1
|
Jin J, Yue L, Du M, Geng F, Gao X, Zhou Y, Lu Q, Pan X. Molecular Hydrogen Therapy: Mechanisms, Delivery Methods, Preventive, and Therapeutic Application. MedComm (Beijing) 2025; 6:e70194. [PMID: 40297245 PMCID: PMC12035766 DOI: 10.1002/mco2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Molecular hydrogen (H2), recognized as the smallest gas molecule, is capable of permeating cellular membranes and diffusing throughout the body. Due to its high bioavailability, H2 is considered a therapeutic gas for the treatment of various diseases. The therapeutic efficacy of hydrogen is contingent upon factors such as the administration method, duration of contact with diseased tissue, and concentration at targeted sites. H2 can be administered exogenously and is also produced endogenously within the intestinal tract. A comprehensive understanding of its delivery mechanisms and modes of action is crucial for advancing hydrogen medicine. This review highlights H₂'s mechanisms of action, summarizes its administration methods, and explores advancements in treating intestinal diseases (e.g., inflammatory bowel disease, intestinal ischemia-reperfusion, colorectal cancer). Additionally, its applications in managing other diseases are discussed. Finally, the challenges associated with its clinical application and potential solutions are explored. We propose that current delivery challenges faced by H2 can be effectively addressed through the use of nanoplatforms; furthermore, interactions between hydrogen and gut microbiota may provide insights into its mechanisms for treating intestinal diseases. Future research should explore the synergistic effects of H2 in conjunction with conventional therapies and develop personalized treatment plans to achieve precision medicine.
Collapse
Affiliation(s)
- Jiayi Jin
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Maoru Du
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yuming Zhou
- Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Qianqian Lu
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
2
|
El-Shazly SA, Alhejely A, Alghibiwi HK, Dawoud SFM, Sharaf-Eldin AM, Mostafa AA, Zedan AMG, El-Sadawy AA, El-Magd MA. Protective effect of magnetic water against AlCl 3-induced hepatotoxicity in rats. Sci Rep 2024; 14:24999. [PMID: 39443509 PMCID: PMC11500388 DOI: 10.1038/s41598-024-70391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 10/25/2024] Open
Abstract
This study aimed to examine whether or not aluminum chloride (AlCl3)-induced hepatotoxicity might be mitigated using magnetic water (MW) in rats. This study involved 28 adult male rats randomly assigned into the following 4 groups (7 rats/group): normal control (Cnt), MW, AlCl3, and Al Cl3 + MW. The Cnt group orally received normal saline, the MW group drank MW ad libitum for 2 months, and the AlCl3 and AlCl3 + MW groups were orally administered AlCl3 (40 mg/kg b.w.) alone or in combination with MW for 2 months, respectively. MW reduced AlCl3 toxicity as proved at functional, molecular, and structural levels. Functionally, MW reduced serum levels of liver enzymes (ALT, AST, ALP, GGT), while increased total proteins, and albumin. MW also restored redox balance in the liver (lower MDA levels, higher activities of CAT and SOD enzymes, and upregulated expression of NrF2, HO-1, and GST genes. Molecularly, MW downregulated hepatic expression of the epigenetic (HDAC3), inflammatory (IL1β, TNFα, NFκβ), and endoplasmic reticulum stress (XBP1, BIP, CHOP) genes. Structurally, MW enhanced liver histology. With these results, we could conclude that MW has the potential to ameliorate the hepatotoxic effects of AlCl3 through targeting oxidative stress, inflammation, epigenesis, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Safaa A El-Shazly
- Department of Agricultural Animals and Nematodes, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Amani Alhejely
- Department of Biology, University College in Darb, Jazan University, Al-Darb, 45142, Jazan, Saudi Arabia
| | - Hanan K Alghibiwi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa F M Dawoud
- Department of Agricultural Botany, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Aisha M Sharaf-Eldin
- Department of Agricultural Botany, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Azza A Mostafa
- Department of Agricultural Botany, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Amina M G Zedan
- Department of Agricultural Botany, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Amany A El-Sadawy
- Department of Agricultural Animals and Nematodes, Faculty of Agriculture (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt.
| |
Collapse
|
3
|
Çelebi Y, Kavrut E, Bulut M, Çetintaş Y, Tekin A, Hayaloğlu AA, Alwazeer D. Incorporation of hydrogen-producing magnesium into minced beef meat protects the quality attributes and safety of the product during cold storage. Food Chem 2024; 448:139185. [PMID: 38574715 DOI: 10.1016/j.foodchem.2024.139185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The impact of hydrogen (H2) producing magnesium (Mg) incorporation into minced beef meat (MBM) on the quality and safety of the product was investigated. The H2-producing Mg (H2-P-Mg)-incorporated MBMs were vacuumed (VP) and stored at 4 °C for 12 days. Other MBMs were vacuumed and gassed with H2 or N2. At the end of storage, the lowest browning index values were for H2 and H2-P-Mg samples. H2- PMg and VP methods generally decreased the counts of mesophilic and psychrotrophic bacteria and yeast molds and restricted the formation of thiobarbituric acid reactive substances and biogenic amines. Heat mapping, PCA, and multivariate analysis methods confirmed chemical analysis results. The volatile compounds were at their highest levels in the control samples at the end of storage, followed by H2, N2, H2-P-Mg, and VP samples. Using the H2-P-Mg method in MBM preparation could protect the quality characteristics and safety of the product during cold storage.
Collapse
Affiliation(s)
- Yasemin Çelebi
- Department of Food Processing, Eşme Vocational School, Uşak University, Uşak 64600, Türkiye
| | - Enes Kavrut
- Igdir Vocational School, Hotel, Restaurant and Catering Services Department, 76002, Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Igdir University, 76002 Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Yunus Çetintaş
- Food Analysis Application and Research Center, Research Laboratories Center, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye.
| | - Ali Tekin
- Department of Food Technology, Vocational School of Keban, Firat University, 23700 Keban, Elazig, Türkiye; Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Iğdır, Türkiye.
| |
Collapse
|
4
|
Wang D, Shimamura N, Miwa N, Xiao L. Combined use of hydrogen-rich water and enzyme-digested edible bird's nest improves PMA/LPS-impaired wound healing in human inflammatory gingival tissue equivalents. Hum Cell 2024; 37:997-1007. [PMID: 38679666 DOI: 10.1007/s13577-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Gingival wound healing plays a critical role in maintaining oral health. However, this process can be delayed by oxidative stress and excessive inflammatory responses. In this study, we established a human inflammatory gingival tissue equivalent (iGTE) to investigate the inhibitory effects of hydrogen-rich water (HW), enzyme-digested edible bird's nest (EBND) and sialic acid (SA) on PMA (an inducer of oxidative free radicals)- and LPS (an inflammatory stimulus)-impaired wound healing. The iGTE was constructed by human gingival fibroblasts (hGFs), keratinocytes and macrophages under three-dimensional conditions. Wounds in the iGTE and hGF/keratinocyte monolayers were created by mechanical injury. Tissues and cells were pretreated with HW, EBND, and SA, and then exposed to the inflammatory and oxidative environment induced by PMA (10 ng/mL) and LPS (250 ng/mL). The inflammatory cytokines IL-6 and IL-8 were quantitatively analyzed by ELISA. Histopathological image analysis was performed by HE and immunofluorescence staining. In the iGTE, PMA/LPS significantly reduced the epithelial thickness while causing a decrease in K8/18, E-cadherin, laminin and elastin expression and an increase in COX-2 expression along with ulcer-like lesions. In mechanically scratched hGFs and keratinocyte monolayers, PMA/LPS significantly impaired wound healing, and promoted the secretion of IL-6 and IL-8. Pretreatment of HW, EBND, and SA significantly suppressed PMA/LPS-induced wound healing delay and inflammatory responses in cell monolayers, as well as in the iGTE. Remarkably, the combined use of HW and EBND exhibited particularly robust results. Combined use of HW and EBND may be applied for the prevention and treatment of wound healing delay.
Collapse
Affiliation(s)
- Dongliang Wang
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Bazhou Economic Development Zone, Langfang, 065700, China
| | - Naohiro Shimamura
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Nobuhiko Miwa
- Prefectural University of Hiroshima, Faculty of Life Sciences, Hiroshima, 727-0023, Japan
- Incorporated Association Hydrogen Medical Institute, Minatojima Minamicho 1-6-4, ChuOh-Ku, Kobe, 650-0047, Japan
| | - Li Xiao
- Department of Physiology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-Ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
5
|
Soraksa N, Heebkaew N, Promjantuek W, Kunhorm P, Kaokean P, Chaicharoenaudomung N, Noisa P. Cordycepin, a bioactive compound from Cordyceps spp., moderates Alzheimer's disease-associated pathology via anti-oxidative stress and autophagy activation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:583-603. [PMID: 37735930 DOI: 10.1080/10286020.2023.2258797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's causes cognitive dysfunction. This study investigated the neuro-promoting effects of cordycepin on amyloid-beta precursor protein (APP) synthesis in human neuroblastoma SH-SY5Y cells. Cordycepin was found to boost SH-SY5Y cell proliferation and decreased AD pathology. APP, PS1, and PS2 were downregulated whereas ADAM10 and SIRT1 were upregulated by cordycepin. Cordycepin also reduced APP secretion in a dose-dependent manner. Cordycepin alleviated oxidative stress by the upregulation of GPX and SOD, as well as autophagy genes (LC3, ATG5, and ATG12). Cordycepin activity was also found to be SIRT1-dependent. Therefore, cordycepin may relieve the neuronal degeneration caused by APP overproduction, and oxidative stress.
Collapse
Affiliation(s)
- Natchadaporn Soraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Palakorn Kaokean
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nipha Chaicharoenaudomung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Zeng YJ, Hsu MK, Cai JR, Wang HY. A strategy of novel molecular hydrogen-producing antioxidative auxiliary system improves virus production in cell bioreactor. Sci Rep 2024; 14:4092. [PMID: 38374429 PMCID: PMC10876984 DOI: 10.1038/s41598-024-54847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
In the increasing demand for virus vaccines, large-scale production of safe, efficient, and economical viral antigens has become a significant challenge. High-cell-density manufacturing processes are the most commonly used to produce vaccine antigens and protein drugs. However, the cellular stress response in large-scale cell culture may directly affect host cell growth and metabolism, reducing antigen production and increasing production costs. This study provided a novel strategy of the antioxidant auxiliary system (AAS) to supply molecular hydrogen (H2) into the cell culture media via proton exchange membrane (PEM) electrolysis. Integrated with a high-density cell bioreactor, the AAS aims to alleviate cellular stress response and increase viral vaccine production. In the results, the AAS stably maintained H2 concentration in media even in the high-air exposure tiding cell bioreactor. H2 treatment was shown safe to cell culture and effectively alleviated oxidative stress. In two established virus cultures models, bovine epidemic fever virus (BEFV) and porcine circovirus virus type 2 (PCV-2), were employed to verify the efficacy of AAS. The virus yield was increased by 3.7 and 2.5 folds in BEFV and PCV-2 respectively. In conclusion, the AAS-connected bioreactor effectively alleviated cellular oxidative stress and enhanced virus production in high-density cell culture.
Collapse
Affiliation(s)
- Yu-Jing Zeng
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Min-Kung Hsu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Animal Biologics Pilot Production Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Innovative Bioproducts Technical Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Jia-Rong Cai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsian-Yu Wang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
7
|
Bhatt A, Nayak A, Bhat K, Bogar C, Nayak R, Naik S. Assessment of the effects of hydrogen water on human gingival fibroblast cell culture in patients with chronic periodontitis. J Indian Soc Periodontol 2023; 27:278-282. [PMID: 37346858 PMCID: PMC10281311 DOI: 10.4103/jisp.jisp_546_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/23/2023] Open
Abstract
Background Activated inflammatory cells produce reactive oxygen species (ROS) to eliminate pathogens. Under normal conditions, the pathogens are taken care of, and tissues are repaired. However, in periodontal disease, persistent inflammation causes increased ROS release and impaired healing. Therefore, removal of overproduced ROS using antioxidants is necessary. Hydrogen water has an antioxidative effect on cells and impedes oxidative stress-related disorders. Aim To study the effect of hydrogen water on cell viability, migration, and its antioxidative potential in fibroblasts obtained from chronic periodontitis patients. Materials and Methods The gingival tissue samples were obtained from 26 subjects (13 periodontally healthy individuals and 13 chronic periodontitis patients) and processed. The human gingival fibroblasts were cultured and the assays were commenced once adequate growth was detected. The effect of hydrogen water on cell viability was checked by neutral red assay, while the migration potential was assessed by transwell migration assay. The antioxidative potential of hydrogen water was evaluated by CUPRAC assay. Statistical Analysis Intergroup comparison was done using Mann-Whitney U-test. Intragroup comparison was done using Wilcoxon signed-rank test. Results Hydrogen water was nontoxic to the fibroblasts at 24 h and 48 h. The intergroup comparison of the cell viability between hydrogen water-treated periodontally healthy gingival fibroblasts (HF) and fibroblasts from patients with chronic periodontitis (CF) showed a statistically significant (P = 0.00) difference at 24 h and 48 h. Hydrogen water also positively influenced the migratory capacity. Hydrogen water-treated fibroblasts obtained from chronic periodontitis patients showed more migration in comparison to the healthy group (P = 0.00). Hydrogen water showed an antioxidative potential. The maximum potential was seen in relation to the fibroblasts obtained from chronic periodontitis patients at 48 h. Conclusion Hydrogen water was nontoxic, increased the migratory capacity, and showed an antioxidative potential on human fibroblasts obtained from periodontally healthy individuals and patients with chronic periodontitis.
Collapse
Affiliation(s)
- Akanksha Bhatt
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Aarati Nayak
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Kishore Bhat
- Department of Microbiology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Chetana Bogar
- Department of Central Research Laboratory, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Ranganath Nayak
- Department of Oral and Maxillofacial Surgery, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Sachita Naik
- Department of Periodontology, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| |
Collapse
|
8
|
Enzyme-Digested Edible Bird’s Nest (EBND) Prevents UV and arid Environment-Induced Cellular Oxidative Stress, Cell Death and DNA Damage in Human Skin Keratinocytes and Three-Dimensional Epithelium Equivalents. Antioxidants (Basel) 2023; 12:antiox12030609. [PMID: 36978856 PMCID: PMC10045731 DOI: 10.3390/antiox12030609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The aim of this study is to investigate the repressive effects of enzyme-digested edible bird’s nest (EBND) on the combination of arid environment and UV-induced intracellular oxidative stress, cell death, DNA double-strand breaks (DSBs) and inflammatory responses in human HaCaT keratinocytes and three-dimensional (3D) epithelium equivalents. An oxygen radical antioxidant capacity assay showed that EBND exhibited excellent peroxyl radical scavenging activity and significantly increased cellular antioxidant capacity in HaCaT cells. When EBND was administered to HaCaT cells and 3D epitheliums, it exhibited significant preventive effects on air-drying and UVA (Dry-UVA)-induced cell death and apoptosis. Dry-UVA markedly induced intracellular reactive oxygen species (ROS) generation in HaCaT cells and 3D epitheliums as quantified by CellROX® Green/Orange reagents. Once HaCaT cells and 3D epitheliums were pretreated with EBND, Dry-UVA-induced intracellular ROS were significantly reduced. The results from anti-γ-H2A.X antibody-based immunostaining showed that EBND significantly inhibited Dry-UVA-induced DSBs in HaCaT keratinocytes. Compared with sialic acid, EBND showed significantly better protection for both keratinocytes and 3D epitheliums against Dry-UVA-induced injuries. ELISA showed that EBND significantly suppressed UVB-induced IL-6 and TNF-α secretion. In conclusion, EBND could decrease arid environments and UV-induced harmful effects and inflammatory responses in human keratinocytes and 3D epithelium equivalents partially through its antioxidant capacity.
Collapse
|
9
|
Zhang Y, Fan W, Li X, Wang WX, Liu S. Enhanced Removal of Free Radicals by Aqueous Hydrogen Nanobubbles and Their Role in Oxidative Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15096-15107. [PMID: 36099323 DOI: 10.1021/acs.est.2c03707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Elevated levels of reactive oxygen radicals caused by environmental stress are the key triggers of inflammation, aging, and disease; thus, it is critical to develop novel reactive oxygen radical scavenging methods with high efficiency and low toxicity. As a result of their selective reactive oxygen radical removal, hydrogen molecules are strong candidates, but their application is limited by the small hydrogen supply and short duration of action. In this study, we for the first time combined nanobubble (NB) technology and hydrogen water to remove reactive oxygen species (ROS) using copper ions as a representative environmental pollutant and Tetrahymena thermophila as a model organism. Hydrogen NBs displayed a remarkable capability of removing H2O2 and O2•- at molar ratios of 8:1 and 240:1, respectively, which were unable to be removed by dissolved hydrogen molecules only. During the oxidative defense phase, hydrogen NB water either directly removed ROS or increased the activity and relative expression of glutathione peroxidase (GSH-Px). During the oxidative inhibition phase, hydrogen NB water exerted antioxidant effects mainly by increasing the activities of superoxide dismutase and GSH-Px as well as the expression of the corresponding genes. Our results provide an important theoretical support for the wide application of hydrogen NBs in empowering the antioxidant defense system.
Collapse
Affiliation(s)
- You Zhang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
10
|
Köktürk M, Yıldırım S, Eser G, Bulut M, Alwazeer D. Hydrogen-Rich Water Alleviates the Nickel-Induced Toxic Responses (Inflammatory Responses, Oxidative Stress, DNA Damage) and Ameliorates Cocoon Production in Earthworm. Biol Trace Elem Res 2022; 200:3442-3452. [PMID: 34482505 DOI: 10.1007/s12011-021-02908-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
In recent years, studies investigating the protective effect of hydrogen-rich water (HRW) against different diseases and the toxicity of some substances have attracted increasing attention. Here, we assessed the effects of hydrogen-rich water on different nickel-induced toxic responses (reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) of stress responses, histopathological changes) and cocoon production in earthworm model. Earthworms were randomly divided into two main groups: water (W) group including control (CW: ultrapure water), 10 (10W), 200 (200W), and 500 (500W), and hydrogen-rich ultrapure water (HRW) group including control (CHRW: hydrogen-rich ultrapure water), 10 (10HRW), 200 (200HRW), and 500 (500HRW) mg of nickel chloride kg-1 soil for 14 days. We found that cocoon production was less affected by the nickel exposure of earthworms in the 500HRW group compared to the 500W group. The ROS levels in 200HRW and 500HRW groups were less than that of 200W and 500W, respectively. The epithelial degeneration, epithelial necrosis, and necrosis in muscle fibers in tissues of earthworm were less damaged in 200HRW and 500HRW groups compared to 200W and 500W, respectively. HRW groups significantly reduced the expression of 8-OHdG induced by nickel exposure and inflammatory cytokine response including TNF-α. The study showed that hydrogen-rich water could alleviate the toxic effects of nickel-induced oxidative and inflammatory damages in earthworms. The HRW treatment known for its cheap and eco-friendly propertıes without any negative effects on the ecosystem can be used as a green method for alleviating the toxification effects of heavy metals in contaminated soil and increasing cocoon production of earthworms.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Igdir University, Igdir, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Gizem Eser
- Tuzluca Vocational School, Laboratory and Veterinary Health Programs, Igdir University, 76000 , Igdir, Turkey
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Igdir University, 76000, Igdir, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Igdir University, 76000 , Igdir, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Igdir University, 76000, Igdir, Turkey
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods (RCRAF), Igdir University, 76000 , Igdir, Turkey.
- Innovative Food Technologies Development, Application, and Research Center, Igdir University, 76000, Igdir, Turkey.
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76000, Igdir, Turkey.
| |
Collapse
|
11
|
Hydrogen-Rich Water Prevents Dehydration-Induced Cellular Oxidative Stress and Cell Death in Human Skin Keratinocytes. HYDROGEN 2022. [DOI: 10.3390/hydrogen3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypohydration is linked to increased risk of a variety of diseases and can be life-threatening, especially in elderly populations. Dehydration induces cellular damage partially through the production of reactive oxygen species (ROS) in cells, tissues and organs. Hydrogen molecules are known to convert ROS to harmless water. Therefore, theoretically hydrogen-rich water (HW) might eliminate dehydration-induced ROS and reverse its harmful effects in cells. In this in vitro study, we demonstrated that air-drying for 5 min could induce ROS generation in both nucleus and cytoplasm of human keratinocytes HaCaT as quantified by CellROX® Green/Orange reagents (Thermo Fisher Scientific, Waltham, Massachusetts, U.S.), respectively. Conversely, when the air-drying time was increased to 10 and 20 min, HaCaT cells lost the ability to produce ROS. Scanning electron microscopic (SEM) images showed that 10 min air-drying could induce severe membrane damage in HaCaT cells. PrestoBlue assay showed that, when HaCaT cells were air-dried for 20 min, cell viability was decreased to 27.6% of the control cells 48 h later. However, once HaCaT cells were pretreated with HW-prepared media, dehydration-induced intracellular ROS, cell membrane damage and cell death were significantly reduced as compared with double distilled water (DDW) under the same conditions. In conclusion, our data suggested that HW can decrease dehydration-induced harmful effects in human cells partially through its antioxidant capacity.
Collapse
|
12
|
Saitoh Y, Yonekura N, Matsuoka D, Matsumoto A. Molecular hydrogen suppresses Porphyromonas gingivalis lipopolysaccharide-induced increases in interleukin-1 alpha and interleukin-6 secretion in human gingival cells. Mol Cell Biochem 2021; 477:99-104. [PMID: 34533646 DOI: 10.1007/s11010-021-04262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Periodontitis is defined as a multifactorial polymicrobial infection accompanied by inflammatory reactions. Porphyromonas gingivalis (Pg) is known as a major pathogen in the initiation and progression of periodontitis, and a major virulence factor is Pg lipopolysaccharide (LPS). Molecular hydrogen (H2) has been reported to act as a gaseous antioxidant, which suppresses periodontitis progression by decreasing gingival oxidative stress. However, no human periodontitis model has examined the anti-inflammatory effects of H2. In this study, we examined the effects of H2 on Pg LPS-induced secretion of 8 types of inflammation markers in a human periodontitis model using human gingival cells with enzyme-linked immunosorbent assays. Our results demonstrated that Pg LPS increased interleukin (IL) 1 alpha (IL-1α) and IL-6 secretion, but H2 significantly suppressed the secretion of both cytokines without cytotoxicity. H2 can suppress the production of IL-1α and IL-6, which are identified as cytokines involved in inflammatory reactions in periodontal disease. Thus, H2 may provide therapeutic applications for periodontitis.
Collapse
Affiliation(s)
- Yasukazu Saitoh
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan.
| | - Nene Yonekura
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Daigo Matsuoka
- Hiroshima Kasei, Ltd., 2-2-11 Matsuhama-cho, Fukuyama city, Hiroshima, 720-0802, Japan
| | - Akira Matsumoto
- Hiroshima Kasei, Ltd., 2-2-11 Matsuhama-cho, Fukuyama city, Hiroshima, 720-0802, Japan
| |
Collapse
|
13
|
Nayak A, Bhatt A, Bhat K, Nayak R, Hooli A, Naik S. Assessment of antibacterial effect of hydrogen water on plaque from patients with chronic periodontitis. J Indian Soc Periodontol 2021; 25:193-196. [PMID: 34158684 PMCID: PMC8177173 DOI: 10.4103/jisp.jisp_317_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Periodontitis is an inflammatory disease causing destruction of tissues surrounding the teeth. The primary etiological factor for periodontitis is plaque. An inference could be drawn that an overall reduction in microorganisms halts disease progression. It is desirable to have natural agents with minimal side effects to reduce the microbial load. Aim: The aim of the study is to assess the effect of hydrogen water on microbial count in plaque obtained from chronic periodontitis patients and to determine the antibacterial activity of hydrogen water at various time intervals. Materials and Methods: A total of twenty chronic periodontitis patients were included after obtaining approval from the institutional ethical committee. Written informed consent was obtained from all the twenty participants. Plaque samples were collected and exposed to hydrogen water at baseline, 1 min, 2 min 30 s, and 5 min. Samples were then cultured on blood agar and incubated in aerobic and anaerobic conditions. The colony forming units and total bacterial count were recorded after 24–48 h. Statistical Analysis: Intragroup pair-wise comparison was done using Wilcoxon sign-ranked test. Results: Hydrogen water showed antibacterial activity against aerobic and anaerobic organisms associated with chronic periodontitis. There was a statistically significant difference in the number of colony forming units from baseline to 1 and 2.5 min for the aerobic culture and also for baseline to 1, 2.5, and 5 min for the anaerobic culture. Conclusion: The data of the present study indicate that hydrogen water has an antibacterial effect on microorganisms associated with chronic periodontitis.
Collapse
Affiliation(s)
- Aarati Nayak
- Departments of Periodontology, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Akanksha Bhatt
- Departments of Periodontology, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Kishore Bhat
- Departments of Microbiology Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Ranganath Nayak
- Departments of Oral and Maxillofacial Surgery, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Amruta Hooli
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Sachita Naik
- Departments of Periodontology, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| |
Collapse
|
14
|
Xiao L, Miwa N. Hydrogen Nano-Bubble Water Suppresses ROS Generation, Adipogenesis, and Interleukin-6 Secretion in Hydrogen-Peroxide- or PMA-Stimulated Adipocytes and Three-Dimensional Subcutaneous Adipose Equivalents. Cells 2021; 10:cells10030626. [PMID: 33799840 PMCID: PMC7998368 DOI: 10.3390/cells10030626] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS)-induced oxidative stress in adipose tissue is associated with inflammation and the development of obesity-related metabolic disorders. The aim of this study is to investigate the effects of hydrogen nano-bubble water (HW) on ROS generation, adipogenesis, and interleukin-6 (IL-6) secretion in hydrogen peroxide (H2O2) or phorbol 12-myristate 13-acetate (PMA)-stimulated OP9 adipocytes, and three-dimensional (3D) subcutaneous adipose equivalents. Nanoparticle tracking analysis showed that fresh HW contains 1.17 × 108/mL of nano-sized hydrogen bubbles. Even after 8 to 13 months of storage, approximately half of the bubbles still remained in the water. CellROX® staining showed that HW could diminish H2O2- or PMA-induced intracellular ROS generation in human keratinocytes HaCaT and OP9 cells. We discovered that PMA could markedly increase lipid accumulation to 180% and IL-6 secretion 2.7-fold in OP9 adipocytes. Similarly, H2O2 (5 µM) also significantly stimulated lipid accumulation in OP9 cells and the 3D adipose equivalents. HW treatment significantly repressed H2O2- or PMA-induced lipid accumulation and IL-6 secretion in OP9 adipocytes and the 3D adipose equivalents. In conclusion, HW showed a possibility of repressing oxidative stress, inflammatory response, and adipogenesis at cellular/tissue levels. It can be used for preventing the development of metabolic disorders amongst obese people.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo 102-8159, Japan
- Correspondence: ; Tel.: +81-3-3261-8772
| | - Nobuhiko Miwa
- Faculty of Life Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023, Japan;
| |
Collapse
|
15
|
Hydrogen-Generating Silica Material Prevents UVA-ray-Induced Cellular Oxidative Stress, Cell Death, Collagen Loss and Melanogenesis in Human Cells and 3D Skin Equivalents. Antioxidants (Basel) 2021; 10:antiox10010076. [PMID: 33430157 PMCID: PMC7827282 DOI: 10.3390/antiox10010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet-A (UVA) irradiation induces harmful effects on skin cells and accelerates skin aging through oxidative stress. In this study, the effects of a hydrogen-generating silica material named ULH-002 against UVA injuries in human cells and 3D skin equivalents were investigated. The oxygen radical absorption capacity (ORAC) assay showed that both freshly prepared ULH-002 solutions and 7-day-old solutions exhibited equal peroxyl radical (ROO·) scavenging activities concentration-dependently. CellROX® green/orange staining showed that ULH-002 could reduce UVA-induced oxidative stress in human keratinocytes HaCaT and human gingival fibroblasts (HGFs). ULH-002 significantly prevented UVA-induced apoptotic/necrotic cell death and cell-viability decline in HGFs and keratinocytes, as shown by Annexin V/PI apoptosis assay and PrestoBlue assay, respectively. Immunostaining showed that ULH-002 prevented the UVA-induced deterioration of expression of both type IV and I collagens in the 3D skin equivalents, and similarly in monolayer HGFs. UVA-enhanced melanogenesis was observed in human melanocytes HMV-II and HMV-II cell-containing 3D skin equivalents, but markedly prevented by ULH-002 as demonstrated by Fontana–Masson’s staining. In conclusion, our data suggested that ULH-002 could protect human keratinocytes and fibroblasts from UVA-induced injuries, prevent the loss of type IV and I collagens, as well as reduce melanogenesis. ULH-002 might be developed as a skin care reagent in the cosmetic industry.
Collapse
|
16
|
Hatae T, Miwa N. Electrolytic hydrogen-generating bottle supplies drinking water with free/combined chlorine and ozone repressed within safety standard under hydrogen-rich conditions. Med Gas Res 2021; 11:61-65. [PMID: 33818445 PMCID: PMC8130662 DOI: 10.4103/2045-9912.311496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hydrogen molecules have attracted attention as a new antioxidant, but are left to be confirmedly verified whether the oral administration is highly safe or not, concurrently with retention of abundant hydrogen. When electrolysis was performed for 10 minutes using a direct-current electrolytic hydrogen-water generating bottle with tap water, “residual free chlorine” concurrently upon the production of molecular hydrogen (444 μg/L) could be appreciably decreased from 0.18 mg/L to 0.12 mg/L as quantified by a N,N-diethyl-p-phenylenediamine-dye colorimetric method. Moreover, the total chlorine concentration (residual bound chlorine plus free chlorine) was estimated to be decreased from 0.17 mg/L to 0.11 mg/L. Although a merit of electrolytic hydrogen-generating bottles exists in electrolysis for periods as short as 10 minutes, the 30-minute electrolysis brought about the more abundant hydrogen (479 μg/L) together with an oxidation-reduction potential of –245 mV; even upon this long-term electrolysis, the gross amounts of chlorine, hypochlorous acid and chloramine were shown not to be increased (0.09–0.10 mg/L from 0.11 mg/L for tap water) as detected by orthotolidine colorimetry. Above-mentioned levels of diverse-type chlorines might fulfill the World Health Organization guideline for drinking water below 5 mg/L. In addition, the dissolved ozone upon electrolytic generation of hydrogen-water was below the detection limit (< 0.05 mg/L) or undetectable, which fulfilled the official safety standards in Japan and the USA for drinking water below 0.1 mg/L, as evaluated by three methods such as an electrode-type ozone checker, indigo dyeutilizing ozone detector capillaries and potassium iodide-based colorimetry. Importantly, even when half the amount of tap water was poured into the tank of the apparatus and electrolyzed, both the residual chlorine and ozone concentrations measured were also below the safety standard. Thus, major potently harmful substances, such as residual free/bound chlorine, or hypochlorous-acid/chloramine, respectively, and dissolved ozone, as the drinking hydrogen-water was direct-current-electrolytically generated, were estimated to be repressed within safety concentration ranges with achievements of abundant hydrogen generation.
Collapse
Affiliation(s)
- Toshihisa Hatae
- General Incorporated Association the Institute for Hydrogen Medicine, Kobe, Japan
| | - Nobuhiko Miwa
- General Incorporated Association the Institute for Hydrogen Medicine, Kobe; Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
17
|
Comparative Assessment of the Antioxidant Activities among the Extracts of Different Parts of Clausena lansium (Lour.) Skeels in Human Gingival Fibroblast Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3958098. [PMID: 33082823 PMCID: PMC7563039 DOI: 10.1155/2020/3958098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022]
Abstract
Clausena lansium (Lour.) Skeels (wampee) is an outstanding natural plant with medicinal properties. The aim of this study was to compare the cytoprotective effects of four parts of wampee under oxidative stress. The aqueous extracts of leaf, peel, pulp, and seed were tested for the proliferation effects on human gingival fibroblast (HGF) cells and the protective effects in the hydrogen peroxide-induced HGF model. Furthermore, the total glutathione assay and identification of rutin by high-performance liquid chromatography were carried out to attempt to determine whether the cytoprotective effects were related to the total glutathione (GSH) stability and rutin content. The results showed that all of the extracts had no cytotoxicity to HGF at tested concentrations ranging from 50 to 5000 μg/ml during 24 h, and the leaf, pulp, and seed extracts increased proliferation of HGF at relatively high concentrations. All the extracts except for the seed extract significantly decreased the production of reactive oxygen species, and the peel extracts exhibited the most effective antioxidant effect. The leaf extract had the highest anticytotoxicity and GSH stabilization effect in the HGF challenged with hydrogen peroxide. In addition, the relative content of rutin in peel and leaf extracts was higher than that in pulp and seed. The results of GSH assay and rutin identification suggest that different cellular protective effects among the four parts of wampee are partially related to the GSH stabilization and rutin content. These findings provide a scientific basis for the antioxidant effect-related biological activities of wampee extracts.
Collapse
|
18
|
Wang G, Wang Z, Sun N, Cai Y, Yang X. Reactive oxygen species-responsive silk sericin microcapsules used for antioxidative stress damage. Microsc Res Tech 2020; 84:618-626. [PMID: 33089567 DOI: 10.1002/jemt.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 11/12/2022]
Abstract
Silk sericin microcapsules loaded with horseradish peroxidase (HRP) are prepared through protein self-assembly in a green environment containing enzymes to protect liver cells from alcohol damage. Load content and release dynamics of HRP in sericin microcapsules are investigated. The role of HRP-loaded microcapsules in hydrogen peroxide (H2 O2 ) degradation is demonstrated using electrochemical method. Furthermore, the effect of the HRP-loaded microcapsules on cells and intracellular reactive oxygen species (ROS) level is evaluated using an alcohol damage model in vitro. Results show that HRP can be loaded effectively in the sericin microcapsules and can be released ROS-responsively from microcapsules. Cell survival rate increases after suffering from alcohol damage due to the presence of HRP-loaded microcapsule, and the active oxygen content in cells is maintained at a stable level even when it remained in an environment with high alcohol concentration. We believe that the internalized sericin microcapsules maintain HRP activity intracellularly, allow controlled HRP release within a host cell, and show excellent ability in antioxidative stress injury.
Collapse
Affiliation(s)
- Guangshu Wang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenyu Wang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ning Sun
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaogang Yang
- Academy of Science and Technology, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
19
|
Xiao L, Liao F, Fan Y, Miwa N. Enzyme-digested Colla Corii Asini (E'jiao) accelerates wound healing and prevents ultraviolet A-induced collagen synthesis decline and wrinkle formation in three-dimensional skin equivalents. Hum Cell 2020; 33:1056-1067. [PMID: 32761322 DOI: 10.1007/s13577-020-00405-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Cutaneous wound healing delay, collagen synthesis decline and wrinkle formation are the common features of skin aging. The aim of this study is to investigate repressive effects of Colla Corii Asini (CCA) (a traditional Chinese medicine which has been used for anti-aging) on hydrogen peroxide (300 µM, 2 h) and ultraviolet A (UVA) (3.2 mJ/cm2)-induced skin aging in vitro. To simulate the in vivo condition of CCA, CCA was digested by gastrointestinal enzymes and added to human gingival fibroblasts (HGF) and three dimensional (3D) skin equivalents at different concentrations. Cell viability assay showed that the enzyme-digested CCA (CCAD) exhibited significant preventive effects on hydrogen peroxide- and UVA-induced cell death. The in vitro scratch assay showed that CCAD was able to prevent hydrogen peroxide-induced wound healing delay in HGF cell sheets. Immunostaining and imaging analysis showed that CCAD could suppress UVA-reduced expression of type IV collagen and elastin in both HGF cells and the 3D skin equivalents. Using a tissue stretching system, wrinkles were formed on UVA-irradiated 3D skin equivalents. Without CCAD-treatment, the wrinkles on the skin were deep, whereas CCAD markedly reduced the depth of wrinkles. In conclusion, CCAD could protect skin cells from oxidative stress and UVA-induced harmful effects, accelerate wound healing, promote synthesis of collagen and elastin, and reduce wrinkles formation. CCAD might be developed as an anti-skin aging reagent in the cosmetic industry.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-0071, Japan.
| | - Feng Liao
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liao Cheng, Shandong Province, China
| | - Yumei Fan
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liao Cheng, Shandong Province, China
| | - Nobuhiko Miwa
- Faculty of Life Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
20
|
Asada R, Tazawa K, Sato S, Miwa N. Effects of hydrogen-rich water prepared by alternating-current-electrolysis on antioxidant activity, DNA oxidative injuries, and diabetes-related markers. Med Gas Res 2020; 10:114-121. [PMID: 33004708 PMCID: PMC8086617 DOI: 10.4103/2045-9912.296041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/03/2020] [Indexed: 02/03/2023] Open
Abstract
Hydrogen-rich water is conventionally prepared by direct current-electrolysis, but has been not or scarcely prepared by alternating current (AC)-electrolysis. The AC preparations from tap water for 20-30 minutes exhibit a dissolved hydrogen concentration of 1.55 mg/L, which was close to the theoretical maximum value of 1.6 mg/L. These preparations also displayed an oxidation-reduction potential of -270 mV (tap water: +576 mV) and pH of 7.7-7.8, being closer to physiological values of body fluids than general types of direct current-electrolytic hydrogen-rich water. We examined whether AC-electrolytic hydrogen-water is retained for hydrogen-abundance after boiling or for antioxidant abilities, and whether the oral administration of this water is clinically effective for diabetes and prevention against systemic DNA-oxidative injuries. 5,5-Dimethyl-1-pyrroline-N-oxide spin trapping and electron spin resonance revealed that the hydrogen-rich water generated by AC-electrolysis exhibited hydroxyl-radical-scavenging activities. Laser nanoparticle tracking method revealed that nanoparticle suspensions as abundant as 5.4 × 107/mL were efficiently retained (up to 3.5 × 107/mL) even after boiling for 10 minutes, being thermodynamically contrary to Henry's law. Oral intake of hydrogen-rich water, 1500 mL per day, lasted for 8 weeks in nine people with the diabetes-related serum markers beyond the normal ranges. The subjects exhibited significant tendencies for the decreased fasting blood glucose and fructosamine, and for the increased 1,5-anhydro-D-glucitol, concomitantly with significant decreases in urinary 8-hydroxy-2-deoxyguanosine contents and its rate of generation. Hydrogen-rich water prepared by AC-electrolysis may be effective in improving diverse diabetes-related markers and systemic DNA oxidative injuries through the formation of abundant heat-resistant nanobubbles and the increased hydrogen concentrations. The study protocol was officially approved by the Medical Ethics Committee of the Japanese Center for Anti-Aging Medical Sciences (approval No. 01S02) on September 15, 2009.
Collapse
Affiliation(s)
- Ryoko Asada
- Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Kenji Tazawa
- Graduate School of Medicine, University of Toyama, Toyama, Japan
| | | | - Nobuhiko Miwa
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
21
|
Asada R, Saitoh Y, Miwa N. Effects of hydrogen-rich water bath on visceral fat and skin blotch, with boiling-resistant hydrogen bubbles. Med Gas Res 2020; 9:68-73. [PMID: 31249254 PMCID: PMC6607864 DOI: 10.4103/2045-9912.260647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hydrogen-dissolved water has been shown to improve diverse oxidation stress-related diseases, which drove us to examine effects of hydrogen-rich water on oxidation stress-related skin troubles and lipid-metabolism markers. The purpose of this study is whether the dissolved hydrogen in hydrogen-rich water was kept even after boiling, and whether hydrogen-bath utilization improves cosmetic effects such as skin-blotch repression and the visceral-fat-based slimming effects. The subjects were two men and two women, aged 48, 43, 42, and 41 years (n = 4). They took warm (41°C) water bath of dissolved hydrogen 300–310 μg/L (< 10 μg/L for normal water) for 10-minute once daily for 1–6 months, followed by examination of skin blotch, visceral fat, and cholesterol and glucose metabolisms. The dissolved hydrogen concentration was measured after 15-minute boiling and the subsequent cooling naturally. The wide-ranging, dense, and irregularly shaped skin blotches became markedly smaller and thinner, assumedly through reductive bleaching of melanin and lipofuscin and promotion of dermal cell renewal by the hydrogen-rich warm water. Ultrasonic resonance-based analysis on the abdominal cross-section revealed that the visceral fat area decreased from 47 to 36 cm2, and the abdominal circumference decreased from 91 to 82 cm, in the two female subjects bathing in hydrogen-water. After 6-month hydrogen-water bathing, the low-density lipoprotein cholesterol level was decreased by 16.2% and the fasting blood glucose level increased by 13.6% in the blood of a female subject. Before boiling, the dissolved hydrogen and an oxidation-reduced potential were 300 μg/L and –115 mV, respectively. Dissolved hydrogen was retained at 300–175 μg/L and 200 μg/L, even 1–6 hours and 24 hours, respectively, after boiling. Therefore, a hydrogen-rich water-bath apparatus can electrolytically generate abundant boiling-resistant hydrogen bubbles, improving visceral fat and blotches on the skin. The study was approved by the Medical Ethics Committee of the Japanese Center for Anti-Aging Medical Sciences and that was officially authenticated by the Hiroshima Prefecture Government of Japan (approval number 15C1) in 2016.
Collapse
Affiliation(s)
| | - Yasukazu Saitoh
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Nobuhiko Miwa
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
22
|
Xiao L, Liao F, Ide R, Horie T, Fan Y, Saiki C, Miwa N. Enzyme-digested Colla Corii Asini (E'jiao) prevents hydrogen peroxide-induced cell death and accelerates amyloid beta clearance in neuronal-like PC12 cells. Neural Regen Res 2020; 15:2270-2272. [PMID: 32594048 PMCID: PMC7749479 DOI: 10.4103/1673-5374.285000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
As an aging-associated degenerative disease, Alzheimer’s disease is characterized by the deposition of amyloid beta (Aβ), oxidative stress, inflammation, dysfunction and loss of cholinergic neurons. Colla Corii Asini (CCA) is a traditional Chinese medicine which has been used for feebleness-related diseases and anti-aging. CCA might delay aging-induced degenerative changes in neurons. In the present study, we evaluated antioxidant activity, cytoprotective effects, and Aβ removability of enzyme-digested Colla Corii Asini (CCAD). Oxygen radical absorbance capacity (ORAC) activity assay showed that, as compared to gelatins from the skin of porcine, bovine and cold water fish, CCA exhibited the highest ORAC activity. The ORAC activity of CCA and CCAD was increased gradually by the length of time in storage. Ultrastructure analysis by scanning electron microscopy showed that among CCA manufactured in 2008, 2013, 2017 and gelatin from cold water fish skin, CCA manufactured in 2008 presented the smoothest surface structure. We further tested the protective effects of CCAD (manufactured in 2008) and enzyme-digested gelatin from cold water fish skin (FGD) on hydrogen peroxide (H2O2)-induced cell death in nerve growth factor-differentiated neuronal-like PC12 cells. Presto blue assay showed that both FGD and CCAD at 0.5 mg/mL increased cell viability in H2O2-treated neuronal-like PC12 cells. The protection of CCAD was significantly superior to that of FGD. Acetylcholinesterase (AchE) assay showed that both FGD and CCAD inhibited AchE activity in nerve growth factor-differentiated neuronal-like PC12 cells to 89.1% and 74.5% of that in non-treated cells, respectively. The data suggest that CCAD might be able to increase the neurotransmitter acetylcholine. Although CCAD inhibited AchE activity in neuronal-like PC12 cells, CCAD prevented H2O2-induced abnormal deterioration of AchE. ELISA and neprilysin activity assay results indicated that CCAD reduced amyloid beta accumulation and increased neprilysin activity in Aβ1–42-treated neuronal-like PC12 cells, suggesting that CCAD can enhance Aβ clearance. Our results suggest that CCA might be useful for preventing and treating Alzheimer’s disease.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Feng Liao
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, Shandong Province, China
| | - Ryoji Ide
- Department of Physiology, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Tetsuro Horie
- Research Center, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yumei Fan
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liaocheng, Shandong Province, China
| | - Chikako Saiki
- Department of Physiology, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Nobuhiko Miwa
- Department of Life Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
23
|
Amberg R, Elad A, Beuer F, Vogt C, Bode J, Witte F. Effect of physical cues of altered extract media from biodegradable magnesium implants on human gingival fibroblasts. Acta Biomater 2019; 98:186-195. [PMID: 31352109 DOI: 10.1016/j.actbio.2019.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
Volume stable barrier membranes made of magnesium are very promising in Guided Bone Regeneration (GBR) to treat periodontal bone defects in dentistry due to their excellent biocompatibility and biodegradability. During the degradation process the cells are exposed to the alteration of various parameters, so called physical cues, involving surface alterations due to the formed corrosion layer and medium alterations arising from the dissolved corrosion products. Cell migration of human gingival fibroblasts (HGF), as a crucial parameter for optimal healing process in GBR, has been investigated on magnesium membranes and revealed that medium alterations by dissolved corrosion products have a higher impact on cell migration than surface alterations. However, the effect of each altered medium parameter on cell migration has not been adequately studied, but their roles are crucial to explain the slower migration rate on magnesium surfaces compared to titanium and tissue culture plastic surfaces. Our study investigates the single effect of Mg2+, Ca2+, H2 and increased osmolality as well as the effect of magnesium extracts, which contain a dynamic mixture of previous parameters on cell migration, proliferation and viability of HGF. We showed that at 75 mM Mg2+ concentration and at 0 mM Ca2+, respectively, the cell migration rate is greatly reduced. In complex magnesium extract media, we found that a temporarily increased ratio of Mg2+ to Ca2+ conditioned a slow HGF migration rate. Based on these findings and the characterization of supernatants from HGF migration assays on Mg membranes, we propose, that the slower migration rate of HGF can be explained by the altered ratio of Mg2+ to Ca2+, caused by increasing concentrations of Mg2+ and decreasing concentrations of Ca2+ in the vicinity of the corroding Mg implant, combined with a constantly increased molecular hydrogen concentration in the supernatant. These results are cell type specific and should be checked carefully, if necessary, for Mg implant performance. STATEMENT OF SIGNIFICANCE: The study is providing a systematic approach to explain the main effects of extract medium parameters (physical cues) such as magnesium or calcium ion concentration, osmolality and dissolved molecular hydrogen and CO2 in cell culture media modified by co-incubating with corroding magnesium implants on the migration rate of human gingival fibroblasts (HGF). This study uncovers for the first time the combinatory effect of slightly increased molecular hydrogen and the change in Mg2+/Ca2+ ratio on HGF cell migration.
Collapse
|
24
|
Melgar-Sánchez LM, García-Ruiz I, Pardo-Marqués V, Agulló-Ortuño MT, Martínez-Galán I. Influence of mineral waters on in vitro proliferation, antioxidant response and cytokine production in a human lung fibroblasts cell line. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1171-1180. [PMID: 31227887 DOI: 10.1007/s00484-019-01730-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Spa mineral waters are used for the treatment of chronic diseases' symptoms. Anti-inflammatory, analgesic, anti-ageing and tissue repair effects have been attributed to them. This work seeks to improve knowledge about the effect of spa mineral waters on human cells. For this, human lung fibroblasts were treated with mineral waters from Ledesma, Paracuellos and Archena spas, three Spanish health resorts with different water chemical composition. A significant increase of cell proliferation together with an enhanced antioxidant capacity (reactive oxygen and nitrogen species, glutathione levels and superoxide dismutase activity) in mineral water-treated fibroblasts compared to control fibroblasts was observed. Moreover, cytokine profiling revealed an increase in the release of MIF, IL-6, CL-1, CCL-5 and ICAM-1, which are described as mediators in proliferation, wound healing and cell migration processes. In conclusion, our results could be in line with the effects attributed to spa mineral waters in wound healing strategies and oxidative damage protection.
Collapse
Affiliation(s)
- Laura María Melgar-Sánchez
- Department of Medical Sciences, Faculty of Medicine, Universidad de Castilla-La Mancha, Calle Almansa 14, 02006, Albacete, Spain
| | - Inmaculada García-Ruiz
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Virginia Pardo-Marqués
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041, Madrid, Spain
| | - María Teresa Agulló-Ortuño
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041, Madrid, Spain
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Nursing and Physiotherapy, Universidad de Castilla-La Mancha, Av. Carlos III s/n,, 45071, Toledo, Spain
| | - Inés Martínez-Galán
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Nursing and Physiotherapy, Universidad de Castilla-La Mancha, Av. Carlos III s/n,, 45071, Toledo, Spain.
| |
Collapse
|
25
|
Comorbid conditions are a risk for osteonecrosis of the jaw unrelated to antiresorptive therapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127:140-150. [DOI: 10.1016/j.oooo.2018.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 02/06/2023]
|
26
|
Li Q, Tanaka Y, Miwa N. Effects of hydrogen-occluding-silica microparticles on wound repair and cell migratory behavior of normal human esophageal epitheliocytes. Med Gas Res 2018; 8:57-63. [PMID: 30112167 PMCID: PMC6070841 DOI: 10.4103/2045-9912.235128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many conventional studies on molecular hydrogen have not examined cell migration ability and the relationship between apoptosis and the cytoskeleton. Here we investigated the influence of hydrogen-occluding silica microparticles (H2-silica) on cell migration motility and changes of the cytoskeleton (F-actin) in normal human esophageal epithelial cells (HEEpiCs). As the results, cell migration was promoted, and formation of microvilli was activated in the 100 ppm (low concentration) scratched group. After performing a wound healing assay, cells exhibited migration after 48 hours and 72 hours for both 10 ppm and 100 ppm groups, suggesting that the wound-repairing effects could be attributed to the antioxidant ability of H2-silica. In scratched groups, high levels of activated caspase-3 were relatively expressed and presented a tendency to increase the observed Bax/Bcl-2 ratio at more than 300 ppm groups. The above-mentioned results show that H2-silica induced apoptosis in HEEpiCs, especially in the scratched cells. Toxicity may cause an exaggerated apoptosis. Furthermore, since the ratio of fascin/tubulin in the 100, 300, and 600 ppm groups tended to increase in both the scratched and the non-scratched control groups, H2-silica was thought to be able to promote fascin action on normal cells and may be have a proliferative effect.
Collapse
Affiliation(s)
- Qiang Li
- Department of Radiological Technology, Faculty of Health Sciences, Butsuryo College of Osaka, Osaka, Japan
| | - Yoshiharu Tanaka
- Division of Biology, Faculty of Liberal Arts and Sciences, and Division of Quantum Radiation, Faculty of Technology, Osaka Prefecture University, Osaka, Japan
| | - Nobuhiko Miwa
- Prefectural University of Hiroshima; Japanese Center for AntiAging MedSciences, Hiroshima, Japan
| |
Collapse
|
27
|
Protective Effect of Ginkgo biloba and Magnetized Water on Nephropathy in Induced Type 2 Diabetes in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1785614. [PMID: 29991974 PMCID: PMC6016160 DOI: 10.1155/2018/1785614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/22/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
We aimed in our current study to explore the protective effect of Ginkgo biloba (GB) and magnetized water (MW) against nephrotoxicity associating induced type 2 diabetes mellitus in rat. Here, we induced diabetes by feeding our lab rats on a high fat-containing diet (4 weeks) and after that injecting them with streptozotocin (STZ). We randomly divided forty rats into four different groups: nontreated control (Ctrl), nontreated diabetic (Diabetic), Diabetic+GB (4-week treatment), and Diabetic+MW (4-week treatment). After the experiment was finished, serum and kidney tissue samples were gathered. Blood levels of glucose, triglycerides, cholesterol, creatinine, and urea were markedly elevated in the diabetic group than in the control group. In all animals treated with GB and MW, the levels of urea, creatinine, and glucose were significantly reduced (all P < 0.01). GB and MW attenuated glomerular and tubular injury as well as the histological score. Furthermore, they normalized the contents of glutathione reductase and SOD2. In summary, our data showed that GB and MW treatment protected type 2 diabetic rat kidneys from nephrotoxic damages by reducing the hyperlipidemia, uremia, oxidative stress, and renal dysfunction.
Collapse
|
28
|
Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018; 23:molecules23061399. [PMID: 29890713 PMCID: PMC6100501 DOI: 10.3390/molecules23061399] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/06/2023] Open
Abstract
Even though essential oils (EOs) have been used for therapeutic purposes, there is now a renewed interest in the antimicrobial properties of phytochemicals and EOs in particular. Their demonstrated low levels of induction of antimicrobial resistance make them interesting for bactericidal applications, though their complex composition makes it necessary to focus on the study of their main components to identify the most effective ones. Herein, the evaluation of the antimicrobial action of different molecules present in EOs against planktonic and biofilm-forming Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was assessed. The bactericidal mechanisms of the different molecules, as well as their cytocompatibility, were also studied. Carvacrol, cinnamaldehyde, and thymol exhibit the highest in vitro antimicrobial activities against E. coli and S. aureus, with membrane disruption the bactericidal mechanism identified. The addition of those compounds (≥0.5 mg/mL) hampers S. aureus biofilm formation and partially eliminates preformed biofilms. The subcytotoxic values of the tested EO molecules (0.015–0.090 mg/mL) are lower than the minimum inhibitory and bactericidal concentrations obtained for bacteria (0.2–0.5 mg/mL) but are higher than that obtained for chlorhexidine (0.004 mg/mL), indicating the reduced cytotoxicity of EOs. Therefore, carvacrol, cinnamaldehyde, and thymol are molecules contained in EOs that could be used against E. coli– and S. aureus–mediated infections without a potential induction of bactericidal resistance and with lower cell toxicity than the conventional widely used chlorhexidine.
Collapse
|
29
|
Affiliation(s)
- Thorakkal Shamim
- Department of Dentistry, Government Taluk Head Quarters Hospital, Malappuram, Kerala, India
| |
Collapse
|
30
|
Xiao L, Okamura H, Kumazawa Y. Three-dimensional Inflammatory Human Tissue Equivalents of Gingiva. J Vis Exp 2018. [PMID: 29683455 DOI: 10.3791/57157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Periodontal diseases (such as gingivitis and periodontitis) are the leading causes of tooth loss in adults. Inflammation in gingiva is the fundamental physiopathology of periodontal diseases. Current experimental models of periodontal diseases have been established in various types of animals. However, the physiopathology of animal models is different from that of humans, making it difficult to analyze cellular and molecular mechanisms and evaluate new medicines for periodontal diseases. Here, we present a detailed protocol for reconstructing human inflammatory tissue equivalents of gingiva (iGTE) in vitro. We first build human tissue equivalents of gingiva (GTE) by utilizing two types of human cells, including human gingival fibroblasts (HGF) and human skin epidermal keratinocytes (HaCaT), under three-dimensional conditions. We create a wound model by using a tissue puncher to punch a hole in the GTE. Next, human THP-1 monocytes mixed with collagen gel are injected into the hole in the GTE. By adimistration of 10 ng/mL phorbol 12-myristate 13-acetate (PMA) for 72 h, THP-1 cells differentiated into macrophages to form inflammatory foci in GTE (iGTE) (IGTE also can be stumilated with 2 µg/mL of lipopolysaccharides (LPS) for 48 h to initiate inflammation). IGTE is the first in vitro model of inflammatory gingiva using human cells with a three-dimensional architecture. IGTE reflects major pathological changes (immunocytes activition, intracellular interactions among fibryoblasts, epithelial cells, monocytes and macrophages) in periodontal diseases. GTE, wounded GTE, and iGTE can be used as versatile tools to study wound healing, tissue regeneration, inflammation, cell-cell interaction, and screen potential medicines for periodontal diseases.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, The Nippon Dental University;
| | - Hisashi Okamura
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University Hospital
| | - Yasuo Kumazawa
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University Hospital
| |
Collapse
|
31
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
32
|
Guo J, Dong W, Jin L, Wang P, Hou Z, Zhang Y. Hydrogen-rich saline prevents bone loss in diabetic rats induced by streptozotocin. INTERNATIONAL ORTHOPAEDICS 2017; 41:2119-2128. [PMID: 28748382 DOI: 10.1007/s00264-017-3581-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/06/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE As an antioxidant molecule, hydrogen has been received much more attention and reported to be used as the treatment strategy for various diseases. In this study, we hypothesize that systemic delivery of hydrogen saline water may improve the reservation of bone tissue in the tibias and femurs of osteoporotic rats caused by diabetes mellitus (DM), which is characterized by increased levels of oxidative stress and overproducing reactive oxygen species (ROS). METHODS The animals were divided into three groups of 12 animals and lavaged with normal saline (normal control and DM), or hydrogen saline water (DM + HRS). General status, blood glucose level, tibial and femoral mechanical strength, and micro-CT scans of the proximal tibia were recorded and analyzed. RESULTS After 12 weeks, the glucose level was significantly decreased in the DM + HRS group compared with that of the DM group. Micro-CT scans showed that bone volume/total volume, connectivity density, trabecular thickness, and trabecular number were significantly increased compared with the DM group. Mechanical results of energy, stiffness and elastic modulus in the DM + HRS group were significantly higher than in the other groups for the tibia and femur. CONCLUSIONS The results indicate that the systemic delivery of hydrogen saline water, which is safe and well tolerated, preserves bone volume and decreases fracture risks in streptozotocin-induced diabetic status rats, whose bone structure or inherent material properties of bone tissues are changed.
Collapse
Affiliation(s)
- Jialiang Guo
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Weichong Dong
- The Hebei Medical University Affiliated Second Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Lin Jin
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Pengcheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China.
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei, People's Republic of China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
33
|
Wang Q, de Oliveira EF, Alborzi S, Bastarrachea LJ, Tikekar RV. On mechanism behind UV-A light enhanced antibacterial activity of gallic acid and propyl gallate against Escherichia coli O157:H7. Sci Rep 2017; 7:8325. [PMID: 28814799 PMCID: PMC5559599 DOI: 10.1038/s41598-017-08449-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/12/2017] [Indexed: 11/10/2022] Open
Abstract
Possible mechanisms behind the enhanced antimicrobial activity of gallic acid (GA) and its ester propyl gallate (PG) in the presence of UV-A light against Escherichia coli O157:H7 were investigated. GA by itself is a mild antimicrobial and has a pro-oxidant ability. We found that the presence of UV-A light increases the uptake of GA by the bacteria. Once GA is internalized, the interaction between GA and UV-A induces intracellular ROS formation, leading to oxidative damage. Concurrently, GA + UV-A also inhibits the activity of superoxide dismutase (SOD), magnifying the imbalance of redox status of E. coli O157:H7. In addition to ROS induced damage, UV-A light and GA also cause injury to the cell membrane of E. coli O157:H7. UV-A exposed PG caused oxidative damage to the cell and significantly higher damage to the cell membrane than GA + UV-A treatment, explaining its higher effectiveness than GA + UV-A treatment. The findings presented here may be useful in developing new antimicrobial sanitation technologies for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Qingyang Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | | | - Solmaz Alborzi
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Luis J Bastarrachea
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|