss of muscle and fat tissue that leads to weight loss. The wasting continuum in HF implies that skeletal muscle is lost earlier than fat tissue and may lead from sarcopenia to cachexia. Both tissues require conservation, and therapies that stop the wasting process have tremendous therapeutic appeal. The present paper reviews the pathophysiology of muscle and fat wasting in HF and discusses potential treatments, including exercise training, appetite stimulants, essential amino acids, growth hormone, testosterone, electrical muscle stimulation, ghrelin and its analogues, ghrelin receptor agonists and myostatin antibodies.
Collapse
|
27
|
Konishi M, Pelgrim L, Tschirner A, Baumgarten A, von Haehling S, Palus S, Doehner W, Anker SD, Springer J. Febuxostat improves outcome in a rat model of cancer cachexia. J Cachexia Sarcopenia Muscle 2015; 6:174-80. [PMID: 26136193 PMCID: PMC4458083 DOI: 10.1002/jcsm.12017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Activity of xanthine oxidase is induced in cancer cachexia, and its inhibition by allopurinol or oxypurinol improves survival and reduces wasting in the Yoshida hepatoma cancer cachexia model. Here, we tested the effects of the second-generation xanthine oxidase inhibitor febuxostat compared with placebo in the same model as used previously by our group. METHODS Wistar rats (~200 g) were treated daily with febuxostat at 5 mg/kg/day or placebo via gavage for a maximum of 17 days. Weight change, quality of life, and body composition were analysed. After sacrifice, proteasome activity in the gastrocnemius muscle was measured. Muscle-specific proteins involved in metabolism were analysed by western blotting. RESULTS Treatment of the tumour-bearing rats with febuxostat led to a significantly improved survival compared with placebo (hazard ratio: 0.45, 95% confidence interval: 0.22-0.93, P = 0.03). Loss of body weight was reduced (-26.3 ± 12.4 g) compared with placebo (-50.2 ± 2.1 g, P < 0.01). Wasting of lean mass was attenuated (-12.7 ± 10.8 g) vs. placebo (-31.9 ± 2.1 g, P < 0.05). While we did not see an effect of febuxostat on proteasome activity at the end of the study, the pAkt/Akt ratio was improved by febuxostat (0.94 ± 0.09) vs. placebo (0.41 ± 0.05, P < 0.01), suggesting an increase in protein synthesis. CONCLUSIONS Febuxostat attenuated cachexia progression and improved survival of tumour-bearing rats.
Collapse
Affiliation(s)
- Masaaki Konishi
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Loes Pelgrim
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany.,Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anika Tschirner
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany
| | - Anna Baumgarten
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany
| | - Stephan von Haehling
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sandra Palus
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin, Charité Medical School, Berlin, Germany
| | - Stefan D Anker
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Jochen Springer
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
|
29
|
Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F, Casanueva FF, D'Alessio D, Depoortere I, Geliebter A, Ghigo E, Cole PA, Cowley M, Cummings DE, Dagher A, Diano S, Dickson SL, Diéguez C, Granata R, Grill HJ, Grove K, Habegger KM, Heppner K, Heiman ML, Holsen L, Holst B, Inui A, Jansson JO, Kirchner H, Korbonits M, Laferrère B, LeRoux CW, Lopez M, Morin S, Nakazato M, Nass R, Perez-Tilve D, Pfluger PT, Schwartz TW, Seeley RJ, Sleeman M, Sun Y, Sussel L, Tong J, Thorner MO, van der Lely AJ, van der Ploeg LHT, Zigman JM, Kojima M, Kangawa K, Smith RG, Horvath T, Tschöp MH. Ghrelin. Mol Metab 2015; 4:437-60. [PMID: 26042199 PMCID: PMC4443295 DOI: 10.1016/j.molmet.2015.03.005] [Citation(s) in RCA: 771] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - R Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - M L Andermann
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Z B Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - S D Anker
- Applied Cachexia Research, Department of Cardiology, Charité Universitätsmedizin Berlin, Germany
| | - J Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain ; Department of Pediatrics, Universidad Autónoma de Madrid and CIBER Fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - R L Batterham
- Centre for Obesity Research, University College London, London, United Kingdom
| | - S C Benoit
- Metabolic Disease Institute, Division of Endocrinology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - C Y Bowers
- Tulane University Health Sciences Center, Endocrinology and Metabolism Section, Peptide Research Section, New Orleans, LA, USA
| | - F Broglio
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - F F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (CHUS), CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - D D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - A Geliebter
- New York Obesity Nutrition Research Center, Department of Medicine, St Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Ghigo
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P A Cole
- Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - M Cowley
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia ; Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - D E Cummings
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - A Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S Diano
- Dept of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - S L Dickson
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - C Diéguez
- Department of Physiology, School of Medicine, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Spain
| | - R Granata
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - H J Grill
- Department of Psychology, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - K Grove
- Department of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K M Habegger
- Comprehensive Diabetes Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - K Heppner
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - M L Heiman
- NuMe Health, 1441 Canal Street, New Orleans, LA 70112, USA
| | - L Holsen
- Departments of Psychiatry and Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - B Holst
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - A Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J O Jansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - H Kirchner
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - B Laferrère
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - C W LeRoux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Ireland
| | - M Lopez
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - S Morin
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - M Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - R Nass
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - D Perez-Tilve
- Department of Internal Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - P T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - T W Schwartz
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - M Sleeman
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Y Sun
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - L Sussel
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - J Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - M O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - A J van der Lely
- Department of Medicine, Erasmus University MC, Rotterdam, The Netherlands
| | | | - J M Zigman
- Departments of Internal Medicine and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - K Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - R G Smith
- The Scripps Research Institute, Florida Department of Metabolism & Aging, Jupiter, FL, USA
| | - T Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany ; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
30
|
Khawaja T, Chokshi A, Ji R, Kato TS, Xu K, Zizola C, Wu C, Forman DE, Ota T, Kennel P, Takayama H, Naka Y, George I, Mancini D, Schulze CP. Ventricular assist device implantation improves skeletal muscle function, oxidative capacity, and growth hormone/insulin-like growth factor-1 axis signaling in patients with advanced heart failure. J Cachexia Sarcopenia Muscle 2014; 5:297-305. [PMID: 25100356 PMCID: PMC4248410 DOI: 10.1007/s13539-014-0155-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/09/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Skeletal muscle dysfunction in patients with heart failure (HF) has been linked to impaired growth hormone (GH)/insulin-like growth factor (IGF)-1 signaling. We hypothesized that ventricular assist device (VAD) implantation reverses GH/IGF-1 axis dysfunction and improves muscle metabolism in HF. METHODS Blood and rectus abdominis muscle samples were collected during VAD implantation and explantation from patients with HF and controls. Clinical data were obtained from medical records, biomarkers measured by enzyme-linked immunosorbent assay (ELISA), and gene expression analyzed by reverse transcription and real-time polymerase chain reaction (RT-PCR). Grip strength was assessed by dynamometry. Oxidative capacity was measured using oleate oxidation rates. Muscle fiber type and size were assessed by histology. RESULTS Elevated GH (0.27 ± 0.27 versus 3.6 ± 7.7 ng/ml in HF; p = 0.0002) and lower IGF-1 and insulin-like growth factor binding protein (IGFBP)-3 were found in HF (IGF-1, 144 ± 41 versus 74 ± 45 ng/ml in HF, p < 0.05; and IGFBP-3, 3,880 ± 934 versus 1,935 ± 862 ng/ml in HF, p = 0.05). The GH/IGF-1 ratio, a marker of GH resistance, was elevated in HF (0.002 ± 0.002 versus 0.048 ± 0.1 pre-VAD; p < 0.0039). After VAD support, skeletal muscle expression of IGF-1 and IGFBP-3 increased (10-fold and 5-fold, respectively; p < 0.05) accompanied by enhanced oxidative gene expression (CD36, CPT1, and PGC1α) and increased oxidation rates (+1.37-fold; p < 0.05). Further, VAD implantation increased the oxidative muscle fiber proportion (38 versus 54 %, p = 0.031), fiber cross-sectional area (CSA) (1,005 ± 668 versus 1,240 ± 670 μm(2), p < 0.001), and Akt phosphorylation state in skeletal muscle. Finally, hand grip strength increased 26.5 ± 27.5 % at 180 days on-VAD (p < 0.05 versus baseline). CONCLUSION Our data demonstrate that VAD implantation corrects GH/IGF-1 signaling, improves muscle structure and function, and enhances oxidative muscle metabolism in patients with advanced HF.
Collapse
Affiliation(s)
- Tuba Khawaja
- Center for Advanced Cardiac Care, Department of Medicine, Division of Cardiology, Columbia University Medical Center, 622 West 168th Street, PH 10, Room 203, New York, NY, 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
von Haehling S, Anker SD. Treatment of cachexia: an overview of recent developments. J Am Med Dir Assoc 2014; 15:866-72. [PMID: 25455531 DOI: 10.1016/j.jamda.2014.09.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
Abstract
Body wasting in the context of chronic illness is associated with reduced quality of life and impaired survival. Recent clinical trials have investigated different approaches to improve patients' skeletal muscle mass and strength, exercise capacity, and survival in the context of cachexia and body wasting, many of them in patients with cancer. The aim of this article was to summarize clinical trials published over the past 2 years. Therapeutic approaches discussed include appetite stimulants, such as megestrol acetate, L-carnitine, or melatonin, anti-inflammatory drugs, such as thalidomide, pentoxyphylline, or a monoclonal antibody against interleukin-1α as well as ghrelin and the ghrelin agonist anamorelin; nutritional support, and anabolics, such as enobosarm and testosterone.
Collapse
Affiliation(s)
- Stephan von Haehling
- Division of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany; Applied Cachexia Research, Department of Cardiology, Charité Medical School, Campus Virchow-Klinikum, Berlin, Germany.
| | - Stefan D Anker
- Division of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Molfino A, Formiconi A, Rossi Fanelli F, Muscaritoli M. Ghrelin: from discovery to cancer cachexia therapy. Curr Opin Clin Nutr Metab Care 2014; 17:471-6. [PMID: 24905862 DOI: 10.1097/mco.0000000000000075] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Despite the high prevalence of cancer cachexia, a condition that negatively impacts patients' prognosis and quality of life, effective therapies are still lacking. Ghrelin is a peptide hormone involved in anabolic and homeostatic functions, whose mechanisms of action are still only partially clarified, but with promising positive effects in cancer cachexia. Recently, the therapeutic administration of ghrelin in cancer has been shown to counteract loss of body mass and function, including muscle, and we specifically focus on this novel evidence. RECENT FINDINGS Recent research aimed at developing new pharmacological therapies to prevent muscle wasting has used ghrelin and molecules acting as synthetic ghrelin receptor agonists with different modalities of administration and with high selectivity for specific targeted tissues. Positive effects of these therapies were described in cancer cachexia and chemotherapy-induced muscle wasting. New insights into the mechanisms of action of ghrelin revealed how its pleiotropic effects should be ascribed both to systemic anti-inflammation effect and to muscle-specific action through the activation of the antiatrophic molecular cascade. SUMMARY Growing interest arises from the identification of ghrelin as a valid and well tolerated therapeutic option to counteract structural and functional wasting derived from tumour growth.
Collapse
Affiliation(s)
- Alessio Molfino
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
33
|
Anker SD, von Haehling S. Efforts begin to sprout: publications in JCSM on cachexia, sarcopenia and muscle wasting receive attention. J Cachexia Sarcopenia Muscle 2014; 5:171-6. [PMID: 25192875 PMCID: PMC4159484 DOI: 10.1007/s13539-014-0158-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 01/03/2023] Open
Affiliation(s)
- Stefan D Anker
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany,
| | | |
Collapse
|
34
|
Biomarkers for cardiac cachexia: Reality or utopia. Clin Chim Acta 2014; 436:323-8. [DOI: 10.1016/j.cca.2014.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 11/21/2022]
|
35
|
Palus S, von Haehling S, Springer J. Muscle wasting: an overview of recent developments in basic research. J Cachexia Sarcopenia Muscle 2014; 5:193-8. [PMID: 25163459 PMCID: PMC4159486 DOI: 10.1007/s13539-014-0157-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 02/06/2023] Open
Abstract
The syndrome of cachexia, i.e., involuntary weight loss in patients with underlying diseases, sarcopenia, i.e., loss of muscle mass due to aging, and general muscle atrophy from disuse and/or prolonged bed rest have received more attention over the last decades. All lead to a higher morbidity and mortality in patients, and therefore, they represent a major socio-economic burden for the society today. This mini-review looks at recent developments in basic research that are relevant to the loss of skeletal muscle. It aims to cover the most significant publication of last 3 years on the causes and effects of muscle wasting, new targets for therapy development, and potential biomarkers for assessing skeletal muscle mass. The targets include the following: (1) E-3 ligases TRIM32, SOCS1, and SOCS3 by involving the elongin BC ubiquitin-ligase, Cbl-b, culling 7, Fbxo40, MG53 (TRIM72), and the mitochondrial Mul1; (2) the kinase MST1; and (3) the G-protein Gαi2. D(3)-creatine has the potential to be used as a novel biomarker that allows to monitor actual change in skeletal muscle mass over time. In conclusion, significant development efforts are being made by academic groups as well as numerous pharmaceutical companies to identify new target and biomarker muscles, as muscle wasting represents a great medical need, but no therapies have been approved in the last decades.
Collapse
Affiliation(s)
- Sandra Palus
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
36
|
Palus S, von Haehling S, Springer J. Muscle wasting: an overview of recent developments in basic research. Int J Cardiol 2014; 176:640-4. [PMID: 25205489 DOI: 10.1016/j.ijcard.2014.08.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/25/2022]
Abstract
The syndrome of cachexia, i.e. involuntary weight loss in patients with underlying diseases, sarcopenia, i.e. loss of muscle mass due to ageing, and general muscle atrophy from disuse and/or prolonged bed rest have received more attention over the last decades. All lead to a higher morbidity and mortality in patients and therefore, they represent a major socio-economic burden for the society today. This mini-review looks at recent developments in basic research that are relevant to the loss of skeletal muscle. It aims to cover the most significant publication of last three years on the causes and effects of muscle wasting, new targets for therapy development and potential biomarkers for assessing skeletal muscle mass. The targets include 1) E-3 ligases: TRIM32, SOCS1 and SOCS3 by involving the elongin BC ubiquitin-ligase, Cbl-b, culling 7, Fbxo40, MG53 (TRIM72) and the mitochondrial Mul1, 2) the kinase MST1 and 3) the G-protein Gαi2. D(3)-creatine has the potential to be used as a novel biomarker that allows to monitor actual change in skeletal muscle mass over time. In conclusion, significant development efforts are being made by academic groups as well as numerous pharmaceutical companies to identify new targets and biomarkers muscle, as muscle wasting represents a great medical need, but no therapies have been approved in the last decades.
Collapse
Affiliation(s)
- Sandra Palus
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Stephan von Haehling
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Jochen Springer
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany; Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.
| |
Collapse
|
37
|
Dschietzig TB. Myostatin — From the Mighty Mouse to cardiovascular disease and cachexia. Clin Chim Acta 2014; 433:216-24. [DOI: 10.1016/j.cca.2014.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 02/02/2023]
|
38
|
Reano S, Graziani A, Filigheddu N. Acylated and unacylated ghrelin administration to blunt muscle wasting. Curr Opin Clin Nutr Metab Care 2014; 17:236-40. [PMID: 24572833 DOI: 10.1097/mco.0000000000000049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Muscle wasting is a comorbidity often associated with a wide range of disorders that severely affects patient prognosis and quality of life. Ghrelin, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Several studies indicate that ghrelin administration is a valid treatment for cachexia because it improves muscle mass and function, likely by restoring a positive energy balance. RECENT FINDINGS In addition to its GHSR-1a-mediated effects on muscle mass, ghrelin acts directly on skeletal muscle, wherein it exerts a protective activity against muscle wasting. This direct activity is independent of GHSR-1a and is shared by the unacylated form of ghrelin, which does not bind GHSR-1a and is devoid of the effects on appetite and GH release. SUMMARY Both the acylated and unacylated forms of ghrelin might have therapeutic potential for the treatment of skeletal muscle wasting.
Collapse
Affiliation(s)
- Simone Reano
- Department of Translational Medicine, Università del Piemonte Orientale 'A. Avogadro', Novara, Italy
| | | | | |
Collapse
|
39
|
Ewaschuk JB, Almasud A, Mazurak VC. Role of n-3 fatty acids in muscle loss and myosteatosis. Appl Physiol Nutr Metab 2014; 39:654-62. [PMID: 24869970 DOI: 10.1139/apnm-2013-0423] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Image-based methods such as computed tomography for assessing body composition enables quantification of muscle mass and muscle density and reveals that low muscle mass and myosteatosis (fat infiltration into muscle) are common in people with cancer. Myosteatosis and low muscle mass have emerged as independent risk factors for mortality in cancer; however, the characteristics and pathogenesis of these features have not been resolved. Muscle depletion is associated with low plasma eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) in cancer and supplementation with n-3 fatty acids has been shown to ameliorate muscle loss and myosteatosis in clinical studies, suggesting a relationship between n-3 fatty acids and muscle health. Since the mechanisms by which n-3 fatty acids alter body composition in cancer remain unknown, related literature from other conditions associated with myosteatosis, such as insulin resistance and obesity is considered. In these noncancer conditions, it has been reported that n-3 fatty acids act by increasing insulin sensitivity, reducing inflammatory mediators, and altering adipokine profiles and transcription factors; therefore, the plausibility of these mechanisms of action in the neoplastic state are considered. The aim of this review is to summarize what is known about the effects of n-3 fatty acids with regards to muscle condition and to discuss potential mechanisms for effects of n-3 fatty acids on muscle health.
Collapse
Affiliation(s)
- Julia B Ewaschuk
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Science, Division of Human Nutrition, 4-002 Li Ka Shing Center for Research Innovation, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | | |
Collapse
|
40
|
Amitani M, Asakawa A, Amitani H, Inui A. Control of food intake and muscle wasting in cachexia. Int J Biochem Cell Biol 2013; 45:2179-85. [DOI: 10.1016/j.biocel.2013.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
|