1
|
Gayathri S, Aravind MK, Gowda VK, Varalakshmi P, Chatterjee C, Matheshwaran S, Efthymiou S, Houlden H, Ashokkumar B. Brown-Vialetto-Van Laere syndrome patients with unusual phenotypes from Indian ethnicity: Functional analysis of clinical variants in SLC52A2 and SLC52A3 genes. Brain Dev 2025; 47:104355. [PMID: 40168907 DOI: 10.1016/j.braindev.2025.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND BVVLS (Brown-Vialetto-Van Laere syndrome), a rare genetic condition characterized by progressive neuropathy, is caused by defects in SLC52A2 and SLC52A3 genes coding for hRFVT-2 and hRFVT-3. METHODS Five BVVLS cases were screened for disease-causing variants using exome sequencing and their functional contributions were evaluated by in silico analysis, riboflavin transport assay and confocal imaging. RESULTS Probands enrolled in this study were presented with unusual phenotypes like syndactyly, polydactyly, pedal edema and chronic osteomyelitis. Genetic testing disclosed heterozygous variants in all five cases including c.229G>A p.E77K, c.384G>A p.S128S, c.1245C>T p.G415G and c.843del p.L282Cfs*8 in SLC52A2 gene and c.833C>T p.T278M, c.907A>G p.I303V and c.62A>G p.N21S in SLC52A3 gene. Among them, p.L282Cfs*8 was diagnosed here for first-time, whereas p.E77K and p.S128S were reported previously with a variation at nucleotide position. Functional analysis of the variant p.E77K, p.S128S, p.T278M and p.I303V evidenced impairment in riboflavin transport, whereas p.G415G and p.L282Cfs*8 showed no significant changes. Despite of having reduction in riboflavin uptake, the presence of same polymorphic variant (p.T278M and p.I303V) in asymptomatic father suggests it as not likely associated with disease phenotypes. Meantime, membranous expression of hRFVT-2 variants p.S128S and p.E77K were abrogated and mostly internalized in cytoplasmic regions of transfected cells, whereas no change was observed with other variants than wild-type. CONCLUSION These results show for the first-time that BVVLS associated hRFVT-2 variants p.S128S and p.E77K affected riboflavin transport function due to abrogation in membranous localization and/or activity of the transporter. The polymorphic variants p.T278M and p.I303V of hRFVT-3 are unlikely to be implicated functionally in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Santhalingam Gayathri
- School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Perumal Varalakshmi
- School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Chitral Chatterjee
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | |
Collapse
|
2
|
Wellendorph P, Gauger SJ, Andersen JV, Kornum BR, Solbak SMO, Frølund B. International Union of Basic and Clinical Pharmacology. CXX. γ-Hydroxybutyrate protein targets in the mammalian brain-beyond classic receptors. Pharmacol Rev 2025; 77:100064. [PMID: 40449125 DOI: 10.1016/j.pharmr.2025.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
γ-Hydroxybutyrate (GHB) is a multifaceted compound with an intriguing, yet undeciphered, pharmacology in the mammalian brain. As a metabolite of GABA it is tightly regulated in terms of synthesis and degradation, and is found in micromolar concentrations in the brain. When GHB is taken in high pharmacological doses, it causes euphoria, relaxation, hypothermia, and sedation, and regulates sleep. Through careful pharmacological and genetic studies, this profile has been convincingly matched to the metabotropic GABAB receptor where GHB is a weak agonist. These effects explain the illicit substance use of GHB, but also its clinically useful effects as a drug in alcoholism and narcolepsy. Additionally, GHB binds with high affinity to a discrete binding site with high expression in the forebrain, and with very well defined anatomical, biochemical, and pharmacological characteristics. Despite this clear profile, the molecular identity of this binding protein or alleged "GHB receptor" has remained uncertain. However, recently, prompted by the development of GHB analogs with low nanomolar affinity and selectivity for the high-affinity site, the target was revealed to be the Ca2+/calmodulin (CaM)-dependent protein kinase II alpha subunit-a highly important brain kinase, mediating both physiological processes in synaptic plasticity, and detrimental Ca2+ signaling and cell death in cases of brain ischemia. The discovery of calmodulin-dependent protein kinase II alpha subunit as the high-affinity brain target for GHB represents a major leap forward in our understanding of GHB neurobiology, and dictates new times for GHB research, suggesting a potential role for GHB and GHB analogs as integrators of inhibitory and excitatory brain signaling. SIGNIFICANCE STATEMENT: γ-Hydroxybutyrate is a molecule with a multitude of actions in the mammalian brain, and with a rather complex molecular pharmacology. A low affinity at GABAB receptors, located mainly at inhibitory synapses, and a high affinity at the Ca2+/CaM-dependent protein kinase II alpha subunit, located at excitatory synapses, makes GHB pharmacology especially intriguing.
Collapse
Affiliation(s)
- Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Stine Juul Gauger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara M O Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Farhat EK, Banjari I, Džidić-Krivić A, Ejubović M, Sher EK. Gut microbiota mediated regulation of vitamin B homeostasis in autism spectrum disorders. Brain Res 2025; 1860:149661. [PMID: 40324672 DOI: 10.1016/j.brainres.2025.149661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The exact cause of autism spectrum disorder (ASD) is yet unknown, although possible causes include early childhood, foetal development, gestation, delivery mode, genetics, and environmental variables. Approximately 1% of children worldwide have ASD, and this percentage is rising. The immunological, endocrine, gut microbiota and brain-gut axis quality influence the intensity of ASD symptoms. Deficits in the composition and diversity of gut microbiota are common in children with ASD, accounting for 9-90% of these illnesses, including elevated inflammatory cytokines, inflammation, leaky gut syndrome, and pathological microflora growth. Dysbiosis can be made worse by eating issues that are prevalent in ASD. B vitamins, such as cobalamin and folate, which are essential methyl donors for DNA epigenetic changes, are usually produced by a healthy gut microbiota. 50% of people with ASD have a vitamin B deficit. This work summarises research on the impact of gut microbiota on DNA methylation and B vitamin synthesis in ASD, as well as etiological variables connected to dysbiosis. Probiotics, postbiotics, and vitamin B therapies in kids with ASD should be investigated in future studies.
Collapse
Affiliation(s)
- Esma Karahmet Farhat
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia; International Society of Engineering Science and Technology UK, United Kingdom
| | - Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology UK, United Kingdom
| | - Malik Ejubović
- Department of Internal Medicine, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom; International Society of Engineering Science and Technology UK, United Kingdom.
| |
Collapse
|
4
|
Rolim DDO, Vicente LC, de Carvalho HAS, Santos RLS, de Amorim RFB, Bahmad F. Audiological findings in Brown Vialetto-Van-Laere Syndrome: A scoping review. Braz J Otorhinolaryngol 2025; 91:101558. [PMID: 39922111 PMCID: PMC11851193 DOI: 10.1016/j.bjorl.2025.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 01/08/2025] [Indexed: 02/10/2025] Open
Abstract
OBJECTIVE This study aimed to characterize audiological porfile in inviduals with Brown-Vialetto-Van Laere syndrome (BVVLS). METHODS This is a scoping review following the methodological structure developed by the Joana Briggs Institute (JBI). The PCC mnemonic was used to elaborate the research question, which resulted in the research question: "What are the audiological findings in individuals with BVVLS?". RESULTS All of the studies included in this review were case reports. The main audiological findings are sensorineural hearing loss and Auditory Neuropathy Spectrum Disorder (ANSD). CONCLUSION All individuals presented a severe to profound bilateral hearing loss, related to ANSD.
Collapse
Affiliation(s)
- Débora de Oliveira Rolim
- Universidade de Brasília (UnB), Brasília, DF, Brazil; Instituto Brasiliense de Otorrinolaringologia, Brasília, DF, Brazil.
| | | | | | | | | | - Fayez Bahmad
- Universidade de Brasília (UnB), Brasília, DF, Brazil; Instituto Brasiliense de Otorrinolaringologia, Brasília, DF, Brazil.
| |
Collapse
|
5
|
Mason S. Say hello to my little friend… micronutraceuticals in neuroenergetics, neuronal health, and neurodegenerative diseases. Front Neurosci 2025; 19:1498655. [PMID: 40336537 PMCID: PMC12055844 DOI: 10.3389/fnins.2025.1498655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
Vitamins and minerals (micronutraceuticals) maintain good health. However, the specific effects of these micronutraceuticals on brain health are often overlooked, or not even known. In this review, an overview of the direct and indirect effects of micronutraceuticals on brain energy metabolism (neuroenergetics) and neuronal health is provided. Thereafter, a holistic summary of the existing studies that have shown the impact of micronutraceuticals on neurodegenerative diseases. Lastly, this review concludes by identifying several research gaps that remain and provides suggestions for future research on these hot topics.
Collapse
Affiliation(s)
- Shayne Mason
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Mirab F, Pirhaghi M, Otzen DE, Saboury AA. Parkinson's disease and gut microbiota metabolites: The dual impact of vitamins and functional amyloids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167862. [PMID: 40254265 DOI: 10.1016/j.bbadis.2025.167862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the abnormal accumulation of alpha-synuclein (α-Syn). Recent research emphasizes the significant role of the gut microbiota, the diverse community of microbes living in the intestines, in modulating α-Syn pathology. This review explores the bi-directional communication along the microbiota-gut-brain axis, highlighting the paradoxical impact of two gut microbiota metabolites-functional bacterial amyloids (FuBA) and vitamins-on neurodegenerative diseases, particularly PD. FuBA contributes to PD pathogenesis by promoting α-Syn aggregation, while vitamins offer neuroprotection through their anti-amyloidogenic, antioxidant, and anti-inflammatory properties. Understanding these processes could lead to precision clinical approaches and novel strategies for managing and preventing PD.
Collapse
Affiliation(s)
- Fatemeh Mirab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mitra Pirhaghi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, C 1592-224, Denmark
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran.
| |
Collapse
|
7
|
Han C, Feng G, Qin Q, Li W, Chen Y, Liu G, Lei Y, Liu T, Ma K, Hou J, Huang Y, Lin M, Jiang J. Study on the synergistic mechanism of fermented Yaomu on Huafengdan in the treatment of ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119438. [PMID: 39909116 DOI: 10.1016/j.jep.2025.119438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huafengdan (HFD), a traditional Chinese medicine from Guizhou, is known for its efficacy in treating ischemic stroke (IS). Yaomu, a principal component of HFD, undergoes fermentation, yet the role of this process in enhancing HFD's therapeutic effects remains unclear. Investigating the synergistic mechanism of fermented Yaomu in HFD's treatment of IS provides a theoretical basis for its clinical application. PURPOSE This study aimed to explore how Yaomu fermentation enhances HFD's effectiveness and elucidates the underlying mechanisms. METHODS Differential components of HFD, with and without fermented Yaomu, were identified using UPLC-Q-TOF-MS/MS. Newly added and upregulated components underwent network pharmacological analysis. An IS rat model was established, and neurobehavioral scores, cerebral infarction volumes, and levels of superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured to assess efficacy. Multivariate statistics and pathway analyses were conducted using UPLC-Q-TOF-MS/MS data. A "metabolite-enzyme-reaction-gene" network, integrating pharmacological and metabolomic data, identified key synergistic pathways, which were validated through protein analysis. RESULTS The UPLC-Q-TOF-MS/MS analysis identified 54 novel components in HFD after Yaomu fermentation and detected 51 differential components between fermented and unfermented HFD, with 15 components downregulated and 36 upregulated. Network pharmacology revealed 53 active synergistic components and 642 component-disease intersection targets. Enrichment analysis of these intersecting targets indicated that Yaomu fermentation might enhance HFD's efficacy by influencing the cAMP signaling pathway and neuroactive ligand-receptor interactions. Pharmacodynamic studies demonstrated that both HFD and HFD containing unfermented Yaomu significantly reduced neurobehavioral scores and infarct volumes in IS models, elevated SOD levels, and decreased MDA, TNF-α, and IL-6 levels. However, the efficacy of HFD was significantly higher than that of HFD containing unfermented Yaomu. Metabolic analysis identified five critical pathways involved in HFD's therapeutic effects on IS, while three pathways were associated with the synergistic impact of Yaomu fermentation on HFD. By integrating network pharmacology and metabolomics, the "metabolite-enzyme-reaction-gene" network was constructed, revealing tryptophan metabolism as the primary synergistic pathway. CONCLUSION Yaomu fermentation enhances the therapeutic efficacy of HFD in IS treatment, primarily through the tryptophan metabolism pathway.
Collapse
Affiliation(s)
- Caiyao Han
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Guo Feng
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China; Guizhou Inheritance Base of Traditional Chinese Medicine Processing Technology, Guizhou, China.
| | - Qian Qin
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Wei Li
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China; Guizhou Inheritance Base of Traditional Chinese Medicine Processing Technology, Guizhou, China
| | - Youli Chen
- Zunyi Liaoyuan Hetang Pharmaceutical Co., Ltd, Zunyi, Guizhou, 563005, China
| | - Gang Liu
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yan Lei
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Tingting Liu
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Kexin Ma
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jinxin Hou
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yun Huang
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Mingjin Lin
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jiaxin Jiang
- Department of Chinese Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
8
|
Plecko B. Inherited disorders of vitamin metabolism. Eur J Paediatr Neurol 2025; 55:18-32. [PMID: 40096763 DOI: 10.1016/j.ejpn.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025]
Abstract
Vitamins are essential cofactors of various enzyme reactions in amino acid, neurotransmitter, nucleotide and energy metabolism. Over the past decade a number of inborn errors of metabolism have been identified, that affect different steps in vitamin absorption, transport, activation or recycling and repair of active vitamin cofactors. According to the respective cofactor function this may result in acute or chronic multisystem disease or in disorders that selectively affect the nervous system. Most of these disorders are amenable to specific treatment with excellent results, but diagnostic delay can lead to rapid, irreversible damage or even death. Therefore, especially in case of acute and severe neurologic presentations compatible with one of the here discused disorders, a vitamin trial should be considered while awaiting results of biochemical and genetic testing. Diagnosis of these disorders is especially rewarding, as treatment is often per oral, available worldwide and comparably cheap. This article will review current knowledge of the clinical presentation, biomarkers and specific treatment of inborn errors of vitamin metabolism and illustrates why child neurologists should have vitamins in their pockets.
Collapse
Affiliation(s)
- Barbara Plecko
- Department of Pediatrics and Adolescent Medicine Division of General Pediatrics Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria.
| |
Collapse
|
9
|
Orywal K, Socha K, Iwaniuk P, Kaczyński P, Farhan JA, Zoń W, Łozowicka B, Perkowski M, Mroczko B. Vitamins in the Prevention and Support Therapy of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1333. [PMID: 39941101 PMCID: PMC11818229 DOI: 10.3390/ijms26031333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), which are a consequence of the progressive loss of neuronal function and structure, cause significant cognitive impairment. The incidence of these diseases in the world's population is constantly increasing as a result of an aging population. Although genetic and environmental factors are most often mentioned as the pathogenetic factors of these diseases, increasing evidence points to the important role of proper nutrition in the prevention and support of the treatment of these disorders. A healthy, balanced diet can mitigate the risks associated with the risk factors mentioned above and slow the progression of the disease by reducing oxidative stress and inflammation. Vitamins B, D, E, C, K, and A have been shown to support cognitive functions and protect the nervous system. This review demonstrates the importance of vitamins in preventing and supporting the therapy of neurodegenerative diseases. Information regarding the health-promoting properties of these vitamins must be effectively communicated to consumers seeking to protect their health, particularly in the context of neurodegenerative diseases. Consequently, this review also examines the authorized health claims under EU food law related to these vitamins, assessing their role in promoting awareness of the vitamins' potential benefits for neuroprotection and the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Orywal
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Piotr Iwaniuk
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Piotr Kaczyński
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Wojciech Zoń
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Maciej Perkowski
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
10
|
Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell Chem Biol 2025; 32:25-45. [PMID: 39326420 DOI: 10.1016/j.chembiol.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the 'sterile' host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.
Collapse
Affiliation(s)
- Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ignacio Mastandrea
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Melekhova
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Diez-Ozaeta I, Berasarte I, Zeid AF, Fernández M, Russo P, López P, Dueñas MT, Mohedano ML. Functional characterization of the riboflavin-overproducing and dextran-producing Weissella cibaria BAL3C-5 C120T strain for the development of biofortified plant-based beverages. Int J Food Microbiol 2025; 426:110908. [PMID: 39270612 DOI: 10.1016/j.ijfoodmicro.2024.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Riboflavin (vitamin B2) is essential for human beings and it has to be provided by healthy nutrition. The use of fermentation with riboflavin-overproducing lactic acid bacteria (LAB) represents an ideal strategy to generate, by in situ biofortification, functional drinks. These beverages can positively contribute to consumer health and address nutritional deficiencies. In the present work, the functional capabilities of Weissella cibaria BAL3C-5 C120T for riboflavin-overproduction and dextran-production during fermentation of oat-, rice-, soybean- and almond-based drinks have been evaluated. It was confirmed that the strain was capable of producing riboflavin and dextran in the analysed drinks. This property was especially pronounced in the oat-based drink, where after 24 h of fermentation the strain was able to increase riboflavin and dextran levels up to 3.4 mg/L and 3.2 g/L, respectively. Moreover, under optimized conditions the strain was able to enrich the fermented oat-based drinks with the prebiotic oligosaccharide panose (up to 6.6 g/L). In addition, in the oat-based drinks BAL3C-5 C120T showed a good pH-lowering ability (from 7.0 to 3.8) as well as a high 80 % cell viability after one month of storage. Rheological analysis of the resulting fermented oat-based beverages revealed a thixotropic structure related to a gel-like behaviour which was not observed in the non-fermented control drinks. In summary, these results confirmed the unique characteristics of W. cibaria BAL3C-5 C120T strain for the development of biofortified and functional plant-based beverages with improved nutritional and rheological properties. Analysis of the BAL3C-5 C120T strain survival under gastrointestinal conditions and its autoaggregation properties, also indicated its potential use as a probiotic delivered in an oat-based fermented beverage. In this context, this study also promotes the utilization of W. cibaria species in health and food industries where it has not yet been used as a starter or adjunct culture.
Collapse
Affiliation(s)
- Iñaki Diez-Ozaeta
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain; Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| | - Irati Berasarte
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain
| | - Ahmed Fouad Zeid
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia 31100, Oran, Algeria
| | - Mercedes Fernández
- POLYMAT, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain
| | - Pasquale Russo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| | - Mª Teresa Dueñas
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain.
| |
Collapse
|
12
|
Nath DK, Lee Y. Exploring the multifaceted functions of APPL in metabolism and memory using Drosophila melanogaster. Mol Cells 2025; 48:100163. [PMID: 39603510 PMCID: PMC11697555 DOI: 10.1016/j.mocell.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Amyloid precursor protein (APP) is a single-pass transmembrane protein abundantly expressed in the central nervous system and implicated in familial Alzheimer's disease, a progressive neurodegenerative disorder that impairs memory. Here, we investigated the role of amyloid precursor protein-like (APPL) using the model organism Drosophila melanogaster. In this study, Appl null mutants exhibited a reduced lifespan under normal conditions and increased triglyceride levels, which were mitigated by metformin treatment. Additionally, taste-associative memory impairment in Appld mutants suggested APPL's role in memory formation, which was restored by curcumin supplementation. The Appld mutants also displayed reduced climbing ability, which was improved by supplementation with vitamins C (ascorbic acid) and B2 (riboflavin). These findings suggest that APPL is involved in metabolic regulation, cognition, climbing activity, and aging in Drosophila melanogaster.
Collapse
Affiliation(s)
- Dharmendra Kumar Nath
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
13
|
Zhang B, Hou S, Tang J. Riboflavin Deficiency and Apoptosis: A Review. J Nutr 2025; 155:27-36. [PMID: 39510506 DOI: 10.1016/j.tjnut.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Riboflavin, commonly known as vitamin B2, is an essential micronutrient critical for the function of flavoproteins, which utilize flavin mononucleotide and flavin adenine dinucleotide as cofactors in energy metabolism, lipid metabolism, redox regulation, and protein folding. Nutritional riboflavin deficiency (RD) has previously been observed in humans and animals, leading to adverse outcomes such as growth retardation, increased mortality, and liver damage, which may be attributed to apoptosis. Although such deficiencies are now uncommon because of improved living standards, certain high-risk groups (e.g. those with chronic diseases, the elderly, and pregnant) have increased riboflavin demands, making them vulnerable to physiological RD associated with apoptosis. Understanding the pathways through which RD induces apoptosis, including mitochondrial dysfunction, endoplasmic reticulum stress, and reactive oxygen species, is essential for grasping its broader health impacts. Additionally, this deficiency disrupts fatty acid metabolism, potentially resulting in lipotoxic apoptosis. Despite its significance, RD-induced apoptosis remains underexplored in the literature. Therefore, this review will discuss the roles of redox imbalance, mitochondrial dysfunction, endoplasmic reticulum stress, and lipotoxicity in apoptosis regulation because of RD, aiming to highlight its importance for improving riboflavin nutrition and overall health.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
14
|
Zhao X, Naash MI, Al-Ubaidi MR. Riboflavin, Retbindin, and Riboflavin Transporters in the Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:471-475. [PMID: 39930240 DOI: 10.1007/978-3-031-76550-6_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The retina is the most metabolically active tissue in the body. It harbors high levels of flavins due to their involvement as enzymatic co-factors in energy production. Flavins are delivered to the body via specific transporters, the ablation of which leads to riboflavin transporter deficiency (RTD) and ariboflavinosis in humans. RTD leads to embryonic lethality in mice, and in humans, it has detrimental effects on the nervous system, causing neurologic abnormalities. However, the reports on the effects of RTD on retinal homeostasis are limited despite the fact that the retina maintains high levels of riboflavin and its derivatives. We have identified retbindin (Rtbdn) as a retina-specific riboflavin-binding protein, ablation of which leads to reduced flavin levels associated with retinal degeneration in mice. To focus attention on the role of flavins in retinal homeostasis, herein, we discuss the specific functions of flavins and Rtbdn and their protective roles in maintaining retinal health.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Lahmar M, Besrour-Aouam N, Hernández-Alcántara AM, Diez-Ozaeta I, Fhoula I, López P, Mohedano ML, Ouzari HI. Riboflavin- and Dextran-Producing Weissella confusa FS54 B2: Characterization and Testing for Development of Fermented Plant-Based Beverages. Foods 2024; 13:4112. [PMID: 39767055 PMCID: PMC11675806 DOI: 10.3390/foods13244112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The use of lactic acid bacteria for developing functional foods is increasing for their ability to synthesize beneficial metabolites such as vitamin B (riboflavin, RF) and postbiotic compounds. Here, the spontaneous mutant FS54 B2 was isolated by treatment of the dextran-producing Weissella confusa FS54 strain with roseoflavin. FS54 B2 overproduced RF (4.9 mg/L) in synthetic medium. The FMN riboswitch is responsible for the regulation of RF biosynthesis, and sequencing of the coding DNA revealed that FS54 B2 carries the G131U mutation. FS54 B2 retained the capacity of FS54 to synthesize high levels of dextran (3.8 g/L) in synthetic medium. The fermentation capacities of the two Weissella strains was tested in commercial oat-, soy- and rice-based beverages. The best substrate for FS54 B2 was the oat-based drink, in which, after fermentation, the following were detected: RF (2.4 mg/L), dextran (5.3 mg/L), potential prebiotics (oligosaccharides (panose (5.1 g/L), isomaltose (753 mg/L) and isomaltotriose (454 mg/L)) and the antioxidant mannitol (16.3 g/L). pH-lowering ability and cell viability after one month of storage period were confirmed. As far as we know, this is the first time that an RF-overproducing W. confusa strain has been isolated, characterized and tested for its potential use in the development of functional beverages.
Collapse
Affiliation(s)
- Malek Lahmar
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
- Microorganisms and Active Biomolecules Laboratory (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (N.B.-A.); (I.F.); (H.-I.O.)
| | - Norhane Besrour-Aouam
- Microorganisms and Active Biomolecules Laboratory (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (N.B.-A.); (I.F.); (H.-I.O.)
| | - Annel M. Hernández-Alcántara
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
| | - Iñaki Diez-Ozaeta
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
| | - Imene Fhoula
- Microorganisms and Active Biomolecules Laboratory (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (N.B.-A.); (I.F.); (H.-I.O.)
| | - Paloma López
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
| | - Mari Luz Mohedano
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (M.L.); (A.M.H.-A.); (I.D.-O.); (P.L.)
| | - Hadda-Imene Ouzari
- Microorganisms and Active Biomolecules Laboratory (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia; (N.B.-A.); (I.F.); (H.-I.O.)
| |
Collapse
|
16
|
Li P, Mei J, Xie J. Antibacterial mechanism of CO 2 combined with low temperature against Shewanella putrefaciens by biochemical and metabolomics analysis. Food Chem 2024; 460:140555. [PMID: 39047490 DOI: 10.1016/j.foodchem.2024.140555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
To further reveal the inhibition mechanism of carbon dioxide (CO2) on Shewanella putrefaciens (S. putrefaciens), influence on metabolic function was studied by biochemical and metabolomics analysis. Accordingly, reduction of intracellular pH (pHi), depolarization of cell membrane and accumulation of reactive oxygen species (ROS) indicated that CO2 changed the membrane permeability of S. putrefaciens. Besides, adenosine triphosphate (ATP), ATPase, nicotinamide adenine dinucleotide (NAD+/NADH) and ratios of NADH/NAD+ were detected, indicating a role of CO2 in repressing respiratory pathway and electron transport. According to metabolomics results, CO2 induced differential expressions of metabolites, disordered respiratory chain and weakened energy metabolism of S. putrefaciens. Inhibition of respiratory rate-limiting enzymes also revealed that electron transfer of respiratory chain was blocked, cell respiration was weakened, and thus energy supply was insufficient under CO2 stress. These results revealed that CO2 caused disruption of metabolic function, which might be the main cause of growth inhibition for S. putrefaciens.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
17
|
Rathinasabapathi M, Tiwari A, Kumar M, Singh J, Goyal A, Mahadevan A, Kumar N. Clinical Reasoning: A 22-Year-Old Woman With Episodic Weakness and Jaundice. Neurology 2024; 103:e210018. [PMID: 39365967 DOI: 10.1212/wnl.0000000000210018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024] Open
Abstract
We report a case of a 22-year-old woman who presented with recurrent episodes of quadriparesis, often accompanied by jaundice. Neurologic examination showed symmetrical proximal predominant quadriparesis with generalized hyporeflexia. The differential diagnoses included were of metabolic, inflammatory, genetic (including channelopathies), and autoimmune causes. Serum creatine phosphokinase levels and electrophysiologic studies helped narrow the differential. The final diagnosis was one that was responsive to vitamin supplementation. This report provides a systematic clinical approach to a case of episodic weakness with jaundice and respiratory failure.
Collapse
Affiliation(s)
- Muneeshwaran Rathinasabapathi
- From the Department of Neurology (M.R., A.T., M.K., J.S., N.K.), AIIMS Rishikesh; and Department of Neuropathology (A.G., A.M.), NIMHANS, Bangalore, India
| | - Ashutosh Tiwari
- From the Department of Neurology (M.R., A.T., M.K., J.S., N.K.), AIIMS Rishikesh; and Department of Neuropathology (A.G., A.M.), NIMHANS, Bangalore, India
| | - Mritunjai Kumar
- From the Department of Neurology (M.R., A.T., M.K., J.S., N.K.), AIIMS Rishikesh; and Department of Neuropathology (A.G., A.M.), NIMHANS, Bangalore, India
| | - Jagbir Singh
- From the Department of Neurology (M.R., A.T., M.K., J.S., N.K.), AIIMS Rishikesh; and Department of Neuropathology (A.G., A.M.), NIMHANS, Bangalore, India
| | - Aditi Goyal
- From the Department of Neurology (M.R., A.T., M.K., J.S., N.K.), AIIMS Rishikesh; and Department of Neuropathology (A.G., A.M.), NIMHANS, Bangalore, India
| | - Anita Mahadevan
- From the Department of Neurology (M.R., A.T., M.K., J.S., N.K.), AIIMS Rishikesh; and Department of Neuropathology (A.G., A.M.), NIMHANS, Bangalore, India
| | - Niraj Kumar
- From the Department of Neurology (M.R., A.T., M.K., J.S., N.K.), AIIMS Rishikesh; and Department of Neuropathology (A.G., A.M.), NIMHANS, Bangalore, India
| |
Collapse
|
18
|
Zhang B, Gao K, Cao J, Xing G, Ji Z, Li Z, Li Y, Keijer J, Xie M, Zhou Z, Hou S, Tang J. Maternal riboflavin deficiency causes embryonic defects by activating ER stress-induced hepatocyte apoptosis pathway. Free Radic Biol Med 2024; 224:418-435. [PMID: 39241988 DOI: 10.1016/j.freeradbiomed.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Riboflavin deficiency (RD) induces liver damage, abnormal embryonic development, and high mortality. We hypothesized that the phenotype could be rescued by inhibiting ER stress. The objectives of the present study were to investigate the underlying molecular mechanisms of RD-induced embryonic defects using in vitro and in vivo models. Primary duck embryonic hepatocytes were treated with an ER stress inhibitor (4-PBA) or transfected with CHOP siRNA, and cultured in RD medium and riboflavin-sufficient (CON) medium for 8 days. Laying ducks (n = 20 cages/diet, 1 bird/cage) were fed an RD diet or CON diet for 14 wk, and the eggs were collected for hatching. At day 7 of incubation, the fertilized RD eggs were injected with or without 4-PBA into the yolk. RD decreased cell number and cell viability compared to the CON group, induced oxidative stress and apoptosis in primary duck embryonic hepatocytes. However, after being treated with an ER stress inhibitor (4-PBA) or transfected with CHOP siRNA, the apoptosis rate in RD hepatocytes decreased by 60.6 % and 86.1 %, respectively, being equal to the CON. These results indicated that RD-induced hepatocyte apoptosis is mediated by ER stress and the CHOP pathway. In vivo, RD embryos showed low hatchability, abnormal development, liver damage, ER stress, and apoptosis compared to the CON group. However, 4-PBA administration, as a model of ER stress inhibition, substantially restored embryonic development and alleviated liver damage in the RD group, including ER stress and apoptosis. Notably, hatchability in the RD group increased from 21.7 % to 72.7 % after 4-PBA treatment, though it remained less than the CON group (87.7 %). These results implicated ER stress-CHOP-apoptosis pathway as molecular mechanisms underlying RD-induced abnormal embryonic development and death, this target with potential for therapy or intervention.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Kexin Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junting Cao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guangnan Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanqing Ji
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhinan Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yating Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - Ming Xie
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jing Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
19
|
Shastak Y, Pelletier W. Exploring the role of riboflavin in swine well-being: a literature review. Porcine Health Manag 2024; 10:46. [PMID: 39482748 PMCID: PMC11526614 DOI: 10.1186/s40813-024-00399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential B-vitamin crucial for the metabolism, development, and overall well-being of porcine species. As pig production intensifies, understanding the micronutrient needs of swine, particularly riboflavin, becomes increasingly vital. Riboflavin acts as a precursor for coenzymes involved in key redox reactions essential for energy production, growth, and immune regulation. Ariboflavinosis can disrupt metabolic functions, leading to impaired growth, reproductive issues, decreased feed efficiency, compromised immune function, ocular problems, and liver dysfunction. To ensure optimal growth and health, pig diets are consistently supplemented with riboflavin-enriched supplements. This review explores the diverse functions of riboflavin in swine metabolism, focusing on biochemical basics, metabolic pathways, riboflavin uptake and distribution, consequences of deficiency, and benefits of adequate intake. It emphasizes the need for optimized riboflavin supplementation strategies tailored to different production stages and environmental conditions. According to recommendations from four major breeding companies, the dietary riboflavin levels for swine are advised to range between 7.5 and 15 mg/kg for piglets, 3.5 to 8.0 mg/kg for finishing gilts and barrows, 4 to 10 mg/kg for gestating sows, and 5 to 10 mg/kg for lactating sows. Advances in precision nutrition, microbial production of riboflavin, and the development of functional feed additives are potential innovations to enhance swine health, growth performance, and sustainability. Comprehensive studies on the long-term effects of subclinical riboflavin deficiency and the broader health and welfare implications of supplementation are also needed. Addressing knowledge gaps and embracing future trends and innovations will be key to optimizing riboflavin supplementation and advancing the swine industry.
Collapse
Affiliation(s)
- Yauheni Shastak
- BASF SE, Nutrition & Health Division, 67063, Ludwigshafen am Rhein, Germany.
| | - Wolf Pelletier
- BASF SE, Nutrition & Health Division, 67063, Ludwigshafen am Rhein, Germany
| |
Collapse
|
20
|
Pérez Visñuk D, LeBlanc JG, de Moreno de LeBlanc A. Neuroprotective Effects Exerted by a Combination of Selected Lactic Acid Bacteria in a Mouse Parkinsonism Model under Levodopa-Benserazide Treatment. Neurochem Res 2024; 49:2940-2956. [PMID: 39088165 DOI: 10.1007/s11064-024-04217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Alterations of the microbiota-gut-brain axis has been associated with intestinal and neuronal inflammation in Parkinson's disease (PD). The aim of this work was to study some mechanisms associated with the neuroprotective effect of a combination (MIX) of lactic acid bacteria (LAB) composed by Lactiplantibacillus plantarum CRL2130 (riboflavin overproducing strain), Streptococcus thermophilus CRL808 (folate producer strain), and CRL807 (immunomodulatory strain) in cell cultures and in a chronic model of parkinsonism induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in aged mice, and under levodopa-benserazide treatment. In vitro, N2a differentiated neurons were exposed to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or with conditioned media from BV-2 cells exposed to the bacterial extracts. In vivo, motor skills, tyrosine hydrolase (TH) in brain and cytokine concentrations in serum and in brain were evaluated. The study of the faecal microbiota and the histology of the small intestine was also performed. The results showed that the neuroprotective effect associated with LAB MIX administration did not interfere with levodopa-benserazide treatment. This effect could be associated with the antioxidant and immunomodulatory potential of the LAB selected in the MIX, and was associated with the significant improvement in the motor tests and a higher number of TH + cells in the brain. In addition, LAB MIX administration was associated with modulation of the immune response. LAB administration decreased intestinal damage with an increase in the villus length /crypt depth ratio. Finally, the administration of the LAB MIX in combination with levodopa-benserazide treatment was able to partially revert the intestinal dysbiosis observed in the model, showing greater similarity to the profiles of healthy controls, and highlighting the increase in the Lactobacillaceae family. Different mechanisms of action would be related to the protective effect of the selected LAB combination which has the potential to be evaluated as an adjuvant for conventional PD therapies.
Collapse
Affiliation(s)
- Daiana Pérez Visñuk
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán,, T4000ILC, Tucumán, Argentina
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán,, T4000ILC, Tucumán, Argentina.
| | - Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán,, T4000ILC, Tucumán, Argentina.
| |
Collapse
|
21
|
Zhu J, Xu P, Yan W, Hu Y, Guo H, Chen F, Bigambo FM, Wang X. The influence of multivitamins on neurological and growth disorders: a cross-sectional study. Front Nutr 2024; 11:1465875. [PMID: 39385784 PMCID: PMC11463060 DOI: 10.3389/fnut.2024.1465875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Background While vitamin deficiencies can pose serious health consequences for the body, excessive intake of vitamins can also lead to health risks. However, there is limited data about the impact of multivitamins on neurological and growth disorders. This study aimed to investigate the relationship between multivitamins and neurological and growth disorders. Methods A cross-sectional study was conducted with 16,921 subjects who visited the Children's Hospital of Nanjing Medical University from 2019 to 2021. The subjects were categorized into two groups based on their health status including 9,368 cases (4,484 with neurological disorders and 4,884 with growth disorders) and 7,553 healthy controls. Statistical tests including the T-test, Wilcoxon Rank Sum test, and Chi-Square test were employed to compare the groups, and logistic regression and Weighted Quantile Sum (WQS) regression were used to identify associations. Results In the adjusted logistic regression, serum 25 hydroxyvitamin D [25(OH)D], vitamin B2, and vitamin B9 were associated with decreasing risks of neurological disorders, whereas vitamin A, vitamin B1, and vitamin B12 were associated with increasing risks of neurological disorders. Nevertheless, vitamin A and vitamin B2 were associated with increasing risks of growth disorders. In the WQS model, nine multivitamins were positively associated with risks of neurological disorders, and Vitamins D and C were weighted the most. In addition, the inverse association but not statistically significant was observed between multivitamins and growth disorders, particularly growth retardation revealed a negative association, and some individual growth disorders revealed positive associations including obesity and malnutrition. Conclusion In general, the study observed that multivitamins may be associated with neurological and growth disorders either positive or negative depending on the type of disorder.
Collapse
Affiliation(s)
- Jiaxiao Zhu
- Department of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Penghong Xu
- Department of Emergency, Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Yan
- Clinical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yahui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongli Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | | | - Xu Wang
- Clinical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Silva-Araújo ERD, Manhães-de-Castro R, Pontes PB, Visco DB, Lacerda DC, José Cavalcanti Bezerra Gouveia H, Toscano AE. Effects of riboflavin in the treatment of brain damage caused by oxygen deprivation: an integrative systematic review. Nutr Neurosci 2024; 27:989-1007. [PMID: 38095869 DOI: 10.1080/1028415x.2023.2288387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Brain oxygen deprivation causes morphological damage involved in the formation of serious pathological conditions such as stroke and cerebral palsy. Therapeutic methods for post-hypoxia/anoxia injuries are limited and still have deficiencies in terms of safety and efficacy. Recently, clinical studies of stroke have reported the use of drugs containing riboflavin for post-injury clinical rehabilitation, however, the effects of vitamin B2 on exposure to cerebral oxygen deprivation are not completely elucidated. This review aimed to investigate the potential antioxidant, anti-inflammatory and neuroprotective effects of riboflavin in cerebral hypoxia/anoxia. After a systematic search, 21 articles were selected, 8 preclinical and 12 clinical studies, and 1 translational study. Most preclinical studies used B2 alone in models of hypoxia in rodents, with doses of 1-20 mg/kg (in vivo) and 0.5-5 µM (in vitro). Together, these works suggested greater regulation of lipid peroxidation and apoptosis and an increase in neurotrophins, locomotion, and cognition after treatment. In contrast, several human studies have administered riboflavin (5 mg) in combination with other Krebs cycle metabolites, except one study, which used only B2 (20 mg). A reduction in lactic acidosis and recovery of sensorimotor functions was observed in children after treatment with B2, while adults and the elderly showed a reduction in infarct volume and cognitive rehabilitation. Based on findings from preclinical and clinical studies, we conclude that the use of riboflavin alone or in combination acts beneficially in correcting the underlying brain damage caused by hypoxia/anoxia and its inflammatory, oxidative, and behavioral impairments.
Collapse
Affiliation(s)
- Eulália Rebeca da Silva-Araújo
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Postgraduate Program of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Paula Brielle Pontes
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Bulcão Visco
- Laboratory of Neurofunctional, Center for Biological Sciences and Health, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Postgraduate Program of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
23
|
Nisco A, Tolomeo M, Scalise M, Zanier K, Barile M. Exploring the impact of flavin homeostasis on cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2024; 1879:189149. [PMID: 38971209 DOI: 10.1016/j.bbcan.2024.189149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Flavins and their associated proteins have recently emerged as compelling players in the landscape of cancer biology. Flavins, encompassing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), serve as coenzymes in a multitude of cellular processes, such as metabolism, apoptosis, and cell proliferation. Their involvement in oxidative phosphorylation, redox homeostasis, and enzymatic reactions has long been recognized. However, recent research has unveiled an extended role for flavins in the context of cancer. In parallel, riboflavin transporters (RFVTs), FAD synthase (FADS), and riboflavin kinase (RFK) have gained prominence in cancer research. These proteins, responsible for riboflavin uptake, FAD biosynthesis, and FMN generation, are integral components of the cellular machinery that governs flavin homeostasis. Dysregulation in the expression/function of these proteins has been associated with various cancers, underscoring their potential as diagnostic markers, therapeutic targets, and key determinants of cancer cell behavior. This review embarks on a comprehensive exploration of the multifaceted role of flavins and of the flavoproteins involved in nucleus-mitochondria crosstalk in cancer. We journey through the influence of flavins on cancer cell energetics, the modulation of RFVTs in malignant transformation, the diagnostic and prognostic significance of FADS, and the implications of RFK in drug resistance and apoptosis. This review also underscores the potential of these molecules and processes as targets for novel diagnostic and therapeutic strategies, offering new avenues for the battle against this relentless disease.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy; Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy.
| |
Collapse
|
24
|
Piriyaprasath K, Kakihara Y, Hasegawa M, Iwamoto Y, Hasegawa Y, Fujii N, Yamamura K, Okamoto K. Nutritional Strategies for Chronic Craniofacial Pain and Temporomandibular Disorders: Current Clinical and Preclinical Insights. Nutrients 2024; 16:2868. [PMID: 39275184 PMCID: PMC11397166 DOI: 10.3390/nu16172868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
This narrative review provides an overview of current knowledge on the impact of nutritional strategies on chronic craniofacial pain associated with temporomandibular disorders (TMDs). Individuals experiencing painful TMDs alter their dietary habits, avoiding certain foods, possibly due to chewing difficulties, which might lead to nutrient deficiencies. Our literature investigation revealed that the causal links between nutritional changes and craniofacial pain remain unclear. However, clinical and preclinical studies suggest that nutraceuticals, including vitamins, minerals, polyphenols, omega-3 fatty acids, isoprenoids, carotenoids, lectins, polysaccharides, glucosamines, and palmitoylethanolamides, could have beneficial effects on managing TMDs. This is described in 12 clinical and 38 preclinical articles since 2000. Clinical articles discussed the roles of vitamins, minerals, glucosamine, and palmitoylethanolamides. The other nutraceuticals were assessed solely in preclinical studies, using TMD models, mostly craniofacial inflammatory rodents, with 36 of the 38 articles published since 2013. Our investigation indicates that current evidence is insufficient to assess the efficacy of these nutraceuticals. However, the existing data suggest potential for therapeutic intervention in TMDs. Further support from longitudinal and randomized controlled studies and well-designed preclinical investigations is necessary to evaluate the efficacy of each nutraceutical intervention and understand their underlying mechanisms in TMDs.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of General Dentistry and Dental Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan
| | - Yuya Iwamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoko Hasegawa
- Division of Comprehensive Prosthodontics, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noritaka Fujii
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
25
|
Aragão MÂ, Pires L, Santos-Buelga C, Barros L, Calhelha RC. Revitalising Riboflavin: Unveiling Its Timeless Significance in Human Physiology and Health. Foods 2024; 13:2255. [PMID: 39063339 PMCID: PMC11276209 DOI: 10.3390/foods13142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Since the early twentieth century, research on vitamins has revealed their therapeutic potential beyond their role as essential micronutrients. Riboflavin, known as vitamin B2, stands out for its unique characteristics. Despite numerous studies, riboflavin remains vital, with implications for human health. Abundantly present in various foods, riboflavin acts as a coenzyme in numerous enzymatic reactions crucial for human metabolism. Its role in energy production, erythrocyte synthesis, and vitamin metabolism underscores its importance in maintaining homeostasis. The impact of riboflavin extends to neurological function, skin health, and cardiovascular well-being, with adequate levels linked to reduced risks of various ailments. However, inadequate intake or physiological stress can lead to deficiency, a condition that poses serious health risks, including severe complications. This underscores the importance of maintaining sufficient levels of riboflavin for general wellness. The essential role of riboflavin in immune function further emphasises its significance for human health and vitality. This paper examines the diverse effects of riboflavin on health and stresses the importance of maintaining sufficient levels for overall well-being.
Collapse
Affiliation(s)
- M. Ângela Aragão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
26
|
Parlak-Hela Z, Sahiner UM, Sekerel BE, Soyer O. The contribution of milk substitutes to the nutritional status of children with cow's milk allergy. Pediatr Allergy Immunol 2024; 35:e14202. [PMID: 39022888 DOI: 10.1111/pai.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The impact of alternative milk substitutes on the nutritional status of children with cow's milk allergy (CMA), the prevailing cause of food allergies, is unresolved. METHODS A cross-sectional study was performed in children older than 2 years with IgE-mediated CMA. Patients' clinical characteristics, anthropometric measurements, dietary intake (by 3-day food diary), and biochemical markers of nutritional status were assessed. RESULTS One hundred two children with CMA (68.6% boys; median age, 3.7 years; 51% multiple food allergies) were evaluated. 44.1% of the children consumed plant-based beverages (PBB), 19.6% therapeutic formula and 36.3% did not consume any milk substitutes. In all age groups, dietary calcium, riboflavin, and vitamin D intake of those who did not use milk substitutes were lower than those who consumed formula or PBB (p < .01). Also in the 2-3 years old age group, dietary zinc (p = .011) and iron intake (p = .004) of the formula-fed group was higher. Formula-fed patients had higher levels of 25-OH vitamin D (μg/L) and serum vitamin B12 (ng/L) than PBB-fed patients (respectively; p < .001, p = .005) and those who did not consume any milk substitute (p < .001). Patients of all ages who did not utilize a milk substitute failed to obtain an adequate amount of dietary calcium. CONCLUSION The use of milk substitutes positively affects dietary calcium, riboflavin, and vitamin D intake in CMA, but their contribution is variable. Those who do not use milk substitutes are at greater risk inadequate of dietary calcium intake. Personalized nutritional advice, given the clinical diversity and the impact of individual differences, is required.
Collapse
Affiliation(s)
- Zeynep Parlak-Hela
- Department of Pediatrics, Division of Allergy, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Nutrition and Dietetics Unit, Hacettepe İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Umit Murat Sahiner
- Department of Pediatrics, Division of Allergy, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Bulent Enis Sekerel
- Department of Pediatrics, Division of Allergy, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ozge Soyer
- Department of Pediatrics, Division of Allergy, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
27
|
Zhang X, Zhang W, Sun H, Wang H. The effects of exosomes originating from different cell sources on the differentiation of bone marrow mesenchymal stem cells into schwann cells. J Nanobiotechnology 2024; 22:220. [PMID: 38698449 PMCID: PMC11067703 DOI: 10.1186/s12951-024-02450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.
Collapse
Affiliation(s)
- Xianxiang Zhang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Weiwei Zhang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Hao Sun
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Hui Wang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China.
| |
Collapse
|
28
|
Gunther K, Lynch DR. Pharmacotherapeutic strategies for Friedreich Ataxia: a review of the available data. Expert Opin Pharmacother 2024; 25:529-539. [PMID: 38622054 DOI: 10.1080/14656566.2024.2343782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.
Collapse
Affiliation(s)
- Katherine Gunther
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
29
|
Ma G, Kang J, Yu T. Bayesian functional analysis for untargeted metabolomics data with matching uncertainty and small sample sizes. Brief Bioinform 2024; 25:bbae141. [PMID: 38581417 PMCID: PMC10998539 DOI: 10.1093/bib/bbae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024] Open
Abstract
Untargeted metabolomics based on liquid chromatography-mass spectrometry technology is quickly gaining widespread application, given its ability to depict the global metabolic pattern in biological samples. However, the data are noisy and plagued by the lack of clear identity of data features measured from samples. Multiple potential matchings exist between data features and known metabolites, while the truth can only be one-to-one matches. Some existing methods attempt to reduce the matching uncertainty, but are far from being able to remove the uncertainty for most features. The existence of the uncertainty causes major difficulty in downstream functional analysis. To address these issues, we develop a novel approach for Bayesian Analysis of Untargeted Metabolomics data (BAUM) to integrate previously separate tasks into a single framework, including matching uncertainty inference, metabolite selection and functional analysis. By incorporating the knowledge graph between variables and using relatively simple assumptions, BAUM can analyze datasets with small sample sizes. By allowing different confidence levels of feature-metabolite matching, the method is applicable to datasets in which feature identities are partially known. Simulation studies demonstrate that, compared with other existing methods, BAUM achieves better accuracy in selecting important metabolites that tend to be functionally consistent and assigning confidence scores to feature-metabolite matches. We analyze a COVID-19 metabolomics dataset and a mouse brain metabolomics dataset using BAUM. Even with a very small sample size of 16 mice per group, BAUM is robust and stable. It finds pathways that conform to existing knowledge, as well as novel pathways that are biologically plausible.
Collapse
Affiliation(s)
- Guoxuan Ma
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tianwei Yu
- Shenzhen Research Institute of Big Data, School of Data Science, The Chinese University of Hong Kong - Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| |
Collapse
|
30
|
Samandar F, Malek-Mohammadi S, Aram Z, Rastin F, Tolou-Shikhzadeh-Yazdi S, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. New Perspective on the Interaction Behavior Between Riboflavin and β Lactoglobulin-β Casein Complex by Biophysical Techniques. Cell Biochem Biophys 2024; 82:175-191. [PMID: 37978103 DOI: 10.1007/s12013-023-01197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Riboflavin (RF) is a vitamin that only exists in plants and microorganisms and must be procured externally by humans. On the other hand, there are two major allergic factors in cow's milk, including β-lactoglobulin (βLG) and β-casein (βCN), while their allergic properties can be eliminated by binding to micronutrients. In this regard, we examined the binding process of RF to βLG and βCN in the binary and ternary systems by different spectroscopies such as zeta potential, electric conductivity, and molecular modeling. According to the result of the fluorescence spectrum regarding the interaction of RF with βLG and βCN in binary and ternary systems, an increase in RF concentration declined the fluorescence intensity of three systems and also caused the quenching of proteins. Static quenching plays a pivotal role in the formation of stable interactions. The obtained thermodynamic parameters by Van't Hoff equation ascertained the predominance of hydrogen bonds and van der Waals interaction in all the systems. Considering how the negative value of ΔH0 resulted in the negative value of ΔG0, the systems were assumed to be enthalpy driven. The outcomes of circular dichroism (CD) disclosed that the attachment of RF to the targets of systems increased their a-helix content, which particularly included the binding of RF to βLG that led to the conversion of β-sheet to α-helix content. As indicated by the results of zeta potential, the low concentration of RF contained the dominance of hydrophobic forces in the interactions, whereas the enlargement of this concentration prevailed electrostatic forces. Moreover, conductometry measurements showed an extension in the rate of ionizable groups due to the addition of RF to the systems, which may increase the probability of an interaction between RF, βCN, and βLG in binary and ternary systems. In consistency with the outcomes of molecular dynamics simulation, the data of molecular docking approved the capability of RF in forming strong and stable interactions with βCN and βLG.
Collapse
Affiliation(s)
- Farzaneh Samandar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Zahra Aram
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Zeinab Amiri-Tehranizadeh
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
31
|
Zhang L, Luo Y, Zhang Z, Pan Y, Li X, Zhuang Z, Li J, Luo Q, Chen X. Enhanced reproductive toxicity of photodegraded polylactic acid microplastics in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168742. [PMID: 38007130 DOI: 10.1016/j.scitotenv.2023.168742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Microplastics are widely used due to their numerous advantages. However, they can have detrimental effects on marine ecosystems. When microplastics enter the ocean, they can be absorbed by marine organisms, leading to toxic effects. Additionally, the transformation of microplastics during natural degradation can alter their toxicity, necessitating further investigation. Polylactic acid (PLA) biodegradable plastics are commonly used, yet research on their toxicity, particularly their reproductive effects on aquatic organisms, remains limited. In this study, we conducted photodegradation of PLA using potassium persulfate as a catalyst to simulate natural degradation conditions. Our objective was to assess the reproductive toxicity of photodegraded PLA microplastics on zebrafish. The results revealed that photodegraded PLA exhibited elevated reproductive toxicity, resulting in abnormal oocyte differentiation, disruption of sexual hormone levels, and alterations in ovarian tissue metabolism. Metabolomics analysis indicated that both unphotodegraded PLA (UPLA) and photodegraded PLA (DPLA) disrupted oxidative stress homeostasis in zebrafish ovarian tissue by influencing pathways such as purine metabolism, phenylalanine metabolism, glutathione metabolism, and riboflavin metabolism. Furthermore, the DPLA treatment induced abnormal biosynthesis of taurocholic acid, which was not observed in the UPLA treatment group. Importantly, the DPLA treatment group exhibited more pronounced effects on offspring development compared to the UPLA treatment group, characterized by higher mortality rates, inhibition of embryo hatching, accelerated heart rates, and reduced larval body length. These findings underscore the varying levels of toxicity to zebrafish ovaries before and after PLA photodegradation, along with evidence of intergenerational toxicity.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yuxuan Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Zheng Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xuewei Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Zile Zhuang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jia Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
32
|
Abdik E, Çakır T. Transcriptome-based biomarker prediction for Parkinson's disease using genome-scale metabolic modeling. Sci Rep 2024; 14:585. [PMID: 38182712 PMCID: PMC10770157 DOI: 10.1038/s41598-023-51034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Identification of PD biomarkers is crucial for early diagnosis and to develop target-based therapeutic agents. Integrative analysis of genome-scale metabolic models (GEMs) and omics data provides a computational approach for the prediction of metabolite biomarkers. Here, we applied the TIMBR (Transcriptionally Inferred Metabolic Biomarker Response) algorithm and two modified versions of TIMBR to investigate potential metabolite biomarkers for PD. To this end, we mapped thirteen post-mortem PD transcriptome datasets from the substantia nigra region onto Human-GEM. We considered a metabolite as a candidate biomarker if its production was predicted to be more efficient by a TIMBR-family algorithm in control or PD case for the majority of the datasets. Different metrics based on well-known PD-related metabolite alterations, PD-associated pathways, and a list of 25 high-confidence PD metabolite biomarkers compiled from the literature were used to compare the prediction performance of the three algorithms tested. The modified algorithm with the highest prediction power based on the metrics was called TAMBOOR, TrAnscriptome-based Metabolite Biomarkers by On-Off Reactions, which was introduced for the first time in this study. TAMBOOR performed better in terms of capturing well-known pathway alterations and metabolite secretion changes in PD. Therefore, our tool has a strong potential to be used for the prediction of novel diagnostic biomarkers for human diseases.
Collapse
Affiliation(s)
- Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
33
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. The kynurenine pathway of tryptophan metabolism in abdominal migraine in children - A therapeutic potential? Eur J Paediatr Neurol 2024; 48:1-12. [PMID: 37984006 DOI: 10.1016/j.ejpn.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Abdominal migraine (AM) is a clinical diagnosis specified by Rome IV and ICHD III as a functional gastrointestinal disease (FGID) and a migraine associated syndrome, respectively. Abdominal migraine in childhood and adolescence may continue with migraine headaches in adulthood. This disease is undiagnosed and undertreated, and thus far the FDA has not approved any drug for AM treatment. It was shown that changes in the kynurenine (KYN) pathway of tryptophan (TRP) metabolism played an important role in the pathogenesis and treatment of FIGDs and associated mood disorders. Changes in the KYN pathway were shown in migraine and therefore it may be involved in AM pathogenesis. FINDINGS Abdominal migraine reflects an impairment in the communication within the gut-brain axis. Treatment approaches in AM are based on the experience of physicians, presenting personal rather than evidence-based practice, including efficacy of some drugs in adult migraine. Non-pharmacological treatment of AM is aimed at preventing or ameliorating AM triggers and is based on the STRESS mnemonic. Metabolic treatments with riboflavin and coenzyme Q10 were effective in several cases of pediatric migraine, but in general, results on metabolic treatment in migraine in children are scarce and nonconclusive. Modulations within the KYN pathway of TRP metabolism induced by changes in TRP content in the diet, may ameliorate FGIDs and support their pharmacological treatment. Pharmacological manipulations of brain KYNs in animals have brought promising results for clinical applications. Obese children show a higher headache prevalence and may be especially predisposed to AM, and KYN metabolites showed an alternated distribution in obese individuals as compared with their normal-weight counterparts. CONCLUSIONS In conclusion, controlled placebo-based clinical trials with dietary manipulation to adjust the amount of the product of the KYN pathway of TRP metabolism are justified in children and adolescents with AM, especially those with coexisting obesity. Further preclinical studies are needed to establish details of these trials.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420 Plock, Poland.
| |
Collapse
|
34
|
Mathis S, Solé G, Damon-Perrière N, Rouanet-Larrivière M, Duval F, Prigent J, Nadal L, Péréon Y, Le Masson G. Clinical Neurology in Practice: The Tongue (part 2). Neurologist 2024; 29:59-69. [PMID: 37639532 DOI: 10.1097/nrl.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND The tongue is an essential organ for the development of certain crucial functions such as swallowing and speech. The examination of the tongue can be very useful in neurology, as the various types of lingual alterations can lead to certain specific diagnoses, the tongue being a kind of 'mirror' of some neurological function. REVIEW SUMMARY To discuss the elements of clinical examination of the tongue in relation to neurological disorders. After reviewing the different superficial lesions of the tongue, we deal with various movement disorders of the tongue (fasciculations/myokimia, orolingual tremor, choreic movements of the tongue, dystonia of the tongue, lingual myoclonus, and psychogenic movements), disorders of taste and lingual sensitivity and lingual pain. CONCLUSIONS Examination of the tongue should not be limited to studying its motility and trophicity. It is equally important to check the sensory function and understand how to interpret abnormal movements involving the tongue. This study also aimed to demonstrate the importance of nonmotor tongue function in neurological practice.
Collapse
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, Muscle-Nerve Unit, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
- Referral Center for Neuromuscular Diseases 'AOC', University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
- ALS Center, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Guilhem Solé
- Department of Neurology, Muscle-Nerve Unit, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
- Referral Center for Neuromuscular Diseases 'AOC', University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Nathalie Damon-Perrière
- Department of Clinical Neurophysiology, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
- Department of Movement disorders, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Marie Rouanet-Larrivière
- Department of Clinical Neurophysiology, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Fanny Duval
- Department of Neurology, Muscle-Nerve Unit, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
- Referral Center for Neuromuscular Diseases 'AOC', University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Julia Prigent
- Department of Neurology, Muscle-Nerve Unit, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Louis Nadal
- Department of Neurology, Muscle-Nerve Unit, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Yann Péréon
- CHU Nantes, Reference Centre for Neuromuscular Diseases AOC, Filnemus, Nantes, France
| | - Gwendal Le Masson
- Department of Neurology, Muscle-Nerve Unit, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
- Referral Center for Neuromuscular Diseases 'AOC', University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
- ALS Center, University Hospitals of Bordeaux (CHU Bordeaux - Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| |
Collapse
|
35
|
Zhou L. Association of vitamin B2 intake with cognitive performance in older adults: a cross-sectional study. J Transl Med 2023; 21:870. [PMID: 38037028 PMCID: PMC10691015 DOI: 10.1186/s12967-023-04749-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND To scrutinize the relationship between vitamin B2 consumption and cognitive function based on the NHANES database. METHODS This cross-sectional study included eligible older adults from the NHANES 2011-2014. Vitamin B2 intake was determined from dietary interview data for two 24-h periods. Cognitive function was evaluated through the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). The regression analyses were used to evaluate the association of vitamin B2 intake with cognitive performance. Stratified analyses based on gender, race, and body mass index (BMI) were conducted. RESULTS Higher vitamin B2 intake was correlated with higher scores on each test. As compared to the lowest quartile, the highest quartile of vitamin B2 intake was related to a 45.1-fold increase (P = 0.004) on the DSST test sores. Moreover, those who were males, non-Hispanic whites, or had a BMI of 18.5 to 30 kg/m2 had a stronger relationship between total vitamin B2 consumption and cognitive function. CONCLUSION It's possible that older persons who consume more vitamin B2 have enhanced performance in some areas of cognitive function. To determine the causal link between vitamin B2 consumption and cognitive performance, further long-term research is required.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
36
|
Pedroza-García KA, Careaga-Cárdenas G, Díaz-Galindo C, Quintanar JL, Hernández-Jasso I, Ramírez-Orozco RE. Bioactive role of vitamins as a key modulator of oxidative stress, cellular damage and comorbidities associated with spinal cord injury (SCI). Nutr Neurosci 2023; 26:1120-1137. [PMID: 36537581 DOI: 10.1080/1028415x.2022.2133842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Spinal cord injury (SCI) cause significant disability and impact the quality of life of those affected by it. The nutritional status and diet are fundamental to diminish the progression of complications; vitamins modulate the inflammatory response and oxidative stress, promote blood-spinal cord barrier preservation and the prompt recovery of homeostasis. A deep knowledge of the benefits achieved from vitamins in patients with SCI are summarized. Information of dosage, time, and effects of vitamins in these patients are also displayed. Vitamins have been extensively investigated; however, more clinical trials are needed to clarify the scope of vitamin supplementation.Objective: The objective of this review was to offer relevant therapeutic information based on vitamins supplementation for SCI patients.Methods: Basic and clinical studies that have implemented the use of vitamins in SCI were considered. They were selected from the year 2000-2022 from three databases: PubMed, Science Direct and Google Scholar.Results: Consistent benefits in clinical trials were shown in those who were supplemented with vitamin D (prevents osteoporosis and improves physical performance variables), B3 (improves lipid profile) and B12 (neurological prophylaxis of chronic SCI damage) mainly. On the other hand, improvement related to neuroprotection, damage modulation (vitamin A) and its prophylaxis were associated to B complex vitamins supplementation; the studies who reported positive results are displayed in this review.Discussion: Physicians should become familiar with relevant information that can support conventional treatment in patients with SCI, such as the use of vitamins, a viable option that can improve outcomes in patients with this condition.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Gabriela Careaga-Cárdenas
- Biomedical Research, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Carmen Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Irma Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Ricardo E Ramírez-Orozco
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
37
|
Duarte-Guterman P, Richard JE, Lieblich SE, Eid RS, Lamers Y, Galea LAM. Cellular and molecular signatures of motherhood in the adult and ageing rat brain. Open Biol 2023; 13:230217. [PMID: 37989220 PMCID: PMC10681025 DOI: 10.1098/rsob.230217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Pregnancy is marked by robust changes, including brain changes to volume, structure, connectivity and neuroplasticity. Although some brain changes are restricted to pregnancy and the postpartum, others are long-lasting. Few studies have examined possible mechanisms of these changes or the effects of multiple pregnancies. We characterized various cellular and molecular signatures of parity (nulliparous, primiparous, biparous) in the rat hippocampus. We investigated density of neural stems cells (Sox2), microglia (Iba-1) and levels of a synaptic protein (PSD-95), cell signalling pathways, neuroinflammation, and the tryptophan-kynurenine (TRP-KYN) pathway, one week after weaning their pups from the last pregnancy (age of dam: seven months) and in middle-age (age of dam: 13 months). Parity increased PSD-95 levels in both age groups and prevented the age-related decrease in neural stem cell density observed in nulliparous rats. Biparity increased cell signalling phosphoproteins (pp70S6K, S6RP) and number of microglia in the dentate gyrus, regardless of age. Parity resulted in transient changes to the TRP-KYN system. Thus, previous parity has lasting effects on synaptic plasticity with fewer lasting effects on inflammation and cell signalling phosphoproteins in the whole hippocampus.
Collapse
Affiliation(s)
- P. Duarte-Guterman
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - J. E. Richard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - S. E. Lieblich
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. S. Eid
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Y. Lamers
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - L. A. M. Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Licina E, Radojicic A, Jeremic M, Tomic A, Mijajlovic M. Non-Pharmacological Treatment of Primary Headaches-A Focused Review. Brain Sci 2023; 13:1432. [PMID: 37891800 PMCID: PMC10605615 DOI: 10.3390/brainsci13101432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Headache disorders are a significant global health burden, leading to reduced quality of life. While vast pharmacological treatments are available, they may be associated with adverse effects or inadequate efficacy for some patients, therefore there is a need for exploring alternate treatment strategies. This review gives a brief explanation and evaluation of some established and emerging non-pharmacological approaches for headache management, focusing on nutraceuticals and diet, acupuncture, cognitive behavioral therapy (CBT), biofeedback, relaxation techniques, autogenic training, and neuromodulation. Special consideration is given to psychological interventions as they increase patient self-efficacy and provide strategies for managing chronic pain. Future research should focus on optimizing these therapies, identifying patient-specific factors influencing their effectiveness, and integrating them into holistic headache management strategies.
Collapse
Affiliation(s)
- Emir Licina
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (E.L.); (A.R.); (A.T.)
| | - Aleksandra Radojicic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (E.L.); (A.R.); (A.T.)
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Marta Jeremic
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Aleksandra Tomic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (E.L.); (A.R.); (A.T.)
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Milija Mijajlovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (E.L.); (A.R.); (A.T.)
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| |
Collapse
|
39
|
Chen Y, Zhao J, McLinden AP, Luo M, Cao K, Liu J. Severe erythroid hypoplasia and erythroblast vacuolization in a male with Brown-Vialetto-Van Laere syndrome 2 misdiagnosed as Diamond Blackfan anemia. Pediatr Blood Cancer 2023; 70:e30396. [PMID: 37132082 DOI: 10.1002/pbc.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Yanxia Chen
- Department of Rheumatology and Immunology, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Jiwei Zhao
- Department of Laboratory Medicine, Nanjing Lishui District Hospital of TraditionalChinese Medicine, Nanjing, Jiangsu, China
| | - A Patrick McLinden
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Meizhu Luo
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ke Cao
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jinlin Liu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Kanellopoulos AK, Costello S, Mainardi F, Koshibu K, Deoni S, Schneider N. Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children. Nutrients 2023; 15:3754. [PMID: 37686785 PMCID: PMC10490067 DOI: 10.3390/nu15173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Myelination of the brain structures underlying social behavior in humans is a dynamic process that parallels the emergence of social-emotional development and social skills in early life. Of the many genetic and environmental factors regulating the myelination processes, nutrition is considered as a critical and modifiable early-life factor for establishing healthy social brain networks. However, the impact of nutrition on the longitudinal development of social brain myelination remains to be fully understood. This study examined the interplay between childhood nutrient intake and social brain development across the first 5 years of life. Myelin-sensitive neuroimaging and food-intake data were analyzed in 293 children, 0.5 to 5 years of age, and explored for dynamic patterns of nutrient-social brain myelin associations. We found three data-driven age windows with specific nutrient correlation patterns, 63 individual nutrient-myelin correlations, and six nutrient combinations with a statistically significant predictive value for social brain myelination. These results provide novel insights into the impact of specific nutrient intakes on early brain development, in particular social brain regions, and suggest a critical age-sensitive opportunity to impact these brain regions for potential longer-term improvements in socio-emotional development and related executive-function and critical-thinking skills.
Collapse
Affiliation(s)
- Alexandros K. Kanellopoulos
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sarah Costello
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Fabio Mainardi
- Data Science Group, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Kyoko Koshibu
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sean Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, 1 Hoppin Street, Providence, RI 20903, USA
- Department of Radiology, Warren Alpert Medical School of Brown University, 222 Richmond St., Providence, RI 02912, USA
- Spinn Neuroscience, Seattle, WA 98275, USA
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
41
|
Jiang X, Wang Y, Liu J. Comprehensive characterization of amino acids and water-soluble vitamins in a pentylenetetrazole-induced seizures rat model. J Sep Sci 2023; 46:e2201004. [PMID: 36841992 DOI: 10.1002/jssc.202201004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Epilepsy is a complex neurological disease characterized by spontaneous recurrent seizures that affect around 1% of the global population. Despite the significant progress in the mechanisms of epileptogenesis, there is still about 60% of cases in which the cause is unknown. Thus, revealing the molecular mechanisms of epileptogenesis will greatly improve the development of epilepsy treatment. Since the comprehensive characterization of amino acids and water-soluble vitamins is important in understanding the underlying mechanisms of epilepsy or seizures, we developed two liquid chromatography-tandem mass spectrometry methods to quantify 17 water-soluble vitamins and 46 amino acids and applied them to our pentylenetetrazole-induced kindling rat model. All water-soluble vitamins were detected with a linearity of r > 0.992 and limits of quantitation between 0.1 and 5 ng/ml except for nicotinic acid. For amino acids, the linearities obtained were good with correlation coefficients higher than 0.99, and matrix effects were between 85.3% and 110%. To handle the multidimensional data more effectively, multivariate statistical analysis approaches used in non-targeted metabolomics were creatively exploited in the visualization, interpretation, and exploration of the results.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Yan Wang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Jia Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| |
Collapse
|
42
|
Pregnancy thiamine and riboflavin intake and the risk of gestational diabetes mellitus: A prospective cohort study. Am J Clin Nutr 2023; 117:426-435. [PMID: 36811572 DOI: 10.1016/j.ajcnut.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Thiamine and riboflavin deficiencies exist to varying degrees worldwide, especially in developing countries. Evidence regarding the association between thiamine and riboflavin intake and gestational diabetes mellitus (GDM) is scarce. OBJECTIVES We aimed to evaluate the association of thiamine and riboflavin intake during pregnancy, including dietary source and supplementation, with GDM risk in a prospective cohort study. METHODS We included 3036 pregnant women (923 in the first trimester and 2113 in the second trimester) from the Tongji Birth Cohort. A validated semi-quantitative food frequency questionnaire and a lifestyle questionnaire were used to assess thiamine and riboflavin intake from dietary source and supplementation, respectively. GDM was diagnosed using the 75 g 2-h oral glucose tolerance test at 24-28 weeks of gestation. A modified Poisson regression or logistic regression model was used to evaluate the association between thiamine and riboflavin intake and GDM risk. RESULTS Dietary intake of thiamine and riboflavin was at low levels during pregnancy. In the fully adjusted model, compared with participants in quartile 1 (Q1), those who had more total thiamine and riboflavin intake had a lower risk of GDM during the first trimester [thiamine: Q2: RR: 0.58 (95% CI: 0.34, 0.98); Q3: RR: 0.45 (95% CI: 0.24, 0.84); Q4: RR: 0.35 (95% CI: 0.17, 0.72), P for trend = 0.002; riboflavin: Q2: RR: 0.63 (95% CI: 0.37, 1.09); Q3: RR: 0.45 (95% CI: 0.24, 0.87); Q4: RR: 0.39 (95% CI: 0.19, 0.79), P for trend = 0.006]. This association was also observed during the second trimester. Similar results were observed for the association between thiamine and riboflavin supplement use but not dietary intake and GDM risk. CONCLUSIONS Higher intake of thiamine and riboflavin during pregnancy is associated with a lower incidence of GDM. This trial was registered at http://www.chictr.org.cn as ChiCTR1800016908.
Collapse
|
43
|
Linalool against Hafnia alvei, its antibacterial mechanism revealed by metabolomic analyses. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Indika NLR, Frye RE, Rossignol DA, Owens SC, Senarathne UD, Grabrucker AM, Perera R, Engelen MPKJ, Deutz NEP. The Rationale for Vitamin, Mineral, and Cofactor Treatment in the Precision Medical Care of Autism Spectrum Disorder. J Pers Med 2023; 13:252. [PMID: 36836486 PMCID: PMC9964499 DOI: 10.3390/jpm13020252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Children with autism spectrum disorder may exhibit nutritional deficiencies due to reduced intake, genetic variants, autoantibodies interfering with vitamin transport, and the accumulation of toxic compounds that consume vitamins. Importantly, vitamins and metal ions are essential for several metabolic pathways and for neurotransmitter functioning. The therapeutic benefits of supplementing vitamins, minerals (Zinc, Magnesium, Molybdenum, and Selenium), and other cofactors (coenzyme Q10, alpha-lipoic acid, and tetrahydrobiopterin) are mediated through their cofactor as well as non-cofactor functions. Interestingly, some vitamins can be safely administered at levels far above the dose typically used to correct the deficiency and exert effects beyond their functional role as enzyme cofactors. Moreover, the interrelationships between these nutrients can be leveraged to obtain synergistic effects using combinations. The present review discusses the current evidence for using vitamins, minerals, and cofactors in autism spectrum disorder, the rationale behind their use, and the prospects for future use.
Collapse
Affiliation(s)
- Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Richard E. Frye
- Autism Discovery and Research Foundation, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
| | - Daniel A. Rossignol
- Rossignol Medical Center, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Aliso Viejo, CA 92656, USA
| | - Susan C. Owens
- Autism Oxalate Project at the Autism Research Institute, San Diego, CA 92116, USA
| | - Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Marielle P. K. J. Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| | - Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
45
|
Cai Z, Finnie J, Manavis J, Blumbergs P. Avian riboflavin deficiency causes reliably reproducible peripheral nerve demyelination and, with vitamin supplementation, rapid remyelination. Hum Exp Toxicol 2023; 42:9603271231188970. [PMID: 37553751 DOI: 10.1177/09603271231188970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Riboflavin deficiency produces severe peripheral neve demyelination in young, rapidly growing chickens. While this naturally-occurring vitamin B2 deficiency can cause a debilitating peripheral neuropathy, and mortality, in poultry flocks, it can also be a useful experimental animal model to study the pathogenesis of reliably reproducible peripheral nerve demyelination. Moreover, restitution of normal riboflavin levels in deficient birds results in brisk remyelination. It is the only acquired, primary, demyelinating tomaculous neuropathy described to date in animals. The only other substance that causes peripheral nerve demyelination similar to avian riboflavin deficiency is tellurium and the pathologic features of the peripheral neuropathy produced by this developmental neurotoxin in weanling rats are also described.
Collapse
Affiliation(s)
- Zhao Cai
- Discipline of Anatomy and Pathology, Adelaide Medical School, Adelaide, SA, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, Adelaide, SA, Australia
- Division of Research and Innovation, University of Adelaide, Adelaide, SA, Australia
| | - Jim Manavis
- Discipline of Anatomy and Pathology, Adelaide Medical School, Adelaide, SA, Australia
| | - Peter Blumbergs
- Discipline of Anatomy and Pathology, Adelaide Medical School, Adelaide, SA, Australia
| |
Collapse
|
46
|
Putilina MV. [A complex of B vitamins, choline and inosine in the treatment of chronic pain]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:114-119. [PMID: 37084375 DOI: 10.17116/jnevro2023123041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Chronic pain is an independent disease associated with multiple changes in the nervous, endocrine and immune systems. The use of B vitamins is pathogenetically justified. Unlike others, the CompligamB complex contains almost all fractions of B vitamins, inosine and para-aminobenzoic acid, which provides an additional therapeutic effect. The effects of vitamins are summarized, in some cases they are potentiated, while none of them can replace the other, so it is advisable to use vitamin complexes.
Collapse
Affiliation(s)
- M V Putilina
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
47
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
48
|
Riboflavin Intake Inversely Associated with Cardiovascular-Disease Mortality and Interacting with Folate Intake: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005-2016. Nutrients 2022; 14:nu14245345. [PMID: 36558504 PMCID: PMC9785396 DOI: 10.3390/nu14245345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The association between intakes of riboflavin and mortality has not been examined intensively in general populations. In this study, 10,480 adults in the 2005-2016 National Health and Nutrition Examination Survey (NHANES) were followed-up until 2019 for their vital status. Riboflavin and folate were assessed by two-day 24 h recall. The date and cause of death were obtained from the US Mortality Registry. The risks of all-cause mortality and cardiovascular disease (CVD) mortality were investigated using a Cox regression analysis. During a mean of 8.5 years follow-up, there were 1214 deaths registered (including 373 deaths from CVD and 302 from cancer). Compared to low level (quartile 1, Q1) of riboflavin intake, the hazard ratios (HRs) (95% confidence interval (CI)) for high level (quartile 4, Q4) were 0.53 (0.31-0.90) for CVD mortality and 0.62 (0.48-0.81) for all-cause mortality. The inverse association between riboflavin intake and CVD mortality was only significant among those with a high intake of folate (p for interaction 0.045). Those with a high folate intake (Q4) and low intake of riboflavin (Q1) had the highest risk of CVD mortality (HR 4.38, 95% CI 1.79-10.72), as compared with a high intake of both riboflavin and folate. In conclusion, riboflavin intake was inversely associated with all-cause mortality and CVD mortality, and the association was modified by folate intake.
Collapse
|
49
|
Kar A, Bhattacharjee S. Bioactive polyphenolic compounds, water-soluble vitamins, in vitro anti-inflammatory, anti-diabetic and free radical scavenging properties of underutilized alternate crop Amaranthus spinosus L. from Gangetic plain of West Bengal. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Li J, Valkenburgh JV, Fang J, Zhang D, Chen Y, Chen Q, Jia G, Chen AZ, Zhang X, Chen K. Development of a novel radiofluorinated riboflavin probe for riboflavin receptor-targeting PET imaging. Pharmacol Res 2022; 183:106395. [PMID: 35970328 DOI: 10.1016/j.phrs.2022.106395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Riboflavin receptor 3 (RFVT3) is a key protein in energetic metabolism reprogramming and is overexpressed in multiple cancers involved in malignant proliferation, angiogenesis, chemotherapy resistance, and immunosuppression. To enable non-invasive real-time quantification of RFVT3 in tumors, we sought to develop a suitable PET probe that would allow specific and selective RFVT3 imaging in vivo. A novel radiofluorinated riboflavin probe (18F-RFTA) based on riboflavin was synthesized and characterized in terms of radiochemical purity, hydrophilicity, binding affinity, and stability. Positron emission tomography (PET) imaging of 18F-RFTA was performed in U87MG tumor-bearing mice. Immunohistochemistry staining was carried out to determine the expression of RFVT3 in U87MG tumors. 18F-RFTA was characterized by high radiochemical purity and RFVT3 binding affinity, and remarkable stability in vitro and in vivo. Small-animal PET imaging with 18F-RFTA revealed significantly higher uptake in RFVT3-expressing U87MG tumors than in muscle. In conclusion, we have developed the first radiofluorinated riboflavin-based PET probe that is suitable for imaging RFVT3-positive tumors. The new target/probe system can be leveraged for extensive use in the diagnosis and treatment of RFVT3 overexpressing diseases, such as oncologic, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Jianyang Fang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Deliang Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingxi Chen
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Austin Z Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA.
| |
Collapse
|